JP2510802B2 - Simulated heat receiver device for heating furnace - Google Patents

Simulated heat receiver device for heating furnace

Info

Publication number
JP2510802B2
JP2510802B2 JP35731691A JP35731691A JP2510802B2 JP 2510802 B2 JP2510802 B2 JP 2510802B2 JP 35731691 A JP35731691 A JP 35731691A JP 35731691 A JP35731691 A JP 35731691A JP 2510802 B2 JP2510802 B2 JP 2510802B2
Authority
JP
Japan
Prior art keywords
box body
box
water
receiver device
heat receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35731691A
Other languages
Japanese (ja)
Other versions
JPH05172770A (en
Inventor
敬博 永田
敏明 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP35731691A priority Critical patent/JP2510802B2/en
Publication of JPH05172770A publication Critical patent/JPH05172770A/en
Application granted granted Critical
Publication of JP2510802B2 publication Critical patent/JP2510802B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、加熱炉に於ける模擬受
熱体装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a simulated heat receiver device in a heating furnace.

【0002】[0002]

【従来の技術】加熱炉の熱効率を測定する上で被加熱物
への伝熱量は、最も重要な評価項目である。また、サー
マルNOの生成に大きく影響する火炎温度は、被加熱物
への伝熱量により変化する。従って、実験炉を用いて伝
熱性能の評価や低NOxバーナの開発試験を行なう場合
には、実際に即して、被加熱物を模擬した受熱体を炉内
に設置することが望ましい。しかしながら、従来の受熱
体装置では、以下の点で数々の課題があった。即ち、図
1に示す如く、水冷チューブの回わりを耐火断熱材で固
める構成のもと、図2に示す如く、箱体内に水冷チュー
ブを点付けで溶接して内蔵させ、箱体外周に耐火断熱材
で被覆する構成のものとがある。
2. Description of the Related Art The amount of heat transferred to an object to be heated is the most important evaluation item in measuring the thermal efficiency of a heating furnace. Further, the flame temperature, which greatly affects the generation of thermal NO, changes depending on the amount of heat transferred to the object to be heated. Therefore, when the heat transfer performance is evaluated or the development test of the low NOx burner is performed by using the experimental furnace, it is desirable to install a heat receiver simulating the object to be heated in the furnace in actuality. However, the conventional heat receiver device has various problems in the following points. That is, as shown in FIG. 1, under the structure in which the rotation of the water-cooled tube is hardened by a fireproof heat insulating material, as shown in FIG. Some are covered with a heat insulating material.

【0003】[0003]

【発明が解決しようとする課題】図1に示す構成のもの
は、約2ton/m3の重量物となる上、前記耐火断熱
材のひび割れ、破壊と箱体表面温度の不均一性が課題と
なっている。図2に示す構成のものは、箱体の圧力変動
に伴う箱の変形、その変形よる断熱材の剥離、箱体表面
温度の不均一性に加えて、箱体表面温度の測定の困難性
等の課題等を解決しなければならない。
The structure shown in FIG. 1 has a heavy weight of about 2 ton / m 3 and has the problems of cracking and breaking of the refractory insulation and nonuniformity of the surface temperature of the box. Has become. In the structure shown in FIG. 2, the deformation of the box due to the pressure fluctuation of the box, the peeling of the heat insulating material due to the deformation, the non-uniformity of the box surface temperature, the difficulty of measuring the box surface temperature, etc. Must be solved.

【0004】[0004]

【課題を解決するための手段】前記課題を解決するため
に、本発明は、金属の箱体内に、水冷チューブを、箱体
内壁面に接触しないように浮かせた状態で装置すると共
に前記箱体には、該箱体内外気とを連通する通気管を装
置した構成のものを提供するものである。
In order to solve the above-mentioned problems, the present invention provides a water-cooling tube in a metal box body in a state of being floated so as not to contact the wall surface of the box body, and at the same time to the box body. Provides a device provided with a ventilation pipe that communicates with the air inside and outside the box.

【0005】[0005]

【作用】水冷チューブと箱体表面との間の熱移動は輻射
伝熱によって行なわれ、その熱の移動量は、水冷チュー
ブ入口と出口の温度と水量によって簡単に測定できる。
箱体の表面温度の変更は、パイプの曲管部の増減によ
り、パイプの表面積を変えて行なうことができる。箱体
表面と水冷チューブの間の伝熱は、輻射によるため、熱
伝導によるものと比較して表面温度が均一となる。また
箱体には外気に通じる通気管があることにより、箱体内
の圧力が大気圧に保持でき、圧力変化による変形が生じ
ず、燃焼ガスが侵入することがないので、凝縮水の発生
を抑制することができる。
The heat transfer between the water-cooled tube and the surface of the box is performed by radiative heat transfer, and the amount of heat transfer can be easily measured by the temperature and the water amount at the inlet and outlet of the water-cooled tube.
The surface temperature of the box can be changed by changing the surface area of the pipe by increasing or decreasing the curved pipe portion of the pipe. Since the heat transfer between the box surface and the water-cooled tube is due to radiation, the surface temperature becomes more uniform than that due to heat conduction. In addition, since the box has a ventilation pipe that communicates with the outside air, the pressure inside the box can be maintained at atmospheric pressure, deformation due to pressure changes does not occur, and combustion gas does not enter, so the generation of condensed water is suppressed. can do.

【0006】[0006]

【実施例】符号1はステンレス製の箱体であって、この
箱体1内に、水冷チューブ2を、内壁面3に接触しない
ように浮かせた状態で装置する。その装置の仕方は、ス
ペ−サを用いる等、周知のいかなる手段を用いてもよ
い。要は、水冷チューブ2を箱体1の内壁面3に接触し
ないように支持すればよい。そして、箱体1に孔を設
け、この孔を介して水冷チューブ2が装置され、すき間
はシ−ルされる。更に、前記箱体1には、該箱体1内と
外気とを連通する通気管4を装置する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Reference numeral 1 is a box made of stainless steel, in which a water cooling tube 2 is floated so as not to contact the inner wall surface 3. As a method of the device, any well-known means such as using a spacer may be used. In short, the water cooling tube 2 may be supported so as not to contact the inner wall surface 3 of the box body 1. Then, a hole is provided in the box body 1, the water cooling tube 2 is installed through this hole, and the gap is sealed. Further, the box body 1 is provided with a ventilation pipe 4 for communicating the inside of the box body 1 with the outside air.

【0007】しかして、箱体1を炉内に設置し、炉を運
転すると、箱体1は、火炎、燃焼ガス、炉内壁からの伝
熱により加熱される。このようにして、箱体1の表面
は、高温となり、輻射伝熱によって内部に装置された水
冷チューブ2を加熱する。かかる際、通気管4が装置さ
れていることにより箱体内の圧力が大気圧に保持される
ので、箱体内空気の体積膨張を原因とする箱体1の変形
は生じない。従って、水冷チューブ2は、一端装置する
と、その装置の仕方を問わず、安定的に支持される。ま
た、前記通気管4により外気との間で連通しているの
で、燃焼ガスが箱体1内に侵入することがなく、凝縮水
の発生を防止することができる。更に、箱体1と水冷チ
ューブ2との間の熱移動は、輻射伝熱によって行なわれ
るので、熱伝導によるものと比較して箱体1の表面温度
が均一となる。また、箱体1の表面温度を高くする場合
は、パイプの表面積を小さくすることにより、輻射伝熱
量を減らせばよく、逆に、低温にする場合には、表面積
を増やせばよい。このようにして、30〜60℃程度の
冷却水を水冷チューブ2に通水することによって箱体1
の表面温度を、100〜1200℃程度に設定できるも
のである。
When the box body 1 is installed in the furnace and the furnace is operated, the box body 1 is heated by flame, combustion gas, and heat transfer from the inner wall of the furnace. In this way, the surface of the box body 1 becomes hot and heats the water-cooled tube 2 installed therein by radiant heat transfer. At this time, since the pressure inside the box body is maintained at the atmospheric pressure because the ventilation pipe 4 is provided, the deformation of the box body 1 due to the volume expansion of the air inside the box body does not occur. Therefore, once the water cooling tube 2 is installed, it can be stably supported regardless of the method of the device. Further, since the vent pipe 4 communicates with the outside air, the combustion gas does not enter the box body 1 and the generation of condensed water can be prevented. Furthermore, since heat transfer between the box 1 and the water-cooled tube 2 is performed by radiant heat transfer, the surface temperature of the box 1 becomes more uniform than that by heat conduction. Further, when increasing the surface temperature of the box body 1, the surface area of the pipe may be reduced to reduce the amount of radiant heat transfer, and conversely, when decreasing the temperature, the surface area may be increased. In this way, by passing cooling water of about 30 to 60 ° C. through the water cooling tube 2, the box 1
The surface temperature can be set to about 100 to 1200 ° C.

【0008】 [実験例]幅1.2m、高さ1.1m、長さ3.8mの
炉内に、本発明にかかる受熱体装置を装入し、室温から
炉内温度約1300℃、受熱体表面温度約900℃まで
加熱する。試験を7回繰り返した。合計の試験時間は、
20時間であった。 [結果]本発明装置には、変形がみられず、繰り返しの
使用に耐えられることが確認された。また凝縮水の発生
がほとんどなく、加えて水量、水温上昇により熱流束が
測定できた。
[Experimental Example] A furnace having a width of 1.2 m, a height of 1.1 m, and a length of 3.8 m was charged with the heat receiving device according to the present invention, and the temperature of the furnace was about 1300 ° C. The body surface temperature is heated to about 900 ° C. The test was repeated 7 times. Total test time is
It was 20 hours. [Results] It was confirmed that the device of the present invention showed no deformation and could withstand repeated use. Moreover, almost no condensed water was generated, and in addition, the heat flux could be measured by increasing the water amount and the water temperature.

【0009】[0009]

【発明の効果】本発明は以上の通りであるので、軽量で
箱体の変形がなく、且つ箱体表面の温度の均一性により
熱疲労が小さい上、凝縮水の発生が抑制されるので、耐
久性が向上して伝熱量の測定を簡易に繰り返し行なうこ
とができる。その結果、実際の操業に近い状態で燃焼試
験を実行できる効果がある。
EFFECTS OF THE INVENTION As described above, the present invention is lightweight and has no deformation of the box body, and the heat uniformity is small due to the uniform temperature of the box surface, and the generation of condensed water is suppressed. The durability is improved and the heat transfer amount can be easily and repeatedly measured. As a result, there is an effect that the combustion test can be executed in a state close to the actual operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来装置の説明図である。FIG. 1 is an explanatory diagram of a conventional device.

【図2】従来装置の説明図である。FIG. 2 is an explanatory diagram of a conventional device.

【図3】本発明の装置の説明図である。FIG. 3 is an explanatory view of the device of the present invention.

【符号の説明】[Explanation of symbols]

1 箱体 2 水冷チューブ 3 内壁面 4 通気管 1 Box 2 Water cooling tube 3 Inner wall surface 4 Ventilation tube

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属性製の箱体内に、水冷チューブを箱
体内壁面に接触しないように浮かせた状態で装置すると
共に前記箱体には、該箱体内と外気とを連通する通気管
を装置した加熱炉の模擬受熱体装置。
1. A water-cooling tube is installed in a metallic box body in a state of being floated so as not to contact the wall surface of the box body, and a ventilation pipe for communicating the box body and the outside air is provided in the box body. Heat receiver device for a heated furnace.
JP35731691A 1991-12-24 1991-12-24 Simulated heat receiver device for heating furnace Expired - Lifetime JP2510802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35731691A JP2510802B2 (en) 1991-12-24 1991-12-24 Simulated heat receiver device for heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35731691A JP2510802B2 (en) 1991-12-24 1991-12-24 Simulated heat receiver device for heating furnace

Publications (2)

Publication Number Publication Date
JPH05172770A JPH05172770A (en) 1993-07-09
JP2510802B2 true JP2510802B2 (en) 1996-06-26

Family

ID=18453500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35731691A Expired - Lifetime JP2510802B2 (en) 1991-12-24 1991-12-24 Simulated heat receiver device for heating furnace

Country Status (1)

Country Link
JP (1) JP2510802B2 (en)

Also Published As

Publication number Publication date
JPH05172770A (en) 1993-07-09

Similar Documents

Publication Publication Date Title
Baukal Jr et al. A review of empirical flame impingement heat transfer correlations
JP2510802B2 (en) Simulated heat receiver device for heating furnace
US3804154A (en) Heating systems and heater units therefore
EP0401172B1 (en) A heating mantle with a porous radiation wall
CN215713205U (en) Gas furnace and gas furnace system
US4617870A (en) Method of accelerating radiative transfer
CN113862451A (en) Gas furnace and use method thereof
US4232634A (en) High efficiency hot water boiler
US3718323A (en) Radiant lining
JPS5665909A (en) Temperature controlling method of air for combustion of hot stove
JP2000171012A (en) Heater member for heating furnace
KR970043135A (en) Heat treatment device of metal
JPS6021384Y2 (en) Radiant tube heat treatment furnace
CA1114873A (en) Electrical insulation device
Amin et al. Heat Flux Measurement at Furnace Wall
JPS638384B2 (en)
Genna et al. Heat Transfer in a Gas-Fired Furnace
Mc Master Glass sheet tempering method and furnace
JPS6172941A (en) Combustion promotion device in fluid fuel burner
Trinks et al. Tests of Radiation From Luminous Flames
SU1404773A1 (en) Heating dome for annealing roll stack
Pribytkov Fuel Combustion on the Surface of the Metal as a Means of Intensifying the Thermal Operation of Furnaces
JPS5479334A (en) Combustor of hot gas engine
KR970043134A (en) Uniform heating method of the heated object in the furnace
JPH05248309A (en) Thermal exchanger of external combustion engine