JP2502954B2 - Manufacturing method of electroforming mold - Google Patents

Manufacturing method of electroforming mold

Info

Publication number
JP2502954B2
JP2502954B2 JP35845692A JP35845692A JP2502954B2 JP 2502954 B2 JP2502954 B2 JP 2502954B2 JP 35845692 A JP35845692 A JP 35845692A JP 35845692 A JP35845692 A JP 35845692A JP 2502954 B2 JP2502954 B2 JP 2502954B2
Authority
JP
Japan
Prior art keywords
conductive layer
electroformed
conductive
manufacturing
electroforming mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35845692A
Other languages
Japanese (ja)
Other versions
JPH06192883A (en
Inventor
関治 長田
勝 川村
純次 長田
洋人 長岡
達夫 森
周市 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP35845692A priority Critical patent/JP2502954B2/en
Publication of JPH06192883A publication Critical patent/JPH06192883A/en
Application granted granted Critical
Publication of JP2502954B2 publication Critical patent/JP2502954B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、プラスチックの真空成
形、中空成形等に用いる多孔性電鋳成形型の製造方法に
係わり、特に、通孔の位置を容易に確保できるとともに
生産性がよいものに関する。
BACKGROUND OF THE INVENTION This invention is vacuum forming of plastic relates <br/> a porous electroformed mold manufacturing how to use the blow molding or the like, in particular, with the position of the hole can be easily secured For those with high productivity.

【0002】[0002]

【従来の技術】まず、この種の多孔性電鋳成形型の構造
とその使用例を図3で説明する。 図3において、この
多孔性電鋳成形型31は多数の通孔31aを有してお
り、真空ポンプ32、ヒーター33、クランプ34が配
設された真空成形機35内にシボ模様等の形成された成
形面31bを上側にして装備されている。この多孔性電
鋳成形型31を用いて自動車内装部品のドアトリム外
皮、クラッシュパッド外皮等を真空成形する場合には、
まず、ヒーター33によりシート材36を加熱・軟化さ
せ、このシート材36を成形型31の上方にクランプ3
4で固定する。そして、真空ポンプ32を作動させるこ
とにより通孔31aを通してシート材36と成形型31
の間の空気を吸引し、シート材36と成形型31の間を
真空状態にする。そして、シート材36を成形型31に
引きつけてシート材36を成形型31の成形面31bに
密着させ、シート材36を成形型31と同一形状に成形
するのである。
2. Description of the Related Art First, the structure of a porous electroforming mold of this type and an example of its use will be described with reference to FIG. In FIG. 3, this porous electroforming mold 31 has a large number of through holes 31a, and a grain pattern or the like is formed in a vacuum forming machine 35 in which a vacuum pump 32, a heater 33, and a clamp 34 are arranged. It is equipped with the molding surface 31b facing upward. In the case where the porous electroformed mold 31 is used to vacuum-mold a door trim skin, a crash pad skin, etc. of an automobile interior part,
First, the sheet material 36 is heated and softened by the heater 33, and the sheet material 36 is clamped above the molding die 31.
Fix at 4. Then, by operating the vacuum pump 32, the sheet material 36 and the molding die 31 are passed through the through hole 31a.
The air between the sheet material 36 and the molding die 31 is vacuumed. Then, the sheet material 36 is attracted to the molding die 31 to bring the sheet material 36 into close contact with the molding surface 31 b of the molding die 31, and the sheet material 36 is molded into the same shape as the molding die 31.

【0003】ところで、シボ模様等の緻密な反転性を得
ようとすると、成形型31の通孔31aは小さいものが
多数開口していることが望ましく、その大きさは0.1
mm前後のものが好ましいが、このように小さな通気孔
31aを機械加工又は放電加工で形成することは現実的
ではない。そこで、従来、次に述べるような電鋳加工を
利用して多孔性の成形型を製造している。
By the way, in order to obtain a dense reversibility such as a textured pattern, it is desirable that a large number of small holes 31a of the molding die 31 are opened, and the size thereof is 0.1.
Although it is preferable that the hole diameter is about mm, it is not realistic to form such a small vent hole 31a by machining or electric discharge machining. Therefore, conventionally, a porous molding die has been manufactured by utilizing electroforming as described below.

【0004】すなわち、電鋳加工による成形型の製造
は、電鋳模型の表面に導電層を設け、電解メッキにより
この導電層上に金属層を析出させて電鋳成形型を形成す
るのであるが、多孔性電鋳型の製造方法は、この導電層
に多数の非導電部を設けると、この非導電部には金属層
が析出しないのでこれを成長させて通孔とすることによ
り多孔性の電鋳成形型を得るものである。このような多
孔性電鋳成形型の製造方法の具体例を図2に基づき説明
する(特公平2─14434号公報参照)。図2におい
て、成形品と同一形状の電鋳模型21を製作し、この電
鋳模型21の表面21aに、ペースト状銀ラッカーと酢
酸ブチルとを1:1の比率で配合した配合液に30%以
下の割合で塩化ビニルラッカー液を混入したスプレー液
をスプレーして導電層22を形成する。すると、導電層
22に塩化ビニルラッカーが微小な非導電部23を形成
して点在し、導電層22全体として導電性が低くなると
ともに、この非導電部23には電鋳材料が析出しにくい
ため、微小な非電着部25aが発生する。そして、この
非電着部25aが電鋳の進行とともに通孔25に成長す
るものである。
That is, in the production of a forming die by electroforming, a conductive layer is provided on the surface of an electroformed model, and a metal layer is deposited on this conductive layer by electrolytic plating to form an electroforming die. In the method of manufacturing a porous electroforming mold, when a large number of non-conductive parts are provided in this conductive layer, a metal layer does not precipitate in this non-conductive part. A casting mold is obtained. A specific example of a method for manufacturing such a porous electroforming mold will be described with reference to FIG. 2 (see Japanese Patent Publication No. 2-14434). In FIG. 2, an electroformed model 21 having the same shape as that of the molded product was manufactured, and 30% was added to the surface 21a of the electroformed model 21 in which a paste silver lacquer and butyl acetate were mixed at a ratio of 1: 1. The conductive layer 22 is formed by spraying a spray liquid containing a vinyl chloride lacquer liquid in the following proportions. Then, the vinyl chloride lacquer is scattered on the conductive layer 22 to form minute non-conductive portions 23, and the conductivity of the conductive layer 22 as a whole is lowered, and the electroformed material does not easily deposit on the non-conductive portions 23. Therefore, a minute non-electrodeposition portion 25a is generated. The non-electrodeposited portion 25a grows in the through hole 25 as the electroforming proceeds.

【0005】[0005]

【発明が解決しようとする課題】従来の技術で述べた多
孔性電鋳成形型の製造方法は、導電層を形成させるスプ
レー液に非導電性材料である塩化ビニルラッカーを溶液
状で混入していることから、それが固まってできる非導
電部が導電層中に分散して形成されるため、以下の問題
があった。すなわち、形成された導電層の導電度が全体
的に低下するため、高い電流密度の電流を流さなければ
ならず、そのため電鋳歪みを発生し易くなる。また、形
成された非導電部の大きさが均一ではなく、従って、そ
の非導電部から形成される通孔の大きさも均一ではな
い。さらに、電鋳模型の所望の部位に非導電部を位置さ
せることが困難である。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The method of manufacturing a porous electroforming mold described in the prior art is a method in which a non-conductive material, vinyl chloride lacquer, is mixed in a solution form into a spray liquid for forming a conductive layer. As a result, the non-conductive part formed by solidification is dispersed and formed in the conductive layer, which causes the following problems. That is, since the conductivity of the formed conductive layer is lowered as a whole, a current having a high current density has to be passed, and thus electroforming distortion is likely to occur. Further, the size of the formed non-conductive portion is not uniform, and therefore the size of the through hole formed from the non-conductive portion is not uniform. Furthermore, it is difficult to position the non-conductive portion at a desired portion of the electroformed model.

【0006】本発明は、従来の技術の有するこのような
問題点に鑑みてなされたものであり、その目的とすると
ころは、通孔の位置を容易に確保でき、かつ簡易に製造
可能な多孔性電鋳成形型の製造方法を提供しようとする
ものである。
The present invention has been made in view of the above problems of the prior art. The object of the present invention is to make it possible to easily secure the positions of the through holes and to easily manufacture the porous holes. An object of the present invention is to provide a method for manufacturing a sex electroforming mold.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明における電鋳成形型の製造方法は、模型の表
面に所定の処理により膨張可能なプラスチック微小球体
を多数含む導電層を形成する第1の工程と、前記プラス
チック微小球体を所定の処理によって膨張させて該球体
表面に存在する導電層を断裂させる第2の工程と、この
模型に電鋳処理を施して電鋳殻を形成する第3の工程
と、前記電鋳殻中のプラスチック微小中空球体を溶剤等
で除去して多孔性の電鋳殻を得る第4の工程とを含んで
なるものである。
In order to solve the above-mentioned problems, in the method of manufacturing an electroforming mold according to the present invention, a conductive layer containing a large number of expandable plastic microspheres by a predetermined treatment is formed on the surface of a model. And a second step in which the plastic microspheres are expanded by a predetermined treatment to break the conductive layer existing on the surface of the spheres, and the model is electroformed to form an electroformed shell. And a fourth step of removing the plastic micro hollow spheres in the electroformed shell with a solvent or the like to obtain a porous electroformed shell.

【0008】[0008]

【0009】[0009]

【作用】上述の構成によれば、電鋳模型の表面に膨張可
能なプラスチック微小球体を多数含む導電層を形成した
後、プラスチック微小球体を所定の処理によって膨張さ
せ該球体表面に存在する導電層を断裂させることによっ
て非導電部が形成される。その後、この電鋳模型に電鋳
処理を施すと、前記非導電部には金属層が析出せず、多
孔性電鋳殻が得られる。
According to the above-mentioned structure, after the conductive layer containing a large number of expandable plastic microspheres is formed on the surface of the electroformed model, the plastic microspheres are expanded by a predetermined process and the conductive layer existing on the surface of the spherical body is expanded. The non-conductive portion is formed by rupturing. Then, when this electroformed model is subjected to electroforming treatment, a metal layer is not deposited on the non-conductive portion, and a porous electroformed shell is obtained.

【0010】[0010]

【実施例】以下、本発明の実施例について図面を参照し
つつ説明する。図1は本発明の電鋳成形型の製造方法を
示す工程図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a process diagram showing a method for manufacturing an electroforming mold of the present invention.

【0011】図1において、図1(a)に示すように、
エポキシ樹脂等で製作された電鋳模型1の表面上に、加
熱により膨張するプラスチック微小中空球体3と銀ペー
ストと溶剤とを混合した溶液をスプレーコーティング又
はハケ塗りしてプラスチック微小中空球体3を多数含む
導電層2を形成する。前記プラスチック微小中空球体3
は、本実施例では、塩化ビニリデン等からなる直径φ5
μ〜φ40μ程度の中空球体で内部3aにガスが封入さ
れているものを用いた。また、導電層2の厚さは5μ程
度とした。前記プラスチック微小中空球体3は、この外
に真空処理により、あるいは化学的作用により膨張する
ものであってもよい。また、膨張方法より内部は中実で
あってもよい。
In FIG. 1, as shown in FIG.
On the surface of the electroformed model 1 made of epoxy resin or the like, a large number of plastic micro hollow spheres 3 are spray-coated or brush coated with a solution of a plastic micro hollow sphere 3 which expands by heating, a silver paste and a solvent. The conductive layer 2 including is formed. The plastic micro hollow sphere 3
Is a diameter φ5 made of vinylidene chloride or the like in this embodiment.
A hollow sphere having a size of μ to φ40 μ and a gas enclosed in the interior 3a was used. The conductive layer 2 has a thickness of about 5 μm. The plastic micro hollow sphere 3 may be expanded by a vacuum treatment or a chemical action. Further, the inside may be solid depending on the expansion method.

【0012】つぎに、この電鋳模型を図示されないオー
ブン中で約100°C〜150°Cに蒸気加熱し、図1
(b)に示すように、導電層2に含まれるプラスチック
微小中空球体3を直径で約4倍、体積で約60倍に膨張
させる。これによって、該プラスチック微小中空球体3
の表面に存在する導電層2aが断裂し、このプラスチッ
ク微小中空球体3の表面が非導電部となる。
Next, this electroformed model was steam-heated to about 100 ° C. to 150 ° C. in an oven (not shown), and
As shown in (b), the plastic micro hollow spheres 3 contained in the conductive layer 2 are expanded about 4 times in diameter and about 60 times in volume. As a result, the plastic micro hollow sphere 3
The conductive layer 2a existing on the surface of the is broken, and the surface of the plastic micro hollow sphere 3 becomes a non-conductive portion.

【0013】つぎに、この電鋳模型を図示されない電解
メッキ浴槽中で、電鋳模型を負極に、メッキ用の銅又は
ニッケル素材等を正極に各々接続して電鋳処理を施し、
図1(c)に示すように、導電層2上に金属層4を所定
の厚みに析出させて電鋳殻を形成する。しかしこのと
き、非導電部であるプラスチック微小中空球体3の表面
には金属が析出せず電鋳殻は多孔性となる。その後、プ
ラスチック微小中空球体3を溶剤等で溶出させて通孔と
し多孔性電鋳型が得られる。
Next, this electroformed model is electroplated in an electrolytic plating bath (not shown) by connecting the electroformed model to the negative electrode and the copper or nickel material for plating to the positive electrode.
As shown in FIG. 1C, the metal layer 4 is deposited on the conductive layer 2 to a predetermined thickness to form an electroformed shell. However, at this time, no metal is deposited on the surface of the plastic micro hollow sphere 3 which is the non-conductive portion, and the electroformed shell becomes porous. After that, the plastic micro hollow spheres 3 are eluted with a solvent or the like to form through holes, and a porous electroforming mold is obtained.

【0014】上述の電鋳型の製造方法では、非導電部が
プラスチック球体3であるため、電鋳模型1上の非導電
部の位置、すなわち、この上に形成される通孔の位置を
容易に特定し確保することができる。また、非導電材料
であるプラスチック微小中空球体3は導電材料と固体状
態で分離しているので導電層2全体の導電度低下が少な
く、このため電流密度を高くするのを押さえられ、電鋳
殻の内部応力を最小限にくい止めることができるので、
歪みが限りなく少ない。さらに、プラスチック微小中空
球体3を予め導電材料と混ぜてスプレー液等として使用
することができるので、導電層を形成するのに従来と同
様の方法でよく、特別手間を要しない。そして、非導電
部を形成するのに、プラスチック微小中空球体3を加熱
等で膨張させるだけでよく、例えば腐食により非導電部
を形成する場合等と比べると簡単である。従って、電鋳
型の生産性がよい。
In the above-described method of manufacturing the electroforming mold, since the non-conductive portion is the plastic sphere 3, the position of the non-conductive portion on the electroformed model 1, that is, the position of the through hole formed thereon can be easily adjusted. Can be identified and secured. In addition, since the plastic micro hollow sphere 3 which is a non-conductive material is separated from the conductive material in the solid state, the conductivity of the conductive layer 2 as a whole does not decrease, and therefore the current density can be suppressed from increasing, and the electroformed shell can be suppressed. Since the internal stress of can be stopped to the minimum,
There is almost no distortion. Further, since the plastic micro hollow spheres 3 can be mixed with a conductive material in advance and used as a spray liquid or the like, a method similar to the conventional method may be used to form the conductive layer, and no special labor is required. Then, in order to form the non-conductive portion, it suffices to expand the plastic micro hollow spheres 3 by heating or the like, which is easier than, for example, the case of forming the non-conductive portion by corrosion. Therefore, the productivity of the electroforming mold is good.

【0015】[0015]

【発明の効果】本発明の電鋳成形型の製造方法は上述の
ように、電鋳模型の表面に所定の処理により膨張可能な
プラスチック微小球体を多数含む導電層を形成した後、
そのプラスチック微小球体を所定の処理によって膨張さ
せて該球体表面に存在する導電層を断裂させ、その後、
この電鋳模型に電鋳処理を施して多孔性の電鋳殻を形成
する。従って、プラスチック微小球体の位置に通孔が形
成され、電鋳型の通孔の位置を容易に確保できる。ま
た、非導電材料であるプラスチック微小球体は導電材料
と固体状態で分離しているので導電層全体の導電度低下
が少なく、電鋳殻の歪みが限りなく少ない。さらに、導
電層を形成するのに従来と同様の方法でよく、また非導
電部を形成するのに、プラスチック微小球体を所定の処
理で膨張させるだけでよいので電鋳型の生産性がよい。
As described above, the method of manufacturing an electroforming mold of the present invention comprises forming a conductive layer containing a large number of expandable plastic microspheres on a surface of an electroformed model by a predetermined treatment.
The plastic microsphere is expanded by a predetermined treatment to rupture the conductive layer present on the surface of the sphere, and thereafter,
This electroformed model is electroformed to form a porous electroformed shell. Therefore, a through hole is formed at the position of the plastic microsphere, and the position of the through hole of the electroforming mold can be easily secured. Further, since the plastic microspheres, which are non-conductive materials, are separated from the conductive material in the solid state, the conductivity of the entire conductive layer does not decrease so much, and the distortion of the electroformed shell is extremely small. Furthermore, the conductive layer may be formed by the same method as the conventional method, and the non-conductive portion may be formed by expanding the plastic microspheres by a predetermined process, so that the productivity of the electroforming mold is good.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電鋳成形型の製造方法を示す工程図で
ある。
FIG. 1 is a process drawing showing a method for manufacturing an electroforming mold of the present invention.

【図2】従来の電鋳成形型の製造方法を示す図である。FIG. 2 is a diagram showing a conventional method for manufacturing an electroforming mold.

【図3】電鋳成形型の使用方法を示す図である。FIG. 3 is a diagram showing a method of using the electroforming mold.

【符号の説明】[Explanation of symbols]

1 電鋳模型(模型) 2 導電層 2a プラスチック微小中空球体の表面に存在する導電
層 3 プラスチック微小中空球体 4 金属層(電鋳殻)
1 Electroformed model (model) 2 Conductive layer 2a Conductive layer existing on the surface of plastic micro hollow sphere 3 Plastic micro hollow sphere 4 Metal layer (electroformed shell)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 横山 周市 兵庫県神戸市灘区水車新田字宮坂111− 1 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Zhouichi Yokoyama Ninya, Kobe, Hyogo Prefecture Water wheel Shinta character Miyasaka 111-1

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 模型の表面に所定の処理により膨張可能
なプラスチック微小球体を多数含む導電層を形成する第
1の工程と、前記プラスチック微小球体を所定の処理に
よって膨張させて該球体表面に存在する導電層を断裂さ
せる第2の工程と、この模型に電鋳処理を施して電鋳殻
を形成する第3の工程と、前記電鋳殻中のプラスチック
微小球体を溶剤等で除去して多孔性の電鋳殻を得る第4
の工程とを含んでなることを特徴とする電鋳成形型の製
造方法。
1. A first step of forming a conductive layer containing a large number of plastic microspheres expandable by a predetermined treatment on the surface of a model, and the plastic microspheres are expanded by a predetermined treatment and are present on the surface of the spherical body. The second step of rupturing the conductive layer, the third step of electroforming this model to form an electroformed shell, and the step of removing plastic microspheres in the electroformed shell with a solvent or the like to form a porous layer. 4th of obtaining electroformed shell
The manufacturing method of the electroforming mold characterized by including the process of.
JP35845692A 1992-12-25 1992-12-25 Manufacturing method of electroforming mold Expired - Lifetime JP2502954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35845692A JP2502954B2 (en) 1992-12-25 1992-12-25 Manufacturing method of electroforming mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35845692A JP2502954B2 (en) 1992-12-25 1992-12-25 Manufacturing method of electroforming mold

Publications (2)

Publication Number Publication Date
JPH06192883A JPH06192883A (en) 1994-07-12
JP2502954B2 true JP2502954B2 (en) 1996-05-29

Family

ID=18459406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35845692A Expired - Lifetime JP2502954B2 (en) 1992-12-25 1992-12-25 Manufacturing method of electroforming mold

Country Status (1)

Country Link
JP (1) JP2502954B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5524989B2 (en) * 2012-01-18 2014-06-18 極東技研有限会社 Production method of porous electroforming
CN113699563B (en) * 2021-08-24 2023-01-03 深圳市联合蓝海黄金材料科技股份有限公司 Production method of hard gold round ball

Also Published As

Publication number Publication date
JPH06192883A (en) 1994-07-12

Similar Documents

Publication Publication Date Title
JP2647410B2 (en) Manufacturing method of filter
US5837118A (en) Method of producing hollow electroformed product of precious metal
JP3100337B2 (en) Porous electroformed shell and manufacturing method thereof
US3464898A (en) Plastic foam mandrel for electroforming
JPH09155972A (en) Water repellant film and its manufacture
JPH0776435B2 (en) Method for producing hollow closed continuous body and production equipment for hollow sphere
JP2502954B2 (en) Manufacturing method of electroforming mold
JPH07173667A (en) Production of electroforming shell having air permeability
US4981558A (en) Process for the reproduction of a microstructured, plate-shaped body
US4846938A (en) Method of manufacturing a porous electroformed object
JP2000355789A (en) High porosity cellular three-dimensional metallic structure made of refractory alloy and its production
JPH08100288A (en) Production of metallic mesh foil
JP2000087284A (en) Production of electrocast shell for molding die
US6251248B1 (en) Microfabrication process for making microstructures having high aspect ratio
JP2881721B2 (en) Manufacturing method of hollow electroformed products with precious metals
JP2865186B2 (en) Method for producing electroformed body having micro holes
JPH0625884A (en) Production of porous electrocasting mold
JPH01309990A (en) Production of porous electroformed body
JP2505395B2 (en) Method for manufacturing resin mold
JPH02305970A (en) Production of hollow fine metal sphere
JPH06287788A (en) Production of porous electroform body
JP3174817B2 (en) Manufacturing method of electroless nickel plating type
JP2865185B2 (en) Method for producing electroformed body having micro holes
JP2962662B2 (en) Method for producing electroformed body having micro holes
JPH05263286A (en) Air passable electrocasting mold and its production