JP2503996B2 - Control method for vehicle charging generator - Google Patents

Control method for vehicle charging generator

Info

Publication number
JP2503996B2
JP2503996B2 JP21118986A JP21118986A JP2503996B2 JP 2503996 B2 JP2503996 B2 JP 2503996B2 JP 21118986 A JP21118986 A JP 21118986A JP 21118986 A JP21118986 A JP 21118986A JP 2503996 B2 JP2503996 B2 JP 2503996B2
Authority
JP
Japan
Prior art keywords
voltage
battery
output
generator
output current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21118986A
Other languages
Japanese (ja)
Other versions
JPS6369437A (en
Inventor
冬樹 前原
豪俊 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP21118986A priority Critical patent/JP2503996B2/en
Publication of JPS6369437A publication Critical patent/JPS6369437A/en
Application granted granted Critical
Publication of JP2503996B2 publication Critical patent/JP2503996B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は車両充電発電機の制御方法に関する。The present invention relates to a method for controlling a vehicle charging generator.

[従来の技術] 車両充電発電機(以下オルタネータという)はエンジ
ンに連結されてその回転数が広い範囲で変化する。そこ
で、通常はオルタネータの界磁巻線電流をON-OFF制御す
るレギュレータを設けて、回転数に無関係にオルタネー
タの出力電圧を所定の調整電圧に維持することが行なわ
れている。
[Prior Art] A vehicle charging generator (hereinafter referred to as an alternator) is connected to an engine and its rotation speed changes in a wide range. Therefore, usually, a regulator for controlling ON / OFF of the field winding current of the alternator is provided to maintain the output voltage of the alternator at a predetermined regulated voltage regardless of the rotation speed.

上記調整電圧は車載バッテリの充電を効率的に行なう
ためにバッテリの定格電圧(例えば12V)よりも高く
(例えば14V)設定されている。そこで、比較的低負荷
の状態で高速走行した場合にはバッテリが過充電気味と
なり、反対に高負荷状態で定速走行する場合にはバッテ
リは過放電気味となる。さらに、いたずらに調整電圧を
高く維持しておくことはエンジンの負担となって燃費を
悪化せしめる。
The regulated voltage is set higher (for example, 14V) than the rated voltage of the battery (for example, 12V) in order to efficiently charge the vehicle-mounted battery. Therefore, when the vehicle travels at a high speed in a relatively low load state, the battery tends to be overcharged, and conversely, when the vehicle travels at a constant speed in a high load state, the battery tends to overdischarge. Furthermore, keeping the regulated voltage high unnecessarily imposes a burden on the engine and deteriorates fuel efficiency.

そこで、例えば特開昭59-103529号には、上記界磁巻
線電流をスイッチングするトランジスタの平均導通率よ
りバッテリの充放電状態を予想し、過充電時には上記調
整電圧を低くなし、過放電時には調整電圧を高くなして
バッテリの充電状態を適正に保つ制御装置が提案されて
いる。
Therefore, for example, in Japanese Patent Laid-Open No. 59-103529, the charging / discharging state of the battery is predicted from the average conduction rate of the transistor for switching the field winding current, and the adjustment voltage is not lowered at the time of overcharging and at the time of overdischarging. A control device has been proposed in which the regulated voltage is increased to keep the state of charge of the battery proper.

[発明が解決しようとする問題点] ところで、上記従来の制御装置では、比較的長い時間
の平均値をとるとトランジスタの平均導通率はバッテリ
の充放電状態を良く示すが、短時間の平均値では電気負
荷の大小による誤差を生じて必ずしも上記平均導通率と
バッテリの充放電状態が一致せず、即応性には難があっ
た。また単にオルタネータの導通率を検出するだけのた
め、電気負荷に流れる電流とバッテリ充電電流との区別
が出来ず、正確にバッテリ充電状態を判断するために
は、車載各電気負荷のON/OFF状態の検出により補正か必
要となり、システムが繁雑化する問題点があった。
[Problems to be Solved by the Invention] By the way, in the above-mentioned conventional control device, when the average value for a relatively long time is taken, the average conductivity of the transistor shows the charge / discharge state of the battery well, but the average value for a short time is obtained. However, the above-mentioned average conductivity and the charging / discharging state of the battery do not always coincide with each other due to an error caused by the magnitude of the electric load, and thus the responsiveness is difficult. Also, since the conductivity of the alternator is simply detected, it is not possible to distinguish between the current flowing in the electric load and the battery charging current. However, there is a problem in that the system becomes complicated due to the need for correction depending on the detection.

本発明はかかる問題点を解決するもので、負荷の大小
に影響されることなくバッテリの充放電状態を比較的短
時間に正確に検出でき、これに基づいてバッテリの充電
状態を最適に維持することが可能であるとともに、エン
ジンの燃費向上にも寄与するオルタネータの制御方法を
提供することを目的とする。
The present invention solves such a problem, and can accurately detect the charge / discharge state of the battery in a relatively short time without being affected by the magnitude of the load, and based on this, maintain the optimum charge state of the battery. It is an object of the present invention to provide a method of controlling an alternator, which is capable of improving the fuel efficiency of the engine.

[問題点を解決するための手段] 本発明は、エンジンにより回転せしめられる発電機の
界磁巻線電流を制御して、該発電機の出力電圧を与えら
れた設定電圧に保つスイッチング手段と、該スイッチン
グ手段の導通率と前記発電機の回転数より該発電機の出
力電流を求める出力電流検出手段と、前記スイッチング
手段に与える設定電圧を変更する設定電圧発生手段とを
有するレギュレータを備えた車両発電機の制御方法にお
いて、 前記設定電圧を車載バッテリに比して高い第1の設定
値に設定した時の前記出力電流検出手段の出力と 前記設定電圧を前記第1の設定値より小さい第2の設
定値に設定した時の前記出力電流検出手段の出力との差
が所定の値より大きいとき前記設定電圧発生手段が第1
の設定電圧を発生する事を特徴とする車両用発電機の制
御方法を提供する。
[Means for Solving Problems] The present invention relates to switching means for controlling a field winding current of a generator rotated by an engine to maintain an output voltage of the generator at a given set voltage, Vehicle equipped with a regulator having an output current detecting means for obtaining an output current of the generator from the conduction ratio of the switching means and the rotation speed of the generator, and a setting voltage generating means for changing a setting voltage applied to the switching means. In a generator control method, the output of the output current detecting means and the set voltage when the set voltage is set to a first set value higher than that of a vehicle-mounted battery, and the set voltage is smaller than the first set value. When the difference from the output of the output current detecting means when set to the set value is larger than a predetermined value, the set voltage generating means is the first
There is provided a method for controlling a vehicular generator, which is characterized by generating the set voltage.

〔作用〕[Action]

車載電気負荷に比べ、バッテリの充電電流は電圧依存
性が大きく特に充電状態の低いバッテリ程この傾向が著
しい。そこで第1の設定電圧と第2の設定電圧で充電し
た時の出力電流差はバッテリの充電状態を良く表す。そ
こで、出力電流差が大きい時は充電状態が低いと判断で
き、第1の設定電圧による充電モードを、又出力電流差
が小さい時は、ほぼ満充電と判断でき第2の設定電圧に
よる低充電モードが選択される。
The charging current of a battery has a large voltage dependency as compared with an on-vehicle electric load, and this tendency is remarkable especially in a battery having a low charging state. Therefore, the output current difference when the battery is charged with the first set voltage and the second set voltage well represents the state of charge of the battery. Therefore, when the output current difference is large, it can be determined that the charging state is low, and the charging mode based on the first set voltage can be determined. When the output current difference is small, it can be determined that the charging state is almost full. The mode is selected.

また、第2の設定電圧を車載バッテリの定格電圧付近
に設定すれば、その時の出力電流にはバッテリ充電電流
をほとんど含まないため、上記両出力電流の差を求めれ
ばバッテリの充電電流を正確に知る事ができる。
If the second set voltage is set near the rated voltage of the on-vehicle battery, the output current at that time hardly includes the battery charging current. Therefore, if the difference between the two output currents is obtained, the battery charging current can be accurately calculated. I can know.

[効果] 上記制御方法によれば、高調整電圧下と低調整電圧下
のオルタネータ出力電流の差よりバッテリ充電電流を算
出するようになしたから、電気負荷の大小に関係なく短
時間かつ正確に車載バッテリの充電状態が確認でき、こ
れによりオルタネータの出力を制御して上記バッテリの
充電状態を最適に維持できる。
[Effect] According to the above control method, the battery charging current is calculated from the difference between the alternator output currents under the high adjustment voltage and the low adjustment voltage. Therefore, the battery charging current can be accurately calculated in a short time regardless of the magnitude of the electric load. The state of charge of the on-vehicle battery can be confirmed, whereby the output of the alternator can be controlled and the state of charge of the battery can be optimally maintained.

また、オルタネータの出力を無駄に増大せしめること
がないから、エンジン負担が軽減され、燃費の向上を図
ることができる。
Moreover, since the output of the alternator is not unnecessarily increased, the load on the engine is reduced and the fuel consumption can be improved.

[実施例] 以下、本発明の方法を実施する装置の構成を説明す
る。
[Examples] The configuration of an apparatus for carrying out the method of the present invention will be described below.

第1図において、1はレギュレータであり、そのF端
子はオルタネータ2の界磁巻線22に接続され、E端子は
整流器21に接続されている。レギュレータ1のB端子は
充電線4とともにバッテリ5に接続され、またIG端子は
キースイッチ6を介して上記バッテリ5に接続されてい
る。
In FIG. 1, reference numeral 1 is a regulator, the F terminal of which is connected to the field winding 22 of the alternator 2 and the E terminal of which is connected to the rectifier 21. The B terminal of the regulator 1 is connected to the battery 5 together with the charging line 4, and the IG terminal is connected to the battery 5 via the key switch 6.

3は制御装置であり、そのa端子は上記キースイッチ
6に接続され、b端子、c端子はそれぞれ上記レギュレ
ータ1のC端子、F′端子に接続されている。制御装置
3のd端子にはイグニションパルスNEが入力している。
なお、図中7は電気負荷である。
Reference numeral 3 is a control device, the a terminal of which is connected to the key switch 6 and the b terminal and the c terminal of which are connected to the C terminal and F ′ terminal of the regulator 1, respectively. The ignition pulse NE is input to the d terminal of the control device 3.
In the figure, 7 is an electric load.

第2図、第3図にはレギュレータ1および制御装置3
の詳細を示す。レギュレータ1は上記界磁巻線22の励磁
を制御するスイッチングトランジスタ11を有し、該トラ
ンジスタ11のコレクタ電圧が導通信号DFとしてF′端子
より出力される。上記トランジスタ11はコンパレータ12
の出力によりON-OFFせしめられる。上記コンパレータ12
の「−」端子には定電圧回路13の出力を抵抗分割して得
た基準電圧Vcが入力し、「+」端子にはB端子入力を抵
抗14、15で分割して得た比較電圧Vaが入力している。抵
抗15にはこれに並列に、トランジスタ17と直列接続され
た抵抗16が接続してあり、上記トランジスタ17はC端子
より入力する調整電圧変更信号SVにより作動せしめられ
る。
2 and 3, the regulator 1 and the control device 3 are shown.
Shows the details of. The regulator 1 has a switching transistor 11 that controls the excitation of the field winding 22, and the collector voltage of the transistor 11 is output as a conduction signal DF from the F'terminal. The transistor 11 is a comparator 12
It is turned on and off by the output of. Comparator 12 above
The reference voltage Vc obtained by resistance-dividing the output of the constant-voltage circuit 13 is input to the "-" terminal, and the comparison voltage Va obtained by dividing the B-terminal input by the resistors 14 and 15 is input to the "+" terminal. Is typing. A resistor 16 connected in series with a transistor 17 is connected in parallel to the resistor 15, and the transistor 17 is operated by an adjustment voltage change signal SV input from the C terminal.

上記レギュレータ1においては、比較電圧Vaが常に基
準電圧Vc近傍にあるように界磁巻線22の励磁が制御さ
れ、トランジスタ17のOFF時にはオルタネータ2の調整
電圧 Rはバッテリ5の定格電圧に近い電圧(例えば12.
8V)に設定され、トランジスタ17のON時には上記調整電
圧 Rはバッテリ5を効率的に充電できるより高い電圧
(例えば14.5V)に設定される。
In the regulator 1, the excitation of the field winding 22 is controlled so that the comparison voltage Va is always in the vicinity of the reference voltage Vc, and when the transistor 17 is off, the adjustment voltage R of the alternator 2 is a voltage close to the rated voltage of the battery 5. (For example 12.
8V), and when the transistor 17 is turned on, the regulated voltage R is set to a higher voltage (for example, 14.5V) that can efficiently charge the battery 5.

制御装置3(第3図)はマイクロコンピュータ31、こ
れを作動せしめる電源回路32、および波型成型回路33、
34を具備しており、導通信号DFおよびイグニションパル
スNEはそれぞれ上記各回路33、34を経てマイクロコンピ
ュータ31に入力する。
The control device 3 (FIG. 3) includes a microcomputer 31, a power supply circuit 32 for operating the microcomputer 31, and a wave shaping circuit 33.
34, the conduction signal DF and the ignition pulse NE are input to the microcomputer 31 via the circuits 33 and 34, respectively.

第4図には上記マイクロコンピュータ31の制御プログ
ラムフローチャートを示す。
FIG. 4 shows a control program flow chart of the microcomputer 31.

ステップ101〜108は充電モードの処理を示し、ステッ
プ101では調整電圧変更信号SVにより調整電圧 Rを高く
設定し、バッテリ5の充電を行なう。この状態を10分間
維持し(ステップ102)、続いて導通信号DFより導通率
を算出するとともにイグニションパルスNEよりエンジン
回転数を算出する(ステップ103)。スイッチングトラ
ンジスタ11の上記導通率とエンジン回転数より、第5図
に示す如く、オルタネータ2の出力電流Ioを知ることが
でき、あらかじめこれらの関係を記述しておいたマップ
より高調整電圧下の出力電流Io1を得る(ステップ10
4)。ステップ105では調整電圧 Rを低くなし、定常状
態になるまでの1分間の余裕時間の後、再び導通率とエ
ンジン回転数を算出して低調整電圧下での出力電流Io2
を得る(ステップ106〜108)。
Steps 101 to 108 show the processing in the charging mode. In step 101, the adjustment voltage R is set high by the adjustment voltage change signal SV and the battery 5 is charged. This state is maintained for 10 minutes (step 102), and then the conduction rate is calculated from the conduction signal DF and the engine speed is calculated from the ignition pulse NE (step 103). From the conduction ratio of the switching transistor 11 and the engine speed, as shown in FIG. 5, the output current I o of the alternator 2 can be known. Obtain the output current I o1 (step 10
Four). In step 105, the regulated voltage R is not lowered, and after a marginal time of 1 minute to reach the steady state, the conduction rate and the engine speed are calculated again, and the output current I o2 under the regulated voltage is low.
Is obtained (steps 106 to 108).

上記出力電流Io2は、調整電圧 Rがバッテリ定格電圧
に近い状態での電流値であるから、バッテリ5への充電
電流分はほとんど含まず、電気負荷7の消費電流にほぼ
等しい。そこで、ステップ109では上記出力電流Io1、I
o2の差I Bを算出しており、この差電流I Bは上記高調整
電圧下でのバッテリ充電電流に相当する。バッテリ充電
電流I Bの大小は、第6図に示す如く、バッテリ5の充
電状態に良く対応しており、上記電流I Bが大きい場合
にはバッテリ5は未充電の状態にある。
Since the output current I o2 is a current value when the regulated voltage R is close to the battery rated voltage, the output current I o2 almost does not include the charging current for the battery 5 and is substantially equal to the consumption current of the electric load 7. Therefore, in step 109, the output currents I o1 , I
The difference IB of o2 is calculated, and this difference current IB corresponds to the battery charging current under the above high adjustment voltage. The magnitude of the battery charging current IB corresponds well to the charging state of the battery 5, as shown in FIG. 6, and when the current IB is large, the battery 5 is in an uncharged state.

しかして、バッテリ充電電流I Bが2アンペア(A)
以上では再度ステップ101へ戻って充電モードを繰り返
し、2アンペアより小さい場合にはステップ110以下へ
進む。
Then, the battery charging current IB is 2 amps (A)
In the above, the process returns to step 101 again, the charging mode is repeated, and if it is smaller than 2 amperes, the process proceeds to step 110 and thereafter.

ステップ110〜115は充電停止モードの処理を示し、本
モードでは調整電圧 Rは低く設定されたままで、バッ
テリ5への充電は行なわれない。カウンタN、Tがリセ
ットされ(ステップ110)、カウンタTは約1秒毎にイ
ンクリメントされる(ステップ111)。このインクリメ
ント時に上記導通率が100%であると、カウンタNがイ
ンクリメントされる(ステップ113、114)。カウンタT
がT Lを超えるとカウンタT、Nともにリセットされる
(ステップ112)。このT Lは例えば600(これは10分に
相当)に設定される。
Steps 110 to 115 show the processing in the charge stop mode. In this mode, the regulated voltage R remains set low and the battery 5 is not charged. The counters N and T are reset (step 110), and the counter T is incremented about every 1 second (step 111). If the conductivity is 100% during this increment, the counter N is incremented (steps 113 and 114). Counter T
When T exceeds TL, both counters T and N are reset (step 112). This TL is set to, for example, 600 (which corresponds to 10 minutes).

カウンタNがN Lを越えると充電モードに移行する
(ステップ115)。N Lは例えば480(これは8分に相
当)に設定される。かくして10分間のうちに8分以上の
100%導通率が現われると、バッテリの放電を予想して
充電モードに移る。
When the counter N exceeds NL, the charging mode is entered (step 115). NL is set to 480 (which corresponds to 8 minutes), for example. Thus, within 10 minutes, more than 8 minutes
When 100% conductivity appears, the battery is expected to discharge and the charging mode is entered.

以上の如く、本発明の制御方法によれば、高い調整電
圧下と低い調整電圧下でのオルタネータ出力電流の差に
よりバッテリ充電電流を算出し、これに基づいてバッテ
リの充電状態を比較的短時間に正確かつ確実に検出して
いるから、無駄にオルタネータの出力を増大せしめるこ
となく即応性を持ってバッテリの充電状態を適正に維持
することができる。
As described above, according to the control method of the present invention, the battery charging current is calculated from the difference between the alternator output currents under the high adjustment voltage and the low adjustment voltage, and the battery charge state is calculated for a relatively short time based on the difference. Since the accurate and reliable detection is performed, it is possible to maintain the battery charge state properly with quick response without unnecessarily increasing the output of the alternator.

また、オルタネータの出力を過大とすることがないか
ら、エンジン負担が軽減され燃費の向上を図ることがで
きる。
Moreover, since the output of the alternator is not excessively large, the load on the engine is reduced and the fuel consumption can be improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の方法を実施する装置の構成図、第2図
はレギュレータの回路図、第3図は制御装置のブロック
構成図、第4図は制御装置のプログラムフローチャー
ト、第5図は車両充電発電機の出力電流特性図、第6図
は充電電流とバッテリ充電状態の相関図である。 1……レギュレータ 11……スイッチングトランジスタ(スイッチ手段) 2……充電発電機 22……界磁巻線 3……制御装置 31……マイクロコンピュータ 5……車載バッテリ 7……電気負荷
1 is a block diagram of a device for carrying out the method of the present invention, FIG. 2 is a circuit diagram of a regulator, FIG. 3 is a block diagram of a controller, FIG. 4 is a program flowchart of the controller, and FIG. FIG. 6 is an output current characteristic diagram of the vehicle charging generator, and FIG. 6 is a correlation diagram between the charging current and the battery charging state. 1 …… Regulator 11 …… Switching transistor (switch means) 2 …… Charge generator 22 …… Field winding 3 …… Control device 31 …… Microcomputer 5 …… In-vehicle battery 7 …… Electrical load

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】エンジンにより回転せしめられる発電機の
界磁巻線電流を制御して、該発電機の出力電圧を与えら
れた設定電圧に保つスイッチング手段と、該スイッチン
グ手段の導通率と前記発電機の回転数より該発電機の出
力電流を求める出力電流検出手段と、前記スイッチング
手段に与える設定電圧を変更する設定電圧発生手段とを
有するレギュレータを備えた車両用発電機の制御方法に
おいて、 前記設定電圧を車載バッテリに比して高い第1の設定値
に設定した時の前記出力電流検出手段の出力と 前記設定電圧を前記第1の設定値より小さい第2の設定
値に設定した時の前記出力電流検出手段の出力との差が
所定の値より大きいとき前記設定電圧発生手段が第1の
設定電圧を発生する事を特徴とする車両用発電機の制御
方法。
1. A switching means for controlling a field winding current of a generator rotated by an engine to keep an output voltage of the generator at a given set voltage, a conduction rate of the switching means and the power generation. A method for controlling a vehicle generator, comprising: a regulator having an output current detecting means for obtaining an output current of the generator from the number of revolutions of the machine, and a set voltage generating means for changing a set voltage applied to the switching means, When the set voltage is set to a first set value which is higher than that of the vehicle battery, the output of the output current detecting means and the set voltage when set to a second set value which is smaller than the first set value A control method for a vehicular generator, wherein the set voltage generation means generates a first set voltage when a difference from the output of the output current detection means is larger than a predetermined value.
【請求項2】第2の設定値をほぼバッテリの定格電圧に
設定したことを特徴とする特許請求の範囲第1項に記載
の車両用発電機の制御方法。
2. The control method for a vehicle generator according to claim 1, wherein the second set value is set to approximately the rated voltage of the battery.
JP21118986A 1986-09-08 1986-09-08 Control method for vehicle charging generator Expired - Lifetime JP2503996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21118986A JP2503996B2 (en) 1986-09-08 1986-09-08 Control method for vehicle charging generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21118986A JP2503996B2 (en) 1986-09-08 1986-09-08 Control method for vehicle charging generator

Publications (2)

Publication Number Publication Date
JPS6369437A JPS6369437A (en) 1988-03-29
JP2503996B2 true JP2503996B2 (en) 1996-06-05

Family

ID=16601872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21118986A Expired - Lifetime JP2503996B2 (en) 1986-09-08 1986-09-08 Control method for vehicle charging generator

Country Status (1)

Country Link
JP (1) JP2503996B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005073379A (en) * 2003-08-25 2005-03-17 Nissan Motor Co Ltd Device for judging battery charge state of vehicle

Also Published As

Publication number Publication date
JPS6369437A (en) 1988-03-29

Similar Documents

Publication Publication Date Title
US4641079A (en) Battery voltage regulating system
JP3442410B2 (en) Method and control device for controlling voltage depending on state of charge of battery
KR100220898B1 (en) Control apparatus and control method of generator and those of generator for car applying that
EP0723326A2 (en) Battery charger
JP3537833B2 (en) Control device for vehicle alternator
US5831411A (en) Method for supplying voltage to a motor vehicle
JPH031901B2 (en)
JPH08126223A (en) Controller for a.c. generator
JPS59502170A (en) How to charge rechargeable storage batteries
JPH10323094A (en) Control equipment of generator for vehicle
JPH10327541A (en) Controller of generator for vehicle
JPH0530800A (en) Equipment for controlling ac generator for vehicle
US8334679B2 (en) ACG output voltage control
JPH0344500B2 (en)
JPH0344499B2 (en)
JP2503996B2 (en) Control method for vehicle charging generator
JP2004263619A (en) Power source control device for vehicle
WO1998042069A1 (en) A voltage regulator for alternators, particularly for motor vehicles
EP0464748B1 (en) Battery condition detecting apparatus
JP3186048B2 (en) Battery capacity detection device
JP2000123886A (en) Full charge determination device of secondary battery for vehicle
JP3475894B2 (en) Apparatus for determining full charge of vehicle secondary battery and apparatus for calculating remaining capacity
JP2005263080A (en) In-vehicle power source distribution device with battery state detecting function
JP2005263068A (en) Battery state detecting device
JPH03118731A (en) Method of regulating voltage

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term