JP2510666B2 - Winding method for cylindrical armature winding - Google Patents

Winding method for cylindrical armature winding

Info

Publication number
JP2510666B2
JP2510666B2 JP63081851A JP8185188A JP2510666B2 JP 2510666 B2 JP2510666 B2 JP 2510666B2 JP 63081851 A JP63081851 A JP 63081851A JP 8185188 A JP8185188 A JP 8185188A JP 2510666 B2 JP2510666 B2 JP 2510666B2
Authority
JP
Japan
Prior art keywords
coil
winding
motor
cylindrical
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63081851A
Other languages
Japanese (ja)
Other versions
JPH01255458A (en
Inventor
恭祐 宮本
幸則 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP63081851A priority Critical patent/JP2510666B2/en
Publication of JPH01255458A publication Critical patent/JPH01255458A/en
Application granted granted Critical
Publication of JP2510666B2 publication Critical patent/JP2510666B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、サーボモータの電機子巻線に係り、とく
に、ロボットや各種省力機器の駆動に従来から多用され
てきたDCサーボモータに代って最近その適用が増加して
いるブラシレスモータの円筒状電機子巻線(以下『円筒
巻線』と略する)の巻線方法に関する。
Description: TECHNICAL FIELD The present invention relates to an armature winding of a servo motor, and in particular, replaces a DC servo motor that has been widely used for driving a robot or various labor-saving devices. The present invention relates to a winding method of a cylindrical armature winding (hereinafter, referred to as “cylindrical winding”) of a brushless motor, which is increasingly applied.

〔従来技術〕[Prior art]

従来、ブラシレスモータの制御性能を高めるために、
電機子鉄心の平滑な空隙面に円筒巻線を固着した平滑電
機子が採用されている。
Conventionally, in order to improve the control performance of brushless motors,
A smooth armature is used in which a cylindrical winding is fixed to the smooth void surface of the armature core.

とくに、巻線占積率を上げるには、第4図は表わすよ
うに、モータ各相の回転磁界を発生させる要素となる要
素コイル1〜3を形成するときに、専用の巻き型を作
り、これに巻線を整列させて巻く整列巻線方法を行う。
In particular, in order to increase the winding space factor, as shown in FIG. 4, when forming the element coils 1 to 3 which are elements for generating the rotating magnetic field of each phase of the motor, a dedicated winding die is formed, An aligned winding method is performed in which windings are aligned and wound around this.

この場合、モータの駆動を制御するコントローラとの
整合を取るために、第5図に示すように各相要素コイル
を多層にして帯コイル4を成形する。
In this case, in order to match the controller for controlling the driving of the motor, as shown in FIG. 5, the band coil 4 is formed by forming each phase element coil in multiple layers.

従来技術においては、第6図の工程からの順に施
工される。すなわち3相モータの場合は、U,V,W相の要
素コイルを2/3π[rad]の電気的位相差を持たせて並
べ、これらを螺旋状に折れ曲げ成形した帯コイル4を、
マンドレル7に巻きつけ円筒巻線を形成する。次に、各
層の端子を直列、並列に接続し、また各相端子をスタ
ー、デルタに接続して平衡電機子巻線を形成する。
In the conventional technique, the construction is carried out in the order from the process of FIG. That is, in the case of a three-phase motor, the U, V, and W-phase element coils are arranged with an electrical phase difference of 2 / 3π [rad], and the band coil 4 formed by bending them in a spiral shape is
A cylindrical winding is formed around the mandrel 7. Next, the terminals of each layer are connected in series and in parallel, and the terminals of each phase are connected to a star and a delta to form a balanced armature winding.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

このような従来の円筒巻線の巻線方法には以下の通り
問題点がある。
The conventional winding method of the cylindrical winding has the following problems.

多層コイルを重ねてマンドレルに巻きつけ円筒巻線
に成形する従来の方法では、円筒巻線の内側と外側では
周長差が生じるので、巻線常数の設定で巻回数を決める
ときは、円筒の内側の周長により決められる。このた
め、第9図に示すように内側のコイル層に対し外側のコ
イル層は線間に隙間が生じ巻線占積率は低くなり、総合
的な巻線占積率も低下する。
In the conventional method of stacking multi-layer coils and winding them around a mandrel to form a cylindrical winding, there is a difference in circumferential length between the inside and the outside of the cylindrical winding.Therefore, when determining the number of windings by setting the winding constant, Determined by the inner circumference. Therefore, as shown in FIG. 9, a gap is created between the outer coil layer and the inner coil layer, and the winding space factor becomes low, and the overall winding space factor also decreases.

従来の巻線方法では、帯コイル4のコイルイエンド
部は円筒状巻線の円周長をモータ極対数で除した値のと
ころに集中するため、第7図に示すように層が厚くな
る。したがってこの部分を短くするために行なう、折れ
曲げ成形の作業が困難である。
In the conventional winding method, the coil end portion of the band coil 4 is concentrated at a value obtained by dividing the circumferential length of the cylindrical winding by the number of motor pole pairs, so that the layer becomes thick as shown in FIG. . Therefore, it is difficult to perform bending work to shorten this portion.

さらに、コイルエンド部は第8図に示すように、長く
なるため小形化できない。
Further, the coil end portion cannot be downsized because it becomes long as shown in FIG.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は上記課題を解決するための手段として、モー
タの軸方向長さLt、モータ各相ごとの要素となる要素コ
イルの折り曲げ角度をα、モータの極数をPとしたとき
にその周長が(Lt/cosα)×2Pとなる多層に重なる要素
コイルを電気的位相を持たせて並べた帯コイルを設け、
この帯コイルを所要のモータ極数と同数の起磁力極数が
生じるように螺旋状に折り曲げて螺旋折コイルをつく
り、これを円筒状に成形し電機子コアの内周面に挿入嵌
合してモータの電機子部を形成する円筒状電機子巻線の
巻線方法において、該要素コイルを外側分、内側分の少
なくとも2つに分割するとともに、外側分の要素コイル
は周長差分だけ内側分の要素コイルに対して長くし、か
つ内側分と外側分のそれぞれの要素コイルの導体径を異
なるものとすることによって、それらの巻線占績率が同
一になるように設定し、外側分と内側分の要素コイルを
それぞれ螺旋状に折り曲げて螺旋折コイルをつくり、こ
れを円筒状に成形した後、外側分と内側分のコイルエン
ド端を同一側にし、それぞれのコイルエンド部が重なら
ないように、かつ外側分と内側分の円筒状巻線のそれぞ
れの起磁力の極性が同方向で最大起磁力点の位置が同一
になるようにずらせて挿入嵌合した、ことを特徴とする
ものである。
As a means for solving the above-mentioned problems, the present invention provides an axial length Lt of a motor, a bending angle of an element coil which is an element for each phase of the motor α, and a circumferential length when the number of poles of the motor is P. Is a (Lt / cosα) x 2P band coil in which element coils that overlap in multiple layers are arranged with an electrical phase,
This band coil is spirally bent so that the same number of magnetomotive force poles as the required number of motor poles are produced to form a spirally folded coil, which is formed into a cylindrical shape and inserted and fitted into the inner peripheral surface of the armature core. In a winding method of a cylindrical armature winding that forms an armature portion of a motor, the element coil is divided into at least two parts, an outer part and an inner part, and the outer part element coil is an inner part by a circumferential length difference. Minute windings of the element coil, and by making the conductor diameters of the inner and outer element coils different from each other, the winding occupation ratios are set to be the same. After forming the spirally folded coil by bending each element coil for the inner part in a spiral shape and forming this into a cylindrical shape, make the coil end ends of the outer part and the inner part the same side so that the coil end parts do not overlap. And outside The polarity of each of the magnetomotive force of the partial inner portion of the cylindrical winding is fitted insert to be shifted to the maximum magnetomotive force point position is the same in the same direction, it is characterized in.

〔作 用〕[Work]

上記構成のように、円筒状巻線を外側分と内側分とに
分割するようにし、それぞれのコイルエンド部が互に重
ならないように外側分に内側分を挿入して嵌合すれば、
それぞれのコイルエンド部の折り曲げ作業を個別に単独
で行うことができる。したがって、折り曲げ作業を容易
に行うことができる。また、折り曲げた後のコイルエン
ド部の厚さも従来に比べて薄くなるので、円筒状巻線の
長さを短縮することができ、小形化を図ることができ
る。そして、外側分と内側分のコイル導体径を異なるも
のとすることによって、同一の巻線占積率となるように
しているのでモータ特性も従来に比べて改善することが
できる。
If the cylindrical winding is divided into an outer portion and an inner portion as in the above configuration, and the inner portion is inserted into the outer portion and fitted so that the respective coil end portions do not overlap each other,
The bending operation of each coil end portion can be individually and independently performed. Therefore, the bending work can be easily performed. Further, the thickness of the coil end portion after bending is thinner than that of the conventional one, so that the length of the cylindrical winding can be shortened and the size can be reduced. Since the outer and inner coil conductor diameters are made different so as to have the same winding space factor, the motor characteristics can be improved as compared with the conventional case.

〔実施例〕〔Example〕

以下、本発明の実施例を図に基づき説明する。本実施
例では、外側分と内側分との2つに分割された3相モー
タ用の円筒状巻線を作成する場合につき説明する。
Embodiments of the present invention will be described below with reference to the drawings. In this embodiment, a case will be described in which a cylindrical winding for a three-phase motor, which is divided into an outer portion and an inner portion, is formed.

まず、第4図に示す各相の要素コイル1〜3を外側分
と内側分との2つに分けて作成する。この場合、外側分
のコイル導体径は内側分のものよりも大きなものを使用
し、また、要素コイル長さlについても、外側分の方を
内側分のものよりも長めに設定する。
First, the element coils 1 to 3 of each phase shown in FIG. 4 are divided into two parts, an outer part and an inner part. In this case, the outer part has a larger coil conductor diameter than the inner part, and the element coil length l is set to be longer for the outer part than for the inner part.

次に、第6図〜に示した手順により、外側分及び
内側分の帯コイル4、螺旋折コイル6を形成し、その
後、第6図に示すように、マンドレル7によって外側
分及び内側分のそれぞれの円筒状巻線を作成する。そし
て、第1図に示すように、出来上った外側円筒巻線20の
中に、内側円筒巻線21を挿入する。
Next, the band coil 4 and the spiral folding coil 6 for the outer side portion and the inner side portion are formed by the procedure shown in FIG. 6 and thereafter, as shown in FIG. Create each cylindrical winding. Then, as shown in FIG. 1, the inner cylindrical winding 21 is inserted into the completed outer cylindrical winding 20.

このとき、各円筒巻線のコイルエンド部は重なり合わ
ないようにし、また外側分と内側分の円筒巻線のそれぞ
れの起磁力の極性が同方向で最大起磁力点の位置が同一
になるようにずらして挿入する。
At this time, the coil ends of the cylindrical windings should not overlap, and the polarities of the magnetomotive forces of the outer and inner cylindrical windings should be in the same direction and the positions of the maximum magnetomotive force points should be the same. Insert by shifting.

最後に、各相の端子を直列あるいは並列に接続し、ま
た各相端子をスターあるいはデルタに接続して平衡電機
子巻線を形成し、このコイルエンド部を短縮化させるた
めにほぼ90゜内側に折り曲げ、樹脂含浸して円筒巻線の
作成を完了する。
Finally, connect the terminals of each phase in series or in parallel, and also connect the terminals of each phase to a star or delta to form a balanced armature winding. Bend and impregnate with resin to complete the production of the cylindrical winding.

第2図は、このようにして作成した円筒巻線をモータ
に装着した状態を示す断面図である。この図に示すよう
に、外側円筒巻線20のコイルエンド部と、内側円筒巻線
のコイルエンド部とは上下に分かれているため、折り曲
げ作業を容易に行うことができる。また、第8図の従来
例における円筒巻線8のコイルエンド部と対比すると、
第2図におけるコイルエンド部の厚さの方が薄くなって
いることは明らかである。したがって、円筒巻線の長さ
を短くすることができ、モータの小形化を図ることがで
きる。
FIG. 2 is a cross-sectional view showing a state in which the cylindrical winding thus created is mounted on a motor. As shown in this figure, since the coil end portion of the outer cylindrical winding 20 and the coil end portion of the inner cylindrical winding are vertically separated, the bending work can be easily performed. Further, in comparison with the coil end portion of the cylindrical winding 8 in the conventional example of FIG.
It is clear that the coil end portion in FIG. 2 is thinner. Therefore, the length of the cylindrical winding can be shortened, and the motor can be downsized.

そして、外側分のコイル導体径を内側分のものよりも
大きくしたので、第3図に示したように、外側円筒巻線
20のコイル導体間のすきまが第9図の場合に比べて密に
なっている。したがって、巻線占積率が向上したものと
なっている。
Since the coil conductor diameter for the outer portion is made larger than that for the inner portion, as shown in FIG.
The clearance between the 20 coil conductors is closer than in the case of FIG. Therefore, the winding space factor is improved.

なお、上記実施例では、円筒巻線が外側分及び内側分
の2つに分割された場合について説明したが、3分割以
上の構成とすることも可能である。例えば、3分割とし
た場合、その円筒巻線は、外側分、中側分、内側分の3
つによって構成されることになる。
In the above embodiment, the case where the cylindrical winding is divided into two parts, that is, the outer part and the inner part, has been described. For example, in the case of three divisions, the cylindrical winding has three parts: the outer part, the inner part, and the inner part.
It will be composed by two.

〔発明の効果〕〔The invention's effect〕

以上のように、本発明によれば、円筒巻線を外側分、
内側分の少くとも2つに分割し、それぞれのコイルエン
ド部が重ならないようにしているので、従来困難であっ
たコイルエンド部の折り曲げ作業を容易に行うことがで
き、また、モータの小形化を図ることが可能になる。さ
らに、外側分のコイル導体径を内側分のものよりも大き
くしているので巻線占積率も向上したものとなってい
る。
As described above, according to the present invention, the cylindrical winding is
The inner part is divided into at least two parts so that the coil end parts do not overlap each other, so it is possible to easily perform the bending work of the coil end part, which was difficult in the past, and to make the motor smaller. Can be achieved. Further, since the coil conductor diameter for the outer portion is larger than that for the inner portion, the winding space factor is also improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の要部を形成する外側円筒巻
線と内側円筒巻線の斜視図、第2図はモータに装填した
ときの側断面図、第3図は外側円筒巻線と内側円筒巻線
の一部正断面図、第4図は各相要素コイルの平面図、第
5図は帯コイルの平面図、第6図は帯コイルから円筒巻
線を形成する作業工程図、第7図ないし第9図は従来例
の説明図である。 1……U相要素コイル、2……W相要素コイル、3……
V相要素コイル、4……帯コイル、5……巻き型、6…
…螺旋折コイル、7……マンドレル、8……円筒巻線、
9……電機子コア、10……フレーム、11……界磁永久磁
石、12……ロータヨーク、15……シャフト、20……外側
円筒巻線、21……内側円筒巻線。
FIG. 1 is a perspective view of an outer cylindrical winding and an inner cylindrical winding forming a main part of an embodiment of the present invention, FIG. 2 is a side sectional view when loaded in a motor, and FIG. 3 is an outer cylindrical winding. Line and a partial front cross-sectional view of the inner cylindrical winding, FIG. 4 is a plan view of each phase element coil, FIG. 5 is a plan view of a strip coil, and FIG. 6 is a working process for forming a cylindrical winding from the strip coil. FIGS. 7 and 9 are explanatory views of a conventional example. 1 ... U-phase element coil, 2 ... W-phase element coil, 3 ...
V-phase element coil, 4 ... band coil, 5 ... winding type, 6 ...
… Spiral coil, 7 …… Mandrel, 8 …… Cylindrical winding,
9 ... Armature core, 10 ... Frame, 11 ... Field permanent magnet, 12 ... Rotor yoke, 15 ... Shaft, 20 ... Outer cylindrical winding, 21 ... Inner cylindrical winding.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】モータの軸方向長さLt、モータ各相ごとの
要素となる要素コイルの折り曲げ角度をα、モータの極
数をPとしたときにその周長が(Lt/cosα)×2Pとなる
多層に重なる要素コイルを電気的位相を持たせて並べた
帯コイルを設け、この帯コイルを所要のモータ極数と同
数の起磁力極数が生じるように螺旋状に折り曲げて螺旋
折コイルをつくり、これを円筒状に成形し電機子コアの
内周面に挿入嵌合してモータの電機子部を形成する円筒
状電機子巻線の巻線方法において、 該要素コイルを外側分、内側分の少なくとも2つに分割
するとともに、外側分の要素コイルは周長差分だけ内側
分の要素コイルに対して長くし、かつ内側分と外側分の
それぞれの要素コイルの導体径を異なるものとすること
によって、それらの巻線占積率が同一になるように設定
し、外側分と内側分の要素コイルをそれぞれ螺旋状に折
れ曲げて螺旋折コイルをつくり、これを円筒状に成形し
た後、 外側分と内側分のコイルエンド端を同一側にし、それぞ
れのコイルエンド部が重ならないように、かつ外側分と
内側分の円筒状巻線のそれぞれの起磁力の極性が同方向
で最大起磁力点の位置が同一になるようにずらせて挿入
嵌合した、 ことを特徴とする円筒状電機子巻線の巻線方法。
1. When the axial length Lt of the motor, the bending angle of the element coil as an element for each phase of the motor are α, and the number of poles of the motor is P, the circumferential length is (Lt / cos α) × 2P. A coil coil is formed by arranging element coils that overlap each other in multiple layers with an electrical phase, and this coil coil is spirally folded so that the same number of magnetomotive force poles as the required number of motor poles are produced. In the winding method of the cylindrical armature winding, which is formed into a cylindrical shape and is inserted and fitted into the inner peripheral surface of the armature core to form the armature portion of the motor, The element coil for the inner portion is divided into at least two, and the element coil for the outer portion is made longer than the element coil for the inner portion by the circumferential length difference, and the conductor diameters of the element coils for the inner portion and the outer portion are different from each other. So that the winding space factor becomes the same. , And the element coils for the outer and inner parts are each bent in a spiral shape to form a spirally folded coil, and after forming this into a cylindrical shape, make the coil end ends of the outer and inner parts the same side, Insert and fit the coil ends so that they do not overlap, and the polarities of the magnetomotive forces of the outer and inner cylindrical windings are in the same direction and the positions of the maximum magnetomotive force points are the same. A winding method for a cylindrical armature winding, characterized in that
JP63081851A 1988-04-02 1988-04-02 Winding method for cylindrical armature winding Expired - Fee Related JP2510666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63081851A JP2510666B2 (en) 1988-04-02 1988-04-02 Winding method for cylindrical armature winding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63081851A JP2510666B2 (en) 1988-04-02 1988-04-02 Winding method for cylindrical armature winding

Publications (2)

Publication Number Publication Date
JPH01255458A JPH01255458A (en) 1989-10-12
JP2510666B2 true JP2510666B2 (en) 1996-06-26

Family

ID=13757986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63081851A Expired - Fee Related JP2510666B2 (en) 1988-04-02 1988-04-02 Winding method for cylindrical armature winding

Country Status (1)

Country Link
JP (1) JP2510666B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7470935B2 (en) 2022-10-27 2024-04-19 パナソニックIpマネジメント株式会社 Tabletop

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52147701A (en) * 1976-06-02 1977-12-08 Hitachi Ltd Manufacturing rotary machines
JPS6059823B2 (en) * 1980-06-30 1985-12-26 松下電工株式会社 Manufacturing method for iron-free armature
JPS60216746A (en) * 1984-04-10 1985-10-30 Yaskawa Electric Mfg Co Ltd Manufacture of cylindrical armature winding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7470935B2 (en) 2022-10-27 2024-04-19 パナソニックIpマネジメント株式会社 Tabletop

Also Published As

Publication number Publication date
JPH01255458A (en) 1989-10-12

Similar Documents

Publication Publication Date Title
US8154166B2 (en) Dual layer winding pattern
US7049725B2 (en) Dynamoelectric machine stator and method for mounting prewound coils thereunto
CN101017990B (en) Motor with simplified structure
US4967464A (en) Method of making a switched reluctance motor having plural-stage form-wound coil winding
US6876118B2 (en) Abduction-type motor and fabrication method of motor stator thereof
JP2002034212A (en) Manufacturing method and device for stator
JP3599168B2 (en) Electric motor and manufacturing method
JPWO2020174817A1 (en) Rotating electric machine stator, rotating electric machine, manufacturing method of rotating electric machine stator, and manufacturing method of rotating electric machine
CN206517186U (en) Three-phase alternating-current motor
JP3823556B2 (en) Wave winding coil of rotating electric machine and method for manufacturing the same
JP2510666B2 (en) Winding method for cylindrical armature winding
JP4483241B2 (en) 3-phase motor
JPH1014149A (en) Armature for vehicle generator and manufacture thereof
US20190312476A1 (en) Motor
JPH0923600A (en) Stator of motor
GB2362269A (en) Double wire winding in a brushless dc motor
JP2003274594A (en) Stator for rotating electric machine
JPH1169737A (en) Manufacture of stator for motor
JPS58215962A (en) Stator for rotary electric machine
JPS61180563A (en) Reluctance torque type motor
JP2730083B2 (en) Armature coil winding method
EP0032440B1 (en) Coil and coil former for brushless and ironless armature motors
JPH0479225B2 (en)
JP3632721B2 (en) Permanent magnet synchronous motor
JPH08205444A (en) Three-phase armature winding

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees