JP2506863B2 - Speaker harmonic distortion measurement method - Google Patents

Speaker harmonic distortion measurement method

Info

Publication number
JP2506863B2
JP2506863B2 JP62309861A JP30986187A JP2506863B2 JP 2506863 B2 JP2506863 B2 JP 2506863B2 JP 62309861 A JP62309861 A JP 62309861A JP 30986187 A JP30986187 A JP 30986187A JP 2506863 B2 JP2506863 B2 JP 2506863B2
Authority
JP
Japan
Prior art keywords
speaker
data
frequency
harmonic distortion
interpolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62309861A
Other languages
Japanese (ja)
Other versions
JPH01151400A (en
Inventor
弘行 武輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62309861A priority Critical patent/JP2506863B2/en
Publication of JPH01151400A publication Critical patent/JPH01151400A/en
Application granted granted Critical
Publication of JP2506863B2 publication Critical patent/JP2506863B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は音響機器のスピーカの再生特性を評価する高
調波歪測定方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a harmonic distortion measuring method for evaluating reproduction characteristics of a speaker of an audio device.

従来の技術 従来スピーカの高周波歪を測定する方法としてFFTア
ナライザーにより周波数分析を行う方法がある。以下図
面を参照しながら上述した高周波歪測定方法について説
明する。
2. Description of the Related Art A conventional method for measuring the high frequency distortion of a speaker is to perform frequency analysis with an FFT analyzer. The high frequency distortion measuring method described above will be described below with reference to the drawings.

第7図は従来の高調波歪を測定する測定方法である。
第7図において、1は発振器、2はスピーカ3を駆動す
る増幅器、4はマイクロホン、5は高速フーリエ変換
(FFT)アルゴリズムを用いて分析するFFTアナライザー
である。増幅器2により発振器1で発生した正弦波信号
は増幅されスピーカ3を駆動する。スピーカ3からの音
圧信号をマイクロホン4にて電気信号に変換したのちFF
Tアナライザー5にて、基本周波数成分と高調波成分を
求めている。
FIG. 7 shows a conventional measuring method for measuring harmonic distortion.
In FIG. 7, 1 is an oscillator, 2 is an amplifier for driving a speaker 3, 4 is a microphone, and 5 is an FFT analyzer for analysis using a fast Fourier transform (FFT) algorithm. The sine wave signal generated by the oscillator 1 is amplified by the amplifier 2 and drives the speaker 3. The sound pressure signal from the speaker 3 is converted into an electric signal by the microphone 4 and then FF
The T analyzer 5 calculates the fundamental frequency component and harmonic components.

発明が解決しようとする問題点 しかしながら上述した従来の高調波歪分析法では、FF
T(高速フーリエ変換)アルゴリズムを用いているた
め、1つの周波数を分析するために多量のデータ、通常
512点〜4096点のデーターを取り込まねばならない問題
点があった。
Problems to be Solved by the Invention However, in the conventional harmonic distortion analysis method described above, the FF
Uses the T (Fast Fourier Transform) algorithm to analyze large amounts of data, typically one frequency.
There was a problem that we had to import 512 to 4096 points of data.

すなわち、サンプリング時間をΔt(秒)とした時一
つの周波数の取り込み時間T(秒)はデーター点数が10
24点で T=Δt*1024(秒) 必要である。可聴帯域内20Hz〜20KHzを301点離算的に測
定しようとした場合測定周波数分解能から測定周波数レ
ンジを200Hz,2KHz,20KHzに分けると、FFTアナライザー
の測定周波数レンジは第3次高調波まで求めるとした場
合、600Hz,6KHz,60KHzとなる。周波数分解能は600Hz/10
24=0.586Hz,5.86Hz,58.6HzゆえにTは1/0.586=1.7
(秒),170(ミリ秒),17(ミリ・秒)となる。従って
平均化処理をしないとした場合でも301点の全取込み時
間は188.7秒必要となっていた。
That is, when the sampling time is Δt (second), the acquisition time T (second) of one frequency is 10 data points.
With 24 points, T = Δt * 1024 (seconds) is required. When trying to measure 20Hz to 20KHz in the audible band by separating 301 points. If the measurement frequency range is divided into 200Hz, 2KHz, and 20KHz from the measurement frequency resolution, the measurement frequency range of the FFT analyzer is calculated up to the third harmonic. When it does, it becomes 600Hz, 6KHz, 60KHz. Frequency resolution is 600Hz / 10
24 = 0.586Hz, 5.86Hz, 58.6Hz, so T is 1 / 0.586 = 1.7
(Seconds), 170 (milliseconds), 17 (milliseconds). Therefore, even if the averaging process was not performed, the total acquisition time of 301 points was 188.7 seconds.

本発明は上記問題点に鑑み、少量のデータで短時間に
高調波歪を分析することができるスピーカの高調波歪測
定方法を提供せんとするものである。
In view of the above problems, the present invention is to provide a method for measuring harmonic distortion of a speaker that can analyze harmonic distortion in a short time with a small amount of data.

問題点を解決するための手段 上記問題点を解決するため本発明のスピーカの高調波
歪測定方法は、周波数の正弦波を入力信号として、
を測定範囲で離散的に変化させながらスピーカに印加し
スピーカで再生された音の音圧をマイクロホンにて電気
信号に変換した後、A/D変換によりディジタル信号と
し、このディジタル信号について各周波数毎の一周期分
のデータを切り出した後、補間により、それぞれの周波
数において、サンプリング時間Δtを変化させΔt*N
=1/を満足するN点のデータとし、フーリエ級数近似
によって高調波歪を得るものである。
Means for Solving the Problems In order to solve the above problems, the method for measuring harmonic distortion of a speaker according to the present invention uses a sine wave of a frequency as an input signal,
Is applied to the speaker while discretely changing over the measurement range, the sound pressure of the sound reproduced by the speaker is converted into an electric signal by the microphone, and then converted into a digital signal by A / D conversion. After cutting out one cycle of data, the sampling time Δt is changed at each frequency by interpolation, and Δt * N
The harmonic distortion is obtained by Fourier series approximation with N points of data satisfying = 1 /.

作用 本発明は上述した方法により短時間に少ないデーター
でもってスピーカの高調波歪の測定を行うことができる
ものである。すなわち発振器より周波数の正弦波信号
を、を測定範囲で離散的に変化させながらスピーカに
入力し、発生する音圧信号をマイクロホンにて電気信号
に変換する。この信号をA/D変換器によりディジタル信
号に変換記憶する。それぞれの周波数の少なくとも1周
期分の整数倍のデータを取り出し、データ数が次式を満
足する様にサンプリング時間を変えて補間を行う。すな
わち周波数,周期tとし、取り込み時のサンプリング
時間をΔt、データ数をM,補間後のサンプリング時間を
Δt′、データ数をNとすれば の関係が成立する様にΔt′を定める。N,Mは整数であ
る。この際に発振周波数が異なってもデータ点数Nは同
一となる様に補間する。この補間によりデータの連続性
が実現できる。そしてフーリエ級数近似により、基本波
成分,第二次高調波,第三次高調波成分を得て、高調波
歪を得るものである。
Function The present invention can measure the harmonic distortion of the speaker with a small amount of data in a short time by the method described above. That is, a sine wave signal of a frequency is input to a speaker while discretely changing a frequency within a measurement range from an oscillator, and a generated sound pressure signal is converted into an electric signal by a microphone. This signal is converted into a digital signal by the A / D converter and stored. Data that is an integral multiple of at least one cycle of each frequency is extracted, and interpolation is performed by changing the sampling time so that the number of data satisfies the following equation. That is, if the frequency and period are t, the sampling time at the time of capturing is Δt, the number of data is M, the sampling time after interpolation is Δt ′, and the number of data is N. Δt ′ is determined so that the relationship of N and M are integers. At this time, the interpolation is performed so that the number of data points N is the same even if the oscillation frequency is different. Data continuity can be realized by this interpolation. Then, the fundamental wave component, the second-order harmonic wave, and the third-order harmonic wave component are obtained by Fourier series approximation to obtain harmonic distortion.

実施例 以下本発明の実施例について図面を参照しながら説明
する。
Embodiments Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明のスピーカの高調波歪測定方法を実現
するスピーカの高調波歪測定方法を示すものである。第
1図において、1は周波数の正弦波信号を発生する発
振器、2はスピーカを駆動する増幅器、4はマイクロホ
ンである。周波数の正弦波信号を入力信号とし、測定
範囲内で離散的に周波数を変化させながらスピーカ3を
駆動する。スピーカ3からの再生音はマイクロホン4に
より電気信号に変換され、A/D変換器6を通してディジ
タル信号として連続的にメモリ7に取り込まれる。取り
込みのサンプリング時間は1周期データが10数点以上に
なる様に選定する。即ち測定上限周波数が20KHzとした
場合、データ点数を10点とすれば5〔μsec〕=Δtと
なる。1つの周波数のデータ点数は多い程補間の精度が
良くなるが、データ量が増加するので、サンプリング時
間Δtは測定周波数とともに変化させデータ数の増加を
防いでも良い。そして各々の周波数毎に波形処理を行い
高調波歪を得るものである。
FIG. 1 shows a method for measuring harmonic distortion of a speaker that realizes the method for measuring harmonic distortion of a speaker according to the present invention. In FIG. 1, 1 is an oscillator that generates a sine wave signal of a frequency, 2 is an amplifier that drives a speaker, and 4 is a microphone. The sine wave signal of the frequency is used as the input signal, and the speaker 3 is driven while discretely changing the frequency within the measurement range. The reproduced sound from the speaker 3 is converted into an electric signal by the microphone 4, and is continuously taken into the memory 7 as a digital signal through the A / D converter 6. The sampling time for capturing should be selected so that the number of data in one cycle is 10 or more. That is, when the measurement upper limit frequency is 20 KHz and the number of data points is 10, 5 [μsec] = Δt. The more the number of data points of one frequency, the higher the accuracy of interpolation, but the amount of data increases. Therefore, the sampling time Δt may be changed with the measurement frequency to prevent the increase of the number of data. Then, waveform processing is performed for each frequency to obtain harmonic distortion.

以下周波数を特定した波形処理について説明する。第2
図はA/D変換器6によってアナログ信号からディジタル
信号へ変換しメモリ7に記憶されたデータを示すもので
ある。第2図において、*印がサンプリング時間Δt毎
の音圧として記憶されている原信号データである。次
に、第3図に示すように波形切出し処理回路8により少
なくとも1周期t時間のデータを取り出す。このデータ
を基に なる式を満足する様にサンプリング時間をΔtからΔ
t′に変える。補間処理回路10にてデータを補間し、1
周期がN点の補間データを得る。第4図が補間後のデー
タを示すものである。
The waveform processing in which the frequency is specified will be described below. Second
The figure shows the data stored in the memory 7 after being converted from an analog signal to a digital signal by the A / D converter 6. In FIG. 2, * indicates original signal data stored as sound pressure for each sampling time Δt. Next, as shown in FIG. 3, the waveform cut-out processing circuit 8 takes out data for at least one cycle t time. Based on this data The sampling time is changed from Δt to Δ so that the following equation is satisfied.
Change to t '. Data is interpolated by the interpolation processing circuit 10 and 1
Interpolation data having a cycle of N points is obtained. FIG. 4 shows the data after the interpolation.

尚、Mは補間前の1周期のデータ点数で整数値、Nは
補間後の1周期のデータ点数で整数値である。Nとして
通常50〜100点もあれば、スピーカの歪特性を得るに十
分な点数である。この第4図のデータをフーリエ級数近
似処理回路10により、フーリエ級数近似処理を行い、基
本波、第2次,第3次,……第n次高調波成分を得る。
この値を表示回路11にて表示するものである。補間処理
回路9は、フーリエ級数近似が連続周期関数を前提とし
たものであり、補間処理を行う前の第3図に示すデータ
を処理した場合には、第5図で示した様にA点で不連続
点を生じるために高調波歪が実際よりも多くなるという
誤差を生じるために行うものである。第6図は補間後の
データについて示したもので、第5図の様な不連続点は
生じない。
Note that M is the number of data points in one cycle before interpolation and is an integer value, and N is the number of data points in one cycle after interpolation and is an integer value. If N is usually 50 to 100 points, it is a sufficient number to obtain the distortion characteristic of the speaker. The data of FIG. 4 is subjected to Fourier series approximation processing by the Fourier series approximation processing circuit 10 to obtain the fundamental wave, second order, third order, ... Nth order harmonic component.
This value is displayed on the display circuit 11. The interpolation processing circuit 9 is based on the assumption that the Fourier series approximation is based on a continuous periodic function, and when the data shown in FIG. This is done in order to generate an error that harmonic distortion becomes larger than it actually is due to the discontinuity. FIG. 6 shows the data after the interpolation, and the discontinuity point as in FIG. 5 does not occur.

なお、本実施例では1周期についてフーリエ級数近似
処理を行ったが、1周期以上のデータでもかまわない。
In this embodiment, the Fourier series approximation process is performed for one cycle, but data for one cycle or more may be used.

さらに1周期の補間データを数回くりかえして、連続
的に並べた擬似連続波をFFT処理しても良い。
Further, the interpolation data of one cycle may be repeated several times, and the pseudo continuous wave arranged in a continuous manner may be subjected to FFT processing.

発明の効果 以上の様に本発明は、周波数の正弦波を入力信号と
して測定範囲内で離散的に変化させながらスピーカに印
加し、スピーカからの出力音圧をマイクロホンにて電気
信号に変換した後、A/D変換によりディジタル信号とし
各周波数毎の一周期分のデータを切り出した後、補間に
よりそれぞれの周波数においてサンプリング時間Δtを
変化させ を満足するN点のデータとしフーリエ級数近似によって
高調波歪を得るので、最低一周期のデータを取り込めば
良く、従って取り込み時間がFFTアナライザーによるFFT
アルゴリズムを用いる場合に比べ非常に短くなるという
効果が得られる。
As described above, according to the present invention, the sine wave of the frequency is applied as an input signal to the speaker while being discretely changed within the measurement range, and the sound pressure output from the speaker is converted into an electric signal by the microphone. , A / D conversion is used as a digital signal and one cycle of data for each frequency is cut out, and then the sampling time Δt is changed at each frequency by interpolation. Since the harmonic distortion is obtained by Fourier series approximation with the data of N points satisfying the above, it is sufficient to capture at least one period of data, and therefore the capture time is FFT by the FFT analyzer.
It is possible to obtain the effect of being extremely short as compared with the case of using the algorithm.

例えば可聴周波数帯域20Hz〜20KHzを対数軸で等間隔
になる様に選んだ301点の周波数データを取り込む場合F
FTでは先に示した様に188.7秒必要であるのに対し、本
発明では ただし1となる。また各周波数の1周期のデータ点数が同一とな
る様に補間するため、フーリエ級数近似の内積を求める
係数が総て同一で良く、簡単なメモリと乗算器で構成す
ることができるものである。
For example, when capturing frequency data of 301 points selected so that the audible frequency band 20 Hz to 20 KHz is evenly spaced on the logarithmic axis F
FT requires 188.7 seconds as shown above, while the present invention requires However 1 Becomes Further, since interpolation is performed so that the number of data points in one cycle of each frequency is the same, all the coefficients for obtaining the inner product of the Fourier series approximation may be the same, and a simple memory and a multiplier can be used.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例におけるスピーカの高調波歪
測定方法を実現するスピーカの高調波歪測定装置のブロ
ック図、第2図はA/D変換後のデータを示す状態図、第
3図は切り出した1波形データを示す状態図、第4図は
補間後のデータを示す状態図、第5図,第6図は補間に
よるデータの連続性を表わす状態図、第7図は従来の高
調波歪測定方法を実現する装置のブロック図である。 1……発振器、2……増幅器、3……スピーカ、4……
マイクロホン、6……A/D変換器、7……メモリ回路、
8……波形切出し処理回路、9……補間処理回路、10…
…フーリエ級近似処理回路、11……表示回路。
FIG. 1 is a block diagram of a speaker harmonic distortion measuring apparatus for realizing a speaker harmonic distortion measuring method according to an embodiment of the present invention, and FIG. 2 is a state diagram showing data after A / D conversion, and FIG. FIG. 4 is a state diagram showing cut-out one waveform data, FIG. 4 is a state diagram showing data after interpolation, FIGS. 5 and 6 are state diagrams showing continuity of data by interpolation, and FIG. 7 is a conventional state diagram. It is a block diagram of an apparatus which realizes a harmonic distortion measuring method. 1 ... Oscillator, 2 ... Amplifier, 3 ... Speaker, 4 ...
Microphone, 6 ... A / D converter, 7 ... memory circuit,
8 ... Waveform cutout processing circuit, 9 ... Interpolation processing circuit, 10 ...
… Fourier class approximation processing circuit, 11 …… Display circuit.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】周波数fの正弦波を入力信号としてfを測
定範囲で離散的に変化させながらスピーカに印加し、ス
ピーカで再生された音の音圧をマイクロホンで電気信号
に変換した後、この電気信号をA/D変換してディジタル
信号とし、このディジタル信号について各周波数毎の少
なくとも一周期分のデータを切り出した後補間により、
それぞれの周波数においてサンプリング時間Δtを変化
させ、 を満足するN点のデータとし、フーリエ級数展開によっ
て高調波歪を得るスピーカの高調波歪測定方法。
1. A sine wave of a frequency f is applied as an input signal to a speaker while f is discretely changed in a measurement range, and the sound pressure of the sound reproduced by the speaker is converted into an electric signal by a microphone, and then the The electrical signal is A / D converted into a digital signal, and at least one cycle of data for each frequency is cut out from this digital signal and then interpolated,
The sampling time Δt is changed at each frequency, A method for measuring harmonic distortion of a speaker, which obtains harmonic distortion by Fourier series expansion with N points of data satisfying
JP62309861A 1987-12-08 1987-12-08 Speaker harmonic distortion measurement method Expired - Lifetime JP2506863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62309861A JP2506863B2 (en) 1987-12-08 1987-12-08 Speaker harmonic distortion measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62309861A JP2506863B2 (en) 1987-12-08 1987-12-08 Speaker harmonic distortion measurement method

Publications (2)

Publication Number Publication Date
JPH01151400A JPH01151400A (en) 1989-06-14
JP2506863B2 true JP2506863B2 (en) 1996-06-12

Family

ID=17998180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62309861A Expired - Lifetime JP2506863B2 (en) 1987-12-08 1987-12-08 Speaker harmonic distortion measurement method

Country Status (1)

Country Link
JP (1) JP2506863B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4595083B2 (en) * 2003-07-25 2010-12-08 タマティーエルオー株式会社 Data analysis method, data analysis apparatus, and data analysis program
WO2008056285A1 (en) * 2006-11-08 2008-05-15 Nxp B.V. Method of determining the harmonic and anharmonic portions of a response signal of a device
JP4973313B2 (en) * 2007-05-23 2012-07-11 ヤマハ株式会社 Karaoke equipment
JP5777102B2 (en) * 2011-09-01 2015-09-09 国立研究開発法人産業技術総合研究所 Frequency analyzer
CN110225433B (en) * 2019-05-16 2021-04-13 音王电声股份有限公司 Nonlinear measurement and tone quality tuning method of loudspeaker system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6031400B2 (en) * 1979-01-20 1985-07-22 松下電器産業株式会社 Speaker characteristics measuring device
JPH055760Y2 (en) * 1986-04-02 1993-02-15

Also Published As

Publication number Publication date
JPH01151400A (en) 1989-06-14

Similar Documents

Publication Publication Date Title
JP3235925B2 (en) Howling suppression device
US8116471B2 (en) Audio signal dereverberation
US20040037439A1 (en) Acoustic signal processing apparatus and method, and audio device
CA2107320C (en) Audio signal processing apparatus with optimization process
JP2506863B2 (en) Speaker harmonic distortion measurement method
JP2004287171A (en) Vocoder device
US6453253B1 (en) Impulse response measuring method
JPH09243679A (en) Anharmonic frequency analytical method using arbitrary section waveform
JP2867769B2 (en) Sound measurement method and device
EP0917707B1 (en) Audio effects synthesizer with or without analyser
JPH10111693A (en) Recording medium for acoustic characteristic measurement, acoustic characteristic measurement device, and method of measuring acoustic characteristic
JP3277440B2 (en) Acoustic characteristics measurement device
JPH05188105A (en) Impulse response measuring apparatus
US8022289B2 (en) Harmonic sound generator and a method for producing harmonic sound
JPH05273964A (en) Attack time detecting device used for automatic musical transcription system or the like
CN219124334U (en) Earphone amplifier for calibrating frequency deviation of sound source
WO2022014325A1 (en) Signal processing device and method, and program
US9721159B2 (en) Periodicity analysis system
JP3419705B2 (en) Method, apparatus, and program recording medium for enhancing formant component of voice buried in noise
Łuczyński et al. Active cancellation of the tonal component with synthesized compensation component and processing time compensation
JPH05275950A (en) Dynamic range compressor for acoustic signal
KR900008161B1 (en) Tone control device
JPH05161197A (en) Sound quality evaluation device
JPH05344597A (en) Tone quality evaluating device
JPH0830296A (en) Acoustic analysis system

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 12