JP2500218B2 - Breathable foam pipe and manufacturing method thereof - Google Patents

Breathable foam pipe and manufacturing method thereof

Info

Publication number
JP2500218B2
JP2500218B2 JP4013250A JP1325092A JP2500218B2 JP 2500218 B2 JP2500218 B2 JP 2500218B2 JP 4013250 A JP4013250 A JP 4013250A JP 1325092 A JP1325092 A JP 1325092A JP 2500218 B2 JP2500218 B2 JP 2500218B2
Authority
JP
Japan
Prior art keywords
pipe
weight
parts
thermoplastic elastomer
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4013250A
Other languages
Japanese (ja)
Other versions
JPH05202218A (en
Inventor
行雄 嶋崎
博 岩渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOHOKU GOMU KK
Hitachi Cable Ltd
Original Assignee
TOHOKU GOMU KK
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOHOKU GOMU KK, Hitachi Cable Ltd filed Critical TOHOKU GOMU KK
Priority to JP4013250A priority Critical patent/JP2500218B2/en
Publication of JPH05202218A publication Critical patent/JPH05202218A/en
Application granted granted Critical
Publication of JP2500218B2 publication Critical patent/JP2500218B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は通気性発泡パイプ及びそ
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a breathable foam pipe and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、魚貝資源は乱獲、海洋汚染等によ
り年々減少の傾向にある。
2. Description of the Related Art Recently, fish and shellfish resources have been decreasing year by year due to overfishing, marine pollution and the like.

【0003】他方、高級魚貝、活魚等に対しては根強い
需要がある。
On the other hand, there is a strong demand for high-grade fish and shellfish and live fish.

【0004】このため栽培漁業、養殖業等の作り・育て
る漁業が発展し、それに伴い放流用或いは養殖用種苗と
なる人口種苗の生産量が年々増加の傾向にある。
[0004] For this reason, the production and cultivation of fisheries such as cultivated fisheries and aquaculture have been developed, and the production of artificial seedlings for release or aquaculture tends to increase year by year.

【0005】このような人口種苗では病原生物による疾
病が最も厄介な問題である。このため栽培魚貝センター
ではオゾン殺菌法が一般的に行われている。
Diseases caused by pathogenic organisms are the most troublesome problems in such artificial seedlings. For this reason, the ozone sterilization method is generally used in the cultivation fish and shellfish center.

【0006】オゾン殺菌法は、無声放電法或いは固体高
分子電解質膜電解法により発生させたオゾンをパイプを
介して処理池内に吹き込み、水中に存在する微生物を殺
菌する方法である。
The ozone sterilization method is a method for sterilizing microorganisms existing in water by blowing ozone generated by a silent discharge method or a solid polymer electrolyte membrane electrolysis method into a treatment pond through a pipe.

【0007】このオゾンは微生物の殺菌作用の他に溶存
酸素の増大作用も発揮し、その結果魚貝の成長がおおよ
そ30%も速めることができ、また同じ養魚場なら養殖
魚貝量を2〜3倍に高めることができる等の利点があ
る。
This ozone exerts not only the bactericidal action of microorganisms but also the action of increasing dissolved oxygen, and as a result, the growth of fish and shellfish can be accelerated by approximately 30%. There is an advantage that it can be tripled.

【0008】従来、この種のオゾン送付パイプの先行技
術としては実公昭48−23874号、実開昭56−5
9855号、実公昭61−33344号等が知られてい
る。
[0008] Conventionally, as prior art of this kind of ozone delivery pipe, Japanese Utility Model Publication No. 48-23874 and Japanese Utility Model Publication No. 56-5.
9855, Jitsuko Sho 61-33344 and the like are known.

【0009】実公昭48−23874号及び実開昭56
−59855号には、樹脂粉末を焼結して成るオゾン送
付パイプが開示されている。
No. 48-23874 and No. 56
No. 59859 discloses an ozone delivery pipe made by sintering resin powder.

【0010】また、実公昭61−33344号には、古
タイヤから再生した再生ゴム粉末、再生ポリプロピレン
及びアゾジカルボン酸アマイド等の化学発泡剤から成る
組成物をパイプ状に押出して成るオゾン送付パイプが開
示されている。
Further, Japanese Utility Model Publication No. 61-33344 discloses an ozone delivery pipe formed by extruding a composition comprising regenerated rubber powder regenerated from an old tire, regenerated polypropylene and a chemical foaming agent such as azodicarboxylic acid amide into a pipe shape. It is disclosed.

【0011】[0011]

【発明が解決しようとする課題】しかしながら樹脂粉末
を焼結してなるパイプでは機械的強度が弱く且つ可撓性
が劣り、またバッチ生産方式で生産されるため生産性が
劣る等の難点がある。
However, pipes made by sintering resin powder have weak mechanical strength, poor flexibility, and poor productivity because they are produced by a batch production method. .

【0012】他方、後者の再生ゴムから生産したパイプ
では耐オゾン性が劣り、また引張強さ、引裂強度が弱い
と言う難点がある。このためオゾン送気により短期間に
オゾンクラックが発生して使用寿命が著しく短いと言う
難点がある。また、引張強さ、引裂強度が本質的に弱い
ことから、パイプの肉厚を厚く設定する必要があり、そ
の結果パイプの曲げ特性や取扱作業性が悪化したり、パ
イプの穴内に水中の土砂等の異物が侵入し目詰まりを起
こすと言う難点がある。
On the other hand, the latter pipe produced from recycled rubber has a drawback that it is inferior in ozone resistance and weak in tensile strength and tear strength. For this reason, there is a drawback that ozone cracks are generated in a short period of time by supplying ozone and the service life is extremely short. In addition, since the tensile strength and tear strength are inherently weak, it is necessary to set the wall thickness of the pipe to be thick, resulting in deterioration of the bending characteristics and handling workability of the pipe, and in the hole of the pipe However, there is a problem that foreign matter such as, for example, may enter and cause clogging.

【0013】本発明はかかる点に立って為されたもので
あって、その目的とするところは前記した従来技術の欠
点を解消し、優れた耐オゾン性、機械的特性、軽量性及
び均一な通気性を有する通気性発泡パイプ及びその製造
方法を提供することにある。
The present invention has been made in view of the above points, and its object is to solve the above-mentioned drawbacks of the prior art, and to provide excellent ozone resistance, mechanical properties, light weight and uniform An object of the present invention is to provide an air-permeable foam pipe having air permeability and a method for manufacturing the same.

【0014】[0014]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、次の2点にある。
The gist of the present invention lies in the following two points.

【0015】 熱可塑性エラストマー100重量部に
対して、該熱可塑性エラストマーとの溶融接着力が小さ
く且つ粒子径が10〜100ミクロンの樹脂微粉末10
〜80重量部及び化学発泡剤適当量から成る組成物をパ
イプ状に押出して成ることを特徴とする通気性発泡パイ
プ。
A resin fine powder 10 having a small melt adhesion with the thermoplastic elastomer and a particle diameter of 10 to 100 μm with respect to 100 parts by weight of the thermoplastic elastomer.
A breathable foamed pipe, which is obtained by extruding a composition comprising -80 parts by weight and an appropriate amount of a chemical foaming agent into a pipe shape.

【0016】 熱可塑性エラストマー100重量部に
対して、該熱可塑性エラストマーとの溶融接着力が小さ
く且つ粒子径が10〜100ミクロンの樹脂微粉末10
〜80重量部及び化学発泡剤適当量から成る組成物を押
出機にてパイプ状に押出し、然る後押出し直後の高温の
パイプを長さ方向に延伸処理してから冷却することを特
徴とする通気性発泡パイプの製造方法。
A resin fine powder 10 having a small melt adhesion with the thermoplastic elastomer and a particle diameter of 10 to 100 μm per 100 parts by weight of the thermoplastic elastomer.
A composition comprising -80 parts by weight and an appropriate amount of a chemical foaming agent is extruded into a pipe shape by an extruder, and a high temperature pipe immediately after extrusion is stretched in the length direction and then cooled. Method of manufacturing breathable foam pipe.

【0017】本発明において、熱可塑性エラストマーと
してはスチレン系熱可塑性エラストマー、オレフィン系
熱可塑性エラストマー、塩化ビニル樹脂系熱可塑性エラ
ストマー、ウレタン系熱可塑性エラストマー、エステル
系熱可塑性エラストマー、アミド系熱可塑性エラストマ
ー等を使用することができる。
In the present invention, examples of the thermoplastic elastomer include a styrene-based thermoplastic elastomer, an olefin-based thermoplastic elastomer, a vinyl chloride resin-based thermoplastic elastomer, a urethane-based thermoplastic elastomer, an ester-based thermoplastic elastomer, and an amide-based thermoplastic elastomer. Can be used.

【0018】また、これらの熱可塑性エラストマーは必
要に応じてシラン水架橋等の化学架橋反応もすることが
できる。
If necessary, these thermoplastic elastomers can also undergo a chemical crosslinking reaction such as silane water crosslinking.

【0019】本発明において樹脂微粉末としては、熱可
塑性エラストマーとの溶融接着力が小さく且つ熱変形温
度が高いものならよく、例えばポリテトラフルオロエチ
レン微粉末、ポリビニリデンフルオライド微粉末、高分
子量ポリエチレン微粉末、高分子量ポリプロピレン微粉
末、架橋化ポリエチレン微粉末等が用いられる。
In the present invention, the resin fine powder may be any one having a small melt adhesion with a thermoplastic elastomer and a high heat distortion temperature, such as polytetrafluoroethylene fine powder, polyvinylidene fluoride fine powder and high molecular weight polyethylene. Fine powder, high molecular weight polypropylene fine powder, cross-linked polyethylene fine powder and the like are used.

【0020】本発明において樹脂微粉末の熱変形温度
は、配合する化学発泡剤の分解温度以上のものが適切で
ある。
In the present invention, the heat distortion temperature of the resin fine powder is appropriately higher than the decomposition temperature of the chemical foaming agent to be blended.

【0021】本発明において樹脂微粉末の粒子径を10
〜100ミクロンに限定したのは、10ミクロン以下で
は熱可塑性エラストマーとの分散性が良くなるものの得
られる発泡成形パイプの寸法精度が劣るためであり、ま
た100ミクロン以上では得られる発泡成形パイプの機
械的強度が急激に悪化するためである。
In the present invention, the particle size of the resin fine powder is 10
The reason why the size is limited to -100 μm is that the dispersibility with the thermoplastic elastomer is improved when the particle size is 10 μm or less, but the dimensional accuracy of the foamed molded pipe obtained is poor, and when the particle size is 100 μm or more, the machine for the foamed molded pipe obtained is 100 μm or less. This is because the strength of the target suddenly deteriorates.

【0022】また、本発明において樹脂微粉末の配合量
を10〜80重量部と限定したのは、10重量部以下で
は得られる発泡成形パイプの通気性及び寸法安定性が劣
るためであり、また100重量部以上では得られる発泡
成形パイプの外観及び機械的強度が悪化するようになる
ためである。
In the present invention, the amount of the resin fine powder to be blended is limited to 10 to 80 parts by weight because if the amount is 10 parts by weight or less, the foamed pipe obtained has poor air permeability and dimensional stability. This is because if the amount is 100 parts by weight or more, the appearance and mechanical strength of the foam-molded pipe obtained will deteriorate.

【0023】本発明において化学発泡剤としてはN、N
−ジニトロソペンタメチレンテトラミン、アゾジカルボ
ンアミド等を用いることができる。また、アゾジカルボ
ンアミドを主成分とする複合発泡剤等も用いることがで
きる。更に、化学発泡剤の分解温度を変えるために発泡
助剤、例えば尿素系化合物、有機酸系化合物、金属塩素
化合物等を適宜併用することができる。
In the present invention, N, N is used as the chemical foaming agent.
-Dinitrosopentamethylenetetramine, azodicarbonamide, etc. can be used. Further, a composite foaming agent containing azodicarbonamide as a main component can also be used. Further, in order to change the decomposition temperature of the chemical foaming agent, a foaming auxiliary agent such as a urea compound, an organic acid compound, a metal chlorine compound, etc. can be appropriately used in combination.

【0024】また、本発明において充填剤、顔料、安定
剤等を必要に応じてそれぞれ適量ずつ配合することがで
きる。
Further, in the present invention, a filler, a pigment, a stabilizer and the like may be blended in appropriate amounts as needed.

【0025】本発明において押出温度は、配合した化学
発泡剤の分解温度以上にすることが適切である。即ち、
熱可塑性エラストマー100重量部に対して、該熱可塑
性エラストマーとの溶融接着力が小さく且つ粒子径が1
0〜100ミクロンの樹脂微粉末10〜80重量部及び
化学発泡剤適当量から成る組成物を押出機に入れ、これ
らを溶融混練すると共に押出機のヘッド部温度を化学発
泡剤の分解温度以上に加熱して分解させた後、パイプ状
に押出し、然る後延伸し、更に冷却する。
In the present invention, it is appropriate that the extrusion temperature is not lower than the decomposition temperature of the compounded chemical foaming agent. That is,
With respect to 100 parts by weight of the thermoplastic elastomer, the melt adhesive strength with the thermoplastic elastomer is small and the particle size is 1
A composition comprising 10 to 80 parts by weight of a resin fine powder of 0 to 100 μm and an appropriate amount of a chemical foaming agent is put into an extruder, and these are melt-kneaded and the head temperature of the extruder is set to a temperature not lower than the decomposition temperature of the chemical foaming agent. After being decomposed by heating, it is extruded into a pipe shape, then stretched and further cooled.

【0026】[0026]

【作用】本発明の通気性発泡パイプ及びその製造方法
は、次のような作用効果を奏する。
The breathable foam pipe and the method for producing the same of the present invention have the following actions and effects.

【0027】 熱可塑性エラストマー100重量部に
対して、該熱可塑性エラストマーとの溶融接着力が小さ
く且つ粒子径が10〜100ミクロンの樹脂微粉末10
〜80重量部及び化学発泡剤が適当量から成る組成物を
化学発泡剤で急激に分解発泡させながらパイプ状に押出
しすることにより、押出し温度の高温下で互いに溶融接
着力が小さい、即ち互いに相容性が乏しい熱可塑性エラ
ストマーと樹脂微粉末とを効果的に相分離させ、その結
果効果的な連続気泡を有する通気性発泡パイプを得るこ
とができる。
A resin fine powder 10 having a small melt adhesive strength with the thermoplastic elastomer and a particle diameter of 10 to 100 microns with respect to 100 parts by weight of the thermoplastic elastomer.
-80 parts by weight and a suitable amount of the chemical foaming agent are extruded into a pipe shape while rapidly decomposing and foaming with the chemical foaming agent, so that they have a small melt adhesive strength to each other at a high extrusion temperature, that is, they are mutually phase-bonded. It is possible to effectively phase-separate a poorly thermoplastic thermoplastic elastomer and a resin fine powder, and as a result, it is possible to obtain an permeable foamed pipe having effective open cells.

【0028】また、本発明の通気性発泡パイプは新規な
熱可塑性エラストマー、樹脂微粉末及び化学発泡剤から
製作するため、優れた耐オゾン性、機械的強度及び軽量
性を発揮し、そのほか使用寿命が長く、取扱作業性が優
れている。
Since the breathable foamed pipe of the present invention is made of a novel thermoplastic elastomer, resin fine powder and chemical foaming agent, it exhibits excellent ozone resistance, mechanical strength and light weight, and has other useful life. Is long and has excellent workability.

【0029】 熱可塑性エラストマー100重量部に
対して、その熱可塑性エラストマーとの溶融接着力が小
さく且つ粒子径が10〜100ミクロンの樹脂微粉末1
0〜80重量部及び化学発泡剤が適当量から成る組成物
を押出機にてパイプ状に押出し、然る後押出し直後の高
温のパイプを長さ方向に延伸処理してから冷却すること
により、パイプの壁面に形成された連続気泡の内径が大
きくなり、また内面と外面とのスキン層での気泡の形成
が促進された状態で冷却固化し、その結果優れた通気性
を発揮することができる通気性発泡パイプを得ることが
できる。
A resin fine powder 1 having a small melt adhesion with the thermoplastic elastomer and a particle diameter of 10 to 100 μm per 100 parts by weight of the thermoplastic elastomer.
A composition comprising 0 to 80 parts by weight and an appropriate amount of a chemical foaming agent is extruded into a pipe shape by an extruder, and then a hot pipe immediately after extrusion is stretched in the longitudinal direction and then cooled, The inner diameter of the open cells formed on the wall surface of the pipe becomes large, and the cells are cooled and solidified in a state where the formation of bubbles in the skin layer between the inner surface and the outer surface is promoted, and as a result, excellent air permeability can be exhibited. A breathable foam pipe can be obtained.

【0030】[0030]

【実施例】次に、本発明の通気性発泡パイプ及びその製
造方法の一実施例を図面により説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the breathable foam pipe and the method for producing the same according to the present invention will be described with reference to the drawings.

【0031】図1は本発明の通気性発泡パイプの製造方
法を示した正面説明図である。
FIG. 1 is a front explanatory view showing a method for manufacturing a breathable foamed pipe of the present invention.

【0032】図1において1は押出機、2はヘッド部、
3は溶融延伸部、4は冷却水槽、5は引取機、6は巻取
機、7は通気性発泡パイプである。
In FIG. 1, 1 is an extruder, 2 is a head part,
3 is a melt drawing part, 4 is a cooling water tank, 5 is a take-up machine, 6 is a take-up machine, and 7 is a breathable foam pipe.

【0033】即ち、本発明の通気性発泡パイプの製造方
法は組成物をヘンシルミキサーで均一にドライブレンド
した後、得られたドライブレンド組成物を図1に示した
押出機に投入し、押出機の中で100〜170℃で均一
に溶融混練しながらパイプを押出し、然る後その押出し
直後の高温のパイプを溶融延伸部3の部分で延伸処理す
るように引取機5、巻取機6で引張り、それから冷却水
槽4で冷却し、最後に引取機5を介して巻取機6で巻取
るようになっている。
That is, in the method for producing an air-permeable foamed pipe of the present invention, the composition was uniformly dry blended with a Hensil mixer, and the obtained dry blend composition was charged into the extruder shown in FIG. The pipe is extruded while being uniformly melt-kneaded at 100 to 170 ° C. in the machine, and the high temperature pipe immediately after the extruding is stretched in the portion of the melt-stretching section 3 by the take-up machine 5 and the winding machine 6. Is pulled, then cooled in the cooling water tank 4, and finally wound by the winder 6 via the take-up machine 5.

【0034】なお延伸は諸条件により異なるが、一般に
は0.5〜30%程度が適切である。
Stretching varies depending on various conditions, but generally 0.5 to 30% is appropriate.

【0035】図1において7は得られた通気性発泡パイ
プであって、内径φ18mm、外径φ26mmである。
In FIG. 1, 7 is the obtained air-permeable foamed pipe having an inner diameter of 18 mm and an outer diameter of 26 mm.

【0036】また、図2は得られた通気性発泡パイプの
部分横断面説明図である。
FIG. 2 is a partial cross-sectional explanatory view of the obtained air-permeable foam pipe.

【0037】図2において8は発泡通気性部、9は樹脂
微粉末である。
In FIG. 2, 8 is a foamed air-permeable portion, and 9 is a resin fine powder.

【0038】[実施例1]ハードセクメントがポリプロ
ピレンで、ソフトセクメントがエチレンプロピレンゴム
から成るオレフィン系熱可塑性エラストマーと、このオ
レフィン系熱可塑性エラストマーとの溶融接着力が小さ
く且つ熱変形温度が高くしかも平均粒子径が30ミクロ
ンの超高分子量高密度ポリエチレン(分子量200万以
上)微粉末を用い、化学発泡剤としてアゾジカルボンア
ミドを用い、更に青色着色剤を配合して組成物を作成し
た。組成物の配合は次の通りである。
[Example 1] The olefin thermoplastic elastomer having a hard segment of polypropylene and the soft segment of ethylene propylene rubber and the olefin thermoplastic elastomer have a low melt adhesion and a high heat distortion temperature. Moreover, an ultrahigh molecular weight high density polyethylene (molecular weight of 2,000,000 or more) fine powder having an average particle diameter of 30 microns was used, azodicarbonamide was used as a chemical foaming agent, and a blue colorant was further added to prepare a composition. The composition of the composition is as follows.

【0039】 オレフィン系熱可塑性エラストマー 100.0重量部 超高分子量高密度ポリエチレン微粉末 10.0重量部 アゾジカルボンアミド 1.5重量部 青色着色剤 2.0重量部 合 計 163.5重量部 上記の組成物をヘンシルミキサーで均一にドライブレン
ドした後、ドライブレンド組成物を図1に示した押出機
に投入した。押出機の中で160〜170℃で均一に溶
融混練しながらパイプを押出し、更にその押出し直後の
高温のパイプを溶融延伸部3の部分で延伸処理させ、そ
れから冷却水槽4で冷却し、最後に引取機5を介して巻
取機6で巻取った。
Olefinic thermoplastic elastomer 100.0 parts by weight Ultra high molecular weight high-density polyethylene fine powder 10.0 parts by weight Azodicarbonamide 1.5 parts by weight Blue colorant 2.0 parts by weight Total 163.5 parts by weight The composition of Example 1 was uniformly dry blended with a Hensil mixer, and then the dry blend composition was charged into the extruder shown in FIG. The pipe is extruded while being uniformly melted and kneaded in an extruder at 160 to 170 ° C., and the high temperature pipe immediately after the extrusion is subjected to a stretching treatment in a portion of the melt stretching section 3, and then cooled in a cooling water tank 4, and finally, It was wound by the winder 6 via the take-up machine 5.

【0040】[実施例2]オレフィン系熱可塑性エラス
トマー100.0重量部に対して、超高分子量高密度ポ
リエチレン微粉末の配合量を20.0重量部とした以外
は実施例1と同様にして実施例2の通気性発泡パイプを
得た。
Example 2 The same as Example 1 except that the compounding amount of the ultrahigh molecular weight high-density polyethylene fine powder was 20.0 parts by weight with respect to 100.0 parts by weight of the olefinic thermoplastic elastomer. The air-permeable foam pipe of Example 2 was obtained.

【0041】[実施例3]オレフィン系熱可塑性エラス
トマー100.0重量部に対して、超高分子量高密度ポ
リエチレン微粉末の配合量を40.0重量部とした以外
は実施例1と同様にして実施例3の通気性発泡パイプを
得た。
Example 3 The same as Example 1 except that the compounding amount of the ultra high molecular weight high density polyethylene fine powder was 40.0 parts by weight with respect to 100.0 parts by weight of the olefinic thermoplastic elastomer. The air-permeable foam pipe of Example 3 was obtained.

【0042】[実施例3]オレフィン系熱可塑性エラス
トマー100.0重量部に対して、超高分子量高密度ポ
リエチレン微粉末の配合量を60.0重量部とした以外
は実施例1と同様にして実施例3の通気性発泡パイプを
得た。
[Example 3] The same as Example 1 except that the compounding amount of the ultra-high molecular weight high-density polyethylene fine powder was 60.0 parts by weight with respect to 100.0 parts by weight of the olefinic thermoplastic elastomer. The air-permeable foam pipe of Example 3 was obtained.

【0043】[実施例4]オレフィン系熱可塑性エラス
トマー100.0重量部に対して、超高分子量高密度ポ
リエチレン微粉末の配合量を80.0重量部とした以外
は実施例1と同様にして実施例4の通気性発泡パイプを
得た。
[Example 4] The same as Example 1 except that the compounding amount of the ultrahigh molecular weight high-density polyethylene fine powder was 80.0 parts by weight with respect to 100.0 parts by weight of the olefinic thermoplastic elastomer. The air-permeable foam pipe of Example 4 was obtained.

【0044】[実施例5]配合する超高分子量高密度ポ
リエチレン微粉末の10ミクロンとした以外は実施例3
と同様にして実施例5の通気性パイプを得た。
[Example 5] Example 3 except that the ultrahigh molecular weight high-density polyethylene fine powder to be blended was 10 microns.
A breathable pipe of Example 5 was obtained in the same manner as in.

【0045】[実施例6]配合する超高分子量高密度ポ
リエチレン微粉末の50ミクロンとした以外は実施例3
と同様にして実施例6の通気性発泡パイプを得た。
[Example 6] Example 3 except that the ultra high molecular weight high density polyethylene fine powder to be blended was 50 microns
A breathable foam pipe of Example 6 was obtained in the same manner as in.

【0046】[実施例7]配合する超高分子量高密度ポ
リエチレン微粉末の100ミクロンとした以外は実施例
3と同様にして実施例7の通気性発泡パイプを得た。
[Example 7] An air-permeable foam pipe of Example 7 was obtained in the same manner as in Example 3 except that the ultra-high molecular weight high-density polyethylene fine powder to be blended was 100 microns.

【0047】[実施例8]結晶性エチレンプロピレンエ
ラストマーとして日本合成ゴム株式会社のEP−51
と、平均粒子径が30ミクロンの超高分子量高密度ポリ
エチレン微粉末と、化学発泡剤のアゾジカルボンアミド
と、青色着色剤と、反応性モノマーのビニルシランと、
過酸化物のジキューミルパーオキサイドと、発泡分解促
進剤のジブチル錫ジラウレートと、安定剤の4,4−チ
オビス(6tーブチル−mクレゾール)とから成る組成
物を作成した。
Example 8 EP-51 manufactured by Japan Synthetic Rubber Co., Ltd. as a crystalline ethylene propylene elastomer
An ultra high molecular weight high density polyethylene fine powder having an average particle diameter of 30 microns, a chemical foaming agent azodicarbonamide, a blue colorant, and a reactive monomer vinylsilane,
A composition was prepared consisting of the peroxide, dicumyl peroxide, the foam decomposition promoter, dibutyltin dilaurate, and the stabilizer, 4,4-thiobis (6t-butyl-m-cresol).

【0048】組成物の配合は次の通りである。The composition of the composition is as follows.

【0049】 非結晶性エチレンプロピレンエラストマー 100.0重量部 超高分子量高密度ポリエチレン微粉末 50.0重量部 アゾジカルボンアミド 2.0重量部 青色着色剤 2.0重量部 ビニルシラン 2.5重量部 ジキューミルパーオキサイド 0.2重量部 ジブチル錫ジラウレート 0.1重量部 4,4−チオビス(6tーブチル−mクレゾール)0.3重量部 合 計 157.1重量部 上記の組成物をヘンシルミキサーで均一にドライブレン
ドした後、ドライブレンド組成物を図1に示した押出機
に投入した。押出機の中で100〜120℃で均一に溶
融混練しながらパイプを押出し、更にその押出し直後の
高温のパイプを溶融延伸部3の部分で延伸させ、それか
ら60〜80℃の冷却水槽を通過させてシラン水架橋さ
せ、引取機5を介して巻取機6で巻取った。
Amorphous ethylene propylene elastomer 100.0 parts by weight Ultra high molecular weight high density polyethylene fine powder 50.0 parts by weight Azodicarbonamide 2.0 parts by weight Blue colorant 2.0 parts by weight Vinylsilane 2.5 parts by weight Di Cumiyl peroxide 0.2 parts by weight Dibutyltin dilaurate 0.1 parts by weight 4,4-thiobis (6t-butyl-m-cresol) 0.3 parts by weight 157.1 parts by weight The above composition was mixed with a Hensyl mixer. After uniformly dry blending, the dry blend composition was loaded into the extruder shown in FIG. The pipe is extruded while being uniformly melt-kneaded at 100 to 120 ° C. in an extruder, and the high temperature pipe immediately after the extrusion is stretched in the melt stretching section 3 and then passed through a cooling water tank at 60 to 80 ° C. It was crosslinked with silane water, and was wound by the winder 6 via the take-up machine 5.

【0050】[比較例1]従来のように樹脂粉末を焼結
して成る内径φ18mm、外径φ26mmの通気性発泡
パイプを作成した。
[Comparative Example 1] A breathable foamed pipe having an inner diameter of 18 mm and an outer diameter of 26 mm was prepared by sintering resin powder as in the conventional case.

【0051】[比較例2]従来のように再生ゴムから生
産した内径φ18mm、外径φ26mmの通気性発泡パ
イプを作成した。
[Comparative Example 2] A breathable foamed pipe having an inner diameter of 18 mm and an outer diameter of 26 mm produced from regenerated rubber as in the past was prepared.

【0052】[比較例3]オレフィン系熱可塑性エラス
トマー100.0重量部に対して、超高分子量高密度ポ
リエチレン微粉末の配合量を5重量部とした以外は実施
例1と同様にして比較例1の通気性発泡パイプを得た。
[Comparative Example 3] A comparative example was carried out in the same manner as in Example 1 except that the compounding amount of the ultra high molecular weight high density polyethylene fine powder was 5 parts by weight with respect to 100.0 parts by weight of the olefinic thermoplastic elastomer. A breathable foamed pipe of No. 1 was obtained.

【0053】[比較例4]オレフィン系熱可塑性エラス
トマー100.0重量部に対して、超高分子量高密度ポ
リエチレン微粉末の配合量を100重量部とした以外は
実施例1と同様にして比較例2の通気性発泡パイプを得
た。
[Comparative Example 4] A comparative example was carried out in the same manner as in Example 1 except that the compounding amount of the ultra high molecular weight high density polyethylene fine powder was 100 parts by weight with respect to 100.0 parts by weight of the olefinic thermoplastic elastomer. A breathable foam pipe of 2 was obtained.

【0054】[比較例5]配合する超高分子量高密度ポ
リエチレン微粉末の5ミクロンとした以外は実施例3と
同様にして比較例3の通気性発泡パイプを得た。
[Comparative Example 5] A breathable foamed pipe of Comparative Example 3 was obtained in the same manner as in Example 3 except that the ultra high molecular weight high density polyethylene fine powder to be blended was 5 microns.

【0055】[比較例6]配合する超高分子量高密度ポ
リエチレン微粉末の110ミクロンとした以外は実施例
3と同様にして比較例4の通気性パイプを得た。
[Comparative Example 6] An air-permeable pipe of Comparative Example 4 was obtained in the same manner as in Example 3 except that the ultrahigh molecular weight high-density polyethylene fine powder to be blended was 110 microns.

【0056】[特性試験結果]次に、かくして得られた
実施例1〜8及び比較例1〜4の長尺の通気性発泡パイ
プを長さ5mに切断し、各種試験を行った。
[Characteristic Test Results] Next, the long breathable foamed pipes of Examples 1 to 8 and Comparative Examples 1 to 4 thus obtained were cut into a length of 5 m, and various tests were conducted.

【0057】外観 肉眼で平滑性を観察し、平滑なものを◎、それ以外のも
のを×で示した。
Appearance The smoothness was visually observed, and the smooth ones were indicated by ⊚ and the others were indicated by x.

【0058】機械的特性 長さ0.5mの通気性発泡パイプを取り、長手方向の引
張り強さを測定し、30kg以上のものを◎、それ以外
のものを×で示した。
Mechanical Properties A breathable foamed pipe having a length of 0.5 m was taken, and the tensile strength in the longitudinal direction was measured.

【0059】軽量性 長さ0.5mの通気性発泡パイプを取り、その重量を化
学天秤で測定し、比較例1を100としたとき80より
小さいものを◎、それ以外のものを×で示した。
Lightness: A breathable foamed pipe having a length of 0.5 m was taken, and the weight thereof was measured by an analytical balance. When Comparative Example 1 was set to 100, those smaller than 80 were marked with ⊚, and other specimens were marked with x. It was

【0060】取扱作業性 長さ5mの通気性発泡パイプを取り、手で容易に曲げら
れるものを◎、それ以外のものを×で示した。
Handling workability A breathable foamed pipe having a length of 5 m and easily bent by hand is shown as ⊚, and other items are shown as x.

【0061】寸法精度 長さ5mの通気性発泡パイプを取り、長手方向の外径の
変動を測定し、寸法精度の高いものを◎、それ以外のも
のを×で示した。
Dimensional accuracy A breathable foamed pipe having a length of 5 m was taken, and the variation of the outer diameter in the longitudinal direction was measured.

【0062】パイプの通気性 長さ5mの通気性発泡パイプを取り、その一端側を加熱
融着させて封管し、更にその他端側にオゾン送気用ビニ
ルパイプを接続した。
Air Permeability of Pipe A gas permeable foamed pipe having a length of 5 m was taken, one end of the pipe was heat-sealed and sealed, and a vinyl pipe for ozone supply was connected to the other end.

【0063】次に、このオゾン送気用ビニルパイプに接
続した通気性発泡パイプをオゾン処理池の水深1mの位
置に固定し、それからオゾン濃度0.1ppmのオゾン
混合空気を送風圧力0.3kg/cm2 で送り出し、通
気性の良否を評価した。
Next, the air-permeable foam pipe connected to this ozone-sending vinyl pipe was fixed at a depth of 1 m in the ozone treatment pond, and then ozone-mixed air having an ozone concentration of 0.1 ppm was blown at a pressure of 0.3 kg /. It was sent out in cm 2 , and the quality of air permeability was evaluated.

【0064】結果は、通気性発泡パイプの長さ方向に沿
ってオゾン混合空気が均一且つ多数吹き出し、しかもそ
の散気量が0.15m3 /m以上のものを◎、それ以外
のものを×で示した。
As a result, the ozone-mixed air is uniformly and in large numbers blown out along the length of the air-permeable foam pipe, and the diffused amount is 0.15 m 3 / m or more. Indicated by.

【0065】耐オゾン性試験 切断した短尺の通気性発泡パイプについてオゾン試験を
行った。オゾン試験は、採取した短尺の通気性パイプを
外径の8倍に巻き付けたコイル状としてからオゾン試験
機にセットし、それからオゾン濃度が1ppmのオゾン
混合空気を60日に亘り通過させた。結果はクラックが
発生しないものを◎、発生したものを×で示した。
Ozone Resistance Test An ozone test was conducted on the cut short breathable foamed pipe. In the ozone test, the sampled short breathable pipe was wound into a coil shape having eight times the outer diameter, set in an ozone tester, and then ozone-mixed air having an ozone concentration of 1 ppm was passed for 60 days. The results are shown by ⊚ when cracks did not occur and by x when cracks occurred.

【0066】[0066]

【表1】 [Table 1]

【0067】表1から分かるように従来品の比較例1及
び2の通気性発泡パイプは全ての特性項目にも難点があ
る。また、組成物の本発明の範囲を外れている比較例3
〜6の通気性パイプは何等かの難点がある。
As can be seen from Table 1, the conventional air-permeable foam pipes of Comparative Examples 1 and 2 have problems in all characteristic items. Comparative Example 3 in which the composition is out of the scope of the present invention
Breathable pipes of ~ 6 have some drawbacks.

【0068】これに対して実施例1〜8の通気性発泡パ
イプは全項目とも優れた試験結果を示した。
On the other hand, the breathable foamed pipes of Examples 1 to 8 showed excellent test results in all items.

【0069】[0069]

【発明の効果】本発明の通気性発泡パイプ及びその製造
方法によれば外観、機械的特性、軽量性、取扱作業性、
寸法精度、通気性、耐オゾン性がいずれも優れた通気性
発泡パイプを得ることができるものであり、工業上有用
である。
According to the breathable foam pipe and the method for producing the same of the present invention, the appearance, the mechanical characteristics, the lightness, the handling workability,
It is possible to obtain a breathable foamed pipe having excellent dimensional accuracy, breathability, and ozone resistance, and is industrially useful.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の通気性発泡パイプの製造方法を示した
正面説明図である。
FIG. 1 is a front explanatory view showing a method for producing a breathable foamed pipe of the present invention.

【図2】本発明の通気性発泡パイプの部分横断面説明図
である。
FIG. 2 is a partial cross-sectional explanatory view of a breathable foam pipe of the present invention.

【符号の説明】[Explanation of symbols]

1 押出機 2 ヘッド部 3 溶融延伸部 4 冷却水槽 5 引取機 6 巻取機 7 通気性パイプ 8 発泡通気性部 9 樹脂微粉末 DESCRIPTION OF SYMBOLS 1 Extruder 2 Head part 3 Melt drawing part 4 Cooling water tank 5 Drawer 6 Winder 7 Breathable pipe 8 Foaming breathable part 9 Resin fine powder

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】熱可塑性エラストマー100重量部に対し
て、該熱可塑性エラストマーとの溶融接着力が小さく且
つ粒子径が10〜100ミクロンであるところの樹脂微
粉末10〜80重量部及び化学発泡剤が適当量から成る
組成物をパイプ状に押出して成ることを特徴とする通気
性発泡パイプ。
1. 10 to 80 parts by weight of a resin fine powder having a small melt adhesion with the thermoplastic elastomer and a particle diameter of 10 to 100 μm, and a chemical foaming agent, relative to 100 parts by weight of the thermoplastic elastomer. A breathable foamed pipe, characterized in that the composition is extruded into a pipe shape in an appropriate amount.
【請求項2】熱可塑性エラストマー100重量部に対し
て、該熱可塑性エラストマーとの溶融接着力が小さく且
つ粒子径が10〜100ミクロンであるところの樹脂粉
末10〜80重量部及び化学発泡剤適当量から成る組成
物を押出機によりパイプ状に押出し、然る後該押出し直
後の高温のパイプを長さ方向に延伸処理してから冷却す
ることを特徴とする通気性発泡パイプの製造方法。
2. 10 to 80 parts by weight of a resin powder having a small melt adhesion with the thermoplastic elastomer and a particle diameter of 10 to 100 μm, and a chemical foaming agent are suitable for 100 parts by weight of the thermoplastic elastomer. A method for producing an air-permeable foamed pipe, comprising: extruding a composition comprising a quantity of the composition into a pipe shape by an extruder, and then subjecting the hot pipe immediately after the extrusion to a lengthwise stretching treatment and then cooling.
JP4013250A 1992-01-28 1992-01-28 Breathable foam pipe and manufacturing method thereof Expired - Lifetime JP2500218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4013250A JP2500218B2 (en) 1992-01-28 1992-01-28 Breathable foam pipe and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4013250A JP2500218B2 (en) 1992-01-28 1992-01-28 Breathable foam pipe and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH05202218A JPH05202218A (en) 1993-08-10
JP2500218B2 true JP2500218B2 (en) 1996-05-29

Family

ID=11827966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4013250A Expired - Lifetime JP2500218B2 (en) 1992-01-28 1992-01-28 Breathable foam pipe and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2500218B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19900489A1 (en) * 1999-01-08 2000-07-13 Cognis Deutschland Gmbh Process for the production of loadable plastic foams
US7083849B1 (en) * 1999-06-04 2006-08-01 3M Innovative Properties Company Breathable polymer foams
JP3902927B2 (en) * 2001-08-10 2007-04-11 日本化学販売株式会社 Drain pipe

Also Published As

Publication number Publication date
JPH05202218A (en) 1993-08-10

Similar Documents

Publication Publication Date Title
US4614764A (en) Linear low density ethylene polymers blended with modified linear low density ethylene polymers
JPH09503238A (en) Plastic product and manufacturing method thereof
JP2500218B2 (en) Breathable foam pipe and manufacturing method thereof
EP0450210B1 (en) Microcellular paintbrush bristles
CN109517262A (en) A kind of supercritical fluid foaming method of whole process pressure maintaining
JP2019203228A (en) Resin composition for polypropylene-based monofilament and method for producing polypropylene-based monofilament
US8857147B2 (en) Self cleaning and lubricating all-weather fishing lines and methods of manufacture thereof
JP2019038967A (en) Method for producing polypropylene-based foam filament
GB1574745A (en) Rod for supporting plants and process for its manufacture
CN1254499C (en) Antibacterial moldproof extrusion of chemical crosslinked polyethylene foam plastic
JP2019038968A (en) Polypropylene-based foam filament
KR20190076451A (en) Polymer composition for oxo-biodegradable film, method for manufacturing the same and breathable oxo-biodegradable film manufactured thereby
DE69032095T2 (en) Process for the production of a plastic foam
JP2008285564A (en) Polyolefin-polyamide resin composition and method for producing the same
JP3166279B2 (en) Porous film or sheet and method for producing the same
JPH11302464A (en) Polyamide fiber-reinforced polyolefin resin composition and its preparation
JPS6011937B2 (en) Method for producing thermoplastic elastomer foam
KR20040056723A (en) Fabrication method of artificial leather using ethylene-vinyl acetate copolymer
JP2019203229A (en) Resin composition for polypropylene-based monofilament and method for producing polypropylene-based monofilament
JP3581412B2 (en) Method for producing polyethylene resin composition for forming blown film
JPH09314657A (en) Production of polyethylene molded object
JP2859346B2 (en) Porous film
JP2621452B2 (en) Method for producing elastic tape or film
WO2005065908A1 (en) Method for producing polyolefin-polyamide resin composition
JPH051300B2 (en)