JP2503519B2 - Electrochemical device driving method - Google Patents

Electrochemical device driving method

Info

Publication number
JP2503519B2
JP2503519B2 JP18672687A JP18672687A JP2503519B2 JP 2503519 B2 JP2503519 B2 JP 2503519B2 JP 18672687 A JP18672687 A JP 18672687A JP 18672687 A JP18672687 A JP 18672687A JP 2503519 B2 JP2503519 B2 JP 2503519B2
Authority
JP
Japan
Prior art keywords
voltage
ecd
layer
transition
concentration state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18672687A
Other languages
Japanese (ja)
Other versions
JPS6431131A (en
Inventor
清 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP18672687A priority Critical patent/JP2503519B2/en
Publication of JPS6431131A publication Critical patent/JPS6431131A/en
Application granted granted Critical
Publication of JP2503519B2 publication Critical patent/JP2503519B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はエレクトロクロミック素子(以下、ECDと略
称する。)の駆動法、特に記憶性を有するECDに通電圧
を印加することによって、該ECDの濃度状態を第1濃度
状態から第2濃度状態に遷移させる方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to a driving method of an electrochromic device (hereinafter abbreviated as ECD), in particular, by applying a conduction voltage to an ECD having a memory property, the ECD The present invention relates to a method for changing the concentration state of the above from the first concentration state to the second concentration state.

[従来の技術] 一般に、ECDは少なくとも一方が透明な一対の電極層
とそれらの間に配置されたエレクトロクロミック層(以
下、EC層と略称する。)とから形成され、乾電池から得
られる程度の駆動電圧を上記一対の電極間に印加すると
発色し、逆極性の電圧を印加するか又は電極間を短絡さ
せると消色して元の無色透明に戻るという性質を有する
ものである。
[Prior Art] In general, an ECD is formed of a pair of transparent electrode layers, at least one of which is transparent, and an electrochromic layer (hereinafter, abbreviated as an EC layer) disposed between them, and is of a size that can be obtained from a dry battery. When a driving voltage is applied between the pair of electrodes, it develops color, and when a voltage of opposite polarity is applied or the electrodes are short-circuited, the color disappears and the original colorless and transparent property is restored.

また、ECDは電極間に印加する電圧値を変化させるこ
とによって、発色濃度を制御することが可能なため、現
在では透過又は、反射光量の制御素子として研究されて
いる。
Moreover, since the ECD can control the color density by changing the voltage value applied between the electrodes, it is currently being studied as a control element for the amount of transmitted or reflected light.

以下、従来におけるECDの発色濃度状態を遷移させる
方法について、第3図及び第4図を参照しながら説明す
る。
Hereinafter, a conventional method for changing the color density state of the ECD will be described with reference to FIGS. 3 and 4.

ここで、ECDのEC層は一種のコンデンサと見ることが
でき、発色濃度はこのコンデンサ両端の電圧を比例する
と考えられ、ECDは第3図のような等価回路によって表
わすことができる。よって、ここではECDの発色濃度状
態を所望の発色濃度状態に遷移する動作を、第3図にお
けるコンデンサCの両端にかかる電圧に置き換えて説明
する。図において、CはED層に対応する容量Cのコンデ
ンサ、Rは透明電極に対応する抵抗値Rの抵抗である。
Here, the EC layer of the ECD can be regarded as a kind of capacitor, the color density is considered to be proportional to the voltage across this capacitor, and the ECD can be represented by an equivalent circuit as shown in FIG. Therefore, here, the operation of changing the color density state of the ECD to the desired color density state will be described by replacing it with the voltage applied across the capacitor C in FIG. In the figure, C is a capacitor having a capacitance C corresponding to the ED layer, and R is a resistor having a resistance value R corresponding to the transparent electrode.

第4図には、ECDに所定の電圧を印加した時の、EC層
にかかる電圧Vと電圧の印加時間Tとの関係が示されて
いる。
FIG. 4 shows the relationship between the voltage V applied to the EC layer and the voltage application time T when a predetermined voltage is applied to the ECD.

なお、(A)のグラフにはEC層に初期電圧V1がかかっ
ている第1の濃度状態から、V2>V1の関係をもつ電圧V2
がかかった第2の濃度状態に遷移する場合の時間的な変
化が示され、(B)のグラフには(A)と同様の第1の
濃度状態から、V4<V1なる電圧V4がかかった第2の濃度
状態に遷移する時間的な変化が示されている。
In the graph of (A), from the first concentration state where the initial voltage V1 is applied to the EC layer, the voltage V2 having the relationship of V2> V1
The change over time is shown in the case of transition to the second concentration state, which is caused by. The graph of (B) shows that the voltage V4 of V4 <V1 is applied from the first concentration state similar to (A). The change over time in the transition to the second concentration state is shown.

従来においては、EC層に初期電圧V1がかかっている第
1の濃度状態から、V2<V1の関係をもつ電圧V2がかかっ
た第2の濃度状態に遷移させる場合に、V2を遷移開始時
(時間T0)から当該ECDに印加し、この状態を接続させ
ることによってEC層(コンデンサC)にかかる電圧をV2
に遷移させていた。この方法による遷移特性は、第4図
(A)の破線aによって表わされている。また、EC層に
初期電圧V1がかかっている第1の濃度状態から、V4<V1
なる電圧V4がかかった第2の濃度状態に遷移させる場合
にも、V4を遷移開始時(時間T0)から当該ECDに印加
し、この状態を接続させることによってEC層(コンデン
サC)にかかる電圧をV4に遷移させており、この方法に
よる遷移特性は、第4図(B)の破線aによって表わさ
れている。
Conventionally, when transitioning from the first concentration state in which the initial voltage V1 is applied to the EC layer to the second concentration state in which the voltage V2 having the relationship of V2 <V1 is applied, V2 at the start of transition ( By applying to the ECD from time T 0 ) and connecting this state, the voltage applied to the EC layer (capacitor C) is V2.
Had been transitioned to. The transition characteristic by this method is represented by the broken line a in FIG. From the first concentration state where the initial voltage V1 is applied to the EC layer, V4 <V1
Even when a transition is made to the second concentration state in which the voltage V4 is applied, V4 is applied to the ECD from the start of the transition (time T 0 ) and the state is connected to apply to the EC layer (capacitor C). The voltage is changed to V4, and the transition characteristic by this method is represented by the broken line a in FIG. 4 (B).

ここで、上記時間t=0の時のコンデンサCの両端の
電圧がV1の第1の濃度状態から、コンデンサCの電圧が
V2の第2の濃度状態に遷移する場合を例にとってみる
と、コンデンサCに電圧V2をt時間だけ印加した時のコ
ンデンサCの両端の電圧をVtとするとVtは、 Vt=V2+(V1−V2)exp(−t/RC) …(1) のように表わせる。従って、目標とする電圧V2に遷移す
るのに要する時間はR,Cの大きさによって決まることが
わかる。もちろん、目標とする電圧がV4の場合も同様で
ある。
Here, from the first concentration state in which the voltage across the capacitor C at the time t = 0 is V1, the voltage of the capacitor C is
Taking the case of transitioning to the second concentration state of V2 as an example, if the voltage across capacitor C when voltage V2 is applied to capacitor C for t hours is Vt, then Vt is Vt = V2 + (V1-V2 ) Exp (-t / RC) ... It can be expressed as (1). Therefore, it can be seen that the time required for transition to the target voltage V2 is determined by the magnitudes of R and C. Of course, the same applies when the target voltage is V4.

しかし、透明電極には一般にITO(Indium−Tin−Oxid
e)電極が用いられ、上記(1)式のRに対応するITO
(透明電極)の抵抗値が高いため、破線aからわかるよ
うにEC層にかかる電圧を遷移させるのに長時間を要する
という欠点があった。
However, ITO (Indium-Tin-Oxid) is commonly used for transparent electrodes.
e) ITO that uses electrodes and corresponds to R in the above formula (1)
Since the (transparent electrode) has a high resistance value, there is a drawback that it takes a long time to change the voltage applied to the EC layer, as can be seen from the broken line a.

そこで、現在では初期電圧V1が印加されて得られる
第1の濃度状態から、V1より高い電圧V2が印加されて得
られる第2の濃度状態に遷移させる際には、遷移開始時
にV2より高い電圧V3を印加し、一方初期電圧V1より低
い電圧V4が印加されて得られる第2の濃度状態に遷移さ
せる際には、電圧V4より低い電圧V5をECDに印加するこ
とで濃度遷移に要する時間を短縮するという方法が使用
されている。この方法による遷移特性は、第4図中破線
bによって表わされている。
Therefore, at present, when a transition is made from a first concentration state obtained by applying the initial voltage V1 to a second concentration state obtained by applying a voltage V2 higher than V1, a voltage higher than V2 at the start of transition When changing to the second concentration state obtained by applying V3 while applying the voltage V4 lower than the initial voltage V1, the time required for concentration transition is applied by applying the voltage V5 lower than the voltage V4 to the ECD. The method of shortening is used. The transition characteristic by this method is represented by the broken line b in FIG.

以上の説明及び第4図(A),(B)より明らかなよ
うに、EC層にかかる電圧を、目標とする電圧V2,V4に到
達させる場合に、V3>V2あるいはV5<V4であるような過
電圧V3,V5をECDに印加することによって、EC層にかかる
電圧を目標とする電圧V2またはV4にするのに要する時間
が短かくなる。即ち、ECDの第2濃度状態への遷移に要
する遷移時間を短縮できることとなった。
As is clear from the above description and FIGS. 4A and 4B, when the voltage applied to the EC layer reaches the target voltages V2 and V4, V3> V2 or V5 <V4 By applying the excessive overvoltages V3 and V5 to the ECD, the time required to set the voltage applied to the EC layer to the target voltage V2 or V4 becomes short. That is, the transition time required for transition of the ECD to the second concentration state can be shortened.

[発明が解決しようとする問題点] ところが、上述したような方法では、過電圧印加中に
EC層の電圧の検出を行なわず、目標とする電圧V2あるい
はV4となるのに要する時間を正確に知ることが出来ない
ため、EC層に目標電圧V2,V4以上の過電圧印加されてEC
層が劣化したり、所望の電圧V2,V4に到らないうちに電
圧印加を停止したりする事態が発生し、過電圧印加によ
る時間短縮の効果が充分に発揮されないという問題点が
ある。
[Problems to be Solved by the Invention] However, according to the method as described above, during overvoltage application,
Since it is not possible to accurately know the time required to reach the target voltage V2 or V4 without detecting the voltage of the EC layer, an overvoltage of the target voltage V2 or V4 or more is applied to the EC layer.
There is a problem that the layer deteriorates or the voltage application is stopped before the desired voltages V2 and V4 are reached, and the effect of shortening the time by applying the overvoltage is not sufficiently exerted.

このような問題点は、EC層の初期電圧V1と目標となる
電圧V2,V4が、固定の値ではない中間表現される時など
に特に顕著に現れる。
Such a problem is particularly remarkable when the initial voltage V1 of the EC layer and the target voltages V2 and V4 are expressed as intermediate values that are not fixed values.

本発明は、かかる点に鑑みてなされたものであり、EC
層を劣化させることなく第2濃度状態への遷移時間を良
好に短縮できるエレクトロクロミック素子駆動法を提供
することを目的とするものである。
The present invention has been made in view of such points, and
An object of the present invention is to provide an electrochromic device driving method capable of favorably shortening the transition time to the second concentration state without degrading the layer.

[問題点を解決するための手段] 本発明に係るエレクトロクロミック素子駆動法は、エ
レクトロクロミック層に実際にかかっている第1の電圧
をモニターし、第1の電圧と所望の発色濃度に対応する
第2の電圧とを比較しつつ;該比較結果に基づき、上記
第1の電圧が第2の電圧より低い場合には第2の電圧よ
り高い所定の過電圧を、上記第1の電圧が第2の電圧よ
り高い場合には第2の電圧より低い所定の過電圧を印加
し;上記第1の電圧と第2の電圧との差が所定の許容範
囲内に達した時に、上記過電圧の印加を停止することを
技術的要点とするものである。
[Means for Solving Problems] The electrochromic device driving method according to the present invention monitors the first voltage actually applied to the electrochromic layer and responds to the first voltage and a desired color density. While comparing with the second voltage; based on the comparison result, when the first voltage is lower than the second voltage, a predetermined overvoltage higher than the second voltage, and the first voltage is higher than the second voltage. A predetermined overvoltage lower than the second voltage when the voltage is higher than the above voltage; the application of the overvoltage is stopped when the difference between the first voltage and the second voltage reaches a predetermined allowable range. The technical point is to do so.

[作用] 本発明において、エレクトロクロミック層に実際にか
かっている第1の電圧をモニターし、所望の発色濃度に
対応する第2の電圧と比較するため、EC層を劣化させる
ような過電圧を実際に印加することもなく、良好に第2
濃度への遷移が行なえることとなる。
[Operation] In the present invention, the first voltage actually applied to the electrochromic layer is monitored and compared with the second voltage corresponding to the desired color density, so that an overvoltage that deteriorates the EC layer is actually measured. Satisfactorily without applying to the second
The transition to the concentration can be performed.

また、電極間には必要時間の間十分に過電圧が印加さ
れるため、第2濃度への遷移時間の最適短縮化を図れる
こととなる。
In addition, since the overvoltage is sufficiently applied between the electrodes for the required time, the transition time to the second concentration can be optimally shortened.

[実施例] 以下、本発明の一実施例を添付図面を参照しながら詳
細に説明する。
[Embodiment] An embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

第1図には、本発明のエレクトロクロミック素子駆動
法に利用される装置(回路)の構成が示されている。図
において、10は上述した従来技術と同様にECDの等価回
路であり、CはEC層に対応する容量Cのコンデンサ、R
は透明電極に対応する抵抗値Rの抵抗である。ECDの一
方の電極は接地され、他方はスイッチ12の共通端子12a
に接続されている。
FIG. 1 shows the configuration of an apparatus (circuit) used in the electrochromic element driving method of the present invention. In the figure, 10 is an ECD equivalent circuit similar to the above-mentioned conventional technique, C is a capacitor of capacitance C corresponding to the EC layer, R
Is a resistance having a resistance value R corresponding to the transparent electrode. One electrode of the ECD is grounded and the other is the common terminal 12a of the switch 12.
It is connected to the.

スイッチ12は上記ECDと接続された共通端子12aを有
し、該共通端子12aと接続する端子として、電圧源14に
接続された選択端子12bあるいは比較器16に接続された
選択端子12cのいずれか1方を選択できるように構成さ
れている。
The switch 12 has a common terminal 12a connected to the ECD, and either the selection terminal 12b connected to the voltage source 14 or the selection terminal 12c connected to the comparator 16 is connected to the common terminal 12a. It is configured so that one can be selected.

電圧源14は、着色用電圧VF,消色用電圧VRのいずれか
一方をスイッチ12の選択端子12bに出力するように構成
されており、着色用電圧VFはEC層に印加されるべきいか
なる濃度状態の電圧より高く、しかもECDを劣化させる
ことのない電圧値に設定され、他方の消色用電圧VRはEC
層に印加されるべきいかなる濃度状態の電圧より低く、
しかもECDを劣化させることのない電圧値に設定されて
いる。
The voltage source 14 is configured to output one of the coloring voltage VF and the erasing voltage VR to the selection terminal 12b of the switch 12, and the coloring voltage VF is used for any concentration that should be applied to the EC layer. It is set to a voltage value that is higher than the state voltage and does not deteriorate the ECD, and the other decoloring voltage VR is EC
Below the voltage of any concentration state to be applied to the layer,
Moreover, the voltage value is set so as not to deteriorate the ECD.

電圧比較器16は、スイッチ12の選択端子12cと接続さ
れた比較端子16aと、基準電圧Vsが印加される比較端子1
6bとを有し、比較端子16aと16bとにかかる電圧の大小を
比較できるように構成され、更にこの比較結果に基づい
て上記電圧源14から出力される電圧を、着色用電圧VFと
消色用電圧VRのどちらか一方を選択制御するようになっ
ている。
The voltage comparator 16 includes a comparison terminal 16a connected to the selection terminal 12c of the switch 12 and a comparison terminal 1 to which the reference voltage Vs is applied.
6b and is configured so that the magnitude of the voltage applied to the comparison terminals 16a and 16b can be compared.Furthermore, based on this comparison result, the voltage output from the voltage source 14 is decolorized with the coloring voltage VF. Either one of the working voltage VR is selectively controlled.

次に、EC層に電圧V1が印加された第1の濃度状態から
電圧V2(V2>V1)が印加された第2の濃度状態に遷移す
る場合の動作を第2図を参照しながら各工程の順を追っ
て説明する。
Next, referring to FIG. 2, the operation when the first concentration state in which the voltage V1 is applied to the EC layer is changed to the second concentration state in which the voltage V2 (V2> V1) is applied Will be explained step by step.

第2図には、上述した従来技術において参照した第4
図と同様に、EC層にかかる電圧Vと電圧の印加時間Tと
の関係が示されている。
FIG. 2 shows the fourth example referred to in the above-mentioned prior art.
Similar to the figure, the relationship between the voltage V applied to the EC layer and the voltage application time T is shown.

予め電圧比較器16の比較端子16bの電圧VsをVs=V2と
し、スイッチ12の共通端子12aと選択端子12cとを接続す
る。この時、電圧比較器の入力インピーダンスは一般に
大きいため、端子16aにはEC層にかかる電圧、すなわちE
CD等価回路中のコンデンサCの両端電圧Vcが現れる。
The voltage Vs of the comparison terminal 16b of the voltage comparator 16 is set to Vs = V2 in advance, and the common terminal 12a of the switch 12 and the selection terminal 12c are connected. At this time, since the input impedance of the voltage comparator is generally large, the voltage applied to the EC layer at terminal 16a, that is, E
The voltage Vc across the capacitor C in the CD equivalent circuit appears.

次に、電圧比較器16において、端子16aの電圧Vcと端
子16bの電圧V2を比較し、該比較結果がVc<V2の場合に
は電圧源14の出力がVFとなるように、Vc>v2の場合には
電圧源14の出力がVRとなるように電圧源14を制御する。
・・・(工程1) 次に、スイッチ12の共通端子12aと選択端子12bとを所
定時間接続し、ECDにVFあるいはVRの過電圧印加を行
う。・・・(工程2) この時、ECDにVFが印加された場合にはコンデンサC
(EC層)に充電が起こり、電圧Vcが上昇することによっ
てECDの発色濃度が上昇する。逆にECDにVRが印加された
場合にはコンデンサC(EC層)に放電が起こり、電圧Vc
が下降してECDの発色濃度が降下する。
Next, in the voltage comparator 16, the voltage Vc of the terminal 16a and the voltage V2 of the terminal 16b are compared, and if the comparison result is Vc <V2, Vc> v2 so that the output of the voltage source 14 becomes VF. In this case, the voltage source 14 is controlled so that the output of the voltage source 14 becomes VR.
(Step 1) Next, the common terminal 12a of the switch 12 and the selection terminal 12b are connected for a predetermined time, and an overvoltage of VF or VR is applied to the ECD. (Step 2) At this time, if VF is applied to the ECD, the capacitor C
When the (EC layer) is charged and the voltage Vc increases, the color density of the ECD increases. Conversely, when VR is applied to the ECD, discharge occurs in the capacitor C (EC layer) and the voltage Vc
Decreases, and the color density of ECD decreases.

次に、工程2の過電圧印加の動作を所定時間行った後
に、再びスイッチ12の共通端子12aと選択端子12cとを接
続し、上記工程1の比較動作に戻り変化後のVcの値とV2
を比較する。そして、このような上記工程1と工程2を
VcとV2の電圧の差が所定の許容範囲内に達するまで交互
に繰り返す。
Next, after performing the operation of applying the overvoltage in the step 2 for a predetermined time, the common terminal 12a of the switch 12 and the selection terminal 12c are connected again, and the procedure returns to the comparison operation of the step 1 and the changed value of Vc and V2
Compare. Then, the above steps 1 and 2 are performed.
Alternately repeated until the difference between the voltages of Vc and V2 reaches within a predetermined allowable range.

そして、VcとV2の電圧の差が所定の許容範囲内に達し
た時に、スイッチ12の共通端子12aをいずれの選択端子1
2b,12cとも接続せず開放状態としてECDの発色濃度の遷
移を終了する。・・・(工程3) 以降、ECDは記憶性を有するので、スイッチ12の共通
端子12aと選択端子12b,12cとを開放状態にしても、EC層
の電圧をV2付近の所定の許容範囲、即ちECDの発色濃度
を所望の状態に維持できる。
Then, when the difference between the voltages of Vc and V2 reaches within a predetermined allowable range, the common terminal 12a of the switch 12 is set to whichever selection terminal 1
The transition of the color density of the ECD is ended by not opening the connection with 2b and 12c and setting the open state. (Step 3) and thereafter, since the ECD has a memory property, even if the common terminal 12a of the switch 12 and the selection terminals 12b and 12c are opened, the voltage of the EC layer is within a predetermined allowable range near V2, That is, the color density of the ECD can be maintained in a desired state.

以上のように、上記実施例によれば、実際のEC層の電
圧Vcと所望の発色濃度に対応するEC層の電圧V2とを比較
器16によって比較する工程1と、該比較器16の比較結果
に基づく過電圧の印加,停止を行なう工程2を有し、両
工程を交互に作用させているため、EC層の電圧を初期電
圧V1からV2への遷移を短時間で良好に行なえ、従ってEC
Dの所望の発色濃度への遷移時間を良好に短縮できると
いう効果がある。
As described above, according to the above embodiment, the step 1 of comparing the actual EC layer voltage Vc with the EC layer voltage V2 corresponding to the desired color density by the comparator 16 and the comparison of the comparator 16 Since there is a step 2 of applying and stopping an overvoltage based on the result, and both steps are alternately operated, the voltage of the EC layer can be favorably changed from the initial voltage V1 to V2 in a short time, and thus the EC voltage can be improved.
The effect is that the transition time of D to the desired color density can be shortened satisfactorily.

なお、本発明は上記実施例に限定されるものではな
く、VcとV2の電圧の差が所定の許容範囲内に達した後に
おいても、上述したようなVcとV2を比較する動作を続
け、何等かの要因でVcの値が変化した時に工程3の動作
に戻り一連の動作を繰り返すようにしても良い。
Note that the present invention is not limited to the above-described embodiment, and even after the difference between the voltages of Vc and V2 reaches a predetermined allowable range, the operation of comparing Vc and V2 as described above is continued, When the value of Vc changes due to some reason, the process may be returned to the operation of step 3 and a series of operations may be repeated.

また、工程3のその他の方法として、スイッチ12に電
圧V2が印加された選択端子12dを別に設け、VcとV2の電
圧の差が一旦所定の許容範囲内に達したならば、端子12
cと12dを接続し完全にVcとV2が等しくなるまでECDにV2
を印加するようにしても良く、更にその後に、VcとV2を
比較する動作を接続し、何等かの要因でVcの値が変化し
た時に再度端子12cと12dを接続しECDにV2を印加するよ
うにしても良い。
Further, as another method of the step 3, the selection terminal 12d to which the voltage V2 is applied is separately provided to the switch 12, and once the difference between the voltages Vc and V2 reaches the predetermined allowable range, the terminal 12 is
Connect C and 12d and V2 to ECD until Vc and V2 are completely equal
May be applied, and after that, connect the operation of comparing Vc and V2, and when the value of Vc changes for some reason, connect terminals 12c and 12d again and apply V2 to ECD. You may do it.

[発明の効果] 以上説明したように、本発明はEC層を劣化させること
なく、第2濃度への遷移時間を良好に短縮できるという
格別の効果がある。
[Effects of the Invention] As described above, the present invention has a remarkable effect that the transition time to the second concentration can be favorably shortened without degrading the EC layer.

【図面の簡単な説明】 第1図は本発明の一実施例による方法を利用した装置の
構成図、第2図は実施例の作用を示すグラフ、第3図は
本発明及び従来技術に係るECDの等価回路図、第4図は
従来技術の作用を示すグラフである。 「主要部の符号の説明」 10……ECD等価回路、12……スイッチ、14……電圧源、1
6……比較器。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of an apparatus using a method according to an embodiment of the present invention, FIG. 2 is a graph showing the operation of the embodiment, and FIG. 3 is related to the present invention and the prior art. FIG. 4 is an equivalent circuit diagram of the ECD and is a graph showing the operation of the prior art. "Explanation of symbols for main parts" 10 …… ECD equivalent circuit, 12 …… Switch, 14 …… Voltage source, 1
6 …… Comparator.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】エレクトロクロミック素子の一対の電極間
に第1の電圧を印加することによって、第1の濃度状態
から第2の濃度状態へ遷移させるエレクトロクロミック
素子の駆動法において、 エレクトロクロミック層に実際にかかっている第1の電
圧をモニターし、第1の電圧と前記所望の発色濃度に対
応する第2の電圧とを比較しつつ、 上記比較結果に基づき、上記第1の電圧が第2の電圧よ
り低い場合には第2の電圧より高い所定の過電圧を、上
記第1の電圧が第2の電圧より高い場合には第2の電圧
より低い所定の過電圧を、前記電極間に印加し、 上記第1の電圧と第2の電圧との差が所定の許容範囲内
に達した時に、上記過電圧の印加を停止することを特徴
とするエレクトロクロミック素子駆動法。
1. A method of driving an electrochromic device, wherein a first voltage is applied between a pair of electrodes of the electrochromic device to cause a transition from a first concentration state to a second concentration state. While monitoring the first voltage actually applied and comparing the first voltage with the second voltage corresponding to the desired color density, the first voltage is changed to the second voltage based on the comparison result. A predetermined overvoltage higher than the second voltage when the voltage is lower than the second voltage, and a predetermined overvoltage lower than the second voltage when the first voltage is higher than the second voltage. The method for driving an electrochromic device, characterized in that the application of the overvoltage is stopped when the difference between the first voltage and the second voltage reaches a predetermined allowable range.
JP18672687A 1987-07-28 1987-07-28 Electrochemical device driving method Expired - Lifetime JP2503519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18672687A JP2503519B2 (en) 1987-07-28 1987-07-28 Electrochemical device driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18672687A JP2503519B2 (en) 1987-07-28 1987-07-28 Electrochemical device driving method

Publications (2)

Publication Number Publication Date
JPS6431131A JPS6431131A (en) 1989-02-01
JP2503519B2 true JP2503519B2 (en) 1996-06-05

Family

ID=16193561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18672687A Expired - Lifetime JP2503519B2 (en) 1987-07-28 1987-07-28 Electrochemical device driving method

Country Status (1)

Country Link
JP (1) JP2503519B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8463360B2 (en) 2006-02-09 2013-06-11 National University Corporation Hamamatsu University School Of Medicine Surgery support device, surgery support method, and computer readable recording medium storing surgery support program

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19925335A1 (en) * 1999-06-02 2001-02-08 Daimler Chrysler Aerospace Process for regulating the light transmission of an electrochromic glass
JP3985667B2 (en) * 2002-11-22 2007-10-03 ソニー株式会社 Electrochemical display device and driving method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8463360B2 (en) 2006-02-09 2013-06-11 National University Corporation Hamamatsu University School Of Medicine Surgery support device, surgery support method, and computer readable recording medium storing surgery support program

Also Published As

Publication number Publication date
JPS6431131A (en) 1989-02-01

Similar Documents

Publication Publication Date Title
CN110032019B (en) Electrochromic device, control method thereof, electronic apparatus, and storage medium
JP3390043B2 (en) Power supply method and apparatus for electrochromic system
EP2161615B1 (en) Process and apparatus for switching large-area electrochromic devices
US8218223B2 (en) Process and apparatus for switching large-area electrochromic devices
US8018644B2 (en) Control of electrochromic device
US5315410A (en) Method and apparatus for recording optical information by using a photoelectric transducer
US6411348B2 (en) Active matrix substrate and producing method of the same
KR20180132040A (en) Method for controlling an electrochromic device and an electrochromic device
US5073011A (en) Electrochromic device with a reference electrochromic element
US7295361B2 (en) Method for producing an electrochromic device and said electrochromic device
US4298870A (en) Device for driving a display element having a memorizing property
WO2022152070A1 (en) Electrochromic device and control method for same
EP1043618A1 (en) Ferroelectric liquid crystal display, and its driving method
JP2503519B2 (en) Electrochemical device driving method
EP0879440A1 (en) Electrochromic devices
JPH0916116A (en) Electrophoretic display device
US10417988B2 (en) Gate driver on array driving circuit and liquid crystal display device having the same
JPS63115139A (en) Driving system for electrochromic element
US5689281A (en) Liquid crystal display apparatus
JPH079507B2 (en) Liquid crystal display
JPH06110088A (en) Driving system of electrophoretic display device
US2928317A (en) Transparent conductive surface with travelling wave properties
US3955879A (en) Nonlinear electrochromic device
JP3674233B2 (en) Inspection method for liquid crystal display device
JPH0246428A (en) Driving device for electrochromic display element