JP2503453B2 - Air-fuel ratio control device for internal combustion engine - Google Patents

Air-fuel ratio control device for internal combustion engine

Info

Publication number
JP2503453B2
JP2503453B2 JP61268127A JP26812786A JP2503453B2 JP 2503453 B2 JP2503453 B2 JP 2503453B2 JP 61268127 A JP61268127 A JP 61268127A JP 26812786 A JP26812786 A JP 26812786A JP 2503453 B2 JP2503453 B2 JP 2503453B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
throttle valve
state
fully closed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61268127A
Other languages
Japanese (ja)
Other versions
JPS63120837A (en
Inventor
克哉 前田
正和 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP61268127A priority Critical patent/JP2503453B2/en
Publication of JPS63120837A publication Critical patent/JPS63120837A/en
Application granted granted Critical
Publication of JP2503453B2 publication Critical patent/JP2503453B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、内燃機関を理論空燃比より稀薄な空燃比の
混合気で制御するようにした内燃機関の空燃比制御装置
に関する。
Description: TECHNICAL FIELD The present invention relates to an air-fuel ratio control device for an internal combustion engine, which controls an internal combustion engine with an air-fuel mixture having an air-fuel ratio leaner than a theoretical air-fuel ratio.

〔従来の技術〕[Conventional technology]

従来、空燃比制御において、内燃機関の燃費向上のた
めに、低負荷領域等では混合気の空燃比を理論空燃比
(A/F≒14.8)より稀薄側(A/F=15〜20)に設定し、こ
の設定された空燃比が維持されるよう、排気系にリーン
センサを設けて空燃比をフィードバック制御することが
知られている。この制御において、内燃機関のアイドリ
ング状態をスロットル弁の全閉を検出するスイッチで検
出し、アイドリング状態検出時には、アイドリング回転
数の安定性を保つため、空燃比を通常の低負荷域におけ
る稀薄な空燃比よりも濃い理論空燃比付近に制御するこ
とも知られている。
Conventionally, in air-fuel ratio control, in order to improve fuel efficiency of the internal combustion engine, the air-fuel ratio of the air-fuel mixture is made leaner (A / F = 15 to 20) than the theoretical air-fuel ratio (A / F ≈ 14.8) in the low load region. It is known that a lean sensor is provided in the exhaust system to feedback control the air-fuel ratio so that the air-fuel ratio is set and the set air-fuel ratio is maintained. In this control, the idling state of the internal combustion engine is detected by a switch that detects the full closing of the throttle valve, and when the idling state is detected, the air-fuel ratio is adjusted to a lean air-fuel ratio in a normal low load range in order to maintain the stability of the idling speed. It is also known to control near the stoichiometric air-fuel ratio, which is richer than the fuel ratio.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、スロットル弁の戻り不良またはスロッ
トル弁の全閉検出スイッチの故障等が生ずると、アイド
リング状態を検出することが不可能になる。その結果、
アイドリング状態であるにもかかわらず、内燃機関への
混合気の空燃比が理論空燃比より稀薄な空燃比に制御さ
れてしまい、混合気の空燃比の僅かな変化等で内燃機関
の出力トルクがかなり変動し、アイドリング回転数が不
安定となってしまう。
However, if the throttle valve is not returned properly or the throttle valve fully closed detection switch fails, it becomes impossible to detect the idling state. as a result,
Despite the idling state, the air-fuel ratio of the air-fuel mixture to the internal combustion engine is controlled to an air-fuel ratio leaner than the stoichiometric air-fuel ratio, and the output torque of the internal combustion engine is reduced due to slight changes in the air-fuel ratio of the air-fuel mixture. It fluctuates considerably and the idling speed becomes unstable.

本発明は、この不具合を解決することを目的とする。 The present invention aims to solve this problem.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的達成のために、本発明は第1図に図示のごと
く、内燃機関の吸気管圧力、回転数、吸入空気量のうち
少なくとも1つの動作状態に基づき機関負荷状態を検出
する負荷検出手段と、 前記内燃機関のアイドリング状態としてスロットル弁
の全閉状態を検出するスロットル弁全閉検出手段と、 アイドリング状態を含む低負荷状態では理論空燃比よ
りも稀薄な空燃比となるように前記負荷検出手段により
検出された負荷状態に応じて空燃比を設定する稀薄空燃
比設定手段と、 アイドリング状態での空燃比を大略理論空燃比に設定
するアイドリング空燃比設定手段と、 前記スロットル弁全閉検出手段によって前記スロット
ル弁の全閉状態が検出されていない時には前記稀薄空燃
比設定手段により設定された空燃比で、前記スロットル
弁全閉検出手段によって前記スロットル弁の全閉状態が
検出されている時には前記アイドリング空燃比設定手段
により設定された空燃比で前記内燃機関の混合気を制御
する空燃比制御手段と、 前記スロットル弁全閉検出手段の作動の異常を判別す
る異常判別手段と、 この異常判別手段により前記スロットル弁全閉検出手
段の異常が判別されると前記稀薄空燃比検出手段で設定
されるアイドリング状態に対応する低負荷状態での希薄
空燃比を大略理論空燃比に変更する空燃比変更手段とを
備える。
In order to achieve the above object, the present invention, as shown in FIG. 1, includes load detecting means for detecting an engine load state based on at least one operating state of an intake pipe pressure, a rotational speed, and an intake air amount of an internal combustion engine. A throttle valve fully closed detecting means for detecting a fully closed state of a throttle valve as an idling state of the internal combustion engine; and a load detecting means for providing an air-fuel ratio leaner than a theoretical air-fuel ratio in a low load state including an idling state. The lean air-fuel ratio setting means for setting the air-fuel ratio in accordance with the load state detected by, the idling air-fuel ratio setting means for setting the air-fuel ratio in the idling state to approximately the theoretical air-fuel ratio, and the throttle valve fully closed detection means When the fully closed state of the throttle valve is not detected, the throttle valve fully closed detection is performed with the air-fuel ratio set by the lean air-fuel ratio setting means. When the fully closed state of the throttle valve is detected by the output means, air-fuel ratio control means for controlling the air-fuel ratio of the internal combustion engine at the air-fuel ratio set by the idling air-fuel ratio setting means, and the throttle valve fully closed detection Abnormality determining means for determining an abnormality in the operation of the means, and a low load state corresponding to the idling state set by the lean air-fuel ratio detecting means when the abnormality determining means determines the abnormality in the throttle valve fully closed detecting means. And an air-fuel ratio changing means for changing the lean air-fuel ratio to approximately the theoretical air-fuel ratio.

〔作用〕[Action]

上記構成によって、スロットル弁全閉検出手段の故障
等の異常が判別された場合には、稀薄空燃比設定手段で
設定された低負荷時の稀薄空燃比を空燃比変更手段によ
って大略理論空燃比に変更するため、内燃機関がアイド
リング状態となっても低負荷時の稀薄空燃比で運転され
ることがなく、変更された大略理論空燃比で運転され
る。
With the above configuration, when an abnormality such as a failure of the throttle valve fully closed detection means is determined, the lean air-fuel ratio at the time of low load set by the lean air-fuel ratio setting means is changed to a roughly theoretical air-fuel ratio by the air-fuel ratio changing means. Because of the change, even if the internal combustion engine is in the idling state, it is not operated at the lean air-fuel ratio at the time of low load, but is operated at the changed substantially theoretical air-fuel ratio.

〔実施例〕〔Example〕

以下、本発明を図面に示す実施例について説明する。 The present invention will be described below with reference to embodiments shown in the drawings.

第2図は本発明に係る内燃機関の空燃比制御装置の一
実施例を示す全体構成図である。第1図において、内燃
機関1の吸気通路2のサージタンク3には機関負荷とし
て吸気通路2の吸気圧Pm(吸入空気の絶対圧)を検出す
るための圧力センサ4が設けられており、その出力は制
御回路10のマルチプレクサ内蔵A/D変換器101に供給され
ている。また、内燃機関1の吸気通路2に設けられたス
ロットル弁5の回転軸には、スロットル弁5の開度を検
出するためのスロットルセンサが設けられている。この
スロットルセンサはスロットル弁5の開度θが全閉に相
応するθ(たとえば1.5゜)以下になったときにのみ
オンとなる全閉スイッチ6を内蔵しており、このスイッ
チ6のオン・オフ出力は制御回路10の入出力インターフ
ェイス103に供給されている。さらに、機関1の排気通
路7には空燃比のフィードバック制御のために排気ガス
中の酸素濃度を検出する公知のリーンセンサ8が設けら
れている。リーンセンサ8の出力は排気ガス中の酸素濃
度、即ち内燃機関1に供給された混合気の空燃比に応じ
た電流出力で得られるので、制御回路10の電流電圧変換
回路102で電圧に変換してからA/D変換器101に供給され
る。
FIG. 2 is an overall configuration diagram showing an embodiment of an air-fuel ratio control device for an internal combustion engine according to the present invention. In FIG. 1, the surge tank 3 of the intake passage 2 of the internal combustion engine 1 is provided with a pressure sensor 4 for detecting an intake pressure P m (absolute pressure of intake air) of the intake passage 2 as an engine load, The output is supplied to the A / D converter 101 with a built-in multiplexer of the control circuit 10. A throttle sensor for detecting the opening of the throttle valve 5 is provided on the rotary shaft of the throttle valve 5 provided in the intake passage 2 of the internal combustion engine 1. This throttle sensor has a built-in fully-closed switch 6 which is turned on only when the opening degree θ of the throttle valve 5 becomes equal to or less than θ 1 (for example, 1.5 °) corresponding to the fully closed state. The off output is supplied to the input / output interface 103 of the control circuit 10. Further, the exhaust passage 7 of the engine 1 is provided with a known lean sensor 8 for detecting the oxygen concentration in the exhaust gas for feedback control of the air-fuel ratio. Since the output of the lean sensor 8 is obtained as a current output according to the oxygen concentration in the exhaust gas, that is, the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine 1, it is converted into a voltage by the current-voltage conversion circuit 102 of the control circuit 10. And then supplied to the A / D converter 101.

ディストリピュータ9には、内燃機関1の回転位置お
よび回転数等の検出を行うために、その軸がたとえばク
ランキ角に換算して720゜毎に基準位置検出用パルス信
号を発生するクランク角センサ11およびクランク角に換
算して30゜毎に角度位置検出用パルス信号を発生するク
ランク角センサ12が設けられている。これらクランク角
センサ11,12のパルス信号は制御回路10の入出力インタ
ーフェイス103に供給される。
In order to detect the rotational position and rotational speed of the internal combustion engine 1, the distributor 9 has a crank angle sensor 11 whose axis generates a reference position detection pulse signal every 720 ° converted into a crank angle, for example. Further, a crank angle sensor 12 is provided which generates a pulse signal for detecting an angular position every 30 ° converted into a crank angle. The pulse signals of the crank angle sensors 11 and 12 are supplied to the input / output interface 103 of the control circuit 10.

さらに、吸気通路2には、制御回路10の駆動回路104
で駆動され、各気筒毎に燃料供給系からの加圧燃料を吸
気ポートへ供給するための燃料噴射弁13が設けられてお
り、燃料噴射量を制御して混合気の空燃比を制御する。
車速センサ14は、内燃機関1を搭載した図示しない車両
の走行速度を検出するもので、車両が所定距離だけ走行
する毎に制御回路10の入出力インターフェイス103にパ
ルスを供給する。
Further, in the intake passage 2, the drive circuit 104 of the control circuit 10
Each cylinder is provided with a fuel injection valve 13 for supplying the pressurized fuel from the fuel supply system to the intake port, and controls the fuel injection amount to control the air-fuel ratio of the air-fuel mixture.
The vehicle speed sensor 14 detects the traveling speed of a vehicle (not shown) equipped with the internal combustion engine 1, and supplies a pulse to the input / output interface 103 of the control circuit 10 every time the vehicle travels a predetermined distance.

前記制御回路10はたとえばマイクロコンピュータとし
て構成され、前述のA/D変換器101,電流−電圧変換回路1
0,インターフェイス103の外に、CPU105,ROM106,RAM107
が設けられている。なお、ROM106にはCPU105の演算を制
御するプログラムおよびこの演算に用いる各種データが
予め記憶されている。このデータとして、特に内燃機関
1の運転状態に応じて予めROM106に設定記憶されている
空燃比特性を第3図および第4図に例示する。RAM107に
は前記各センサにて検出された検出値およびCPU105の演
算により求められる各種演算値がその都度一時記憶され
る。
The control circuit 10 is configured as, for example, a microcomputer, and includes the A / D converter 101 and the current-voltage conversion circuit 1 described above.
0, outside interface 103, CPU105, ROM106, RAM107
Is provided. Note that the ROM 106 stores in advance a program for controlling the calculation of the CPU 105 and various data used for this calculation. As this data, the air-fuel ratio characteristics preset and stored in the ROM 106 according to the operating state of the internal combustion engine 1 are illustrated in FIGS. 3 and 4. The RAM 107 temporarily stores the detected values detected by the respective sensors and various calculated values obtained by the calculation of the CPU 105.

次に、制御回路10のCPU105によって実行される演算処
理を第5図および第6図に図示のフローチャートによっ
て本実施例の全体作動と共に説明する。
Next, the arithmetic processing executed by the CPU 105 of the control circuit 10 will be described together with the overall operation of the present embodiment with reference to the flow charts shown in FIGS.

第5図は、アイドル状態を検出する全閉スイッチ6の
異常を検出するルーチンであり、メインルーチンの一部
又は所定時間もしくは所定クランク角毎に実行されるも
のである。まず、ステップ501では、車速センサ14から
のパルスの計数によりインターフェイス103で求められ
る車速のデータにより、車両が走行状態(車速>0)か
否かを判定する。車速=0(車両停止)であれば、ステ
ップ502で全閉スイッチ6の出力の判定を行う。もし、
全閉スイッチ6がオフ状態を示す出力であれば、ステッ
プ503で車両が走行状態から停止した直後か否かを示す
後述のフラグSの内容を判定し、その内容がそれ以前の
車両走行を示す“0"であれば、ステップ504で全閉スイ
ッチ6の出力がオフとなった回数を計測するカウンタCF
iDLの前回の値に1を加えてカウントアップする。ステ
ップ505でCFiDLの値が所定値(例えば8)以上、すなわ
ち車両が走行直後の停止状態(この場合、スロットル弁
5は全閉されたアイドリング状態で全閉スイッチ6はオ
ンの筈)において、全閉スイッチ6の出力がオフの状態
が8回以上検出された場合に全閉スイッチ6が異常と判
断し、ステップ506で全閉スイッチ異常判定フラグFを
全閉スイッチ6の異常作動を示す“1"にする。ステップ
507では、CFiDLの値がオーバーフローしない様に所定値
(8)を代入する。次のステップ508では、フラグSの
車両の停止状態持続を示す“1"にして、フラグSが再度
“0"になるまでステップ504〜507を迂回する様にする。
即ち、ステップ504〜507は車両が走行状態から停止状態
になった直後のみ1回だけ実行される。
FIG. 5 is a routine for detecting an abnormality of the fully closed switch 6 for detecting the idle state, which is executed as a part of the main routine or every predetermined time or every predetermined crank angle. First, in step 501, it is determined whether or not the vehicle is in a traveling state (vehicle speed> 0) based on the vehicle speed data obtained by the interface 103 by counting the pulses from the vehicle speed sensor 14. If the vehicle speed = 0 (vehicle stopped), the output of the fully closed switch 6 is determined in step 502. if,
If the output indicates that the fully closed switch 6 is in the off state, the content of a flag S, which will be described later, indicating whether or not the vehicle has just stopped from the traveling state is determined in step 503, and the content indicates the previous vehicle traveling. If "0", a counter CF that measures the number of times the output of the fully closed switch 6 is turned off in step 504
Count up by adding 1 to the previous value of iDL. In step 505, the value of CFiDL is equal to or greater than a predetermined value (for example, 8), that is, when the vehicle is in a stopped state immediately after traveling (in this case, the throttle valve 5 should be fully closed in the idling state and the fully closed switch 6 should be on). When the output of the closing switch 6 is detected to be off eight times or more, it is determined that the fully closing switch 6 is abnormal, and the fully closing switch abnormality determination flag F is set in step 506 to indicate that the fully closing switch 6 is abnormally operated. "I will. Step
At 507, a predetermined value (8) is substituted so that the value of CFiDL does not overflow. In the next step 508, the flag S is set to "1" indicating that the vehicle is stopped, and steps 504 to 507 are bypassed until the flag S becomes "0" again.
That is, steps 504 to 507 are executed only once immediately after the vehicle is stopped from the running state.

ステップ501で、車両が走行状態であると判定される
と、それ以後に車両が停止した時点で前記ステップ504
〜507を実行させるため、ステップ509で前記フラグSを
“0"にする。
If it is determined in step 501 that the vehicle is running, the step 504
To execute steps 507 to 507, the flag S is set to "0" in step 509.

以上の処理により、車両が走行状態から停止状態に移
った時に、全閉スイッチ6の出力がオフの状態が所定回
数(8回)以上検出されると、全閉スイッチ6の作動異
常と判定し、フラグFを“1"にしている。
According to the above processing, when the output of the fully closed switch 6 is detected to be off a predetermined number of times (8 times) or more when the vehicle shifts from the traveling state to the stopped state, it is determined that the fully closed switch 6 is in an abnormal operation. , Flag F is set to "1".

一方、ステップ502で全閉スイッチ6の出力が全閉状
態を示すオンであれば、全閉スイッチ6が正常であると
判定し、ステップ510でカウンタCFiDLを“0"にクリヤ
し、ステップ511でフラグFを全閉スイッチ6の正常作
動を示す“0"にする。第6図は、空燃比演算ルーチンで
あり、メインルーチンの一部としてあるいは所定時間も
しくは所定クランク角毎に実行される。まずステップ60
0で、吸気圧Pm,回転数Ne、更にはリーンセンサ8で検出
された混合気の空燃比の検出値等を取込む。次のステッ
プ601では、前述のアイドリング状態検出用の全閉スイ
ッチ6の異常判定フラグFの内容により、全閉スイッチ
6の正常異常をチェックし、正常な場合(フラグF=
0)はステップ602へ移り、全閉スイッチ6の出力がオ
ンすなわちスロットル弁開度θがθ(1.5゜)以下で
あるか否かを判定する。もし、全閉スイッチ6の出力が
オンであれば、アイドル状態であるとして、第3図に示
すごとく、回転数Neに対して予め設定されている空燃比
の特性M3から、その時の回転数に応じた稀薄空燃比をス
テップ603で演算する。逆に、全閉スイッチの出力がオ
フあれば、アイドル状態でないと判断し、第4図に示す
ごとく、吸気圧力Pmに対して予め設定されている空燃比
の特性M2から、その時の吸気圧Pmに応じた稀薄空燃比を
ステップ604で演算する。ステップ601でフラグFが“1"
すなわち全閉スイッチ6が異常であれば、第4図に図示
の空燃比特性M1から、その時の吸気圧Pmに応じた空燃比
をステップ605で演算する。
On the other hand, if the output of the fully closed switch 6 is ON indicating the fully closed state in step 502, it is determined that the fully closed switch 6 is normal, the counter CFiDL is cleared to "0" in step 510, and the step 511 is performed. The flag F is set to "0" indicating the normal operation of the fully closed switch 6. FIG. 6 is an air-fuel ratio calculation routine, which is executed as a part of the main routine or every predetermined time or predetermined crank angle. First step 60
At 0, the intake pressure P m , the rotation speed Ne, the detected value of the air-fuel ratio of the air-fuel mixture detected by the lean sensor 8 and the like are taken in. In the next step 601, a normal abnormality of the full-closed switch 6 is checked based on the content of the abnormality determination flag F of the full-closed switch 6 for detecting the idling state, and if normal (flag F =
In step 0), the process proceeds to step 602, and it is determined whether the output of the fully closed switch 6 is on, that is, the throttle valve opening θ is θ 1 (1.5 °) or less. If the output of the fully closed switch 6 is on, it is determined that the engine is in the idle state, and as shown in FIG. 3, the air-fuel ratio characteristic M3 preset with respect to the rotation speed Ne is changed to the rotation speed at that time. A corresponding lean air-fuel ratio is calculated in step 603. On the contrary, if the output of the fully closed switch is off, it is judged that the engine is not in the idle state, and as shown in FIG. 4, from the characteristic M2 of the air-fuel ratio preset with respect to the intake pressure Pm, the intake pressure Pm at that time is calculated. In step 604, the lean air-fuel ratio corresponding to the above is calculated. In step 601, the flag F is "1".
That is, if the fully closed switch 6 is abnormal, the air-fuel ratio corresponding to the intake pressure Pm at that time is calculated in step 605 from the air-fuel ratio characteristic M1 shown in FIG.

即ち、アイドリング時における空燃比は、全閉スイッ
チ6が正常てある限りは第3図に示すごとく回転数Neに
応じて理論空燃比(A/F≒14.8)より稀薄側にステップ6
03で設定されるのであるが、全閉スイッチ6が異常であ
るとステップ603が実行できないため、第3図に図示の
空燃比特性M3とは無関係にステップ605で第4図の空燃
比特性M1によって、特にアイドリング状態に相応する吸
気圧Pm<400mmHgでは大略理論空燃比に設定される。
That is, as shown in FIG. 3, the air-fuel ratio at idling depends on the rotation speed Ne as shown in FIG. 3 as long as the full-closed switch 6 is normal, and the step 6 is made leaner than the theoretical air-fuel ratio (A / F≈14.8).
Although it is set in 03, step 603 cannot be executed if the fully closed switch 6 is abnormal. Therefore, regardless of the air-fuel ratio characteristic M3 shown in FIG. 3, the air-fuel ratio characteristic M1 shown in FIG. As a result, particularly at the intake pressure Pm <400 mmHg corresponding to the idling state, it is set to approximately the theoretical air-fuel ratio.

上述のごとくステップ603〜605で目標となる空燃比が
設定されると、以下の公知の制御がなされる。略述する
と、ステップ606でこの目標空燃比が達成されるようそ
の時の吸気圧Pm,回転数Ne等に応じて燃料噴射量、即ち
燃料噴射時間を演算する。ステップ607では、リーンセ
ンサ8によって検出された混合気の空燃比によって、ス
テップ606で演算された燃料噴射時間をフィードバック
補正する。即ち、リーンセンサ8で検出された空燃比が
目標空燃比より過濃な場合には燃料噴射時間を短縮し、
逆の場合には燃料噴射時間を延長して、リーンセンサ8
の出力を用いた空燃比のフィードバック制御を行う。ス
テップ608では、ステップ607で補正された燃料噴射時間
を駆動回路104にセットして、燃料噴射弁13を作動させ
る。
When the target air-fuel ratio is set in steps 603 to 605 as described above, the following publicly known control is performed. In brief, in step 606, the fuel injection amount, that is, the fuel injection time is calculated according to the intake pressure Pm, the rotational speed Ne, etc. at that time so that this target air-fuel ratio is achieved. In step 607, the fuel injection time calculated in step 606 is feedback-corrected by the air-fuel ratio of the air-fuel mixture detected by the lean sensor 8. That is, when the air-fuel ratio detected by the lean sensor 8 is richer than the target air-fuel ratio, the fuel injection time is shortened,
In the opposite case, the fuel injection time is extended and the lean sensor 8
Feedback control of the air-fuel ratio using the output of In step 608, the fuel injection time corrected in step 607 is set in the drive circuit 104 to operate the fuel injection valve 13.

上記実施例において、全閉スイッチ6およびステップ
602が本発明のスロットル弁全閉検出手段に相当し、ス
テップ501〜511が本発明の異常判別手段に相当し、ステ
ップ600が本発明の負荷検出手段に相当し、ステップ60
1、605が本発明の空燃比変更手段に相当し、ステップ60
3が本発明のアイドリング空燃比設定手段に相当し、ス
テップ604が本発明の稀薄空燃比設定手段に相当し、ス
テップ606〜608が本発明の空燃比制御手段に相当する。
In the above embodiment, the fully closed switch 6 and the step
602 corresponds to the throttle valve fully closed detecting means of the present invention, steps 501 to 511 correspond to the abnormality determining means of the present invention, step 600 corresponds to the load detecting means of the present invention, and step 60
1, 605 correspond to the air-fuel ratio changing means of the present invention, and step 60
3 corresponds to the idling air-fuel ratio setting means of the present invention, step 604 corresponds to the lean air-fuel ratio setting means of the present invention, and steps 606 to 608 correspond to the air-fuel ratio control means of the present invention.

なお上記実施例では、エンジンの作動状態に応じて空
燃比特性M1,M2を第4図のごとく吸気圧Pmに応じて設定
したが、第7図および第8図にそれぞれ示すごとく回転
数Neおよび吸入空気量Qa等によって設定しても良く、更
には第9図に示すごとく吸気圧Pmおよび回転数Neの双方
によって設定しても良い。
In the above embodiment, the air-fuel ratio characteristics M1 and M2 are set according to the intake pressure Pm as shown in FIG. 4 according to the operating state of the engine. However, as shown in FIG. 7 and FIG. it may be set by the intake air amount Q a or the like, may be set by both the intake pressure Pm and the rotational speed Ne as shown in FIG. 9.

更には上記実施例では、アイドリング状態を検出する
全閉スイッチ6の異常作動を車両が走行状態から停止し
た時点での全閉スイッチ6の出力状態によって判定した
が、この判定を車両の停止状態が持続している場合に行
っても良い。この場合、車両の変速機がニュートラル状
態で吸気圧,回転数,燃料噴射時間等がスロットル弁全
閉のアイドリング時に相当する値であるにもかかわら
ず、全閉スイッチ6の出力がスロットル弁の開弁を示す
オフであることを検出すれば良い。
Further, in the above embodiment, the abnormal operation of the fully closed switch 6 for detecting the idling state is judged by the output state of the fully closed switch 6 at the time when the vehicle is stopped from the running state. You may go if it is persistent. In this case, even if the transmission of the vehicle is in the neutral state and the intake pressure, the rotational speed, the fuel injection time, etc. are values corresponding to the time when the throttle valve is fully closed and idling, the output of the fully closed switch 6 causes the throttle valve to open. It suffices to detect that the valve is off.

〔発明の効果〕 上述の通り、本発明によれば、スロットル弁全閉検出
手段の異常が判別されると、アイドリング状態に対応す
る低負荷状態での空燃比が自動的に理論空燃比付近に設
定されるため、スロットル弁全閉検出手段の異常時にも
混合気が稀薄空燃比となってアイドル回転数が大幅に不
安定になるのを確実に防止することができるという優れ
た効果がある。
[Advantages of the Invention] As described above, according to the present invention, when the abnormality of the throttle valve fully-closed detection means is determined, the air-fuel ratio in the low load state corresponding to the idling state automatically becomes close to the theoretical air-fuel ratio. Since the setting is made, there is an excellent effect that it is possible to surely prevent the air-fuel mixture from becoming a lean air-fuel ratio and greatly destabilizing the idle speed even when the throttle valve full-closed detecting means is abnormal.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の概略構成を示す機能ブロック図、第2
図は本発明の実施例の全体構成を示す全体構成図、第3
図はアイドリング時の回転数に対する空燃比を示す空燃
比特性図、第4図はアイドリング時以外の吸気圧に対す
る空燃比を示す空燃比特性図、第5図は第2図図示の制
御回路の実行する異常検出ルーチンを示すフローチャー
ト、第6図は第2図図示の制御回路の実行する空燃比演
算ルーチンを示すフローチャート、第7図乃至第9図は
第4図図示の空燃比特性の他の例を示す空燃比特性図で
ある。 1……内燃機関,4……負荷検出手段としての圧力セン
サ,6……アイドリング検出手段としての全閉スイッチ,1
0……稀薄空燃比設定手段,アイドリング空燃比設定手
段,混合気制御手段,異常判別手段,空燃比変更手段を
含む制御回路。
FIG. 1 is a functional block diagram showing a schematic configuration of the present invention, and FIG.
FIG. 3 is an overall configuration diagram showing an overall configuration of an embodiment of the present invention,
Fig. 4 is an air-fuel ratio characteristic diagram showing the air-fuel ratio with respect to the rotational speed during idling, Fig. 4 is an air-fuel ratio characteristic diagram showing the air-fuel ratio with respect to the intake pressure other than during idling, and Fig. 5 is the execution of the control circuit shown in Fig. 2. FIG. 6 is a flow chart showing an abnormality detection routine, FIG. 6 is a flow chart showing an air-fuel ratio calculation routine executed by the control circuit shown in FIG. 2, and FIGS. 7 to 9 are other examples of the air-fuel ratio characteristic shown in FIG. FIG. 4 is an air-fuel ratio characteristic diagram showing 1 ... Internal combustion engine, 4 ... Pressure sensor as load detecting means, 6 ... Fully closed switch as idling detecting means, 1
0 ... Control circuit including lean air-fuel ratio setting means, idling air-fuel ratio setting means, mixture control means, abnormality determination means, and air-fuel ratio changing means.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】内燃機関の吸気管圧力、回転数、吸入空気
量のうち少なくとも1つの動作状態に基づき機関負荷状
態を検出する負荷検出手段と、 前記内燃機関のアイドリング状態としてスロットル弁の
全閉状態を検出するスロットル弁全閉検出手段と、 アイドリング状態を含む低負荷状態では理論空燃比より
も希薄な空燃比となるように前記負荷検出手段により検
出された負荷状態に応じて空燃比を設定する希薄空燃比
設定手段と、 アイドリング状態での空燃比を大略理論空燃比に設定す
るアイドリング空燃比設定手段と、 前記スロットル弁全閉検出手段によって前記スロットル
弁の全閉状態が検出されていない時には前記希薄空燃比
設定手段により設定された空燃比で、前記スロットル弁
全閉検出手段によって前記スロットル弁の全閉状態が検
出されている時には前記アイドリング空燃比設定手段に
より設定された空燃比で前記内燃機関の混合気を制御す
る空燃比制御手段と、 前記スロットル弁全閉検出手段の作動の異常を判別する
異常判別手段と、 この異常判別手段により前記スロットル弁全閉検出手段
の異常が判別されると前記希薄空燃比検出手段で設定さ
れるアイドリング状態に対応する低負荷状態での希薄空
燃比を大略理論空燃比に変更する空燃比変更手段とを備
えることを特徴とする内燃機関の空燃比制御装置。
1. Load detecting means for detecting an engine load state based on at least one operating state of an intake pipe pressure, a rotational speed, and an intake air amount of the internal combustion engine; and a throttle valve fully closed as an idling state of the internal combustion engine. Throttle valve fully closed detection means for detecting the state, and the air-fuel ratio is set according to the load state detected by the load detection means so that the air-fuel ratio becomes leaner than the theoretical air-fuel ratio in the low load state including the idling state. A lean air-fuel ratio setting means, an idling air-fuel ratio setting means for setting an air-fuel ratio in an idling state to a substantially theoretical air-fuel ratio, and a fully closed state of the throttle valve is not detected by the throttle valve fully closed detection means. With the air-fuel ratio set by the lean air-fuel ratio setting means, the throttle valve fully-closed detection means fully closes the throttle valve. Is detected, the air-fuel ratio control means for controlling the air-fuel ratio of the internal combustion engine at the air-fuel ratio set by the idling air-fuel ratio setting means, and the abnormality determination for determining the abnormal operation of the throttle valve fully closed detection means And a means for determining the abnormality of the throttle valve fully closed detecting means, the lean air-fuel ratio in the low load state corresponding to the idling state set by the lean air-fuel ratio detecting means is set to approximately the theoretical air-fuel ratio. An air-fuel ratio control device for an internal combustion engine, comprising:
【請求項2】前記異常判別手段は、車両が走行状態から
停止状態へ移行した時に、前記スロットル弁全閉検出手
段が前記スロットル弁の全閉を検出していない場合に、
前記スロットル弁全閉検出手段が異常であると判別する
ことを特徴とする特許請求の範囲第1項記載の内燃機関
の空燃比制御装置。
2. The abnormality determining means, when the throttle valve fully closed detecting means does not detect the fully closed state of the throttle valve when the vehicle shifts from a running state to a stopped state,
The air-fuel ratio control device for an internal combustion engine according to claim 1, wherein it is determined that the throttle valve fully closed detection means is abnormal.
JP61268127A 1986-11-11 1986-11-11 Air-fuel ratio control device for internal combustion engine Expired - Fee Related JP2503453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61268127A JP2503453B2 (en) 1986-11-11 1986-11-11 Air-fuel ratio control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61268127A JP2503453B2 (en) 1986-11-11 1986-11-11 Air-fuel ratio control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS63120837A JPS63120837A (en) 1988-05-25
JP2503453B2 true JP2503453B2 (en) 1996-06-05

Family

ID=17454259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61268127A Expired - Fee Related JP2503453B2 (en) 1986-11-11 1986-11-11 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2503453B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59155537A (en) * 1983-02-24 1984-09-04 Nissan Motor Co Ltd Fuel injection controlling apparatus for internal-combustion engine
JPS60230536A (en) * 1984-04-28 1985-11-16 Toyota Motor Corp Air-fuel ratio controller for internal-combustion engine
JPS6158945A (en) * 1984-08-29 1986-03-26 Nissan Motor Co Ltd Full injection control device for internal-combustion engine

Also Published As

Publication number Publication date
JPS63120837A (en) 1988-05-25

Similar Documents

Publication Publication Date Title
JPH03217637A (en) Device for judging activity of o2 sensor
US5832724A (en) Air-fuel ratio control system for engines
JPH0531643B2 (en)
US5033440A (en) Apparatus for controlling air/fuel ratio of internal combustion engine
KR930004630A (en) Internal Combustion Fuel Control System
JP2503453B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0255616B2 (en)
JP2870240B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0330707B2 (en)
JPH07103831B2 (en) Exhaust gas recirculation control device
JPH0465223B2 (en)
JPH082448Y2 (en) Engine controller
JPS6254975B2 (en)
JPH0810672Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JP2519817Y2 (en) Engine protector
JPH0410359Y2 (en)
JP2596025B2 (en) Air-fuel ratio control device for internal combustion engine
JP2707678B2 (en) Air-fuel ratio control device for LPG engine
JP2621723B2 (en) Purge introduction control device
JP2503055Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JP2545221Y2 (en) Engine air-fuel ratio control device
JPS6345446A (en) Electronic fuel control method and device for internal combustion engine
JPH0112932B2 (en)
JPS6179839A (en) Idle rotational speed control device in engine
JPH0131020B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees