JP2504273B2 - Microwave / millimeter wave magnetic composition - Google Patents

Microwave / millimeter wave magnetic composition

Info

Publication number
JP2504273B2
JP2504273B2 JP2090747A JP9074790A JP2504273B2 JP 2504273 B2 JP2504273 B2 JP 2504273B2 JP 2090747 A JP2090747 A JP 2090747A JP 9074790 A JP9074790 A JP 9074790A JP 2504273 B2 JP2504273 B2 JP 2504273B2
Authority
JP
Japan
Prior art keywords
composition
mol
sample
microwave
expressed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2090747A
Other languages
Japanese (ja)
Other versions
JPH03288406A (en
Inventor
健弘 鴻池
博 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2090747A priority Critical patent/JP2504273B2/en
Priority to GB9106859A priority patent/GB2243152B/en
Publication of JPH03288406A publication Critical patent/JPH03288406A/en
Application granted granted Critical
Publication of JP2504273B2 publication Critical patent/JP2504273B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • H01F1/346[(TO4) 3] with T= Si, Al, Fe, Ga
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/32Non-reciprocal transmission devices

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、マイクロ波やミリ波などの高周波領域に
おいて使用される磁性体組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a magnetic material composition used in a high frequency region such as a microwave and a millimeter wave.

〈従来の技術〉 従来、高周波用磁性体材料としては、Mn−Mgフェライ
ト、Ni−Znフェライト、リチウムフェライト、YIGフェ
ライトなどが用いられている。
<Prior Art> Conventionally, Mn-Mg ferrite, Ni-Zn ferrite, lithium ferrite, YIG ferrite, etc. have been used as high frequency magnetic material.

これらは、飽和磁化(4πMs)の値が500〜4000ガウ
スを有する優れた材料である。
These are excellent materials with saturation magnetization (4πMs) values of 500-4000 Gauss.

これらの中でもMIGフェライトは、米国特許第3,132,1
05号に示されているように、Y3Fe5O12からなる組成物に
GdとAlを置換することによって4πMsおよび4πMsの温
度係数(α)を変化させることができるため、その使用
する周波数の最も適した4πMsの値を有する材料を選択
でき、かつ永久磁石と組み合わせて使用する場合にはそ
の磁石の温度特性を補償することができるという優れた
材料であり、高安定なアイソレーターやサーキュレータ
ーなどの回路素子に応用可能な材料である。
Among these, MIG ferrite is a product of U.S. Pat.
As shown in No. 05, the composition consisting of Y 3 Fe 5 O 12
By substituting Al for Gd and Al, the temperature coefficient (α) of 4πMs and 4πMs can be changed, so that the material having the most suitable value of 4πMs for the frequency to be used can be selected and used in combination with the permanent magnet. In this case, it is an excellent material that can compensate the temperature characteristics of the magnet, and is a material that can be applied to circuit elements such as highly stable isolators and circulators.

また、米国特許第3,419,496号によれば、この材料は
体積抵抗率ρが7.0×108Ω・cmと低いが、MnO2を添加す
ることによりρを4.9×1012Ω・cmまで高められるとさ
れている。さらに、特公昭60−55970号公報によれば、
原料のY2O3とFe2O3の混合比をそれぞれ38.63〜39.45モ
ル%および61.37〜60.55モル%としたときに強磁性共鳴
吸収半値幅(ΔH)を16エルステッドにまで小さくでき
るとされている。
According to U.S. Pat.No. 3,419,496, this material has a low volume resistivity ρ of 7.0 × 10 8 Ωcm, but it can be increased to 4.9 × 10 12 Ωcm by adding MnO 2. Has been done. Further, according to Japanese Patent Publication No. 60-55970,
When the mixing ratios of the raw materials Y 2 O 3 and Fe 2 O 3 are set to 38.63 to 39.45 mol% and 61.37 to 60.55 mol%, respectively, the ferromagnetic resonance absorption half width (ΔH) can be reduced to 16 oersteds. There is.

〈発明が解決しようとする課題〉 しかしながら、YIGフェライトは、ΔHや誘電損失(T
anδ)等の損失の値が微妙な組成の変動によって実用上
支障をきたすほど大きくなるという欠点を有している。
また、位相変換用素子としてこの材料を用いる場合、高
い残留磁束密度(Br)が必要となるが、Brを大きくする
とtanδも大きくなってしまうという問題がある。
<Problems to be Solved by the Invention> However, YIG ferrite has a problem of ΔH and dielectric loss (T
It has a drawback that the value of loss such as an δ) becomes so large that it practically hinders due to subtle compositional variations.
Further, when using this material for the phase conversion element, a high residual magnetic flux density (Br) is required, but there is a problem that tan δ also increases when Br is increased.

この発明は上記の問題点に鑑みて、従来のYIGフェラ
イトの欠点を改良すべくなされたものであり、YwFe8-wO
12の一般式で表わされるYIGフェライトのFeの一部をMn
で置換すると同時に酸化コバルトと酸化ジルコニウムを
添加してきわめて小さいΔHの値を実現し、さらに、Y
サイトとFeサイトの比をごく限られた狭い範囲に固定す
ることにより大きなBrの値と小さなtanδの値を同時に
実現させたマイクロ波・ミリ波用磁性体材料を提供する
ことを目的とする。
The present invention in consideration of the above problems, has been made for improving the drawbacks of the conventional YIG ferrite, Y w Fe 8-w O
12 of the YIG ferrite represented by the general formula
And at the same time cobalt oxide and zirconium oxide are added to achieve a very small ΔH value.
An object of the present invention is to provide a microwave / millimeter wave magnetic material in which a large Br value and a small tan δ value are realized at the same time by fixing the ratio of sites to Fe sites within a very limited and narrow range.

更に、Yの一部をGdで置換してαを任意の値に設定で
きるようにし、またはFeの一部をAlで置換して4πMsを
任意の値に設定できるようにすることを目的とする。
Further, it is intended to replace a part of Y with Gd so that α can be set to an arbitrary value, or to replace a part of Fe with Al so that 4πMs can be set to an arbitrary value. .

〈課題を解決するための手段〉 本発明者らはかかる問題点を解決するために鋭意研究
した結果、YwFe8-wO12の一般式で表わされるYIGフェラ
イトの、Feサイトの一部をMnで置換すると同時に酸化コ
バルトと酸化ジルコニウムを添加するこによってきわめ
て小さいΔHが得らえることを見出し、さらにYサイト
とFeサイトの比wが3.02と3.06の間のごく狭い領域で大
きなBrと小さなtanδを同時に実現できることを見出し
たのである。
<Means for Solving the Problems> As a result of intensive research for solving the above problems, the present inventors have found that a part of Fe sites in YIG ferrite represented by the general formula of Y w Fe 8-w O 12. It was found that an extremely small ΔH can be obtained by substituting cobalt oxide and zirconium oxide at the same time as substituting Mn for Mn, and further, in a very narrow region where the ratio w of Y site and Fe site is between 3.02 and 3.06, a large Br is obtained. We have found that a small tan δ can be realized at the same time.

即ち、この発明のマイクロ波・ミリ波用磁性体組成物
は、上記の問題点を解決するために、Yw(Fe1-zMnz
8-wO12で表される組成において、z及びwがそれぞれ0.
01≦z≦0.04、3.02≦w≦3.06の範囲にある組成を主成
分とし、これにCoOの形で表わした酸化コバルトおよびZ
rO2の形で表わした酸化ジルコニウムをそれぞれ0.05モ
ル%以上、0.2モル%以下添加含有してなることを特徴
とする。
That is, in order to solve the above-mentioned problems, the magnetic substance composition for microwaves / millimeter waves of the present invention has Y w (Fe 1-z Mn z )
In the composition represented by 8-w O 12 , z and w are 0.
Cobalt oxide and Z expressed in the form of CoO, with a composition of 01 ≦ z ≦ 0.04, 3.02 ≦ w ≦ 3.06 as the main component
It is characterized in that zirconium oxide expressed in the form of rO 2 is added in an amount of 0.05 mol% or more and 0.2 mol% or less, respectively.

更に、本発明においてYの一部をGdで置換してαを任
意の値に設定できるようにし、および/またはFeの一部
をAlで置換して4πMsを任意の値に設定できることを見
出し、(Y1-xGdx(Fe1-y-zAlyMnz8-wO12で表され
る組成において、x、y、z、およびwがそれぞれ0≦
x≦0.35、0≦y≦0.16(但し、x、yのうちいずれか
一方が0のとき他方は0を含まない)、0.01≦z≦0.0
4、3.02≦w≦3.06の範囲にある組成を主成分とし、こ
れにCoOの形で表わした酸化コバルトおよびZrO2の形で
表わした酸化ジルコニウムをそれぞれ0.5モル%以上、
0.2モル%以下添加含有させることもできる。
Further, in the present invention, it was found that a part of Y can be replaced with Gd to set α to an arbitrary value, and / or a part of Fe can be replaced with Al to set 4πMs to an arbitrary value. in (Y 1-x Gd x) w (Fe 1-yz Al y Mn z) composition expressed in 8-w O 12, x, y, z, and w are each 0 ≦
x ≦ 0.35, 0 ≦ y ≦ 0.16 (however, when one of x and y is 0, the other does not include 0), 0.01 ≦ z ≦ 0.0
4, with a composition in the range of 3.02 ≦ w ≦ 3.06 as the main component, cobalt oxide expressed in the form of CoO and zirconium oxide expressed in the form of ZrO 2 of 0.5 mol% or more,
0.2 mol% or less can be added and contained.

〈作用〉 この発明によれば、4πMsを320〜1750ガウスの範囲
で任意に設定でき、従って、その使用する周波数に最も
適した4πMsの値を有する材料を選択できる。
<Operation> According to the present invention, 4πMs can be arbitrarily set in the range of 320 to 1750 gauss, and therefore, a material having a value of 4πMs most suitable for the frequency used can be selected.

また、αを−820〜−2550ppm/℃の範囲で任意に設定
できるため、永久磁石などと組み合わせて用いる場合に
磁石の温度特性を補償することができる。
Further, since α can be arbitrarily set within the range of −820 to −2550 ppm / ° C., the temperature characteristic of the magnet can be compensated when used in combination with a permanent magnet or the like.

更に、Brが高く、かつΔHやtanδ等の損失の値がき
わめて小さいため、ラッチング型位相変換器や高精度の
アイソレーターおよびサーキュレーターへの応用に適し
たマイクロ・ミリ波用磁性体を得ることができる。
Furthermore, since Br is high and the value of loss such as ΔH and tanδ is extremely small, it is possible to obtain a magnetic material for micro-millimeter wave suitable for application to a latching phase converter, a high-precision isolator and a circulator. .

上述したこの発明の目的、特徴および利点について、
以下図面を参照して実施例により説明する。
Regarding the above-mentioned objects, features and advantages of the present invention,
Examples will be described below with reference to the drawings.

〈実施例〉 先ず、原料として、高純度のY2O3、Fe2O3、Gd2O3、Al
2O3、MnO2、Co3O4およびZrO2を準備した。これらの原料
を第1表、第2表および第3表に示す組成が得られるよ
うに秤量し、ボールミルで16時間湿式混合した。この混
合物を乾燥した後、1050℃で2時間仮焼し、仮焼物を得
た。この仮焼物を有機バインダーと共に、ボールミルに
入れ、16時間湿式粉砕した。この粉砕物を乾燥した後、
50メッシュの網を通して造粒し、得られた粉末を2000Kg
/cm2の圧力で3mm×3mm×20mmの角柱および外径36mm、内
径24mm、厚さ6mmのリングに成形した。これらの成形物
を1460〜1490℃で8時間焼成した。このうち角柱焼結体
について機械加工を行ない、直径1.3mmの球および直径
1.3mm、長さ16mmの円柱のサンプルを得た。
<Example> First, as a raw material, high purity Y 2 O 3, Fe 2 O 3, Gd 2 O 3, Al
2 O 3 , MnO 2 , Co 3 O 4 and ZrO 2 were prepared. These raw materials were weighed so that the compositions shown in Table 1, Table 2 and Table 3 were obtained, and wet-mixed for 16 hours in a ball mill. After this mixture was dried, it was calcined at 1050 ° C. for 2 hours to obtain a calcined product. This calcined product was put into a ball mill together with an organic binder and wet-milled for 16 hours. After drying this crushed product,
2000 kg of powder obtained by granulating through a 50 mesh net
It was molded into a prism of 3 mm × 3 mm × 20 mm and a ring having an outer diameter of 36 mm, an inner diameter of 24 mm, and a thickness of 6 mm at a pressure of / cm 2 . These molded products were fired at 1460 to 1490 ° C. for 8 hours. Of these, the prismatic sintered body was machined to obtain a sphere with a diameter of 1.3 mm and a diameter of 1.3 mm.
A cylindrical sample having a length of 1.3 mm and a length of 16 mm was obtained.

得られたサンプルのうち球形サンプルについて、振動
型磁力計を用いて4πMs、4πMsの温度係数(α)およ
びキュリー温度(Tc)を測定し、TE106空胴共振器中で1
0GHzにおけるΔHを測定した。
Of the obtained samples, the temperature coefficient (α) and Curie temperature (Tc) of 4πMs and 4πMs of the spherical sample were measured using a vibrating magnetometer and measured in a TE106 cavity resonator.
ΔH at 0 GHz was measured.

また、円柱形サンプルについて、TM101空胴共振器中
で攝動法を用いて10GHzにおけるtanδを測定した。
Also, tan δ at 10 GHz was measured for the cylindrical sample in the TM101 cavity resonator by using the displacement method.

さらに、リング状サンプルについて、導線をバイファ
イラー巻きにしてトロイダルコイルを形成し、100Hzに
おける残留磁束密度(Br)および抗磁力(Hc)を測定し
た。
Further, with respect to the ring-shaped sample, the toroidal coil was formed by winding the conductor wire into a bifilar winding, and the residual magnetic flux density (Br) and the coercive force (Hc) at 100 Hz were measured.

第1表は、(Y1-xGdx(Fe1-y-zAlyMnz8-wO12
表される組成の、xおよびyを変化させ、かつCoOの形
で表わした酸化コバルトおよびZrO2の形で表わした酸化
ジルコニウムの添加量を変化させたときの測定結果であ
る。第1表中※印はこの発明の範囲外であり、それ以外
はすべてこの発明の範囲内のものである。さらに、第1
表に示した実験例の組成範囲を、第1図の組成図中に示
した。この図面中の番号は、各試料番号を表わす。な
お、第1図において、この発明の範囲内にある組成比を
示す領域は、頂点A、B、CおよびDを有する四角形で
示されている。
Table 1, (Y 1-x Gd x ) w of (Fe 1-yz Al y Mn z) 8-w O 12 with a composition represented by changing the x and y, and expressed in the form of CoO the measurement results obtained by changing the amount of zirconium oxide expressed in the form of cobalt oxide and ZrO 2. The * mark in Table 1 is outside the scope of the present invention, and everything else is within the scope of the present invention. Furthermore, the first
The composition ranges of the experimental examples shown in the table are shown in the composition diagram of FIG. The numbers in this figure represent the sample numbers. In FIG. 1, a region showing a composition ratio within the scope of the present invention is shown by a quadrangle having vertices A, B, C and D.

ここで、(Y1-xGdx(Fe1-y-zAlyMnz8-wO12で表
される組成の、xおよびyをそれぞれ0≦x≦0.35、0
≦y≦0.16の範囲に限定した理由について説明する。
Here, (Y 1-x Gd x ) w (Fe 1-yz Al y Mn z) 8-w represented by the composition by O 12, x and y respectively 0 ≦ x ≦ 0.35,0
The reason for limiting the range to ≦ y ≦ 0.16 will be described.

試料番号7、14、21および25のようにyが0.16を越え
るとBrが小さくなるとともに、Tcが低くなり好ましくな
い。
When y exceeds 0.16 as in Sample Nos. 7, 14, 21 and 25, Br decreases and Tc decreases, which is not preferable.

また、試料番号22、23、24および25のようにxが0.35
を越えるとΔHが大きくなり好ましくない。
Also, x is 0.35 as in sample numbers 22, 23, 24 and 25.
If it exceeds, ΔH becomes large, which is not preferable.

次に、CoOの形で表わした酸化コバルトおよびZrO2
形で表わした酸化ジルコニウムの添加量をそれぞれ0.05
モル%以上、0.2モル%以下に限定した理由について説
明する。
Next, the addition amount of cobalt oxide expressed in the form of CoO and zirconium oxide expressed in the form of ZrO 2 was adjusted to 0.05% respectively.
The reason for limiting the content to not less than mol% and not more than 0.2 mol% will be described.

まず、試料番号2、9および16はCoOおよびZrO2の添
加量がそれぞれ0モル%の例であり、この発明の範囲か
ら除外される。
First, sample numbers 2, 9 and 16 are examples in which the amounts of CoO and ZrO 2 added are each 0 mol%, and are excluded from the scope of the present invention.

試料番号3、10および17のようにCoOおよびZrO2の添
加量がそれぞれ0.05モル%未満のものは、ΔHの改善効
果が顕著でなく、この発明の範囲から除外される。
Samples Nos. 3, 10 and 17, in which the amounts of CoO and ZrO 2 added are each less than 0.05 mol%, are not significantly improved in ΔH and are excluded from the scope of the present invention.

試料番号5、12および19のようにCoOおよびZrO2の添
加量がそれぞれ0.2モル%を越えるものは、ΔHが大き
くなるとともにBrが小さくなり好ましくない。
Samples Nos. 5, 12 and 19 in which the amounts of CoO and ZrO 2 added each exceeded 0.2 mol% were not preferable because ΔH increased and Br decreased.

ここで、ZrO2の作用は、原子価が2価のコバルトイオ
ンを原子価が4価のジルコニウムイオンで原子価を互い
に補償し、合計で3価にして(Y1-xGdx(Fe1-y-zAl
yMnz8-wO12で表される組成の、(Fe1-y-zAlyMnz)サ
イトに電荷的に無理なくそれぞれのイオンを組込むこと
にある。従って、ZrO2の代わりにSiO2、TiO2、GeO2、Sn
O2、HfO2等の4価のイオンの酸化物を用いても同様の効
果を得ることができる。
Here, the action of ZrO 2 is to make the total valence of (Y 1-x Gd x ) w ( Fe 1-yz Al
y Mn z ) 8-w O 12 of the composition is to charge each ion into the (Fe 1-yz Al y Mn z ) site without charge. Therefore, instead of ZrO 2 , SiO 2 , TiO 2 , GeO 2 , Sn
The same effect can be obtained by using a tetravalent ion oxide such as O 2 or HfO 2 .

次に、第2表は、(Y1-xGdx(Fe1-y-zAlyMnz
8-wO12で表される組成の、zを変化させたときの測定結
果である。
Next, Table 2 shows (Y 1-x Gd x ) w (Fe 1-yz Al y Mn z ).
It is a measurement result when changing z of the composition represented by 8-w O 12 .

第2表中の試料番号26〜30は、第1表中の試料番号4
の組成についてzを変化させたものであり、第2表中の
試料番号31〜35は、第1表中の試料番号11の組成につい
てzを変化させたものであり、第2表中の試料番号36〜
40は、第1表中の試料番号18の組成についてzを変化さ
せたものである。
Sample Nos. 26 to 30 in Table 2 are sample No. 4 in Table 1.
No. 31 to 35 in Table 2 are obtained by changing z with respect to the composition of Sample No. 11 in Table 1. Sample Nos. 31 to 35 in Table 2 are obtained by changing z with respect to the composition of Sample No. 11 in Table 1. Number 36-
No. 40 changes z about the composition of sample No. 18 in Table 1.

第2表中※印は、この発明の範囲外であり、それ以外
はすべてこの発明の範囲内のものである。尚、第2表に
示した実験例の組成範囲を、第1表と同じく第1図の組
成図中に示した。この図面中の番号は、各試料番号を表
わす。
The asterisk * in Table 2 is outside the scope of the invention, and everything else is within the scope of the invention. The composition ranges of the experimental examples shown in Table 2 are shown in the composition diagram of FIG. 1 as in Table 1. The numbers in this figure represent the sample numbers.

ここで、(Y1-xGdx(Fe1-y-zAlyMnz8-wO12で表
される組成の、zを0.01≦z≦0.04に限定した理由につ
いて説明する。
Here it will be described the reason for limiting the (Y 1-x Gd x) w (Fe 1-yz Al y Mn z) 8-w O represented in the composition by at 12, z and 0.01 ≦ z ≦ 0.04.

試料番号26、31および36のようにzが0.01未満となる
と、ΔHが大きくなり好ましくない。
When z is less than 0.01 as in sample numbers 26, 31 and 36, ΔH becomes large, which is not preferable.

また、試料番号30、35および40のようにzが0.04を越
えると、ΔHが大きくなり好ましくない。
Further, when z exceeds 0.04 as in sample numbers 30, 35 and 40, ΔH becomes large, which is not preferable.

最後に、第3表は(Y1-xGdx(Fe1-y-zAlyMnz
8-wO12で表される組成の、wを変化させたときの測定結
果である。
Finally, Table 3 shows (Y 1-x Gd x ) w (Fe 1-yz Al y Mn z ).
It is a measurement result when w of the composition represented by 8-w O 12 is changed.

第3表中の試料番号41〜45は、第1表中の試料番号4
の組成についてwを変化させたものであり、第3表中の
試料番号46〜50は、第1表中の試料番号11の組成につい
てwを変化させたものであり、第3表中の試料番号51〜
55は、第1表中の試料番号18の組成についてwを変化さ
せたものである。
Sample Nos. 41 to 45 in Table 3 are sample No. 4 in Table 1.
No. 46 to 50 in Table 3 are those in which w is changed, and w in the composition of Sample No. 11 in Table 1 is changed. Number 51-
55 is the composition of sample No. 18 in Table 1 with w changed.

第3表中※は、この発明の範囲外であり、それ以外は
すべてこの発明の範囲内のものである。なお、第3表に
示した実験例の組成範囲を、第1表、第2表と同じく第
1図の組成図中に示した。この図面中の番号は、各試料
番号を表わす。
* In Table 3 is outside the scope of the present invention, and everything else is within the scope of the present invention. The composition ranges of the experimental examples shown in Table 3 are shown in the composition diagram of FIG. 1 as in Tables 1 and 2. The numbers in this figure represent the sample numbers.

ここで、(Y1-xGdx(Fe1-y-zAlyMnz8-wO12で表
される組成の、wを3.02≦w≦3.06の範囲に限定した理
由について第3表および第2図を参照して説明する。
Here, (Y 1-x Gd x ) w (Fe 1-yz Al y Mn z) 8-w O 12 represented by the composition, the reasons for limiting the w in the range of 3.02 ≦ w ≦ 3.06 3 This will be described with reference to the table and FIG.

試料番号41、46および51のようにwが3.02未満になる
と、tanδが大きくなり好ましくない。
When w is less than 3.02 as in sample numbers 41, 46 and 51, tan δ becomes large, which is not preferable.

また、試料番号45、50および55のようにwが3.06を越
えると、ΔHが大きくなるとともに、Brが小さくなり好
ましくない。
When w exceeds 3.06 as in sample numbers 45, 50 and 55, ΔH increases and Br decreases, which is not preferable.

第2図は、試料番号46〜50について、(Y1-xGdx
(Fe1-y-zAlyMnz8-wO12のwとtanδの常用対数値(lo
g tanδ)およびBrの関係を図示したものである。第2
図から明らかなように、wが3.02≦w≦3.06の範囲のみ
において大きなBrと小さたtanδが同時に実現可能であ
る。なお、第2図中の番号は、各試料番号を表わす。
FIG. 2 shows (Y 1-x Gd x ) w for sample numbers 46 to 50
(Fe 1-yz Al y Mn z ) 8-w O 12 Common logarithm of w and tan δ (lo
It shows the relationship between g tan δ) and Br. Second
As is clear from the figure, a large Br and a small tan δ can be simultaneously realized only in the range of w of 3.02 ≦ w ≦ 3.06. The numbers in FIG. 2 represent the sample numbers.

〈発明の効果〉 以上、詳細に説明した通り、この発明にかかるマイク
ロ波・ミリ波用磁性体組成物は十分に小さいΔHと十分
に小さいtanδを有し、かつ高いTcと大きなBrを有して
いるため、ラッチング型位相変換器や高安定なアイソレ
ーターやサーキュレーターなどの回路素子への応用に大
変有用な材料である。さらに、(Y1-xGdx(Fe1-y-z
AlyMnz8-wO12の化学式で表わされるxおよびyをこの
発明の範囲内で適宜変化させることによって、4πMsを
320〜1750ガウスの範囲で任意に設定でき、および/ま
たはαを−820〜−2550ppm/℃の範囲で任意に設定でき
る。従って、その使用する周波数に最も適した4πMsの
値を有する材料を選択できるとともに、永久磁石などと
組み合わせて用いる場合に磁石の温度特性を補償するこ
とができる。
<Effects of the Invention> As described above in detail, the microwave / millimeter wave magnetic material composition according to the present invention has sufficiently small ΔH and sufficiently small tan δ, and also has high Tc and large Br. Therefore, it is a very useful material for application to circuit elements such as latching type phase converters, highly stable isolators and circulators. Furthermore, (Y 1-x Gd x ) w (Fe 1-yz
By appropriately changing x and y represented by the chemical formula of Al y Mn z ) 8-w O 12 within the scope of the present invention, 4πMs
It can be arbitrarily set in the range of 320 to 1750 gauss, and / or α can be arbitrarily set in the range of -820 to -2550 ppm / ° C. Therefore, it is possible to select a material having a value of 4πMs most suitable for the frequency to be used, and it is possible to compensate the temperature characteristic of the magnet when used in combination with a permanent magnet or the like.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明にかかるマイクロ波・ミリ波用磁性体
組成物の、(Y1-xGdx(Fe1-y-zAlyMnz8-wO12のx
およびyの組成範囲を表わす組成図、第2図は第3表中
の試料番号46〜50について(Y1-xGdx(Fe1-y-zAlyM
nz8-wO12のwとtanδの常用対数値(log tanδ)およ
びBrの関係を示したグラフである。
In Figure 1 the microwave and millimeter wave for magnetic composition according to the present invention, (Y 1-x Gd x ) w (Fe 1-yz Al y Mn z) 8-w O 12 of x
FIG. 2 is a composition diagram showing the composition range of y and y. FIG. 2 shows (Y 1-x Gd x ) w (Fe 1-yz Al y M for sample numbers 46 to 50 in Table 3).
2 is a graph showing a relationship between w of n z ) 8-w O 12 and a common logarithmic value (log tan δ) of tan δ, and Br.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Yw(Fe1-zMnz8-wO12で表される組成にお
いて、z及びwがそれぞれ0.01≦z≦0.04、3.02≦w≦
3.06の範囲にある組成を主成分とし、これにCoOの形で
表わした酸化コバルトおよびZrO2の形で表わした酸化ジ
ルコニウムをそれぞれ0.05モル%以上、0.2モル%以下
添加含有してなるマイクロ波・ミリ波用磁性体組成物。
1. In the composition represented by Y w (Fe 1-z Mn z ) 8-w O 12 , z and w are 0.01 ≦ z ≦ 0.04 and 3.02 ≦ w ≦, respectively.
A microwave containing as a main component a composition in the range of 3.06, containing 0.05 mol% or more and 0.2 mol% or less of cobalt oxide expressed in the form of CoO and zirconium oxide expressed in the form of ZrO 2 , respectively. Magnetic substance composition for millimeter waves.
【請求項2】(Y1-xGdx(Fe1-y-zAlyMnz8-wO12
表される組成において、x、y、z、およびwがそれぞ
れ0≦x≦0.35、0≦y≦0.16(但し、x、yのうちい
ずれか一方が0のとき他方は0を含まない)、0.01≦z
≦0.04、3.02≦w≦3.06の範囲にある組成を主成分と
し、これにCoOの形で表わした酸化コバルトおよびZrO2
の形で表わした酸化ジルコニウムをそれぞれ0.5モル%
以上、0.2モル%以下添加含有してなるマイクロ波・ミ
リ波用磁性体組成物。
2. A (Y 1-x Gd x) w (Fe 1-yz Al y Mn z) composition expressed in 8-w O 12, x, y, z, and w are each 0 ≦ x ≦ 0.35, 0 ≦ y ≦ 0.16 (however, when one of x and y is 0, the other does not include 0), 0.01 ≦ z
Cobalt oxide and ZrO 2 expressed in the form of CoO, whose main component is a composition in the range of ≦ 0.04, 3.02 ≦ w ≦ 3.06
0.5 mol% of zirconium oxide in the form of
As described above, a magnetic material composition for microwaves / millimeter waves, containing 0.2 mol% or less.
JP2090747A 1990-04-04 1990-04-04 Microwave / millimeter wave magnetic composition Expired - Lifetime JP2504273B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2090747A JP2504273B2 (en) 1990-04-04 1990-04-04 Microwave / millimeter wave magnetic composition
GB9106859A GB2243152B (en) 1990-04-04 1991-04-02 Magnetic material for microwave and millimeter wave frequencies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2090747A JP2504273B2 (en) 1990-04-04 1990-04-04 Microwave / millimeter wave magnetic composition

Publications (2)

Publication Number Publication Date
JPH03288406A JPH03288406A (en) 1991-12-18
JP2504273B2 true JP2504273B2 (en) 1996-06-05

Family

ID=14007189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2090747A Expired - Lifetime JP2504273B2 (en) 1990-04-04 1990-04-04 Microwave / millimeter wave magnetic composition

Country Status (2)

Country Link
JP (1) JP2504273B2 (en)
GB (1) GB2243152B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08306531A (en) * 1995-05-10 1996-11-22 Murata Mfg Co Ltd Magnetostatic wave device
US6933799B1 (en) 1998-04-14 2005-08-23 Tdk Corporation Method of controlling intermodulation distortion of non-reciprocal device
JP4586215B2 (en) * 1998-04-14 2010-11-24 Tdk株式会社 Method for controlling intermodulation product of nonreciprocal circuit element, ferrimagnetic material, and nonreciprocal circuit element using the same
JP2007036108A (en) * 2005-07-29 2007-02-08 Tdk Corp Ceramic material for non reciprocal circuit element of, and its manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56162715A (en) * 1980-05-20 1981-12-14 Matsushita Electric Ind Co Ltd Magnetic and optical element
JPS627631A (en) * 1985-06-29 1987-01-14 Toshiba Corp Magneto-optical element

Also Published As

Publication number Publication date
GB2243152B (en) 1993-10-20
GB9106859D0 (en) 1991-05-22
GB2243152A (en) 1991-10-23
JPH03288406A (en) 1991-12-18

Similar Documents

Publication Publication Date Title
US6780344B2 (en) Garnet ferrite for low-insertion-loss non-reciprocal circuit, method for preparing the same, and non-reciprocal circuit device including the same
JP2504273B2 (en) Microwave / millimeter wave magnetic composition
JP2958800B2 (en) Microwave / millimeter wave magnetic composition
JP2504192B2 (en) Microwave / millimeter wave magnetic composition
JP2958809B2 (en) Microwave / millimeter wave magnetic composition
JP3396958B2 (en) High frequency magnetic composition
JP2760052B2 (en) Microwave / millimeter wave magnetic composition
JP3396957B2 (en) High frequency magnetic composition
JP3003599B2 (en) Ni-Zn ferrite
JPH04186601A (en) Magnetic composition for microwave and millimeter wave
JPH0775206B2 (en) Microwave / millimeter wave magnetic composition
JPH0680614B2 (en) Microwave / millimeter wave magnetic composition
US5874020A (en) Ni-Zn base ferrite
US5028348A (en) Magnetic material for high frequencies
JPH081843B2 (en) Microwave / millimeter wave magnetic composition
JP2001076923A (en) Low-loss oxide magnetic material
JP3550258B2 (en) Ferrite material
JPH03215907A (en) Magnetic composition for microwave and millimeter wave
JPH03215908A (en) Magnetic composition for microwave and millimeter wave
JP3003601B2 (en) Ni-Zn ferrite
JPH11273928A (en) Magnetic material
JPH03167805A (en) Magnetic composite for microwave-milliwave
JPH11340024A (en) Low-loss oxide magnetic material
JPH0474842B2 (en)
JPS62256729A (en) Lithium ferrite

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 15