JP2505234B2 - Rear wheel steering method - Google Patents

Rear wheel steering method

Info

Publication number
JP2505234B2
JP2505234B2 JP242988A JP242988A JP2505234B2 JP 2505234 B2 JP2505234 B2 JP 2505234B2 JP 242988 A JP242988 A JP 242988A JP 242988 A JP242988 A JP 242988A JP 2505234 B2 JP2505234 B2 JP 2505234B2
Authority
JP
Japan
Prior art keywords
steering
constant
rear wheel
steering angle
wheel steering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP242988A
Other languages
Japanese (ja)
Other versions
JPH01182166A (en
Inventor
孝彰 江口
有三 崎田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP242988A priority Critical patent/JP2505234B2/en
Publication of JPH01182166A publication Critical patent/JPH01182166A/en
Application granted granted Critical
Publication of JP2505234B2 publication Critical patent/JP2505234B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/1554Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels comprising a fluid interconnecting system between the steering control means of the different axles
    • B62D7/1572Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels comprising a fluid interconnecting system between the steering control means of the different axles provided with electro-hydraulic control means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は車両の後輪を操舵する方法に関するものであ
る。
The present invention relates to a method of steering a rear wheel of a vehicle.

(従来の技術) 後輪操舵技術としては従来特開昭60−229873号公報に
記載の如く、前輪操舵時操舵角θ及び操舵角速度に夫
々比例定数K及び微分定数τを乗じて求まる舵角δ
K・θ+τ・だけ後輪を操舵して、操舵周波数に対す
るヨーレイトゲイン特性がフラットになるよう、つまり
操舵速度に関係なく操舵角θに比例して位相遅れなしに
ヨーレイトが発生するようになす技術が知られている。
(Prior Art) As a rear wheel steering technique, as described in Japanese Patent Laid-Open No. 60-229873, a steering angle δ obtained by multiplying a steering angle θ and a steering angular velocity during front wheel steering by a proportional constant K and a differential constant τ, respectively. r =
There is a technique to steer the rear wheel by K · θ + τ · so that the yaw rate gain characteristic with respect to the steering frequency becomes flat, that is, the yaw rate is generated in proportion to the steering angle θ without phase delay regardless of the steering speed. Are known.

この目的を達成するための比例定数Ks及び微分定数τ
は夫々車両毎に又車速に応じて異なり、第5図に示す
ように車両の質量Mが160kgS2/m、ヨー慣性モーメント
Iが252kgmS2、ホイールベースlが2.48mの車両をV=1
20km/hで走行させる場合、Ksは夫々X1点の0.38,−
0.049であり、又第6図に示すようにM=125kgS2/m、I
=227kgS2、l=2.48mの車両を同じV=120km/hで走行
させる場合、Ksは夫々X2点の0.33、−0.056であ
る。
The proportional constant K s and the differential constant τ
s is different for each vehicle and according to the vehicle speed. As shown in FIG. 5, a vehicle having a vehicle mass M of 160 kgS 2 / m, a yaw moment of inertia I of 252 kgmS 2 , and a wheel base 1 of 2.48 m is V = 1.
Case of traveling at 20km / h, K s, τ s 0.38 each X 1 point, -
0.049, and as shown in FIG. 6, M = 125 kgS 2 / m, I
= 227kgS 2 , l = 2.48m at the same V = 120km / h, K s and τ s are X 2 points of 0.33 and -0.056, respectively.

このように定めた比例定数及び微分定数から前記の式
により求まる舵角δだけ後輪を操舵する場合、この後
輪舵角δは第5図と同条件の場合操舵角θに対し第9
図中実線の如くに経時変化して、第9図及び第10図中実
線で示す如くにヨーレイト及び横加速度Gを生じ、操
舵周波数に対するヨーレイトゲイン/θの変化特性を
狙い通りにフラットなものとすることができる。
When the rear wheels are steered by the steering angle δ r obtained by the above formula from the proportional constant and the differential constant determined in this way, the rear wheel steering angle δ r is 9
As indicated by the solid line in the figure, the yaw rate and the lateral acceleration G are generated as shown by the solid lines in FIGS. 9 and 10, and the change characteristic of the yaw rate gain / θ with respect to the steering frequency is flat as intended. can do.

(発明が解決しようとする問題点) しかし、この後輪操舵技術では、第9図に示すように
後輪を当初一旦前輪と逆相に操舵する時間ΔT1が長くな
ると共に、この逆相転舵量−Δδr1が大きくなるため、
第11図にG1で示す如く求心方向と逆向きの横加速度が大
きくなると共に、長時間発生し、車体後部が振りまわさ
れる感じとなって違和感があった。
(Problems to be Solved by the Invention) However, in this rear wheel steering technique, as shown in FIG. 9, the time ΔT 1 at which the rear wheels are initially steered in reverse phase with the front wheels is lengthened, and this reverse phase rotation Since the steering amount −Δδ r1 becomes large,
As indicated by G 1 in FIG. 11, the lateral acceleration in the direction opposite to the centripetal direction was increased, and it was generated for a long time, and the rear part of the vehicle body was swung, which was uncomfortable.

(問題点を解決するための手段) 本発明は、この違和感がフラットなヨーレイトゲイン
特性を達成されない場合よりも乗員にとって大きな問題
であるとの事実認識に基づき、フラットなヨーレイトゲ
イン特性を若干犠牲にしても上記の違和感をなくすべき
であるとの観点から、この着想を具体化した車両の後輪
操舵方法を提案するものである。
(Means for Solving the Problem) The present invention sacrifices the flat yaw rate gain characteristic slightly based on the recognition that the discomfort is a greater problem for the occupant than when the flat yaw rate gain characteristic is not achieved. However, from the viewpoint that the above discomfort should be eliminated, a rear wheel steering method for a vehicle that embodies this idea is proposed.

ところで、比例定数K及び微分定数τをヨーレイトゲ
イン特性がフラットになるたの値K=0.38、τ=−0.04
9から第9図に示す如く、K=0.30、τ=−0.015へ、又
更にK=0.25、τ=−0.010へ低下させると、後輪舵角
δは夫々同図中1点鎖線及び点線で示す経時変化を与
えられ、逆相転舵時間をΔT1からΔT2、ΔT3へ短縮でき
ると共に逆相転舵量を−Δδr1から−Δδr2、−Δδr3
へ減少させることができる。
By the way, the proportional constant K and the differential constant τ are values of the flatness of the yaw rate gain characteristic K = 0.38, τ = −0.04
As shown in Fig. 9, when K = 0.30, τ = -0.015, and further K = 0.25, τ = -0.010, the rear wheel steering angle δ r is indicated by the one-dot chain line and the dotted line, respectively. The reverse phase steering time can be shortened from ΔT 1 to ΔT 2 and ΔT 3 while the reverse phase steering amount is changed from −Δδ r1 to −Δδ r2 , −Δδ r3.
Can be reduced to.

この場合、ヨーレイトの発生状況も第10図中実線か
ら1点鎖線及び点線へと順次変化してヨーレイトゲイン
特性がフラットな特性から若干ずれるが、第11図中実線
から1点鎖線及び点線へと変化する横加速度の発生状況
から明らかなように、求心方向と逆向きの横加速度をほ
とんど問題とならない値以下に減ずることができる。
In this case, the occurrence of yaw rate also changes from the solid line in FIG. 10 to the alternate long and short dash line and the dotted line, and the yaw rate gain characteristic deviates slightly from the flat characteristic, but from the solid line in FIG. 11 to the alternate long and short dash line and the dotted line. As is clear from the state of occurrence of changing lateral acceleration, the lateral acceleration in the direction opposite to the centripetal direction can be reduced to a value that is not a problem.

そして、求心方向と逆向きの横加速度をこのような値
にするための比例定数K及び微分定数τは夫々車両毎に
又車速に応じて異なり、第5図の場合このようなK,τが
夫々Y1点における0.30,−0.015以下の値(斜線領域内の
値)であり、又第6図の場合このようなK,τが夫々Y2
における0.26,−0.017以下の値(斜線領域内の値)であ
ることを確かめた。
Further, the proportional constant K and the differential constant τ for making the lateral acceleration in the direction opposite to the centripetal direction such a value differ for each vehicle and according to the vehicle speed. In the case of FIG. 5, such K, τ are The values at Y 1 are 0.30 and −0.015 or less (values within the shaded area), and in the case of FIG. 6, such K and τ are values at and below 0.26 and −0.017 at Y 2 (hatched area). It was confirmed that it was a value within.

ここで、第5図中X1点、Y1点間における比例定数の比
K/KS及び微分定数の比τ/τを求めるに、K/KS=0.78
9、τ/τ=0.306であり、又第6図中X2点、Y2点間に
おける比例定数の比K/KS及び微分定数の比τ/τを求
めるにK/KS=0.788、τ/τ=0.304である。これら比
の対比から明らかなように、求心方向と逆向きの横加速
がほとんど問題とならない前記の傾斜領域は、車両の諸
元に関係なくほぼK/KS<0.78、τ/τ<0.30によって
統括することができ、換言すれば第7図の斜線領域とし
て表示し得る。この図中X3点は前記従来の後輪操舵に当
り設定したK=KS,τ=τ、従ってK/KS=a=1、τ
/τ=b=1の点であり、斜線領域(求心方向と逆向
きの横加速度がほとんど問題とならない領域)をY3点が
限界のa<0.78、b<0.30、a>bで表示することがで
きる。
Here, the ratio of the proportional constant between X 1 point and Y 1 point in FIG.
To obtain the ratio τ / τ S of K / K S and the differential constant, K / K S = 0.78
9, τ / τ S = 0.306, and K / K S = to find the ratio of proportional constants K / K S and the ratio of differential constants τ / τ S between X 2 point and Y 2 point in FIG. 0.788 and τ / τ S = 0.304. As is clear from the comparison of these ratios, the above-mentioned slope region in which lateral acceleration in the direction opposite to the centripetal direction causes almost no problem, the K / K S <0.78, τ / τ S <0.30 regardless of the vehicle specifications. It can be integrated by, in other words, it can be displayed as a shaded area in FIG. The point X 3 in this figure is K = K S , τ = τ S set for the above-mentioned conventional rear wheel steering, and therefore K / K S = a = 1, τ
/ Τ s = b = 1, and the shaded area (area where lateral acceleration in the opposite direction to the centripetal direction is of little concern) is displayed as a <0.78, b <0.30, a> b where Y 3 is the limit can do.

又、限界点Y3を車速Vに関して考察するに、この点に
おけるa,bは第8図に示す如く車速Vの変化によっても
変らず、車両の諸元及び車速に関係なくa≦0.78、b≦
0.30となるようなK,τが求心方向と逆向きの横加速度を
問題とならない程に低下させ得ることを確かめた。
Considering the limit point Y 3 with respect to the vehicle speed V, a and b at this point do not change with the change of the vehicle speed V as shown in FIG. 8, and a ≦ 0.78, b regardless of the specifications of the vehicle and the vehicle speed. ≤
It was confirmed that K and τ such that 0.30 can reduce the lateral acceleration in the direction opposite to the centripetal direction to such an extent that it does not matter.

しかして第7図のY3点が理想であり、その理由はこの
Y3点における値よりa,bを小さくしても、逆向きの横加
速度を問題とならない程に低下させた状態は変わらない
まま、ヨーレートゲイン特性が益々フラットな特性から
ずれてしまうからである。又、第7図の斜線領域でなく
ても、点線の内側領域であれば、従来の後輪操舵方式が
持つ逆向きの加速度に関する問題を程度の差はあれ解消
することができる。従って、本発明の目的を達成するた
めの領域は0<a<1、0<b<1と規定することがで
きる。
The ideal Y 3 point in Fig. 7 is the reason for this.
This is because, even if a and b are made smaller than the values at the Y 3 point, the yaw rate gain characteristic deviates from a flat characteristic even while the reverse lateral acceleration is reduced to a level that does not cause a problem. . Further, even if it is not the hatched area in FIG. 7, if it is the area inside the dotted line, it is possible to solve the problem relating to the reverse acceleration of the conventional rear wheel steering system to some extent. Therefore, the regions for achieving the object of the present invention can be defined as 0 <a <1 and 0 <b <1.

本発明はこのような事実に鑑み、前輪操舵時、操舵角
及び操舵角速度に夫々比例定数及び微分定数を乗じて求
まる舵角だけ後輪を操舵するに際し、操舵周波数に対す
るヨーレイトゲイン特性がフラットになるような比例定
数及び微分定数に対する比が夫々0を除く1未満の所定
値となる比例定数及び微分定数を夫々前記後輪舵角の演
算に資することを特徴とする車両の後輪操舵方法を提供
しようとするものである。
In view of such a fact, the present invention makes the yaw rate gain characteristic flat with respect to the steering frequency when steering the rear wheels by the steering angle obtained by multiplying the steering angle and the steering angular velocity by the proportional constant and the differential constant, respectively. A rear wheel steering method for a vehicle, characterized in that the proportional constants and differential constants each having a predetermined ratio less than 1 except for 0 to the proportional constants and differential constants contribute to the calculation of the rear wheel steering angle. Is what you are trying to do.

(作 用) 前輪操舵時、操舵角及び操舵角速度に夫々比例定数及
び微分定数を乗じて求まる舵角だけ後輪も操舵される。
(Operation) When steering the front wheels, the rear wheels are also steered by the steering angle obtained by multiplying the steering angle and the steering angular velocity by the proportional constant and the differential constant, respectively.

ところでかかる後輪操舵角の演算に際し、比例定数及
び微分定数を以下の如くに定める。即ち、操舵周波数に
対するヨーレイトゲイン特性がフラットになるような比
例定数及び微分定数に対する比が夫々0を除く1未満の
所定値となる比例定数及び微分定数を上記後輪操舵角の
演算に資する。
By the way, in the calculation of the rear wheel steering angle, the proportional constant and the differential constant are determined as follows. That is, the proportional constant and the differential constant, which have a ratio to the proportional constant and the differential constant that flatten the yaw rate gain characteristic with respect to the steering frequency, are predetermined values less than 1 excluding 0, respectively, and contribute to the calculation of the rear wheel steering angle.

このため、フラットなヨーレイトゲイン特性が若干犠
牲になるものの、後輪の逆相転舵量及び逆相転舵時間を
小さくして、求心方向と逆向きの横加速度が大きくなる
違和感を減ずることができる。従って、フラットなヨー
レイトゲイン特性を若干犠牲にしても、それより重要な
上記の違和感を減じ得ることとなり、乗心地を向上させ
ることができる。
Therefore, although the flat yaw rate gain characteristic is slightly sacrificed, it is possible to reduce the anti-phase steering amount and the anti-phase steering time of the rear wheels to reduce the discomfort that the lateral acceleration in the centripetal direction and in the opposite direction increases. it can. Therefore, even if the flat yaw rate gain characteristic is slightly sacrificed, the above-mentioned discomfort, which is more important, can be reduced, and the riding comfort can be improved.

(実施例) 以下、本発明の実施例を図面に基づき詳細に説明す
る。
(Example) Hereinafter, the Example of this invention is described in detail based on drawing.

第1図は本発明後輪操舵方法の実施に用いる車両の操
舵システムを示し、1L,1Rは夫々左右前輪、2L,2Rは左右
後輪、3はステアリングホイールである。前輪1L,1Rは
夫々ステアリングホイール3によりステアリングギヤ4
を介して転舵可能とし、後輪2L,2Rは夫々後輪転舵アク
チュエータ5により転舵可能とする。
FIG. 1 shows a steering system of a vehicle used for carrying out the rear wheel steering method of the present invention. 1L and 1R are front left and right wheels, 2L and 2R are left and right rear wheels, and 3 is a steering wheel. The front wheels 1L and 1R use the steering wheel 3 and the steering gear 4 respectively.
The rear wheels 2L and 2R can be steered by the rear wheel steering actuators 5, respectively.

アクチュエータ5はスプリングセンタ式油圧アクチュ
エータとし、室5Rに油圧を供給する時圧力に比例した舵
角だけ後輪2L,2Rを夫々右に転舵し、室5Lに油圧を供給
する時圧力に比例した舵角だけ後輪2L,2Rを夫々左に転
舵するものとする。
The actuator 5 is a spring center type hydraulic actuator, and the rear wheels 2L and 2R are each steered to the right by a steering angle proportional to the pressure when the hydraulic pressure is supplied to the chamber 5R, and is proportional to the pressure when the hydraulic pressure is supplied to the chamber 5L. It is assumed that the rear wheels 2L and 2R are steered to the left by the steering angle.

アクチュエータ室5L,5Rへの油圧を制御する電磁比例
式後輪転舵制御弁6を設け、この弁6は可変絞り6a,6b,
6c,6dをブリッジ接続して具え、このブリッジ回路にポ
ンプ7、リザーバ8及びアクチュエータ室5L,5Rからの
油路9,10を夫々接続する。弁6は更にソレノイド6L,6R
を具え、これらソレノイドはOFF時夫々可変絞り6a,6b及
び6c,6dを全開させて両アクチュエータ室5L,5Rを無圧状
態にし、ソレノイド6L又は6Rの電流値IL又はIRによるON
時可変絞り6c,6d又は6a,6bを電流値に応じた開度に絞っ
てアクチュエータ室5L又は5Rに電流値IL又はIRに応じた
油圧を供給するものとする。その油圧は前記したように
その値に応じた角度だけ後輪を対応方向へ転舵し、従っ
て後輪舵角δと電流値IL,IRとの関係は第3図及び第
4図の如きものとなる。
An electromagnetic proportional rear wheel steering control valve 6 for controlling the hydraulic pressure to the actuator chambers 5L, 5R is provided, and the valve 6 is provided with variable throttles 6a, 6b,
6c and 6d are connected in a bridge, and the pump 7, the reservoir 8, and the oil passages 9 and 10 from the actuator chambers 5L and 5R are connected to the bridge circuit, respectively. Valve 6 also has solenoids 6L and 6R
When these solenoids are off, the variable throttles 6a, 6b and 6c, 6d are fully opened to make both actuator chambers 5L, 5R non-pressurized, and the solenoid 6L or 6R is turned on by the current value I L or I R.
And supplies the time variable aperture 6c, 6d or 6a, hydraulic pressure corresponding to the current value I L or I R 6b to the actuator chamber 5L or 5R Search in opening corresponding to the current value. As described above, the hydraulic pressure steers the rear wheels in the corresponding direction by an angle corresponding to the value, and therefore the relationship between the rear wheel steering angle δ r and the current values I L , I R is shown in FIGS. 3 and 4. It becomes something like.

ソレノイド6L,6Rの駆動電流IL,IRをコントローラ11に
より制御し、このコントーローラにはステアリングホイ
ール操舵角θを検出する操舵角センサ12からの信号及び
車速Vを検出する車速センサ13からの信号を夫々入力す
る。コントローラ11はこれら入力情報を基に第2図の如
くに機能して後輪操舵を行うものとする。
The controller 11 controls the drive currents I L and I R of the solenoids 6L and 6R, and a signal from the steering angle sensor 12 that detects the steering wheel steering angle θ and a signal from the vehicle speed sensor 13 that detects the vehicle speed V are supplied to this controller. Respectively. Based on these input information, the controller 11 functions as shown in FIG. 2 to perform rear wheel steering.

即ち先ず、操舵角θ及び車速Vを読込み、次で操舵周
波数に対するヨーレイトゲイン特性がフラットになるよ
うな比例定数KS及び微分定数τを車速Vからテーブル
ルックアップする。その後、第5図乃至第8図につき前
述した如くに定めた制御定数の比a,b(0<a<1、0
<b<1)と上記KS、τとから、求心方向と逆向きの
横加速度が減少するような比例定数K及び微分定数τを
夫々K=a・KS,τ=b・τにより求める。
That is, first, the steering angle θ and the vehicle speed V are read, and then the proportional constant K S and the differential constant τ S that flatten the yaw rate gain characteristic with respect to the steering frequency are table-looked up from the vehicle speed V. After that, the control constant ratios a and b (0 <a <1,0) determined as described above with reference to FIGS.
From <b <1) and the above K S and τ S , the proportional constant K and the differential constant τ that reduce the lateral acceleration in the direction opposite to the centripetal direction are K = a · K S and τ = b · τ S, respectively. Ask by.

そして、これら比例定数K及び微分定数τと、操舵角
θ及び操舵角速度とから後輪舵角δをδ=K・θ
+τ・の演算により求め、この後転舵角を得るための
ソレノイド駆動電流IR,ILを夫々第3図及び第4図に対
応するテーブルデータからルックアップし、これら電流
IR,ILを対応ソレノイド6R,6Lに出力して後輪をδだけ
操舵する。
Then, with these proportionality constant K and the differential constant tau, a rear wheel steering angle [delta] r from the steering angle theta and the steering angular velocity δ r = K · θ
The solenoid drive currents I R and I L for obtaining the steered angle after this are calculated by the calculation of + τ ·, and these currents are looked up from the table data corresponding to FIGS. 3 and 4, respectively.
I R, corresponding to I L solenoid 6R, steering the rear wheels only [delta] r is output to 6L.

かかる後輪操舵方法によれば、舵角δの演算に当り
用いる比a,bを0を除く1未満の所定値とすることか
ら、ヨーレイトゲイン特性がフラットな特性から若干ず
れるものの求心方向と逆向きの横加速度が減少すること
となり、これにともなう違和感を少なくして乗心地を向
上させることができる。
According to such a rear wheel steering method, since the ratios a and b used in the calculation of the steering angle δ r are set to a predetermined value less than 1 excluding 0, the yaw rate gain characteristic is slightly deviated from the flat characteristic and the centering direction is Since the lateral acceleration in the opposite direction is reduced, it is possible to reduce the discomfort associated therewith and improve the riding comfort.

なお、微分定数τを前記したように、0を除く1未満
の所定比bと、フラットなヨーレイトゲインを得るため
のτとの積b・τにより求める場合、微分定数τは
第12図に実線で示す如く低車速域においても大きな負値
とならない。従来のようにτ=τとする場合、点線で
示す如く低車速域において微分定数τが極めて大きな負
値となり、求心方向と逆向きの横加速度が大きくなって
著しい違和感を生ずるが、本発明においては低車速域で
微分定数τが著しく負値を増さないためこの違和感を解
消して、低車速で車体後部が振りまわされる感じをなく
すことができる。
As described above, when the differential constant τ is obtained by the product b · τ S of the predetermined ratio b less than 1 excluding 0 and τ S for obtaining the flat yaw rate gain, the differential constant τ is shown in FIG. As shown by the solid line, it does not become a large negative value even in the low vehicle speed range. When τ = τ S as in the conventional case, the differential constant τ becomes a very large negative value in the low vehicle speed range as shown by the dotted line, and the lateral acceleration in the direction opposite to the centripetal direction becomes large, which causes a remarkable discomfort. Since the differential constant τ does not increase significantly in the low vehicle speed range, this discomfort can be eliminated, and the feeling of the rear part of the vehicle body being swung at low vehicle speed can be eliminated.

(発明の効果) かくして本発明方法は上述の如く、ヨーレイトゲイン
特性がフラットになるような比例定数及び微分定数に対
する比が夫々0を除く1未満の所定値となる比例定数及
び微分定数を用いて後輪舵角を演算するから、フラット
なヨーレイトゲイン特性が若干問題になるものの、求心
方向と逆向きの横加速度が大きくなる違和感を減ずるこ
とができる。従って、フラットなヨーレイトゲイン特性
を若干犠牲にしても、それより重要な上記の違和感をな
くし得ることとなり、乗心地を向上させることができ
る。
(Effects of the Invention) Thus, as described above, the method of the present invention uses the proportional constant and the differential constant whose ratios to the proportional constant and the differential constant such that the yaw rate gain characteristic becomes flat are predetermined values less than 1 except 0, respectively. Since the rear wheel steering angle is calculated, the flat yaw rate gain characteristic becomes a little problem, but it is possible to reduce the discomfort that the lateral acceleration in the direction opposite to the centripetal direction becomes large. Therefore, even if the flat yaw rate gain characteristic is slightly sacrificed, the above-mentioned discomfort, which is more important, can be eliminated, and the riding comfort can be improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法の実施に用いる車両の操舵装置を例
示するシステム図、 第2図は同例のコントローラによる後輪舵角制御機能の
フローチャート、 第3図及び第4図は夫々後輪舵角とソレノイド駆動電流
の関係線図、 第5図及び第6図は夫々車両諸元毎にフラットなヨーレ
イトゲイン特性を得るための制御定数の組合せ及び求心
方向と逆向きの横加速度を問題とならないよう小さくす
るための制御定数領域を示す線図、 第7図及び第8図は夫々第5図及び第6図の等価線図、 第9図乃至第11図は夫々制御定数毎に示す後輪舵角、ヨ
ーレイト横加速度の時系列タイムチャート、 第12図は従来と本発明とで比較して車速に対する制御定
数の変化具合を示す特性図である。 1L,1R……前輪、2L,2R……後輪 3……ステアリングホイール 4……ステアリングギヤ 5……後輪転舵アクチュエータ 6……電磁比例式後輪転舵制御弁 11……コントローラ、12……操舵角センサ 13……車速センサ
FIG. 1 is a system diagram illustrating a vehicle steering apparatus used for carrying out the method of the present invention, FIG. 2 is a flowchart of a rear wheel steering angle control function by the controller of the same example, and FIGS. 3 and 4 are rear wheels respectively. The relationship diagram between the steering angle and the solenoid drive current, and FIGS. 5 and 6 show the combination of control constants for obtaining a flat yaw rate gain characteristic for each vehicle specification and the lateral acceleration in the direction opposite to the centripetal direction. Fig. 7 is a diagram showing a control constant region for reducing the control constant region so that it does not become small, Fig. 7 and Fig. 8 are equivalent diagrams of Fig. 5 and Fig. 6, respectively, and Figs. A time series time chart of the wheel steering angle and the yaw rate lateral acceleration, and FIG. 12 is a characteristic diagram showing how the control constant changes with respect to the vehicle speed in comparison between the conventional method and the present invention. 1L, 1R …… Front wheel, 2L, 2R …… Rear wheel 3 …… Steering wheel 4 …… Steering gear 5 …… Rear wheel steering actuator 6 …… Electromagnetic proportional rear wheel steering control valve 11 …… Controller, 12 …… Steering angle sensor 13 ... Vehicle speed sensor

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】前輪操舵時、操舵角及び操舵角速度に夫々
比例定数及び微分定数を乗じて求まる舵角だけ後輪を操
舵するに際し、 操舵周波数に対するヨーレイトゲイン特性がフラットに
なるような比例定数及び微分定数に対する比が夫々0を
除く1未満の所定値となる比例定数及び微分定数を夫々
前記後輪舵角の演算に資することを特徴とする車両の後
輪操舵方法。
1. When steering the front wheels, when steering the rear wheels by a steering angle obtained by multiplying the steering angle and the steering angular velocity by a proportional constant and a differential constant, respectively, a proportional constant and a yaw rate gain characteristic with respect to the steering frequency become flat. A rear wheel steering method for a vehicle, wherein a proportional constant and a differential constant, each having a ratio to a differential constant that is less than 1 except 0, contributes to the calculation of the rear wheel steering angle.
JP242988A 1988-01-11 1988-01-11 Rear wheel steering method Expired - Fee Related JP2505234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP242988A JP2505234B2 (en) 1988-01-11 1988-01-11 Rear wheel steering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP242988A JP2505234B2 (en) 1988-01-11 1988-01-11 Rear wheel steering method

Publications (2)

Publication Number Publication Date
JPH01182166A JPH01182166A (en) 1989-07-20
JP2505234B2 true JP2505234B2 (en) 1996-06-05

Family

ID=11529016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP242988A Expired - Fee Related JP2505234B2 (en) 1988-01-11 1988-01-11 Rear wheel steering method

Country Status (1)

Country Link
JP (1) JP2505234B2 (en)

Also Published As

Publication number Publication date
JPH01182166A (en) 1989-07-20

Similar Documents

Publication Publication Date Title
JP2549708B2 (en) Rear-wheel steering system for 4-wheel steering vehicle
CN109895845A (en) The method of the all-wheel control system and operation all-wheel control system of motor vehicles
JP2740176B2 (en) Vehicle rear wheel steering method
US4865147A (en) Hydraulic fluid circuit for variable assist power steering system
JP2505234B2 (en) Rear wheel steering method
JP2827507B2 (en) Four-wheel steering system for vehicles
JP2549709B2 (en) Rear-wheel steering system for 4-wheel steering vehicle
JP2817244B2 (en) Neutral steering angle estimation device
JPH04368284A (en) Auxiliary steering device for vehicle
JP2605772B2 (en) Vehicle rear wheel steering method
JP2515879B2 (en) Rear wheel steering system
JP2548293B2 (en) Vehicle drive controller
JP2538951B2 (en) Vehicle steering method
JPH0218170A (en) Device for steering rear wheels of four wheel drive vehicle
JP2722897B2 (en) Power steering device for vehicles
JP2871230B2 (en) Front and rear wheel steering control device
JP2890826B2 (en) Front wheel steering angle control device
JP2531704B2 (en) Vehicle steering method
JP2523118B2 (en) Vehicle steering angle control device
JPH0752816A (en) Steering angle control device for vehicle
JPH0378303B2 (en)
JP3018670B2 (en) Rear wheel steering system for vehicles
JP2560512B2 (en) Rear wheel steering control method for automobile
JPH0390480A (en) Four-wheel steering device
JPS62131877A (en) Steering system control device for vehicle

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees