JP2510440B2 - Protection relay operation simulation method - Google Patents

Protection relay operation simulation method

Info

Publication number
JP2510440B2
JP2510440B2 JP24845491A JP24845491A JP2510440B2 JP 2510440 B2 JP2510440 B2 JP 2510440B2 JP 24845491 A JP24845491 A JP 24845491A JP 24845491 A JP24845491 A JP 24845491A JP 2510440 B2 JP2510440 B2 JP 2510440B2
Authority
JP
Japan
Prior art keywords
phase circuit
voltage
current
protection relay
failure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24845491A
Other languages
Japanese (ja)
Other versions
JPH0561400A (en
Inventor
幸太郎 団
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP24845491A priority Critical patent/JP2510440B2/en
Publication of JPH0561400A publication Critical patent/JPH0561400A/en
Application granted granted Critical
Publication of JP2510440B2 publication Critical patent/JP2510440B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、給電所員,制御所員
の系統運用に関する技能訓練を行う訓練用シミュレータ
において、主保護,後備保護リレーの動作模擬を実施す
る保護リレーの動作模擬方式に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a protection relay operation simulation method for simulating the operation of main protection and backup protection relays in a training simulator for conducting skill training on system operation of power supply staff and control staff. is there.

【0002】[0002]

【従来の技術】図3は従来の保護リレーの動作模擬方式
を示すフローチャート図であり、図において、ST2は
故障等価インピーダンス計算ステップ、ST3は故障等
価インピーダンスを含んだ正相アドミタンス行列計算ス
テップ、ST4は正相回路電圧計算ステップ、ST5は
逆相または零相回路の故障電流計算ステップ、ST6は
逆相または零相回路の電圧,電流分布計算ステップ、S
T7は3相回路の3相電圧,電流分布計算ステップ、S
T8は主保護,後備保護リレー単体の動作判定を行う動
作判定ステップ、ST9はリレー単体の動作有無を判定
する動作有無判定ステップ、ST10はタイマーをΔt
だけ更新するタイマー更新ステップ、ST11はリレー
のシーケンスの成立の有無を判定するリレーシーケンス
判定ステップ、ST12は該当遮断器をトリップさせる
遮断器トリップステップ、ST13は故障継続を判定す
る故障継続判定ステップである。
2. Description of the Related Art FIG. 3 is a flow chart showing an operation simulation method of a conventional protection relay, in which ST2 is a fault equivalent impedance calculation step, ST3 is a positive phase admittance matrix calculation step including the fault equivalent impedance, and ST4. Is a positive phase circuit voltage calculation step, ST5 is a negative phase or zero phase circuit fault current calculation step, ST6 is a negative phase or zero phase circuit voltage and current distribution calculation step, S
T7 is a three-phase voltage / current distribution calculation step of the three-phase circuit, S
T8 is an operation determination step for determining the operation of the main protection / reserve protection relay unit alone, ST9 is an operation presence / absence determination step for determining the presence / absence of operation of the relay unit alone, and ST10 is a timer for Δt.
ST11 is a relay sequence determination step for determining whether or not a relay sequence is established, ST12 is a circuit breaker trip step for tripping the corresponding circuit breaker, and ST13 is a failure continuation determination step for determining failure continuity. .

【0003】次に動作について説明する。電力系統の事
故には、1線地絡,2線地絡,2線短絡,3線地絡(短
絡)などがあり、これらの事故に対する故障計算では、
まず、正相回路の事故点に付加すべき逆相回路と零相回
路からなる故障等価インピーダンスZfを計算する(ス
テップST2)。3線地絡(短絡)では、Zf=0とな
るが、1線地絡ではZf=Zf2 +Zf0 、2線地絡で
はZf=Zf2 ・Zf0 /(Zf2 +Zf0 )、2線短
絡ではZf=Zf2 となる。ここで、Zf2 は事故点か
らながめた逆相回路の等価インピーダンス、Zf0 は事
故点からながめた零相回路の等価インピーダンスであ
る。
Next, the operation will be described. There are 1-wire ground fault, 2-wire ground fault, 2-wire short-circuit, 3-wire ground fault (short circuit), etc. in power system accidents.
First, the fault equivalent impedance Zf consisting of a negative phase circuit and a negative phase circuit to be added to the fault point of the positive phase circuit is calculated (step ST2). In a 3-wire ground fault (short circuit), Zf = 0, but in a 1-wire ground fault, Zf = Zf 2 + Zf 0 , in a 2-wire ground fault, Zf = Zf 2 · Zf 0 / (Zf 2 + Zf 0 ), 2-wire In a short circuit, Zf = Zf 2 . Here, Zf 2 is the equivalent impedance of the anti-phase circuit viewed from the accident point, and Zf 0 is the equivalent impedance of the zero-phase circuit viewed from the accident point.

【0004】次に、正相回路の事故点に故障等価インピ
ーダンスZfを付加した時のアドミタンス行列を計算し
(ステップST3)、続いて、正相回路網の式1を解い
て、各ノードの電圧を計算する(ステップST4)。こ
こで、gは発電機背後ノード、fは事故ノード、lは負
荷,一般ノード、Iはノード電流、Yはアドミタンス、
Vはノード電圧である。
Next, the admittance matrix when the fault equivalent impedance Zf is added to the fault point of the positive-phase circuit is calculated (step ST3), and then the equation 1 of the positive-phase circuit network is solved to calculate the voltage at each node. Is calculated (step ST4). Here, g is a generator rear node, f is an accident node, l is a load, a general node, I is a node current, Y is an admittance,
V is a node voltage.

【0005】[0005]

【数1】 [Equation 1]

【0006】なお、式1において、未知数はIg,I
f,Vlである。いま、この式1を展開すると、式2お
よび式3のようになる。
In equation 1, the unknowns are Ig, I
f and Vl. Now, expanding Expression 1, it becomes Expressions 2 and 3.

【0007】[0007]

【数2】 [Equation 2]

【0008】従って、式3より、式4が得られる。Therefore, from Equation 3, Equation 4 is obtained.

【0009】[0009]

【数3】 (Equation 3)

【0010】そこで、式4を式2に代入すると、式5の
ようになる。
Then, substituting equation 4 into equation 2 yields equation 5.

【0011】[0011]

【数4】 [Equation 4]

【0012】次に、式5で求めたIfとZf2 ,Zf0
とから逆相または零相回路の故障電流を計算し(ステッ
プST5)、その後、逆相または零相回路の故障電流と
アドミタンス行列とから逆相または零相回路のノード電
圧とブランチ電流を計算する(ステップST6)。続い
て、正相または逆相または零相回路のノード電圧,ブラ
ンチ電流をa,b,c相のノード電圧,ブランチ電流に
変換する(ステップST7)。以上で、リレーの入力電
圧と電流が全て計算できたことになる。
Next, If and Zf 2 and Zf 0 obtained by the equation 5 are used.
To calculate the fault current of the anti-phase or zero-phase circuit (step ST5), and then calculate the node voltage and branch current of the anti-phase or zero-phase circuit from the fault current of the anti-phase or zero-phase circuit and the admittance matrix. (Step ST6). Then, the node voltage and branch current of the positive-phase or negative-phase or zero-phase circuit are converted into the node voltage and branch current of the a, b, and c phases (step ST7). This completes the calculation of the input voltage and current of the relay.

【0013】次に、主保護,後備保護リレー単体を模擬
したプログラムに、リレー設置点の電圧,電流を入力し
て動作判定をし(ステップST8)、動作なしの場合は
処理を終らせ、動作ありの場合はステップST10に進
み(ステップST9)、リレーの動作時限に達している
かを判定するために、タイマーをΔtだけ更新する(ス
テップST10)。次に、リレーシーケンスの最終出力
が出ているかどうかを判定し(ステップST11)、出
ていない場合にはステップST10の処理に戻り、出て
いる場合は、当該リレーが動作した時にトリップさせる
べき遮断器をテーブルよりピックアップし、遮断器を遮
断させる(ステップST12)。この後、まだ、故障が
継続中かを判断し(ステップST13)、継続中の場合
はステップST2以下の処理へ戻り、故障が止んだ場合
は終了する。
Next, the voltage and current at the relay installation point are input to a program simulating the main protection / reserve protection relay unit to determine the operation (step ST8), and if there is no operation, the processing is terminated and the operation is performed. If yes, the process proceeds to step ST10 (step ST9), and the timer is updated by Δt to determine whether the relay operation time limit has been reached (step ST10). Next, it is determined whether or not the final output of the relay sequence is output (step ST11), and if not output, the process returns to step ST10, and if it is output, shutoff that should be tripped when the relay operates. The device is picked up from the table and the circuit breaker is shut off (step ST12). After this, it is judged whether or not the failure is still continuing (step ST13). If the failure is continuing, the process returns to step ST2 and subsequent steps, and if the failure stops, the process ends.

【0014】[0014]

【発明が解決しようとする課題】従来の保護リレーの動
作模擬方式は以上のように実施されているので、系統規
模が大きくなると、ノード数が大幅に増すため、これに
伴って計算時間が長くなり、訓練用シミュレータには適
用できないなどの課題があった。
Since the conventional operation simulation method of the protection relay is carried out as described above, the number of nodes increases significantly when the system scale increases, which results in a long calculation time. There was a problem that it could not be applied to the training simulator.

【0015】この発明は上記のような課題を解消するた
めになされたもので、回路網計算のノード数を減らし
て、保護リレーの動作模擬を高速化することにより訓練
用シミュレータへの適用を実現することができる保護リ
レーの動作模擬方式を得ることを目的とする。
The present invention has been made in order to solve the above problems, and realizes application to a training simulator by reducing the number of nodes for circuit network calculation and accelerating the operation simulation of a protection relay. The purpose is to obtain a protection relay operation simulation method that can be performed.

【0016】[0016]

【課題を解決するための手段】この発明に係る保護リレ
ーの動作模擬方式は、正相回路の事故点に付加すべき逆
相回路および零相回路の故障等価インピーダンスの計算
前に、事故区間近傍のみの電圧,電流を計算できるよう
に、正相回路,逆相回路,零相回路を縮約処理して限定
した主保護,後備保護リレーの動作模擬を実施するよう
にしたものである。
A method of simulating the operation of a protection relay according to the present invention is designed to detect the vicinity of a fault section before calculating the fault equivalent impedance of a negative-phase circuit and a zero-phase circuit to be added to a fault point of a positive-phase circuit. In order to be able to calculate only the voltage and current, the normal-phase circuit, the negative-phase circuit, and the zero-phase circuit are subjected to contraction processing to limit the operation of the main protection and backup protection relays.

【0017】[0017]

【作用】この発明における正相,逆相,零相回路の縮約
処理は、事故点近傍に設置された保護リレーの入力電
圧,電流のみを計算できればよいので、回路のノード数
を大幅に削減でき、従って、保護リレー動作の模擬を高
速に実行可能にする。
In the reduction processing of the positive-phase, negative-phase, and zero-phase circuits according to the present invention, it is sufficient to calculate only the input voltage and current of the protection relay installed near the fault point, so that the number of circuit nodes is greatly reduced. Therefore, the simulation of the protection relay operation can be executed at high speed.

【0018】[0018]

【実施例】以下、この発明の一実施例を図について説明
する。図1において、ST1は正相,逆相,零相回路の
縮約処理を行う縮約ステップ、ST2は故障等価インピ
ーダンス計算ステップ、ST3は故障等価インピーダン
スを含んだ正相アドミタンス行列計算ステップ、ST4
は正相回路電圧計算ステップ、ST5は逆相または零相
回路の故障電流計算ステップ、ST6は逆相または零相
回路の電圧,電流分布計算ステップ、ST7は3相回路
の3相電圧,電流分布計算ステップ、ST8は主保護,
後備保護リレー単体の動作判定を行う動作判定ステッ
プ、ST9はリレー単体の動作有無を判定する動作有無
判定ステップ、ST10はタイマーをΔtだけ更新する
タイマー更新ステップ、ST11はリレーのシーケンス
の成立の有無を判定するリレーシーケンス判定ステッ
プ、ST12は該当遮断器をトリップさせる遮断器トリ
ップステップ、ST13は故障継続を判定する故障継続
判定ステップである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, ST1 is a reduction step for performing reduction processing of positive-phase, negative-phase, and zero-phase circuits, ST2 is a fault equivalent impedance calculation step, ST3 is a positive-phase admittance matrix calculation step including the fault equivalent impedance, and ST4.
Is a positive phase circuit voltage calculation step, ST5 is a negative phase or zero phase circuit fault current calculation step, ST6 is a negative phase or zero phase circuit voltage and current distribution calculation step, and ST7 is a three phase voltage and current distribution of a three phase circuit. Calculation step, ST8 is the main protection,
An operation determination step for determining the operation of the backup protection relay unit alone, ST9 is an operation presence / absence determination step for determining the presence / absence of operation of the relay unit alone, ST10 is a timer updating step for updating the timer by Δt, and ST11 is the presence / absence of establishment of the relay sequence. A relay sequence determination step for determining, ST12 is a circuit breaker trip step for tripping the corresponding circuit breaker, and ST13 is a failure continuation determination step for determining continuation of failure.

【0019】次に動作について説明する。まず、電力系
統の事故時には、正相,逆相,零相回路の縮約処理を行
う(ステップST1)。この縮約処理の考え方は、以下
のとおりである。いま、図2に示すような3つの発電機
A,B,Cを有する電力系統において、ノードおよび
ノード間の送電線で事故が発生したとする。この場
合、主保護動作の失敗あるいは遮断器の不動作を考慮し
ても、全系統の保護リレー動作を模擬する必要はなく、
事故区間に隣接する次区間としてのノード−間,
−間,−間および−間の送電線のみの主保
護,後備保護リレーの動作模擬を行えば十分である。
Next, the operation will be described. First, in the event of a power system failure, the normal phase, negative phase, and zero phase circuits are contracted (step ST1). The concept of this contraction processing is as follows. Now, in an electric power system having three generators A, B, and C as shown in FIG. 2, it is assumed that an accident occurs in a node and a transmission line between the nodes. In this case, it is not necessary to simulate the protection relay operation of the entire system even if the failure of the main protection operation or the inoperability of the circuit breaker is considered.
Between the node as the next section adjacent to the accident section,
It is sufficient to simulate the operation of the main protection and backup protection relays of only the transmission lines between-,-, and-.

【0020】これは、主保護,後備保護リレーの保護範
囲から導かれるものであり、主保護は自区間を保護し、
後備保護リレーの第1段は自区間を、第2段は自区間の
130%を、第3段は自区間を含む2区間までを保護範
囲としている。また、後備保護については、第1段,第
2段,第3段の順番に、動作時限が長く整定されてい
る。
This is derived from the protection range of the main protection and backup protection relay, and the main protection protects its own section,
The first stage of the backup protection relay has its own zone, the second stage has 130% of its own zone, and the third stage has two zones including its own zone. Further, with regard to the protection of backup equipment, the operation time period is set longer in the order of the first stage, the second stage, and the third stage.

【0021】以下、図2を例にとって、縮約処理につい
て述べる。いま、正相回路網の式をたてると、式6のよ
うになり、この式6を並べ替えると式7が得られる。
The reduction process will be described below with reference to FIG. Now, if the formula of the positive-phase network is made, it becomes like the formula 6, and if the formula 6 is rearranged, the formula 7 is obtained.

【0022】[0022]

【数5】 (Equation 5)

【0023】[0023]

【数6】 (Equation 6)

【0024】そして、さらに、この式7を書き替える
と、式8が得られる。
Further, by rewriting the equation 7, the equation 8 is obtained.

【0025】[0025]

【数7】 (Equation 7)

【0026】従って、この式8において、Vg,In,
Ilが既知で、Ig,Vn,Vlが未知であるが縮約す
れば式9を得る。
Therefore, in this equation 8, Vg, In,
Il is known and Ig, Vn, and Vl are unknown, but if contracted, Equation 9 is obtained.

【0027】[0027]

【数8】 (Equation 8)

【0028】この式9から明らかなように、一次方程式
の次元が式6の14次元から5次元に減少している。こ
の結果、実系統では、ノード数が数100にもなるの
で、連立一次方程式の次元は約100分の1に減少する
こととなる。そして、この縮約処理は、一度のみ実施す
ればよい。以下、従来と同様に、ステップST2以下の
処理を実行し、ステップST13において、故障継続中
と判定された場合には、ステップST1において、上記
正相,逆相,零相の各回路の縮約処理を実行した後、再
びステップST2以下の処理を繰り返すことになる。
As is clear from the equation (9), the dimension of the linear equation is reduced from 14 dimensions in the equation (6) to five dimensions. As a result, in the actual system, the number of nodes reaches several hundreds, and the dimension of the simultaneous linear equations is reduced to about 1/100. Then, this reduction processing may be performed only once. Thereafter, as in the conventional case, the processes from step ST2 onward are executed, and when it is determined in step ST13 that the failure continues, in step ST1, the above-mentioned normal-phase, anti-phase, and zero-phase circuits are contracted. After the processing is executed, the processing after step ST2 is repeated again.

【0029】[0029]

【発明の効果】以上のように、この発明によれば正相回
路の事故点に付加すべき逆相回路および零相回路の故障
等価インピーダンスの計算前に、事故区間近傍のみの電
圧,電流を計算できるように、正相回路,逆相回路,零
相回路を縮約処理して限定した主保護,後備保護リレー
の動作模擬を実施するようにしたので、連立一次方程式
の次元を大幅に削減でき、従って、主保護,後備保護リ
レー動作の模擬を高速に実行できるものが得られる効果
がある。
As described above, according to the present invention, before calculating the failure equivalent impedance of the negative-phase circuit and the zero-phase circuit which should be added to the fault point of the positive-phase circuit, the voltage and current only near the fault section are calculated. As it can be calculated, the normal phase circuit, the negative phase circuit, and the zero phase circuit are contracted to simulate the operation of the limited main protection and backup protection relay, so the dimension of the simultaneous linear equations is greatly reduced. Therefore, there is an effect that a main protection / reserve protection relay operation can be simulated at high speed.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例による保護リレーの動作模
擬方式を示すフローチャート図である。
FIG. 1 is a flowchart showing an operation simulation method of a protection relay according to an embodiment of the present invention.

【図2】電力系統の事故に対応する縮約処理方法を示す
説明図である。
FIG. 2 is an explanatory diagram showing a reduction processing method corresponding to an accident in a power system.

【図3】従来の保護リレーの動作模擬方式を示すフロー
チャート図である。
FIG. 3 is a flowchart showing an operation simulation method of a conventional protection relay.

【符号の説明】[Explanation of symbols]

ST1 縮約処理ステップ ST2 故障等価インピーダンス計算ステップ ST4 正相回路電圧計算ステップ ST5 故障電流計算ステップ ST6 電圧,電流分布計算ステップ ST7 3相電圧,電流計算ステップ ST8 動作判定ステップ ST10 タイマー更新ステップ ST11 リレーシーケンス判定ステップ ST12 遮断器トリップステップ ST13 故障継続判定ステップ ST1 Reduction processing step ST2 Fault equivalent impedance calculation step ST4 Positive phase circuit voltage calculation step ST5 Fault current calculation step ST6 Voltage and current distribution calculation step ST7 Three-phase voltage and current calculation step ST8 Operation determination step ST10 Timer update step ST11 Relay sequence determination Step ST12 Circuit breaker trip step ST13 Failure continuation determination step

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正相回路の事故点に付加すべき逆相回路
および零相回路の故障等価インピーダンスを計算する故
障等価インピーダンス計算ステップと、上記故障等価イ
ンピーダンスを用いて各ノード電圧を計算する正相回路
電圧計算ステップと、上記ノード電圧の計算式にもとづ
いて逆相回路または零相回路の故障電流を計算する故障
電流計算ステップと、上記故障電流を用いて逆相回路ま
たは零相回路のノード電圧およびブランチ電流を計算す
る電圧,電流分布計算ステップと、上記正相回路,逆相
回路,零相回路のノード電圧およびブランチ電流にもと
づき3相回路のノード電圧,ブランチ電流を求める3相
電圧,電流計算ステップと、主保護,後備保護リレー単
体を模擬したプログラムに、保護リレー設置点の電圧,
電流を入力して動作判定する動作判定ステップと、上記
動作判定結果により動作がある場合に、保護リレーの動
作時限に達しているか否かを判定するためにタイマーを
更新するタイマー更新ステップと、上記保護リレーのリ
レーシーケンスの最終出力が出ているか否かを判定する
リレーシーケンス判定ステップと、上記最終出力が出て
いる場合に、上記保護リレーが動作したときにテーブル
よりピックアップした所定の遮断器をトリップさせる遮
断器トリップステップと、故障が継続しているか否かを
判定し、継続している場合には、上記各ステップを繰り
返し実行する故障継続判定ステップとを備えた保護リレ
ーの動作模擬方式において、上記故障等価インピーダン
スの計算前に、事故区間近傍のみの電圧,電流を計算で
きるように正相回路,逆相回路,零相回路を縮約処理し
て限定した主保護,後備保護リレーの動作模擬を実施す
ることを特徴とする保護リレーの動作模擬方式。
1. A fault equivalent impedance calculating step of calculating fault equivalent impedances of a negative phase circuit and a zero phase circuit to be added to a fault point of the positive phase circuit, and a positive voltage calculating each node voltage using the fault equivalent impedance. Phase circuit voltage calculation step, failure current calculation step of calculating a failure current of the negative phase circuit or zero phase circuit based on the above node voltage calculation formula, and node of the negative phase circuit or zero phase circuit using the above failure current The voltage and current distribution calculation step for calculating the voltage and the branch current, and the three-phase voltage for obtaining the node voltage and the branch current of the three-phase circuit based on the node voltage and the branch current of the positive phase circuit, the negative phase circuit, and the zero phase circuit, In the current calculation step and the program that simulates the main protection and backup protection relay unit, the voltage at the protection relay installation point,
An operation determination step of inputting a current and determining an operation; a timer updating step of updating a timer to determine whether or not the operation time limit of the protection relay has been reached when there is an operation based on the above operation determination result; The relay sequence determination step to determine whether the final output of the relay sequence of the protection relay is output, and when the final output is output, the specified circuit breaker picked up from the table when the protection relay operates. In a protection relay operation simulation method that includes a circuit breaker trip step to trip and a failure continuation determination step that determines whether the failure continues and, if it continues, repeats the above steps. Before the calculation of the equivalent impedance of the failure, it is possible to calculate the voltage and current only in the vicinity of the fault section. , Reverse-phase circuit, the main protection is limited by contraction processing the zero-phase circuit, the operation simulating method of protection relay which comprises carrying out the operation simulation of the backup protection relays.
JP24845491A 1991-09-03 1991-09-03 Protection relay operation simulation method Expired - Lifetime JP2510440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24845491A JP2510440B2 (en) 1991-09-03 1991-09-03 Protection relay operation simulation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24845491A JP2510440B2 (en) 1991-09-03 1991-09-03 Protection relay operation simulation method

Publications (2)

Publication Number Publication Date
JPH0561400A JPH0561400A (en) 1993-03-12
JP2510440B2 true JP2510440B2 (en) 1996-06-26

Family

ID=17178377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24845491A Expired - Lifetime JP2510440B2 (en) 1991-09-03 1991-09-03 Protection relay operation simulation method

Country Status (1)

Country Link
JP (1) JP2510440B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102298314B1 (en) * 2020-11-24 2021-09-08 한국철도공사 Test simulator of protective relay for AC electric railway system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4915333B2 (en) * 2007-11-28 2012-04-11 三菱電機株式会社 System simulation program and system simulation server

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102298314B1 (en) * 2020-11-24 2021-09-08 한국철도공사 Test simulator of protective relay for AC electric railway system

Also Published As

Publication number Publication date
JPH0561400A (en) 1993-03-12

Similar Documents

Publication Publication Date Title
Yadav et al. A single ended directional fault section identifier and fault locator for double circuit transmission lines using combined wavelet and ANN approach
Zhang et al. A distribution short circuit analysis approach using hybrid compensation method
Liao et al. Online optimal transmission line parameter estimation for relaying applications
Zamora et al. Fault location on two-terminal transmission lines based on voltages
Purushothama et al. ANN applications in fault locators
Nunes et al. Impedance-based fault location formulation for unbalanced primary distribution systems with distributed generation
US10998715B2 (en) Protection apparatus
Grajales-Espinal et al. Advanced fault location strategy for modern power distribution systems based on phase and sequence components and the minimum fault reactance concept
Baran Challenges in state estimation on distribution systems
US6420876B1 (en) Fault location in a medium-voltage network
EP2770600B1 (en) Method and system for determining power consumption of loads
Teklić et al. Artificial neural network approach for locating faults in power transmission system
EP2682768A1 (en) Method and apparatus for determining the distance to phase-to-earth fault
JP2510440B2 (en) Protection relay operation simulation method
EP1655669A1 (en) Simulating voltages and currents of high or medium voltage power networks or switchyards
Uzubi et al. An adaptive distance protection scheme for high varying fault resistances: Updated results
Swetapadma et al. An innovative finite state automata based approach for fault direction estimation in transmission lines
RU2674528C1 (en) Method for determination of distance to places of earth faults on two power lines in networks with low earth fault currents
JP2575124B2 (en) Method of simulating operation of protection device
Iracheta-Cortez et al. Implementation of the frequency dependent line model in a real-time power system simulator
Owen Transient analysis using component transforms
JP7432073B2 (en) Apparatus, system, and method for performing online update of two-port equivalent circuit
Reiz et al. Short-circuit calculation in unbalanced three-phase power distribution systems with distributed generation
Bretas et al. A new fault location technique for distribution feeders with distributed generation
JP2575123B2 (en) Method of simulating operation of protection device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20100416

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20100416

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20120416

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20120416