JP2503385B2 - Substation equipment for distribution - Google Patents
Substation equipment for distributionInfo
- Publication number
- JP2503385B2 JP2503385B2 JP59016274A JP1627484A JP2503385B2 JP 2503385 B2 JP2503385 B2 JP 2503385B2 JP 59016274 A JP59016274 A JP 59016274A JP 1627484 A JP1627484 A JP 1627484A JP 2503385 B2 JP2503385 B2 JP 2503385B2
- Authority
- JP
- Japan
- Prior art keywords
- distribution
- transformer
- shunt reactor
- substation
- distribution substation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/30—Reactive power compensation
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
Description
【発明の詳細な説明】 この発明は配電用変電所設備に関するものである。The present invention relates to distribution substation equipment.
現在の電力系統を第1図に示している。すなわち、A
は220〜500KVの超々高圧系統、1は220〜500KV/66〜154
KVの1次変電所、2は66〜154KV送電線、3は66〜154KV
/6.6〜22KV配電用変電所、4は6.6〜22KV配電線、5は
6.6〜22KV受電需要家、6は6.6〜22KV/100〜400V柱上変
圧器、7は電灯需要家である。The current power system is shown in FIG. That is, A
220-500KV ultra-high voltage system, 1 220-500KV / 66-154
KV primary substation, 2 66-154KV transmission line, 3 66-154KV
/ 6.6-22KV distribution substation, 4 is 6.6-22KV distribution line, 5 is
6.6 to 22KV power receiving customer, 6 is a 6.6 to 22KV / 100 to 400V pole pole transformer, and 7 is a lighting customer.
このような電力系統において、従来第2図のように並
列コンデンサ8以外に、需要家5,7に設置された電力用
コンデンサ9が多く、しかも深夜になって負荷が少なく
なった場合でも電力用コンデンサ9が切離されるケース
が少ないため、進相分の突き上げが多くなるという問題
がある。そこでこれを補償するため1次変電所1に分路
リアクトル10を設置して超々高圧系統Aへ流入する無効
電力が少なくなるようにしている。In such a power system, in addition to the parallel capacitor 8 as shown in FIG. 2 of the related art, there are many power capacitors 9 installed in the customers 5 and 7, and even if the load decreases at midnight, the power capacitors are not used. Since there are few cases where the capacitor 9 is disconnected, there is a problem that the amount of advance for the phase advance increases. Therefore, in order to compensate for this, a shunt reactor 10 is installed in the primary substation 1 so that the reactive power flowing into the ultra-high voltage system A is reduced.
ところで、このような分路リアクトル10は、1次変電
所1側に設置するよりも第2図の破線および第3図のよ
うに配電用変電所3側に分路リアクトル11,12を設置す
る方が送電線2に流れる無効電力が少ないため、送電損
失の軽減上有利である。しかし、配電用変電所3に設置
する場合、分路リアクトル11,12の容量が5〜20MVAと比
較的小容量となり、1次変電所1で使用されている20〜
120MVAの大容量のものに比較して容量当りの費用が高価
になる。また配電用変電所3内にスペースや開閉装置用
の用地が新たに必要となる。とくに分路リアクトルを置
く必要があるのはケーブル系の多い人口密度の高い都心
部であるため、なおさら変電所用地の確保が困難な場所
である。したがって、配電用変電所3への実施が困難で
あり、現在の電力系統では配電用変電所3に分路リアク
トル11,12が設置されることはほとんどない。By the way, in such a shunt reactor 10, the shunt reactors 11 and 12 are installed on the distribution substation 3 side as shown by the broken line in FIG. 2 and FIG. 3 rather than installed on the primary substation 1 side. Since the amount of reactive power flowing through the transmission line 2 is smaller, it is more advantageous in reducing transmission loss. However, when installed in the distribution substation 3, the capacity of the shunt reactors 11 and 12 is relatively small, 5 to 20 MVA, and the capacity of the primary substation 1 is 20 to 20 MVA.
The cost per capacity is higher than that of a large capacity of 120 MVA. In addition, a space and a site for switchgear are newly required in the distribution substation 3. It is especially difficult to secure a site for the substation because it is necessary to install a shunt reactor in the center of the city with a high density of cables and a high population density. Therefore, it is difficult to implement the distribution substation 3, and the shunt reactors 11 and 12 are rarely installed in the distribution substation 3 in the current power system.
したがって、この発明の目的は、送電損失の軽減を図
り、設置スペースを増大しないで配電用変電所側に分路
リアクトルを容易に設置することができる配電用変電所
設備を提供することである。Therefore, an object of the present invention is to provide a distribution substation facility that can reduce transmission loss and can easily install a shunt reactor on the distribution substation side without increasing the installation space.
この発明の一実施例を第4図ないし第6図に示す。す
なわち、第4図は3相用分路リアクトル変圧器であり、
鉄心13のギャップ14を有する鉄心脚15に主巻線16a〜16c
を設け、さらに配電電圧用2次巻線17a〜17cを付加し、
巻数比を66〜154KV/3.3〜22KVに降圧されるようにした
ものである。第5図はこの分路リアクトル変圧器TrRの
等価回路であり、分路リアクトル変圧器TrRの遅相分を
電力用コンデンサ9の進相分に対応させることにより無
効電力を低減し、また変圧作用により配電用変電所3に
おける変圧器に代用することができることとなる。An embodiment of the present invention is shown in FIGS. That is, FIG. 4 shows a 3-phase shunt reactor transformer,
Main windings 16a to 16c are attached to an iron core leg 15 having a gap 14 of the iron core 13.
And the secondary windings 17a to 17c for distribution voltage are added,
It is designed to reduce the turns ratio to 66-154KV / 3.3-22KV. Fig. 5 shows an equivalent circuit of this shunt reactor transformer TrR, which reduces the reactive power by making the lag component of the shunt reactor transformer TrR correspond to the lead component of the power capacitor 9 and transforms it. Thus, the transformer in the distribution substation 3 can be substituted.
第6図は配電用変電所3における配電用変電所設備の
電力系統を示しており、前記分路リアクトル変圧器TrR
を配電用変圧器群18の少なくとも1つに変圧器の代わり
に適用し、かつこの分路リアクトル変圧器TrRを適宜に
切離すことができるしゃ断器21aを分路リアクトル変圧
器TrRに設けている。19a,19bは分路リアクトル変圧器Tr
Rとともに前記配電用変圧器群を構成する配電用変圧
器、20は各箇所の断路器、21は各箇所のしゃ断器であ
る。FIG. 6 shows the power system of the distribution substation equipment in the distribution substation 3. The branch reactor transformer TrR is shown in FIG.
Is applied to at least one of the distribution transformer groups 18 instead of the transformers, and a breaker 21a capable of appropriately disconnecting this shunt reactor transformer TrR is provided in the shunt reactor transformer TrR. . 19a and 19b are shunt reactor transformers Tr
A distribution transformer that constitutes the distribution transformer group together with R, 20 is a disconnecting switch at each location, and 21 is a circuit breaker at each location.
このように、変圧作用を兼ねた分路リアクトル変圧器
TrRを第6図のように従来の変圧器に代えて設置するこ
とにより、第3図との比較からも明らかなように断路器
20,しゃ断器21等の電路要素を含む分路リアクトル配線
設備が省略されるため設備が簡素になり、また配電用変
電所3の用地や建屋等を新たに増大することがなく、従
来の配電用変圧器とほぼ同一の用地,および機器コスト
のもので配電用変電所3において遅相無効電力を供給す
ることが可能になる。したがって、系統全体での合理的
な無効電力のバランスがとれ、送電線での送電損失の軽
減を図ることができる。さらに負荷側の進相無効電力が
減少して分路リアクトル変圧器TrRによる遅相無効電力
が不要になった場合、切離手段によって分路リアクトル
変圧器TrRを切離すことにより、常時遅相無効電力を分
路リアクトル変圧器TrRで消費することがなくなり、系
統運用上好都合である。In this way, the shunt reactor transformer that also functions as a transformer
By installing the TrR in place of the conventional transformer as shown in Fig. 6, it is clear from the comparison with Fig. 3 that the disconnector is installed.
20, the shunt reactor wiring equipment including the electric circuit elements such as the circuit breaker 21 is omitted, the equipment is simplified, and the site or building of the distribution substation 3 is not newly added and the conventional distribution It is possible to supply the lagging reactive power at the distribution substation 3 at the same site and equipment cost as the power transformer. Therefore, the reactive power can be reasonably balanced in the entire system, and the transmission loss in the transmission line can be reduced. Furthermore, when the phase reactive reactive power on the load side decreases and the phase reactive reactive power due to the shunt reactor transformer TrR becomes unnecessary, the shunt reactor transformer TrR is disconnected by the disconnecting means to always provide the phase delay reactive power. Electricity is not consumed by the shunt reactor transformer TrR, which is convenient for system operation.
以上のように、この発明の配電用変電所設備は、ギャ
ップを有する鉄心脚に主巻線と配電電圧用2次巻線を巻
装して形成した変圧作用を兼ねた分路リアクトル変圧器
を配電用変圧器群の少なくとも1台となし、分路リアク
トル変圧器を切り離す切離手段を設けたため、従来に比
較してスペースを増大することなく配電用変電所に分路
リアクトル変圧器を設置することができ、配電用変電所
の設備を簡素化でき、さらに送電損失を軽減することが
でき、また遅相無効電力が不要な場合には適宜切離すこ
とができるので好都合であるという効果がある。INDUSTRIAL APPLICABILITY As described above, the distribution substation equipment of the present invention is a shunt reactor transformer that also functions as a transformer formed by winding a main winding and a secondary winding for distribution voltage around an iron core leg having a gap. Since it is at least one of the distribution transformer group and the disconnecting means for separating the shunt reactor transformer is provided, the shunt reactor transformer is installed in the distribution substation without increasing the space compared with the conventional one. It is possible to simplify the equipment of the distribution substation, further reduce the transmission loss, and it is possible to disconnect it properly when the lagging reactive power is unnecessary, which is advantageous. .
第1図は現在の電力系統図、第2図はその一部を示す詳
細系統図、第3図はその配電用変電所における系統図、
第4図はこの発明の一実施例の分路リアクトルの断面
図、第5図はその等価回路図、第6図は配電用変電所設
備における系統図である。 17a〜17c……2次巻線、18……配電用変圧器群、TrR…
…分路リアクトル変圧器Fig. 1 is the current power system diagram, Fig. 2 is a detailed system diagram showing a part of it, and Fig. 3 is the system diagram of the distribution substation.
FIG. 4 is a sectional view of a shunt reactor according to an embodiment of the present invention, FIG. 5 is an equivalent circuit diagram thereof, and FIG. 6 is a system diagram of distribution substation equipment. 17a to 17c …… Secondary winding, 18 …… Distribution transformer group, TrR…
… Shunt reactor transformer
Claims (1)
圧用2次巻線を巻装して形成した変圧作用を兼ねた分路
リアクトル変圧器を少なくとも1台含む配電用変圧器群
と、遅相無効電力が不要になった場合に前記分路リアク
トル変圧器を切離すしゃ断器とを備えた配電用変電所設
備。1. A distribution transformer group including at least one shunt reactor transformer also having a transformer function, which is formed by winding a main winding and a secondary winding for distribution voltage on an iron core leg having a gap. , A distribution substation facility comprising a circuit breaker for disconnecting the shunt reactor transformer when the lagging reactive power is no longer needed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59016274A JP2503385B2 (en) | 1984-01-31 | 1984-01-31 | Substation equipment for distribution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59016274A JP2503385B2 (en) | 1984-01-31 | 1984-01-31 | Substation equipment for distribution |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60162420A JPS60162420A (en) | 1985-08-24 |
JP2503385B2 true JP2503385B2 (en) | 1996-06-05 |
Family
ID=11911964
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59016274A Expired - Lifetime JP2503385B2 (en) | 1984-01-31 | 1984-01-31 | Substation equipment for distribution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2503385B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56148139A (en) * | 1980-04-16 | 1981-11-17 | Aichi Electric Mfg | Voltage and reactive power control system |
JPS58175930A (en) * | 1982-04-05 | 1983-10-15 | 三菱電機株式会社 | Backup control system for power system |
-
1984
- 1984-01-31 JP JP59016274A patent/JP2503385B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56148139A (en) * | 1980-04-16 | 1981-11-17 | Aichi Electric Mfg | Voltage and reactive power control system |
JPS58175930A (en) * | 1982-04-05 | 1983-10-15 | 三菱電機株式会社 | Backup control system for power system |
Also Published As
Publication number | Publication date |
---|---|
JPS60162420A (en) | 1985-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4085338A (en) | High-voltage network for areas with high rate of icing | |
US5905367A (en) | Power inverter apparatus using a transformer with its primary winding connected the source end and a secondary winding connected to the load end of an AC power line to insert series compensation | |
Bonnard | The problems posed by electrical power supply to industrial installations | |
US5541808A (en) | Switchgear incorporating an active filter | |
JP2503385B2 (en) | Substation equipment for distribution | |
US3153116A (en) | Fused banking pedestal with insulating terminal shield means | |
US20240250532A1 (en) | Electrical apparatus with primary voltage power correction | |
CA2290241A1 (en) | Four-pole to three-pole bussing for a network protector | |
JPH07264777A (en) | Transformation panel board | |
JPH0367330B2 (en) | ||
Sults et al. | Concepts and Practical Application for Distributed Compensation of Earth Fault Current in Latvia's 20 kV Networks | |
EP4339988A1 (en) | Passive fault protection arrangement for a measuring voltage transformer or a power voltage transformer for use in high voltage applications | |
Dewey | General considerations in grounding the neutral of power systems | |
RU165572U1 (en) | ARC EXTINGUISHING REACTOR | |
Leach | Standardization of distribution in densely loaded areas | |
SU716107A1 (en) | Transformer substation | |
JP2001189220A (en) | Transformer equipment | |
Brazil | Electrical Substations | |
JPS5836201Y2 (en) | conductor communication device | |
US20030222745A1 (en) | Combination of transformer and coil | |
JPS6130252Y2 (en) | ||
JPS5834740Y2 (en) | Three-phase on-load tap-changing transformer | |
Cole | Standardisation of plant and equipment for public electricity supply. An Area Board's aims and experiences | |
Garrett | Abridgment of DC. railway substation for the Chicago: Terminal electrification, Illinois central railroad | |
Ponte et al. | Small series converter station specification and cost evaluation |