JP2501937B2 - High repetition Raman laser device - Google Patents

High repetition Raman laser device

Info

Publication number
JP2501937B2
JP2501937B2 JP16361490A JP16361490A JP2501937B2 JP 2501937 B2 JP2501937 B2 JP 2501937B2 JP 16361490 A JP16361490 A JP 16361490A JP 16361490 A JP16361490 A JP 16361490A JP 2501937 B2 JP2501937 B2 JP 2501937B2
Authority
JP
Japan
Prior art keywords
conversion
raman
pass cell
laser device
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16361490A
Other languages
Japanese (ja)
Other versions
JPH0456184A (en
Inventor
泰明 宮本
収 須藤
信 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doryokuro Kakunenryo Kaihatsu Jigyodan
Original Assignee
Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doryokuro Kakunenryo Kaihatsu Jigyodan filed Critical Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority to JP16361490A priority Critical patent/JP2501937B2/en
Publication of JPH0456184A publication Critical patent/JPH0456184A/en
Application granted granted Critical
Publication of JP2501937B2 publication Critical patent/JP2501937B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、入射パルスレーザー光の波長を変換するラ
マンレーザー装置に関し、特に、パルス繰り返し数を高
めても安定に動作させることが可能な高繰り返しパラ水
素ラマンレーザー装置に関する。
The present invention relates to a Raman laser device for converting the wavelength of incident pulsed laser light, and particularly to a Raman laser device capable of operating stably even if the pulse repetition rate is increased. Repetitive parahydrogen Raman laser device.

〔従来の技術〕[Conventional technology]

パラ水素は偶数の回転量子数しかとり得ない。その回
転量子数0と2の間のエネルギー差を利用して、振動数
νの入射光をランマン変換によりν−νの振動数
の光に変換することは、パラ水素ラマンレーザー装置と
して公知である(νはパラ水素のストークスシフト
で、ほぼ300〜400cm-1。)。入射光として炭酸ガスレー
ザー光を用いる場合、このようなパラ水素ラマンレーザ
ー装置によって周波数変換された光の波長は16μm前後
で、フッ化ウランの吸収波長に一致するため、分子法レ
ーザーウラン濃縮用赤外線レーザー装置に利用可能であ
る。また、この波長はその他の重金属のフッ化物の吸収
波長にも一致するため、重金属同位体分離用赤外レーザ
ー装置としても利用可能である。
Para-hydrogen can only take an even number of rotating quantum numbers. Using the energy difference between the rotational quantum number 0 and 2, by converting the incident light vibration frequency [nu P in the frequency of light [nu P -v R by full bloom conversion as parahydrogen Raman laser apparatus It is known (ν R is the Stokes shift of parahydrogen, which is approximately 300 to 400 cm −1 ). When carbon dioxide gas laser light is used as the incident light, the wavelength of the light converted by such a parahydrogen Raman laser device is around 16 μm, which coincides with the absorption wavelength of uranium fluoride. It can be used for laser equipment. Further, since this wavelength matches the absorption wavelength of fluoride of other heavy metals, it can be used as an infrared laser device for heavy metal isotope separation.

ところで、従来のパラ水素ラマンレーザー装置は、一
秒当たり数回以下のパルス繰り返し周波数でしか発振を
行っておらず、媒質ガス(バラ水素)は変換用セル中に
封じ切りであっても、ラマン変換に伴う放熱(ストーク
ス線の放射を行った後、回転量子数2の状態から0の状
態に緩和する時に2つの準位のエネルギー差が熱に変換
されて放出される。)による媒質のゆらぎは、次のラマ
ン変換が起こるまでの時間が十分にあるため、完全に緩
和し、安定した発振を得ることが可能であった(例え
ば、「応用物理」第57巻、第10号(1988年)第1485〜14
95頁)。
By the way, the conventional para-hydrogen Raman laser device oscillates only at a pulse repetition frequency of several times or less per second, and the medium gas (rose hydrogen) is Raman even if it is completely sealed in the conversion cell. Fluctuation of the medium due to heat dissipation due to conversion (after the Stokes line is radiated, the energy difference between the two levels is converted into heat and released when the state of rotational quantum number 2 is relaxed to the state of 0) Has sufficient time for the next Raman transformation to occur, so it was possible to completely relax and obtain stable oscillation (for example, "Applied Physics" Vol. 57, No. 10 (1988 ) 1485-14
Page 95).

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、1秒当たり数百回以上の高繰り返し発
振を行わせようとする場合、ラマン変換に伴う放熱によ
り発生したゆらぎは、パルス間隔が短いため、次の変換
が起こるまでに緩和せず、レーザー光はこのゆらぎによ
り変換用セル中で正確に伝搬しなくなり、所定の波長変
換されたレーザー光を安定して取り出すことは難しくな
る。
However, when trying to perform high-repetition oscillation of several hundred times or more per second, fluctuations caused by heat dissipation due to Raman conversion are not alleviated by the next conversion because the pulse interval is short, and the fluctuation does not occur. Due to this fluctuation, the light does not propagate accurately in the conversion cell, and it becomes difficult to stably extract the laser light having the predetermined wavelength conversion.

本発明はこのような状況に鑑みてなされたものであ
り、その目的は、ラマン変換に伴う放熟によりラマン変
換媒質中に生じる不均一なゆらぎの除去又はその緩和を
促進し、高繰り返し発振を安定的に行わせるラマンレー
ザー装置を提供することである。
The present invention has been made in view of such a situation, and an object thereof is to promote removal or relaxation of the nonuniform fluctuation generated in the Raman conversion medium by ripening accompanying Raman conversion, and to achieve high repetition oscillation. It is to provide a Raman laser device that can be stably operated.

また、このようなゆらぎの除去又はその緩和の促進を
行う際に、できる限り省力化を図ることを目的とする。
In addition, the purpose of the present invention is to save labor as much as possible when removing such fluctuations or promoting their mitigation.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成する本発明の高繰り返しラマンレーザ
ー装置は、ラマン変換媒質で満たされ、入射繰り返しパ
ルス光をその中で複数パス回伝播させる2個の変換用マ
ルチパスセルを備え、第1の変換用マルチパスセルから
の出射光が第2の変換用マルチパスセルに入射するよう
に配置され、第1の変換用マルチパスセルのパス回数が
ラマン変換が飽和しない数に設定されており、第2の変
換用マルチパスセルのパス回数が、第1の変換用マルチ
パスセル中のパス回数と合わせて、ラマン変換が飽和す
る数以上に設定されていることを特徴とするものであ
る。
A highly repetitive Raman laser device of the present invention that achieves the above object is provided with two conversion multi-pass cells which are filled with a Raman conversion medium and propagate an incident repetitive pulsed light a plurality of times in the first conversion. Is arranged so that the light emitted from the multi-pass cell for input may enter the second multi-pass cell for conversion, and the number of passes of the first multi-pass cell for conversion is set to a number at which Raman conversion is not saturated. The number of passes of the second conversion multi-pass cell, together with the number of passes in the first conversion multi-pass cell, is set to be equal to or more than the number at which the Raman conversion is saturated.

この場合、第2の変換用マルチパスセル中のラマン変
換媒質を、ラマン変換に伴う放熱によるゆらぎを実質的
になくすのに必要な流速以上で流す手段を設けることが
望ましい。
In this case, it is desirable to provide a means for causing the Raman conversion medium in the second conversion multi-pass cell to flow at a flow velocity that is equal to or higher than that required to substantially eliminate the fluctuation due to heat dissipation due to Raman conversion.

以上のような構成の本発明の高繰り返しラマンレーザ
ー装置は、特に、ラマン変換媒質としてパラ水素を用い
る場合に有効である。
The highly repetitive Raman laser device of the present invention configured as described above is particularly effective when parahydrogen is used as the Raman conversion medium.

〔作用〕[Action]

本発明においては、2個の変換用マルチパスセルを備
え、第1の変換用マルチパスセルのパス回数がラマン変
換が飽和しない数に設定されており、第2の変換用マル
チパスセルのパス回数が第1の変換用マルチパスセル中
のパス回数と合わせて、ラマン変換が飽和する数以上に
設定されているので、ラマン変換の大部分が第2の変換
用マルチパスセル内で行われ、ラマン変換に伴う放熱に
よるゆらぎも実質的に第2の変換用マルチパスセル内で
発生する。したがって、第2の変換用マルチパスセル内
のみのゆらぎの除去、又は、その緩和を促進する手段を
設ければよく、装置全体を小型で簡単な構成にすること
ができ、高効率変換可能な高繰り返すラマンレーザー装
置を実現することができる。
In the present invention, two conversion multi-pass cells are provided, the number of passes of the first conversion multi-pass cell is set to a number at which Raman conversion is not saturated, and the pass of the second conversion multi-pass cell is set. The number of Raman transforms is set to be equal to or higher than the saturation number of Raman transforms together with the number of passes in the first transform multi-pass cell, so that most of the Raman transforms are performed in the second transform multi-pass cell. Also, fluctuations due to heat dissipation due to Raman conversion are substantially generated in the second conversion multi-pass cell. Therefore, it suffices to provide means for accelerating the removal or mitigation of fluctuations only in the second conversion multi-pass cell, so that the entire device can be made small and have a simple structure, and highly efficient conversion is possible. A highly repeating Raman laser device can be realized.

〔実施例〕〔Example〕

パラ水素ラマンレーザーの変換特性をステディ・ステ
イト(Steady−State)近似により考えると、第2図に
示すような結果が得られる。この図から、ストークス光
パワーは、量子ノイズレベル10-12Wからパス回数が増
加するに従い指数関数的に増大し、最終的には緩和して
いるのが分かる。なお、ストークス光は、ラマン変換さ
れる周波数ν±νの中周波数ν−νの光を言
い、また、1パスはマルチパス共振器の一方のミラーか
ら他のミラーへ進む行程を意味する。第2図のストーク
ス光パワーが飽和する直前の変換特性から分かるよう
に、ラマン変換量が大きくなっているのはこの飽和直前
の2〜3パスである。この2〜3パスで全体の約9割の
ラマン変換が起こっていると考えられる。すなわち、ラ
マン変換に伴う放熱の大部分はこの2〜3パスの間で起
こり、媒質であるパラ水素のゆらぎはこれらのパスが通
過する位置で発生する。なお、ラマンレーザーは、飽和
変換が起こる領域で使用しないと変換効率がよくないの
で、飽和変換領域で使用する。
Considering the conversion characteristics of the parahydrogen Raman laser by the Steady-State approximation, the results shown in FIG. 2 are obtained. From this figure, it can be seen that the Stokes light power exponentially increases as the number of passes increases from the quantum noise level of 10 −12 W, and finally relaxes. Note that Stokes light is light having a medium frequency ν P −ν R that is Raman converted and has a frequency of ν P ± ν R , and one path is a process of traveling from one mirror to another mirror of a multipath resonator. means. As can be seen from the conversion characteristics immediately before the Stokes light power is saturated in FIG. 2, the Raman conversion amount is large in the two or three passes immediately before the saturation. It is considered that about 90% of the whole Raman conversion takes place in these 2 to 3 passes. That is, most of the heat dissipation due to Raman conversion occurs between these 2 and 3 paths, and fluctuations of parahydrogen, which is the medium, occur at the positions where these paths pass. The Raman laser is used in the saturated conversion region because the conversion efficiency is poor unless it is used in the saturated conversion region.

ラマン変換に伴う放熱によるゆらぎを除去するか、そ
の緩和を促進するためには、その部分の媒質に流れを作
る方法が考えられる。しかし、ラマン変換を行うマルチ
パルセス本体内部にこのような流れを作ろうとすると、
所定の流速を得るのに必要な流量が膨大になってしまう
ため難しい。そこで、本発明においては、第1図に示す
ように、ラマン変換マルチパルセスを2つの部分1と3
にて構成し、一方のマルチパルセスを未飽和変換用マル
チパスセル1とし、温度条件等は自由に設定可能にす
る。また、他方のマルチパルセスを飽和変換用マルチパ
スセル3とし、このセル3内のみにパラ水素の流れを作
るようにする。そして、第2図のストークス光パワーが
飽和する前であって、飽和直前の2〜3パスを除いたパ
スのラマン変換を未飽和変換用マルチパスセル1中で行
わせ、その後、コリメータ5又はミラー系5を経て、飽
和直前の2〜3パスを飽和変換用マルチパスセル3中で
行わせるようにする。そのためには、各マルチパスセル
1、3を構成するマルチパス共振器2、4のミラーに設
けられる入射孔6、出射孔7の位置、ミラー曲率半径、
ミラー間距離を適当に設定して、入射孔6から入った光
が所定のパス回数だけ共振器2、4内を伝播し、その後
出射孔7から出て行くようにすればよい。なお、入射孔
6、出射孔7を設ける代わりに、共振器内に光ファイバ
ーの端部、小面積のミラー等の光学素子を挿入して、所
定のパス回数通過後の光を取り出すようにしてもよく、
また、ミラーの周辺から共振器内に光を入出射させるこ
ともできるが、特に後者は設定が非常に微妙で、現実的
ではない。
In order to remove the fluctuation due to heat dissipation due to Raman conversion or to promote its relaxation, a method of making a flow in the medium in that part is considered. However, if you try to make such a flow inside the multipulse body that performs Raman conversion,
It is difficult because the flow rate required to obtain a predetermined flow velocity becomes enormous. Therefore, in the present invention, as shown in FIG. 1, the Raman transform multipulse is divided into two parts 1 and 3.
And one of the multi-pulses is used as the unsaturated conversion multi-pass cell 1, and the temperature condition and the like can be freely set. Also, the other multi-pulse is the multi-pass cell 3 for saturation conversion, and the flow of parahydrogen is created only in this cell 3. Then, before the Stokes light power of FIG. 2 is saturated, Raman conversion of the paths other than the two or three paths immediately before saturation is performed in the unsaturated conversion multi-pass cell 1, and then the collimator 5 or Two or three passes immediately before saturation are performed in the saturation conversion multi-pass cell 3 via the mirror system 5. For that purpose, the positions of the entrance holes 6 and the exit holes 7 provided in the mirrors of the multipath resonators 2 and 4 that form each of the multipath cells 1 and 3, the radius of curvature of the mirror,
The distance between the mirrors may be appropriately set so that the light entering from the entrance hole 6 propagates in the resonators 2 and 4 for a predetermined number of passes and then exits from the exit hole 7. Instead of providing the entrance hole 6 and the exit hole 7, an optical element such as an end portion of an optical fiber or a mirror having a small area may be inserted into the resonator to extract the light after passing a predetermined number of passes. Often,
It is also possible to allow light to enter and exit the resonator from the periphery of the mirror, but the latter setting is extremely delicate and not realistic.

このようにして、変換元となるポンプレーザー光を未
飽和変換用マルチパスセル1に入射させ、上記したよう
に、ラマン変換が飽和しないようにパス回数、パス回転
数等のパラメータが設定してあるマルチパス共振器2の
間を伝搬させる(この時のストークス光は104W程度が
妥当であると考えられる。)。未飽和変換用マルチパス
セル1を出射してきたレーザー光を、2枚のミラーを用
いたコリメータ5(ミラーの代わりにレンズを用いるこ
とも可能)により、ビーム径、拡がり角等を調整し、飽
和変換用マルチパス共振器3に入射させ、その中に数パ
スのマルチパス共振器4を設置しておき、一気に飽和変
換を起こさせる。この時、飽和変換用マルチパスセル3
の内径は、レーザーの繰り返しに対応した媒質の流速
(通常は秒速数メートル)を得るために、できる限り細
くすることが必要である(内径の2乗と流速は反比例す
るため。)。飽和変換用マルチパスセル3の長さは、マ
ルチパス共振器4のパラメータの取り方でどのようにす
ることも可能であるが、実際には2〜4mが適当である。
第3図に飽和変換用マルチパスセル3内部での媒質ガス
のフロー方式の概念を示す。ガスフロー方式としては、
マルチパス共振器4の軸方向をz軸とした場合、z軸に
平行な流れ、垂直な流れ何れも可能である。第4図に、
各方式を採用した場合のマルチパスセル3の斜視図を示
す。図の(a)はz軸に垂直な場合であり、(b)は平
行な場合である。また、媒質の流れを作り出す手段とし
ては、ブロワを使って循環させるか、あるいは、水素タ
ンクから吹き出させるようにすればよい。
In this way, the pump laser light that is the conversion source is made incident on the unsaturated multipath cell 1 for conversion, and as described above, parameters such as the number of passes and the number of pass rotations are set so that Raman conversion is not saturated. It is propagated between certain multipath resonators 2 (It is considered appropriate that Stokes light at this time is about 10 4 W). The laser light emitted from the unsaturated conversion multi-pass cell 1 is saturated by adjusting the beam diameter, the divergence angle, etc. by a collimator 5 using two mirrors (a lens can be used instead of the mirrors). The multipath resonator 3 for conversion is made to enter, and the multipath resonator 4 of several paths is installed in it, and saturation conversion is caused at once. At this time, the saturation conversion multi-pass cell 3
The inner diameter of must be as thin as possible in order to obtain the flow velocity of the medium (usually several meters per second) corresponding to the repetition of the laser (since the square of the inner diameter is inversely proportional to the flow velocity). The length of the saturation conversion multi-pass cell 3 can be set arbitrarily depending on how the parameters of the multi-pass resonator 4 are taken, but 2 to 4 m is actually suitable.
FIG. 3 shows the concept of the flow system of the medium gas inside the multi-pass cell 3 for saturation conversion. As a gas flow method,
When the axial direction of the multipath resonator 4 is the z axis, both a flow parallel to the z axis and a flow perpendicular to the z axis are possible. In Figure 4,
The perspective view of the multipass cell 3 when each system is employ | adopted is shown. In the figure, (a) is the case perpendicular to the z-axis, and (b) is the case parallel. As a means for producing the flow of the medium, it may be circulated using a blower or blown out from a hydrogen tank.

以上、本発明に高繰り返しパラ水素ラマンレーザー装
置について、実施例を参照にして説明してきたが、本発
明はこれに限定されずに種々の変形が可能である。ま
た、本発明は、ラマン変換媒質として、パラ水素に限ら
ず、他の種類のガスについても適用できることは、その
原理より明らかである。
The high repetition parahydrogen Raman laser device has been described above with reference to the embodiments of the present invention, but the present invention is not limited to this, and various modifications can be made. Further, it is clear from the principle that the present invention can be applied not only to parahydrogen but also to other types of gas as the Raman conversion medium.

〔発明の効果〕〔The invention's effect〕

本発明の高繰り返しラマンレーザー装置においては、
2個の変換用マルチパスセルを備え、第1の変換用マル
チパスセルのパス回数がラマン変換が飽和しない数に設
定されており、第2の変換用マルチパスセルのパス回数
が、第1の変換用マルチパスセル中のパス回数と合わせ
て、ラマン変換が飽和する数以上に設定されているの
で、ラマン変換の大部分が第2の変換用マルチパスセル
内で行われ、ラマン変換に伴う放熱によるゆらぎも実質
的に第2の変換用マルチパスセル内で発生する。したが
って、第2の変換用マルチパスセル内のみのゆらぎの除
去、又は、その緩和を促進する手段を設ければよく、装
置全体を小型で簡単な構成にすることができ、高効率変
換可能な高繰り返しラマンレーザー装置を実現すること
ができる。
In the high repetition Raman laser device of the present invention,
Two conversion multi-pass cells are provided, the number of passes of the first conversion multi-pass cell is set to a number at which the Raman transform is not saturated, and the number of passes of the second conversion multi-pass cell is the first. In addition to the number of passes in the transform multi-pass cell, the Raman transform is set to a number equal to or higher than the saturation, so most of the Raman transform is performed in the second transform multi-pass cell, and the Raman transform is performed. Fluctuations due to the accompanying heat dissipation also occur substantially in the second conversion multi-pass cell. Therefore, it suffices to provide means for accelerating the removal or mitigation of fluctuations only in the second conversion multi-pass cell, so that the entire device can be made small and have a simple structure, and highly efficient conversion is possible. A high repetition Raman laser device can be realized.

また、第2の変換用(飽和変換用)マルチパスセル中
のラマン変換媒質を、ラマン変換に伴う放熱によるゆら
ぎを実質的になくすのに必要な流速以上で流す手段を設
ける場合、ラマン変換に伴う放熱により発生するゆらぎ
をこの手段により除去し又はその緩和を促進することに
より、高繰り返し発振の状態においても常に均一な媒質
中をレーザー光を伝搬させ、安定した高繰り返しストー
クス光発振が可能になる。
In addition, when a means for flowing the Raman conversion medium in the second conversion (saturation conversion) multi-pass cell at a flow velocity higher than that required to substantially eliminate fluctuation due to heat radiation accompanying Raman conversion is provided, By eliminating or facilitating the relaxation caused by the heat dissipation accompanied by this means, the laser light always propagates in a uniform medium even in the state of high repetitive oscillation, and stable high repetitive Stokes optical oscillation becomes possible. Become.

また、未飽和変換用マルチパスセルと飽和変換用マル
チパスセルの2台のマルチパスセルを使用することによ
り、マルチパスセルのパラメータをそれぞれ独立に設定
できるので、高効率変換を実現できる。
Further, by using two multipath cells, that is, the multipath cell for unsaturated conversion and the multipath cell for saturation conversion, the parameters of the multipath cell can be set independently, so that highly efficient conversion can be realized.

さらに、未飽和変換用マルチパスセルと飽和変換用マ
ルチパスセル2台のマルチパスセルを使用することによ
り、ラマン変換に伴う放熱の大部分が起こる飽和変換部
分だけのラマン変換媒質(ガス)をフローさせるので、
ガスフロー容積を大幅に低減できるため、所定のガス流
速を得るのに必要な流量が少量でよく、ブロワ容量、水
素ガス等のラマン変換媒質の使用量を大幅に低減するこ
とができる。
Furthermore, by using the multi-pass cell for unsaturated conversion and the multi-pass cell for two saturation conversions, the Raman conversion medium (gas) of only the saturated conversion part where most of the heat radiation accompanying Raman conversion occurs is used. Because it makes it flow
Since the gas flow volume can be greatly reduced, a small flow rate is required to obtain a predetermined gas flow velocity, and the blower capacity and the amount of Raman conversion medium such as hydrogen gas used can be greatly reduced.

したがって、本発明の高繰り返しラマンレーザー装
置、特にパラ水素をラマン媒質とする高繰り返しラマン
レーザー装置は、分子法レーザーウラン濃縮用高繰り返
し赤外レーザー装置、その他の重金属同位体分離用高繰
り返し赤外レーザー装置、中・長波長赤外領域で発振す
る高繰り返し赤外レーザー装置として有効なものであ
る。
Therefore, the highly repetitive Raman laser device of the present invention, in particular, the highly repetitive Raman laser device using parahydrogen as the Raman medium, is a highly repetitive infrared laser device for molecular laser uranium enrichment, and other highly repetitive infrared for isolating heavy metal isotopes. It is effective as a laser device and a highly repetitive infrared laser device that oscillates in the mid- and long-wavelength infrared region.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の高繰り返しラマンレーザー装置の1実
施例の構成を説明するための図、第2図はパラ水素ラマ
ンレーザーの変換特性を示す図、第3図は飽和変換用マ
ルチパスセル内部での媒質ガスのフロー方式の概念図、
第4図は各ガスフロー方式を採用した場合の飽和変換用
マルチパスセルの例の斜視図である。 1……未飽和変換用マルチパスセル、3……飽和変換用
マルチパスセル、5……コリメータ又はミラー系、2、
4……マルチパス共振器、6……入射孔、7……出射孔
FIG. 1 is a diagram for explaining the configuration of one embodiment of a high repetition rate Raman laser device of the present invention, FIG. 2 is a diagram showing the conversion characteristics of a parahydrogen Raman laser, and FIG. 3 is a multipass cell for saturation conversion. Conceptual diagram of flow method of medium gas inside,
FIG. 4 is a perspective view of an example of a multipass cell for saturation conversion when each gas flow system is adopted. 1 ... Unsaturated conversion multi-pass cell, 3 ... Saturation conversion multi-pass cell, 5 ... Collimator or mirror system, 2,
4 ... Multipath resonator, 6 ... Incident hole, 7 ... Exit hole

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ラマン変換媒質で満たされ、入射繰り返し
パルス光をその中で複数パス回数伝播させる2個の変換
用マルチパスセルを備え、第1の変換用マルチパスセル
からの出射光が第2の変換用マルチパスセルに入射する
ように配置され、第1の変換用マルチパスセルのパス回
数がラマン変換が飽和しない数に設定されており、第2
の変換用マルチパスセルのパス回数が、第1の変換用マ
ルチパスセル中のパス回数と合わせて、ラマン変換が飽
和する数以上に設定されていることを特徴とする高繰り
返しラマンレーザー装置。
1. A multi-pass cell for conversion, which is filled with a Raman conversion medium and which propagates an incident repetitive pulsed light a plurality of times in a plurality of passes, wherein light emitted from a first multi-pass cell for conversion is The second conversion multi-pass cell is arranged so as to be incident on the second conversion multi-pass cell, and the number of passes of the first conversion multi-pass cell is set to a number at which Raman conversion is not saturated.
The high-repetition Raman laser device is characterized in that the number of passes of the converting multi-pass cell is set to a number equal to or more than the number of passes in the first converting multi-pass cell to saturate the Raman conversion.
【請求項2】第2の変換用マルチパスセル中のラマン変
換媒質を、ラマン変換に伴う放熱によるゆらぎを実質的
になくすのに必要な流速以上で流す手段を備えているこ
とを特徴とする請求項1記載の高繰り返しラマンレーザ
ー装置。
2. A means for causing the Raman conversion medium in the second conversion multi-pass cell to flow at a flow velocity required to substantially eliminate fluctuation due to heat radiation accompanying Raman conversion. The high repetition Raman laser device according to claim 1.
【請求項3】ラマン変換媒質がパラ水素であることを特
徴とする請求項1又は2記載の高繰り返しラマンレーザ
ー装置。
3. The high-repetition Raman laser device according to claim 1, wherein the Raman conversion medium is parahydrogen.
JP16361490A 1990-06-21 1990-06-21 High repetition Raman laser device Expired - Fee Related JP2501937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16361490A JP2501937B2 (en) 1990-06-21 1990-06-21 High repetition Raman laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16361490A JP2501937B2 (en) 1990-06-21 1990-06-21 High repetition Raman laser device

Publications (2)

Publication Number Publication Date
JPH0456184A JPH0456184A (en) 1992-02-24
JP2501937B2 true JP2501937B2 (en) 1996-05-29

Family

ID=15777275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16361490A Expired - Fee Related JP2501937B2 (en) 1990-06-21 1990-06-21 High repetition Raman laser device

Country Status (1)

Country Link
JP (1) JP2501937B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3402834B2 (en) * 1995-03-02 2003-05-06 キヤノン株式会社 Zoom finder
JP3817297B2 (en) * 1996-04-17 2006-09-06 ヴァレオユニシアトランスミッション株式会社 Automatic clutch

Also Published As

Publication number Publication date
JPH0456184A (en) 1992-02-24

Similar Documents

Publication Publication Date Title
Wu et al. Megahertz pulse-burst laser and visualization of shock-wave/boundary-layer interaction
Crafer et al. Laser processing in manufacturing
US3710279A (en) Apparatuses for trapping and accelerating neutral particles
US4151486A (en) Tunable alkali metallic vapor laser
US4009391A (en) Suppression of unwanted lasing in laser isotope separation
JP2501937B2 (en) High repetition Raman laser device
US6970483B2 (en) Method and a device for realizing both high extraction efficiency of laser light from electron beams and femto-second ultra-short in free-electron lasers pulses
Roullard et al. Transverse mode control in high gain, millimeter bore, waveguide lasers
Aguillon et al. Quantitative analysis of third harmonic generation of XUV radiation in a cell and a cw free jet of carbon monoxide
Gerry Gasdynamic lasers
JPH0560962B2 (en)
Shimoda Doppler-free resonant two-photon transition for isotope separation
US5011584A (en) Method for separating a predetermined isotope of an element from a gaseous compound containing said element
US4156811A (en) Method and apparatus for separating isotopes from a gas by means of a laser
US3585523A (en) Spherical mirror cavity for mode-locked laser
JPH1041094A (en) Method for high efficiency plasma confinement and laser oscillation, and laser oscillator
US8223815B2 (en) Multiple discharge CO2 laser with improved repetition rate
GB2256079A (en) A simple high selectivity, high dissociation system for laser isotope seperation.
Treusch et al. The seeding project for the FEL in TTF phase II
GB2256082A (en) Infrared radiation source incorporating a raman medium for isotope separation
Ortega et al. Optical frequency multiplication by an optical klystron on the ACO storage ring
Mashendzhinov et al. Pulsed HF (DF) ORTL
Shaw Laser-plasma interactions from thin tapes for high-energy electron accelerators and seeding compact FELs
Flusberg et al. Multiseed stimulated rotational Raman scattering for wave-front control
Riley et al. Optical distortion due to gas-dynamic motion in a photolytically pumped cylindrical laser cavity

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees