JP2507431B2 - ADPCM encoding / decoding method - Google Patents

ADPCM encoding / decoding method

Info

Publication number
JP2507431B2
JP2507431B2 JP62134842A JP13484287A JP2507431B2 JP 2507431 B2 JP2507431 B2 JP 2507431B2 JP 62134842 A JP62134842 A JP 62134842A JP 13484287 A JP13484287 A JP 13484287A JP 2507431 B2 JP2507431 B2 JP 2507431B2
Authority
JP
Japan
Prior art keywords
signal
prediction
linear combination
quantization width
adaptive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62134842A
Other languages
Japanese (ja)
Other versions
JPS63301633A (en
Inventor
重男 品田
道子 永田
康紀 米津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62134842A priority Critical patent/JP2507431B2/en
Publication of JPS63301633A publication Critical patent/JPS63301633A/en
Application granted granted Critical
Publication of JP2507431B2 publication Critical patent/JP2507431B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は適応差分PCM(以下、ADPCMという)符号化・
復号化方法に係り、特に、モデム信号と音声信号とを精
度良く判別し音声信号帯域のモデム信号の符号化・復号
化特性が良好なADPCM符号化・復号化方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to adaptive differential PCM (hereinafter referred to as ADPCM) encoding
The present invention relates to a decoding method, and more particularly, to an ADPCM coding / decoding method which discriminates between a modem signal and a voice signal with high accuracy and has a good coding / decoding characteristic of the modem signal in the voice signal band.

[従来の技術] 従来のADPCM符号化・復号化方式については、アイ・
イー・イー・イー,テレコミュニケーションズ コンフ
ァレンス,1984,23.1.1.〜23.1.4(IEEE,TELECOMMUNICAT
IONS CONFERENCE,1984,23.1.1〜23.1.4)において論じ
られている。この従来技術における入力信号の識別法を
以下に説明する。従来の方法は、入力信号の振幅変化が
大きい音声信号に十分対応できる様な高速動作を行なう
量子化幅YUjと、振幅変化が小さいモデム信号に適応で
きる様な低速動作を行なう量子化幅YLjを夫々別個に発
生させ、これら2つの量子化幅の線形結合で、実際に量
子化を行なう真の量子化幅Yjを発生する構成をとってい
る。すなわち、Ajを線形結合定数として、 Yj=Aj・YUj-1+(1−Aj)YLj-1 なる演算を行ない、量子化幅Yjを得ている。(ここで、
jは処理を行なうサンプリング時刻を示し、「量子化
幅」は、論文中の「スケールファクタ」に対応する。)
また、定数Ajは、量子化幅Yjで量子化を行なった結果得
られる量子化値Ijのある重み関数F(Ij)の長時間平均
(時定数が長い平均化操作)と短時間平均とを求め、こ
れらの差により入力信号が音声信号かモデム信号かを判
定することで求められる。すなわち、 Dms,j=(1−2-5)Dms,j-1+2-5F(Ij) Dml,j=(1−2-7)Dml,j-1+2-7F(Ij) なる演算により、長時間平均Dml,jと短時間平均Dms,j
得、 Ap,j=(1−2-4)Ap,j-1+2-3(Δ>2-3Dml,jのと
き) =(1−2-4)Ap,j-1(Δ≦2-3Dml,jのとき) 但し、Δ=|Dms,j−Dml,j| により定数Ajを得る。この式の意味は、入力信号の振幅
変化が小さい場合は長時間平均Dml,jに短時間平均Dms,j
が追尾していくと考えられるから、その差Δは小さい
はずであり、逆に、Δが大きいなら、音声信号の様に
入力信号の統計的性質は均等でなく変化が急速であると
推定するのが妥当であるという事である。
[Prior Art] Regarding the conventional ADPCM encoding / decoding method,
EE, Telecommunications Conference, 1984, 23.1.1. ~ 23.1.4 (IEEE, TELECOMMUNICAT
IONS CONFERENCE, 1984, 23.1.1-23.1.4). The method of identifying the input signal in this conventional technique will be described below. The conventional method has a quantization width YU j that performs a high-speed operation that can sufficiently cope with a voice signal with a large amplitude change in the input signal, and a quantization width YL j that performs a low-speed operation that can adapt to a modem signal with a small amplitude change. j is separately generated, and a linear combination of these two quantization widths is used to generate a true quantization width Yj for actual quantization. That is, Y j = A j · YU j-1 + (1-A j ) YL j-1 is calculated using A j as a linear combination constant to obtain the quantization width Y j . (here,
j indicates the sampling time at which processing is performed, and the “quantization width” corresponds to the “scale factor” in the paper. )
The constant A j is a short time average (averaging operation with a long time constant) of a weighting function F (I j ) having a quantized value I j obtained as a result of quantization with a quantization width Y j. The time average is obtained, and it is obtained by determining whether the input signal is a voice signal or a modem signal based on the difference between them. That is, D ms, j = (1-2 -5 ) D ms, j-1 +2 -5 F (I j ) D ml, j = (1-2 -7 ) D ml, j-1 +2 -7 F (I j ) to obtain a long-time average D ml, j and a short-time average D ms, j , and A p, j = (1-2 -4 ) A p, j-1 +2 -3j > 2 -3 D ml, j ) = (1-2 -4 ) A p, j-1 (when Δ j ≤2 -3 D ml, j ) However, the constant A j is obtained by Δ j = | D ms, j −D ml, j |. The meaning of this equation is that if the amplitude change of the input signal is small, the long-term average D ml , j
, The difference Δ j should be small, and conversely, if Δ j is large, it means that the statistical properties of the input signal are not equal and the change is rapid like a voice signal. It is reasonable to estimate.

[発明が解決しようとする問題点] ADPCM符号器に、音声信号帯域にあるモデム信号、例
えば9.6kbpsのモデム信号が入力した場合を考える。モ
デム信号の様な統計的性質が一定な信号は、信号の相関
も小さく、従って、予測する事が非常に難しい。従っ
て、ADPCM符号器の量子化器への入力である。入力信号
と予測信号の差分信号Djは、あまり小さくない。このた
め、量子化値Ijもかなり変化する。例えば、位相変調さ
れたモデム信号については、位相変化が大きい時点での
差分信号Djはかなり大きい。従って、短時間平均Dms
かなり変化する事になり、Δがいつも小さくなる事は
ない。このため、入力信号の識別がうまくいかなくな
り、モデム信号の符号化歪が増えビット誤りが発生して
しまうという問題がある。
[Problems to be Solved by the Invention] Consider a case where a modem signal in the voice signal band, for example, a 9.6 kbps modem signal is input to the ADPCM encoder. A signal having a constant statistical property, such as a modem signal, also has a small signal correlation, and thus is very difficult to predict. It is therefore the input to the quantizer of the ADPCM encoder. The difference signal D j between the input signal and the prediction signal is not very small. Therefore, the quantized value I j also changes considerably. For example, for a phase-modulated modem signal, the difference signal D j at a large phase change is quite large. Therefore, the short-time average D ms also changes considerably, and Δ j does not always decrease. Therefore, there is a problem in that the input signal cannot be identified properly, the coding distortion of the modem signal increases, and a bit error occurs.

本発明の目的は、音声のみならず、その他の音声帯域
の信号に対しても符号化特性の良いADPCM符号化・復号
化方法を提供する事にある。
An object of the present invention is to provide an ADPCM coding / decoding method having good coding characteristics not only for speech but also for signals in other speech bands.

[問題点を解決するための手段] 上記目的は、音声の様な相関の大きい入力信号に対し
ては適応極予測を、モデム信号の様な相関の小さい信号
に対しては固定極予測を行なってこれらの線形結合をと
り予測信号とし、さらに、該線形結合定数は、前記適応
極予測の予測係数があらかじめ定められた変動領域内に
あるか否かにより制御し、また、量子化器の量子化幅
も、音声信号の様な標準偏差値の数倍も振幅も現れる分
布特性をもつ信号に対しては高速かつ大きな変化をする
適応化を、モデム信号の様な振幅変動が小さくほぼ一定
レベルの定常信号に対しては不必要に量子化幅を変動さ
せない様に低速かつ小きざみな変化をする適応化をさせ
てこれら2つの適応化により発生する量子化幅の線形結
合をとり、真の量子化幅とし、この時の線形結合定数
も、前記予測における線形結合定数と同様に適応極予測
の予測係数が、ある所定の領域内にあるか否かに従い制
御することで、達成される。
[Means for Solving Problems] The above-described object is to perform adaptive pole prediction for an input signal having a large correlation such as voice, and fixed pole prediction for a signal having a small correlation such as a modem signal. As a prediction signal, the linear combination constant is controlled by whether or not the prediction coefficient of the adaptive polar prediction is within a predetermined variation region, and the quantum of the quantizer is controlled. As for the width of the signal, a signal that has a distribution characteristic in which the amplitude is several times as large as the standard deviation value and the amplitude appears, such as a voice signal, is adapted to change rapidly and greatly. For the stationary signal of, the quantization width is adapted to change slowly and in small steps so as not to change the quantization width unnecessarily, and the linear combination of the quantization widths generated by these two adaptations is taken. Quantization width, linear at this time The coupling constant is also achieved by controlling the prediction coefficient of the adaptive polar prediction in accordance with whether or not the prediction coefficient of the adaptive polar prediction is within a predetermined region, like the linear combination constant in the prediction.

[作用] 9.6kbpsモデム信号の様な音声帯域のほぼ全体を占め
る様なスペクトラム帯域幅を持ち、かつ信号に相関が少
ない信号については、該スペクトラムに合致した固定極
予測をする事により予測利得をかせぐ事が出来、かつ量
子化幅の適応化法も、入力信号レベルに合致した量子化
幅に収束後は低速かつ小きざみな応答をもつ適応化を行
なう事により、モデム信号の性質に合ったADPCM符号化
・復号化を行なう事ができる。音声信号等、モデム信号
以外の信号に対するADPCM符号化・復号化では、極予測
出力と量子化幅出力については、音声信号用とモデム信
号用の線形結合をとったものを真の極予測出力,真の量
子化幅出力とし、これら2組の線形結合定数をいずれ
も、適応極予測の予測係数の値があらかじめ定められた
モデム信号に対する変動範囲内にあるか否かにより、モ
デム用極予測側及びモデム用適応量子化幅側か、あるい
はもう1組の音声用極予測側及び量子化幅側へ制御する
ので、入力信号の性質に合った符号化・復号化ができ、
符号化歪みを低減することができる。
[Operation] For a signal that has a spectrum bandwidth that occupies almost the entire voice band, such as a 9.6 kbps modem signal, and that has little correlation with the signal, the prediction gain is obtained by performing fixed pole prediction that matches the spectrum. It can be earned, and the adaptation method of the quantization width matches the characteristics of the modem signal by performing the adaptation that has a slow and small response after convergence to the quantization width that matches the input signal level. ADPCM encoding / decoding can be performed. In ADPCM encoding / decoding for signals other than modem signals, such as voice signals, for polar prediction output and quantization width output, the linear combination of the voice signal and the modem signal is taken as the true polar prediction output, The true quantization width output is used, and both of these two sets of linear combination constants are used for the modem polar prediction side depending on whether or not the value of the prediction coefficient of the adaptive polar prediction is within a predetermined fluctuation range for the modem signal. And, it controls to the adaptive quantization width side for the modem or another set of the polar prediction side for the voice and the quantization width side, so that the encoding / decoding can be performed according to the property of the input signal.
Coding distortion can be reduced.

[実施例] 以下、本発明の一実施例を図面を参照して説明する。[Embodiment] An embodiment of the present invention will be described below with reference to the drawings.

第1図及び第2図は、夫々本発明の一実施例に係るAD
PCM符号化・復号化方法を適用したADPCM符号器及びADPC
M復号器のブロック構成図である。また、第3図は、入
力信号がモデム信号であるか否かを判定する際に使用す
る予測係数判定領域図である。
1 and 2 are ADs according to an embodiment of the present invention, respectively.
ADPCM encoder and ADPC to which PCM encoding / decoding method is applied
It is a block diagram of an M decoder. Further, FIG. 3 is a prediction coefficient determination area diagram used when determining whether or not the input signal is a modem signal.

第1図において、1は入力端子、2は差回路、3は量
子化器、4は逆量子化器、5は高速適応量子化幅発生
器、6は低速適応量子化幅発生器、7は線形結合定数発
生器、8は適応零予測器、9は適応極予測器、10は固定
極予測器、11はモデム信号識別器、12は線形結合定数発
生器、13〜16は乗算器、17〜21は加算器、22は出力端子
である。
In FIG. 1, 1 is an input terminal, 2 is a difference circuit, 3 is a quantizer, 4 is an inverse quantizer, 5 is a fast adaptive quantization width generator, 6 is a slow adaptive quantization width generator, and 7 is Linear combination constant generator, 8 is an adaptive zero predictor, 9 is an adaptive pole predictor, 10 is a fixed pole predictor, 11 is a modem signal discriminator, 12 is a linear combination constant generator, 13 to 16 are multipliers, 17 21 is an adder, and 22 is an output terminal.

今、時刻jに入力端子1に信号Sjが入力したとする
と、信号Sjと加算器19の出力である予測信号SEjとの差
が差回路2でとられ、この差信号Djが量子化器3で量子
化され、ADPCM符号値Ijが出力端子22から出力される。
同時に、該信号Ijは高速又は低速で適応化動作をする量
子化幅発生器5及び6へ入力され、量子化幅の更新を行
なう。例えば、従来例での説明を引用すれば、高速適応
量子化幅発生器5の出力がYUjであり、低速適応量子化
幅発生器6の出力がYLjである。線形結合定数発生器7
は、詳細は後述するモデム信号識別器11の出力により、
線形結合定数βを発生させるもので、例えば、 なる演算をする。この出力であるβj+1を用いて、真の
量子化幅Yj+1が加算器21から出力される。
Now, assuming that the signal S j is input to the input terminal 1 at time j, the difference between the signal S j and the prediction signal SE j output from the adder 19 is taken by the difference circuit 2, and this difference signal D j is obtained. The ADPCM code value I j quantized by the quantizer 3 is output from the output terminal 22.
At the same time, the signal I j is input to the quantization width generators 5 and 6 that perform an adaptive operation at high speed or low speed, and the quantization width is updated. For example, citing the description of the conventional example, the output of the fast adaptive quantization width generator 5 is YU j , and the output of the slow adaptive quantization width generator 6 is YL j . Linear coupling constant generator 7
Is output by the modem signal discriminator 11, which will be described in detail later.
A linear coupling constant β j is generated, and for example, Is calculated. Using this output β j + 1 , the true quantization width Y j + 1 is output from the adder 21.

Yj+1=βj+1・YUj+1+(1−βj+1)YLj+1 一方、ADPCM符号値Ijは逆量子化器4で逆量子化さ
れ、逆量子化値DQjが出力される。これをもとに、適応
零予測器8で適応零予測が行なわれ、零予測値SEZj+1
出力される。例えば、 なる演算をする。
Y j + 1 = β j + 1 · YU j + 1 + (1-β j + 1 ) YL j + 1 On the other hand, the ADPCM code value I j is dequantized by the dequantizer 4 and the dequantized value DQ j Is output. Based on this, the adaptive zero predictor 8 performs adaptive zero prediction, and the zero predicted value SEZ j + 1 is output. For example, Is calculated.

加算器17は極予測残差を出力するもので、 DQj+SEZjを出力する。The adder 17 outputs the polar prediction residual, and outputs DQ j + SEZ j .

加算器18は再生信号SRjを出力するもので、 SRj=SPj+DQj+SEZj =SEj+DQj なる値を出力する。ここでSPjは極予測値で、加算器20
の出力である。
The adder 18 outputs the reproduction signal SR j, and outputs a value of SR j = SP j + DQ j + SEZ j = SE j + DQ j . Where SP j is the pole predictor and the adder 20
Is the output of.

この再生信号SRjをもとに適応極予測器9は適応極予
測を、固定極予測器10は固定極予測を夫々行ない、夫々
極予測値 を出力する。例えば、 なる演算をする。
Based on this reproduced signal SR j , the adaptive pole predictor 9 performs adaptive pole prediction and the fixed pole predictor 10 performs fixed pole prediction, respectively, and the pole prediction values are obtained. Is output. For example, Is calculated.

は固定の予測定数であり、モデム信号の周波数スペクト
ルを、固定極予測器10の伝達関数 が近似する様に選べばよい。
Is a fixed prediction constant, and the frequency spectrum of the modem signal is determined by the transfer function of the fixed pole predictor 10. Should be chosen so that

モデム信号識別機11は、上式に従って毎サンプル時に
更新される予測係数▲a1 j▼,▲a2 j▼が第3図に示さ
れる様な領域A内に入るか否かを判定するもので、領域
A内に入る時はモデム信号であると、領域A外の時はモ
デム信号以外であると判定する。そして、その結果をも
とに線形結合定数発生器12が線形結合定数αを発生す
る。例えば、 なる演算をする。
The modem signal discriminator 11 determines whether or not the prediction coefficients ▲ a 1 j ▼, ▲ a 2 j ▼ updated at every sample according to the above equation fall within the area A as shown in FIG. Then, it is determined that the signal is a modem signal when entering the area A, and is a signal other than the modem signal when outside the area A. Then, based on the result, the linear coupling constant generator 12 generates the linear coupling constant α j . For example, Is calculated.

この結合定数αを適応極予測器9出力に乗算器15で
乗算し、1−αを固定極予測器10出力に乗算器16で乗
算し、両乗算器15,16の出力を加算器20で加算すること
により、極予測値SPjが得られる。
This coupling constant α j is multiplied by the output of the adaptive pole predictor 9 by the multiplier 15, 1-α j is multiplied by the output of the fixed pole predictor 10 by the multiplier 16, and the outputs of both multipliers 15, 16 are added. By adding at 20, the pole prediction value SP j is obtained.

加算器19は零予測値SEZjと極予測値SPjとから予測信
号SEjを得るもので SEj=SPj+SEZj により算出される。
The adder 19 obtains the prediction signal SE j from the zero prediction value SEZ j and the pole prediction value SP j, and is calculated by SE j = SP j + SEZ j .

なお、加算器21からは、入力信号レベルに追随した量
子化幅Yj+1が発生されるが、これにもとづき差回路2か
らの差信号Djが量子化器3でADPCM符号値Ijとして量子
化される(量子化雑音が最小にされる)一方、逆量子化
器4ではまた、その量子化器3からのADPCM符号値I
jが、その量子化幅Yj+1で逆量子化値DQjとして逆量子化
されることで、元の差信号Djに戻されるものとなってい
る。
The adder 21 generates a quantization width Y j + 1 following the input signal level. Based on this, the difference signal D j from the difference circuit 2 is added to the ADPCM code value I j by the quantizer 3. On the other hand, the inverse quantizer 4 also quantizes the ADPCM code value I from the quantizer 3 as
By dequantizing j as the dequantized value DQ j with the quantization width Y j + 1 , the original difference signal D j is restored.

第2図のADPCM復号器において、23は入力端子、24は
逆量子化器、25は高速適応量子化幅発生器、26は低速適
応量子化幅発生器、27は線形結合定数発生器、28は適応
零予測器、29は適応極予測器、30は固定極予測器、31は
モデム信号識別器、32は線形結合定数発生器、33〜36は
乗算器、37〜40は加算器、41は出力端子である。
In the ADPCM decoder of FIG. 2, 23 is an input terminal, 24 is an inverse quantizer, 25 is a fast adaptive quantization width generator, 26 is a slow adaptive quantization width generator, 27 is a linear combination constant generator, 28 Is an adaptive zero predictor, 29 is an adaptive pole predictor, 30 is a fixed pole predictor, 31 is a modem signal discriminator, 32 is a linear combination constant generator, 33 to 36 are multipliers, 37 to 40 are adders, 41 Is an output terminal.

復号側の動作は、符号側の説明でのADPCM符号値Ij
力後の説明と全く同じであり、再生信号SRjを出力端子4
1へ出力する。
The operation on the decoding side is exactly the same as the description after outputting the ADPCM code value I j in the description on the code side, and outputs the reproduction signal SR j to the output terminal 4
Output to 1.

第3図は、前述の様に、モデム信号か否かを極予測係
数▲a1 j▼,▲a2 j▼により判定するための判定領域図
で、領域A内の時はモデムと、領域A外の時はモデム以
外の信号と判定する。領域Aとしては、例えば、 の様に選ぶ事ができる。実際に、極予測係数は、rje
−jωjを極としてもつなら、 なる関係があり、rは帯域幅情報を、ωがスペクトラム
の中心周波数情報を表わす様に適応化される。そして、
モデム信号の場合は、スペクトラム帯域幅は変調方式に
より定まり、この範囲でのスペクトラム密度はほぼ一様
分布なのでrはあまり変動せず、ωはモデム信号のキャ
リア周波数の付近に集まるので、▲a1 j▼,▲a2 j▼の
変動範囲は、ある領域(第3図の例では領域A)に限定
できる。一方、音声信号の場合、スペクトラムのほとん
どが低速に集中するので、第3図の第1象限,第4象限
の領域A以外の部分に集中する。
FIG. 3 is a judgment area diagram for judging whether or not it is a modem signal by the polar prediction coefficients ▲ a 1 j ▼ and ▲ a 2 j ▼, as described above. When it is outside A, it is determined to be a signal other than the modem. As the area A, for example, You can choose like. In fact, the polar prediction coefficient is rje
If we have -jωj as a pole, Where r represents the bandwidth information and ω represents the center frequency information of the spectrum. And
For modem signals, spectrum bandwidth Sadamari by the modulation scheme, the spectrum density substantially uniform distribution in the range r is not much change, since ω gather near the carrier frequency of the modem signal, ▲ a 1 The variation range of j ▼, ▲ a 2 j ▼ can be limited to a certain area (area A in the example of FIG. 3). On the other hand, in the case of an audio signal, most of the spectrum concentrates on the low speed, and therefore concentrates on the parts other than the area A in the first and fourth quadrants of FIG.

トーン信号の場合は、スペクトラムの帯域が狭いので、
a2<−0.73の部分、すなわち、三角形の底辺の部分に集
中する。
In the case of tone signals, the spectrum band is narrow, so
Concentrate on the area of a 2 <−0.73, that is, the base of the triangle.

以上の様に、第3図の領域Aに▲a1 j▼,▲a2 j▼が
入るか否かの判定を行ない、この結果をフィルタリング
し、平滑化したものを線形結合定数とする事により、安
定な切り替えが行なわれ、かつ上記判定は入力信号の周
波数特性、特にモデム信号の場合はその帯域幅とキャリ
ア周波数による決まる領域に予測係数が集中する事から
正確な判定が可能である。
As described above, it is determined whether or not ▲ a 1 j ▼ and ▲ a 2 j ▼ are included in the area A of FIG. 3, the result is filtered, and the smoothed one is used as the linear combination constant. As a result, stable switching is performed, and the above determination can be made accurately because the prediction coefficients are concentrated in a region determined by the frequency characteristics of the input signal, particularly in the case of a modem signal, the bandwidth and carrier frequency.

[発明の効果] 本発明によれば、入力信号がモデム信号か否かを正確
に判定できるので、モデム信号に対して符号化歪みのな
い好適なADPCM符号化・復号化方式を実現できる。
[Effect of the Invention] According to the present invention, it is possible to accurately determine whether or not the input signal is a modem signal, and thus it is possible to realize a suitable ADPCM encoding / decoding method with no encoding distortion for the modem signal.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は夫々本発明の一実施例に係るADPCM
符号化・復号化方法を適用した符号器及び復号器のブロ
ック構成図、第3図は入力信号がモデム信号あるか否か
を極予測係数により判定する判定領域図である。 3…量子化器、4,24…逆量子化器、5,25…高速適応量子
化幅発生器、6,26…低速適応量子化幅発生器、7,12,27,
32…線形結合定数発生器、8,28…適応零予測器、9,29…
適応極予測器、10,30…固定極予測器、11,31…モデム信
号識別器。
1 and 2 show ADPCM according to an embodiment of the present invention.
FIG. 3 is a block configuration diagram of an encoder and a decoder to which the encoding / decoding method is applied, and FIG. 3 is a determination region diagram for determining whether or not an input signal is a modem signal by a polar prediction coefficient. 3 ... Quantizer, 4, 24 ... Inverse quantizer, 5, 25 ... High-speed adaptive quantization width generator, 6, 26 ... Low-speed adaptive quantization width generator, 7, 12, 27,
32 ... Linear combination constant generator, 8, 28 ... Adaptive zero predictor, 9, 29 ...
Adaptive pole predictor, 10,30 ... Fixed pole predictor, 11,31 ... Modem signal discriminator.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】標本化されたディジタル符号の入力信号か
ら該入力信号の予測信号を引き去った差信号を量子化
し、符号化・復号化するADPCM符号化・復号化方法にお
いて、前記量子化に使用する量子化幅を、高速及び低速
の2つの適応化法により発生する高速適応量子化幅と低
速適応量子化幅との線形結合により生成し、前記予測信
号の極予測を、前記量子化された差信号と前記予測信号
との加算により得られる再生信号から適応的に予測した
値と固定的に予測した値との線形結合により生成し、該
線形結合と前記量子化幅の線形結合に使用する線形結合
定数値を、夫々、入力信号の周波数特性が反映されてな
る、2種類の適応極予測係数値がある所定の変動領域内
にあるか否かにより決定することを特徴とするADPCM符
号化・復号化方法。
1. An ADPCM encoding / decoding method for quantizing and encoding / decoding a difference signal obtained by subtracting a prediction signal of the input signal from a sampled input signal of a digital code. The quantization width to be used is generated by a linear combination of the fast adaptive quantization width and the slow adaptive quantization width generated by the two adaptation methods of high speed and low speed, and the polar prediction of the prediction signal is quantized. Generated by the linear combination of the adaptively predicted value and the fixedly predicted value from the reproduced signal obtained by adding the difference signal and the predicted signal, and used for the linear combination and the linear combination of the quantization widths. The ADPCM code characterized in that the linear combination constant values to be determined are determined by whether or not the two types of adaptive pole prediction coefficient values reflecting the frequency characteristics of the input signal are within a predetermined fluctuation region. Encryption / decryption method.
JP62134842A 1987-06-01 1987-06-01 ADPCM encoding / decoding method Expired - Lifetime JP2507431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62134842A JP2507431B2 (en) 1987-06-01 1987-06-01 ADPCM encoding / decoding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62134842A JP2507431B2 (en) 1987-06-01 1987-06-01 ADPCM encoding / decoding method

Publications (2)

Publication Number Publication Date
JPS63301633A JPS63301633A (en) 1988-12-08
JP2507431B2 true JP2507431B2 (en) 1996-06-12

Family

ID=15137740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62134842A Expired - Lifetime JP2507431B2 (en) 1987-06-01 1987-06-01 ADPCM encoding / decoding method

Country Status (1)

Country Link
JP (1) JP2507431B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5970329A (en) * 1982-10-15 1984-04-20 Nec Corp Method and circuit of time-unchanged forecasting combination type adpcm
JPS62104223A (en) * 1985-10-30 1987-05-14 Oki Electric Ind Co Ltd Adpcm coding and recoding device

Also Published As

Publication number Publication date
JPS63301633A (en) 1988-12-08

Similar Documents

Publication Publication Date Title
JP3102015B2 (en) Audio decoding method
US6681202B1 (en) Wide band synthesis through extension matrix
RU2169992C2 (en) Method and device for noise suppression in communication system
EP1050040B1 (en) A decoding method and system comprising an adaptive postfilter
JP2861238B2 (en) Digital signal encoding method
US7698135B2 (en) Voice detecting method and apparatus using a long-time average of the time variation of speech features, and medium thereof
JP2964879B2 (en) Post filter
US4757517A (en) System for transmitting voice signal
DK162911B (en) ADAPTIVE NOISE REDUCTION SYSTEM WITH A / D AND D / A PULSE CONNECTORS
JPH045200B2 (en)
JP3478209B2 (en) Audio signal decoding method and apparatus, audio signal encoding and decoding method and apparatus, and recording medium
US7050968B1 (en) Speech signal decoding method and apparatus using decoded information smoothed to produce reconstructed speech signal of enhanced quality
WO2001002929A2 (en) Coded domain noise control
Jayant et al. Tree-Encoding of speech using the (M, L)-Algorithm and Adaptive Quantization
Dubnowski et al. Variable rate coding of speech
JP3248215B2 (en) Audio coding device
US7565283B2 (en) Method and system for controlling potentially harmful signals in a signal arranged to convey speech
JP2006018023A (en) Audio signal coding device, and coding program
JP2507431B2 (en) ADPCM encoding / decoding method
US5696875A (en) Method and system for compressing a speech signal using nonlinear prediction
WO2004112256A1 (en) Speech encoding device
JP3398457B2 (en) Quantization scale factor generation method, inverse quantization scale factor generation method, adaptive quantization circuit, adaptive inverse quantization circuit, encoding device and decoding device
JP3417362B2 (en) Audio signal decoding method and audio signal encoding / decoding method
JPH0252280B2 (en)
JP2523549B2 (en) ADPCM encoder and ADPCM encoding method