JP2024516326A - Use of polaprezinc in the preparation of a medicament for treating castration-resistant prostate cancer - Google Patents

Use of polaprezinc in the preparation of a medicament for treating castration-resistant prostate cancer Download PDF

Info

Publication number
JP2024516326A
JP2024516326A JP2023568658A JP2023568658A JP2024516326A JP 2024516326 A JP2024516326 A JP 2024516326A JP 2023568658 A JP2023568658 A JP 2023568658A JP 2023568658 A JP2023568658 A JP 2023568658A JP 2024516326 A JP2024516326 A JP 2024516326A
Authority
JP
Japan
Prior art keywords
pharmaceutical composition
enza
prostate cancer
drug
polaprezinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023568658A
Other languages
Japanese (ja)
Inventor
王栄
陳永泉
朱升龍
王小英
糜遠源
呉升
孫健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110501971.4A external-priority patent/CN113197903B/en
Application filed by Jiangnan University filed Critical Jiangnan University
Publication of JP2024516326A publication Critical patent/JP2024516326A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/555Heterocyclic compounds containing heavy metals, e.g. hemin, hematin, melarsoprol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/58Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41661,3-Diazoles having oxo groups directly attached to the heterocyclic ring, e.g. phenytoin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/50Pyridazines; Hydrogenated pyridazines
    • A61K31/502Pyridazines; Hydrogenated pyridazines ortho- or peri-condensed with carbocyclic ring systems, e.g. cinnoline, phthalazine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本発明は去勢抵抗性前立腺がんの治療薬の調製におけるポラプレジンクの使用を開示し、生物医学の技術分野に属する。本発明は、Polaとアンドロゲン受容体拮抗薬を組み合わせCRPCの治療薬を調製するための新たな戦略を初めて提案し、多角的且つ多段階の検証研究を行うものである。本発明のポラプレジンクとアンドロゲン受容体を組み合わせた医薬組成物は去勢抵抗性前立腺がんの治療に使用でき、去勢抵抗性前立腺がんに対するエンザルタミドの阻害効果を顕著に向上させることができ、古い薬剤の新たな使用が実現され、創薬から臨床転換までの時間を大幅に短縮することができ、臨床治療上に重要な意義がある。【選択図】図4The present invention discloses the use of polaprezinc in preparing a therapeutic drug for castration-resistant prostate cancer, which belongs to the field of biomedical technology. The present invention is the first to propose a new strategy for combining pola with an androgen receptor antagonist to prepare a therapeutic drug for CRPC, and conducts multifaceted and multi-stage validation research. The pharmaceutical composition of the present invention combining polaprezinc and androgen receptor can be used to treat castration-resistant prostate cancer, which can significantly improve the inhibitory effect of enzalutamide on castration-resistant prostate cancer, realize a new use of old drugs, and greatly shorten the time from drug discovery to clinical translation, which is of great significance in clinical treatment. [Selected Figure] Figure 4

Description

本発明は生物医学の技術分野に属し、具体的には、去勢抵抗性前立腺がんの治療薬の調製におけるポラプレジンクの使用に関する。 The present invention belongs to the field of biomedical technology, and specifically relates to the use of polaprezinc in the preparation of a medicament for treating castration-resistant prostate cancer.

アンドロゲン除去療法が進行前立腺がんの標準治療方法であるが、患者は平均1~3年の治療後に最終的に去勢抵抗性前立腺がん(Castration-resistant prostate cancer、CRPC)を発症する。2014年、CUAマニュアルによれば、CRPCとは、最初の連続的なアンドロゲン除去療法(ADT)の後に疾患が依然として進行する前立腺がんを指す。(1)血清テストステロンが去勢レベル(<50ng/dL又は1.7nmol/L)に維持されている条件と、(2)生化学的進行について、1週間おきに3回連続して検出されたPSA値が最低値の50%以上超え、増加の絶対値が>2ng/mlであり、又はX線撮影による進行について、骨シンチグラフィで2つ以上の新たな病巣が発見し、又はRECISTで評価すると軟組織の病巣が大きくなるという条件と、を同時に満たす必要がる。現在、症状の進行だけで、CRPCを診断するのに十分ではないと考えられている。 Androgen deprivation therapy is the standard treatment for advanced prostate cancer, but patients eventually develop castration-resistant prostate cancer (CRPC) after an average of 1-3 years of treatment. According to the 2014 CUA Manual, CRPC refers to prostate cancer in which the disease continues to progress after the first continuous androgen deprivation therapy (ADT). The following conditions must be met simultaneously: (1) serum testosterone is maintained at castration levels (<50 ng/dL or 1.7 nmol/L); (2) biochemical progression is defined as PSA levels >50% above the nadir on three consecutive weekly measurements with an absolute increase of >2 ng/mL; or radiographic progression is defined as two or more new lesions on bone scintigraphy or enlarging soft tissue lesions as assessed by RECIST. Currently, symptom progression alone is not considered sufficient to diagnose CRPC.

以前では、CRPC患者に効果的な治療方法がなく、いくつかの緩和治療のみを受けることができ、2004年に、ドセタキセルが転移性去勢抵抗前立腺がん(metastatic castration-resistant prostate cancer、 mCRPC)患者の全生存期間を延長できることが証明されて以来、アビラテロン酢酸エステル、エンザルタミド、カバジタキセル等のmCRPC疾患段階に対する薬剤が出現し、これらの患者の治療状況を変えたが、CRPCを完全に回復させることは困難である。従って、効果的な併用治療戦略を見つけることはCRPC治療における別の研究のホットスポットとなる。 Previously, CRPC patients had no effective treatment and could only receive some palliative treatments. Since docetaxel was proven to be able to extend the overall survival of metastatic castration-resistant prostate cancer (mCRPC) patients in 2004, drugs for the mCRPC disease stage, such as abiraterone acetate, enzalutamide, and cabazitaxel, have emerged, which have changed the treatment situation for these patients, but it is difficult to completely cure CRPC. Therefore, finding an effective combination treatment strategy has become another research hotspot in CRPC treatment.

最近、多くの学者は新たな腫瘍細胞薬剤耐性機序-持続細胞(persister cell)、つまり腫瘍細胞可塑性(tumor cell plasticity)、微小残存病変(minimal residual disease)、又は薬剤耐性持続(drug-tolerant persisters、 DTP)等を提案している。この機序の特徴は、薬剤耐性状態で腫瘍細胞が薬剤標的経路に依存せずに、他の経路で生存するが、標的遺伝子に任意の突然変異が発生せず、一定の時間退薬した後に薬剤感受性が回復することである。現在、この機序を作成する3つの仮説が提案されている。(1)少数の薬剤耐性細胞(drug-tolerant cells)が元々存在し、薬剤処置後にダーウィンの進化論によって増加し、(2)少数の薬剤抵抗性細胞が小さい部分のがん細胞によってエピジェネティックに改変されて薬剤耐性細胞を生成し、残存病巣と共存し、(3)腫瘍細胞は様々な薬剤耐性遺伝子を動的に発現し、薬剤処置時にこれらの薬剤耐性遺伝子を高発現させて、薬剤耐性発現系をさらに再構築し、薬剤耐性細胞を生成する。近年、細胞可塑性は標的診断回避モデルとして出現しており、多くのがん症薬剤耐性の共通性である。新たな薬剤耐性経路をブロックするとpersister cellを効果的に阻害でき、例えば、GPX4脂質過酸化経路は、多くのpersister cell状態で高度に発現する効果的な標的である。これまでのところ、CRPC腫瘍にpersister cellがあるか否か、及び新たな効果的な標的を見つけることができるか否かは分かっていない。従って、この研究は、EPI-001及びEnzalutamideによって生成された前立腺がんLNCaP-persister cellから出発して、CRPCを治療するための効果的な併用薬剤を見つけることに焦点を当てている。 Recently, many scholars have proposed a new tumor cell drug resistance mechanism - persister cells, namely tumor cell plasticity, minimal residual disease, or drug-tolerant persisters (DTP). The characteristic of this mechanism is that in a drug-resistant state, tumor cells do not depend on the drug target pathway but survive through other pathways, but no mutations occur in the target gene, and drug sensitivity is restored after a certain period of withdrawal. Currently, three hypotheses have been proposed to create this mechanism. (1) A small number of drug-resistant cells originally exist and increase after drug treatment by Darwinian evolution; (2) A small number of drug-resistant cells are epigenetically modified by a small portion of cancer cells to generate drug-resistant cells and coexist with residual lesions; (3) Tumor cells dynamically express various drug-resistant genes, and during drug treatment, these drug-resistant genes are highly expressed to further reconstruct the drug-resistant expression system and generate drug-resistant cells. In recent years, cellular plasticity has emerged as a target diagnostic evasion model and is a commonality of many cancer drug resistance. Blocking new drug resistance pathways can effectively inhibit persister cells, for example, the GPX4 lipid peroxidation pathway is an effective target that is highly expressed in many persister cell states. So far, it is not known whether there are persister cells in CRPC tumors and whether new effective targets can be found. Therefore, this study focuses on finding effective combination drugs to treat CRPC, starting from prostate cancer LNCaP-persistent cells generated by EPI-001 and Enzalutamide.

EPI-001(EPI)は、臨床開発が待たれている、CRPCの治療に用いられる可能性があるAR及びAR-スプライス変異体(AR-Vs)の阻害剤である。CRPCに対するEPIの標的は主にN-末端ドメイン(NTD)である。エンザルタミド(Enzalutamide、Enza)は最初の承認された第2世代ARアンタゴニストであり、従来の抗アンドロゲンに比べてARに対する親和性が5~8倍高い。2012年に、米国FDAはこれに基づきCRPC患者向けたEnzaを承認した。しかし、EPIであれEnzaであれ、CRPCの治療に対する薬剤耐性は通常18カ月前後に出現する。従って薬剤耐性を克服し、CRPCを遅らせるための他の方法は緊急に必要とされている。 EPI-001 (EPI) is an inhibitor of AR and AR-splice variants (AR-Vs) pending clinical development that may be used to treat CRPC. The target of EPI for CRPC is mainly the N-terminal domain (NTD). Enzalutamide (Enza) is the first approved second-generation AR antagonist, and has 5-8 times higher affinity for AR than conventional antiandrogens. In 2012, the US FDA approved Enza for CRPC patients based on this. However, drug resistance to the treatment of CRPC, whether EPI or Enza, usually appears around 18 months. Therefore, other methods to overcome drug resistance and delay CRPC are urgently needed.

ポラプレジンク(Polaprezinc、Pola)は亜鉛とL-カルノシンのキレート化形態である。これは日本で初めて承認された亜鉛関連薬剤であり、胃潰瘍の治療に臨床使用されている。この結果は、Polaは圧迫性潰瘍の治療に有効である可能性があることを示している。2013年の研究は、Polaを併用すると、アスピリンの長期使用による小腸粘膜損傷に有効である可能性があることを示している。 Polaprezinc (Pola) is a chelated form of zinc and L-carnosine. It is the first zinc-related drug approved in Japan and is in clinical use to treat gastric ulcers. The results indicate that Pola may be effective in treating pressure ulcers. A 2013 study showed that Pola, when used in combination, may be effective in treating small intestinal mucosal damage caused by long-term use of aspirin.

本発明が解決しようとする技術的課題は、上記従来の薬剤に存在する薬剤耐性を克服し、EnzaとPolaを併用することによりCRPCの治療効果を顕著に向上させ、優れた相乗効果を発揮する効果的なCRPC治療薬を提供することである。 The technical problem that the present invention aims to solve is to provide an effective CRPC treatment drug that overcomes the drug resistance present in the above-mentioned conventional drugs, significantly improves the therapeutic effect of CRPC by combining Enza and Pola, and exerts an excellent synergistic effect.

本発明の第1の目的は去勢抵抗性前立腺がんの治療薬の調製におけるポラプレジンク(Polaprezinc)の使用を提供することである。 The first object of the present invention is to provide a use of polaprezinc in the preparation of a therapeutic agent for castration-resistant prostate cancer.

本発明の一実施形態では、前記使用は、ポラプレジンクとアンドロゲン受容体拮抗薬を組み合わせて去勢抵抗性前立腺がんの治療薬を調製することを含む。 In one embodiment of the invention, the use includes combining polaprezinc with an androgen receptor antagonist to prepare a medicament for treating castration-resistant prostate cancer.

本発明の第2の目的は、ポラプレジンクとアンドロゲン受容体拮抗薬を含む、去勢抵抗性前立腺がんを治療するための医薬組成物を提供することである。 The second object of the present invention is to provide a pharmaceutical composition for treating castration-resistant prostate cancer, comprising polaprezinc and an androgen receptor antagonist.

本発明の一実施形態では、アンドロゲン受容体拮抗薬とポラプレジンクとの質量比は(1~5):1である。好ましくは、EnzaとPolaの質量比は1~2:1である。 In one embodiment of the present invention, the mass ratio of the androgen receptor antagonist to polaprezinc is (1-5):1. Preferably, the mass ratio of Enza to Pola is 1-2:1.

本発明の一実施形態では、アンドロゲン受容体拮抗薬は、エンザルタミド(Enza)、EPI-001(EPI)、アビラテロン、オラパリブのいずれか1種以上を含む。 In one embodiment of the present invention, the androgen receptor antagonist includes one or more of enzalutamide (Enza), EPI-001 (EPI), abiraterone, and olaparib.

本発明の一実施形態では、前記医薬組成物は医薬賦形剤をさらに含む。 In one embodiment of the present invention, the pharmaceutical composition further comprises a pharmaceutical excipient.

本発明の一実施形態では、前記医薬賦形剤は、溶剤、噴射剤、可溶化剤、助溶剤、乳化剤、着色剤、接着剤、崩壊剤、充填剤、潤滑剤、湿潤剤、浸透圧調整剤、安定剤、流動助剤、矯味剤、防腐剤、懸濁助剤、コーティング材、香味剤、接着防止剤、統合剤、浸透促進剤、pH値調整剤、緩衝剤、可塑剤、界面活性剤、発泡剤、消泡剤、増粘剤、包接剤、保湿剤、吸収剤、希釈剤、凝集剤及び解膠剤、濾過助剤及び放出阻害剤を含む。 In one embodiment of the present invention, the pharmaceutical excipients include solvents, propellants, solubilizers, cosolvents, emulsifiers, colorants, adhesives, disintegrants, fillers, lubricants, wetting agents, osmotic pressure regulators, stabilizers, flow aids, taste masking agents, preservatives, suspension aids, coating materials, flavorings, anti-adhesion agents, integrating agents, penetration enhancers, pH value regulators, buffers, plasticizers, surfactants, foaming agents, defoamers, thickeners, encapsulating agents, moisturizing agents, absorbents, diluents, flocculants and deflocculants, filter aids and release inhibitors.

本発明の一実施形態では、前記製剤の剤型は、注射液、注射用凍結乾燥粉末剤、徐放性注射剤、リポソーム注射剤、懸濁剤、植込剤、塞栓剤、カプセル剤、錠剤、丸剤及び経口液剤を含む。 In one embodiment of the present invention, the dosage form of the formulation includes an injection solution, a lyophilized powder for injection, a sustained release injection, a liposome injection, a suspension, an implant, an embolization agent, a capsule, a tablet, a pill, and an oral liquid.

本発明の一実施形態では、前記医薬組成物は医薬担体をさらに含んでもよい。 In one embodiment of the present invention, the pharmaceutical composition may further comprise a pharmaceutical carrier.

本発明の一実施形態では、前記医薬担体はマイクロカプセル、マイクロスフェア、ナノ粒子及びリポソームを含む。 In one embodiment of the invention, the pharmaceutical carrier includes microcapsules, microspheres, nanoparticles and liposomes.

本発明の一実施形態では、大量の研究と探索を行ったところ、本発明は、CRPC治療薬、すなわちEnzaとPolaの併用を見出した。研究結果から分かるように、EPI、Enzaに対して耐性のある前立腺がんLNCaP-drug-tolerant persisters(L-DTP)細胞株を作成することにより、LNCaP細胞はEPI、Enzaに対して回復可能な薬剤耐性を獲得し、EnzaとPolaを併用すると細胞成長を顕著に阻害でき、薬剤併用効果がCCK8細胞増殖解析により検証され、その相乗作用がCI値により判定される。同時に、C-MYC過剰発現前立腺がんマウスモデルを構築し、動物でのCRPCの治療に対するEnzaとPolaの単独使用と併用の効果の差を比較し、薬剤の併用による相乗作用はCRPCに対する単独のEnza薬剤の阻害効果を大幅に向上させ、両者の相乗作用はin vivo及びin vitroで検証されている。 In one embodiment of the present invention, after extensive research and exploration, the present invention has found a CRPC treatment drug, namely, the combination of Enza and Pola. As can be seen from the research results, by creating a prostate cancer LNCaP-drug-tolerant persisters (L-DTP) cell line resistant to EPI and Enza, LNCaP cells acquire reversible drug resistance to EPI and Enza, and the combination of Enza and Pola can significantly inhibit cell growth, and the drug combination effect is verified by CCK8 cell proliferation analysis, and the synergistic effect is determined by the CI value. At the same time, a C-MYC overexpressing prostate cancer mouse model is constructed to compare the difference in the effect of Enza and Pola used alone and in combination in the treatment of CRPC in animals, and the synergistic effect of the drug combination significantly improves the inhibitory effect of Enza alone on CRPC, and the synergistic effect of the two has been verified in vivo and in vitro.

本発明の一実施形態では、本発明は、L-DTP回復可能な薬剤耐性細胞株を作成し、CCK8方法及びCalcusynソフトウェアでCI値を計算した結果、この細胞株では、Enza又はPolaの単独使用に比べて、EnzaとPolaのin vitro併用がCRPCに対して相乗効果を有することが示された。C-MYC過剰発現前立腺がんマウスモデルを確立することにより、Enzaを長期間投与し薬剤耐性が発生するモデルで、動物におけるEnzaとPolaの併用群は、単剤群に比べて、in vivoでより顕著な抗CRPCモデル効果を有することは判明した。 In one embodiment of the present invention, the present invention creates a drug-resistant cell line capable of recovering L-DTP, and calculates the CI value using the CCK8 method and Calcusyn software. As a result, it was shown that in this cell line, the in vitro combination of Enza and Pola has a synergistic effect against CRPC compared to the single use of Enza or Pola. By establishing a C-MYC overexpressing prostate cancer mouse model, it was found that in a model in which drug resistance develops due to long-term administration of Enza, the combination group in animals with Enza and Pola has a more significant anti-CRPC model effect in vivo compared to the single drug group.

本発明は以下の有益な効果を有する。 The present invention has the following beneficial effects:

本発明は、Polaを利用したCRPC治療薬の調製、及びEnzaとPolaの薬剤併用に基づく新たな戦略を初めて提案し、且つその作用機序を記述しており、前立腺がんの臨床治療におけるEnzaとPolaの使用を促進するものであり、重要な意義がある。薬剤研究は、化合物分子から臨床使用まで平均8~10年かかり、且つ多くの人的及び物的支援が必要となり、時間コスト及び経済的コストが非常に大きい。本発明の解決手段は、「古い薬剤の新たな使用」を実現し、創薬から臨床転換までの時間を大幅に短縮することができる。 The present invention is the first to propose a new strategy based on the preparation of a CRPC therapeutic drug using Pola and the combined use of Enza and Pola, and describes its mechanism of action, which promotes the use of Enza and Pola in the clinical treatment of prostate cancer, and is of great significance. Drug research takes an average of 8 to 10 years from compound molecules to clinical use, and requires a lot of human and material support, resulting in very high time and economic costs. The solution of the present invention can realize "new uses for old drugs" and significantly shorten the time from drug discovery to clinical translation.

図1は、退薬後のDTP(drug-tolerant persisters)の回復可能特性の説明図であり、図1AはDTP及び退薬後の細胞回復のプロセスを示し、図1BはDTP-EPIを3世代、DTP-Enzaを3世代退薬した後の、対応する薬剤に対する感受性の回復特性を示す。FIG. 1 is an explanatory diagram of the recoverable characteristics of DTP (drug-tolerant persisters) after drug withdrawal. FIG. 1A shows the process of cell recovery after DTP and drug withdrawal, and FIG. 1B shows the recovery characteristics of sensitivity to the corresponding drugs after three generations of DTP-EPI and three generations of DTP-Enza withdrawal. 図2はDTP及び退薬(Recovery Cell)細胞におけるAR関連遺伝子の発現変化の特徴を示し、図2AはWBによって検出されたタンパク質発現の変化を示し、図2Bはq-PCRによって検出された転写産物発現の変化を示す。FIG. 2 shows the profile of changes in expression of AR-related genes in DTP and recovery cells, where FIG. 2A shows changes in protein expression detected by WB and FIG. 2B shows changes in transcript expression detected by q-PCR. 図3はL-DTP細胞における、EPI、EnzaのそれぞれとPolaとの併用によるin vitro薬効図であり、図3AはL-DTP-EPI、L-DTP-Enza細胞における薬剤併用細胞の相対生存率の棒グラフであり、図3BはEPI、EnzaのそれぞれとPolaとの併用による、L-DTP-EPI、L-DTP-Enza細胞のそれぞれにおけるCI値の棒グラフである。FIG. 3 shows in vitro efficacy diagrams of EPI, Enza, and Pola in combination in L-DTP cells. FIG. 3A shows bar graphs of relative cell viability in L-DTP-EPI and L-DTP-Enza cells when drugs were combined. FIG. 3B shows bar graphs of CI values in L-DTP-EPI and L-DTP-Enza cells when EPI, Enza, and Pola were combined. 図4はC-MYC過剰発現前立腺がんマウスモデルにおける、Enzaを連続的に投与し薬剤耐性が発生した後のEnza、Pola及びその併用による前立腺の重量の変化の効果図であり、図4Aは薬物投与の進行に伴う各群のマウスの前立腺の重量の変化図であり、図4Bは各群のマウスの前立腺を摘出し写真を撮影した比較写真であり、図4Cは薬物投与の進行に伴う各群のマウスの体重の変化図である。FIG. 4 is a graph showing the effect of Enza, Pola, and their combination on changes in prostate weight in a C-MYC overexpressing prostate cancer mouse model after continuous administration of Enza led to the development of drug resistance; FIG. 4A is a graph showing changes in prostate weight in mice from each group as drug administration progresses; FIG. 4B is a comparative photograph of the prostate glands of mice from each group, which were then excised and photographed; and FIG. 4C is a graph showing changes in body weight in mice from each group as drug administration progresses. 図5はC-MYC過剰発現前立腺がんマウスモデルにおける、Enzaを連続的に投与し薬剤耐性が発生した後のEnza、Pola及びその併用による効果図であり、図5Aは各群のマウスの前立腺組織切片のHE染色写真であり、図5Bは各群のマウスの前立腺組織切片のPRDX5、AR免疫組織化学写真及び陽性細胞の定量化の棒グラフである。FIG. 5 is a graph showing the effects of Enza, Pola and their combination in a C-MYC overexpressing prostate cancer mouse model after continuous administration of Enza led to the development of drug resistance. FIG. 5A is a photograph of HE staining of prostate tissue sections from mice in each group, and FIG. 5B is a photograph of PRDX5 and AR immunohistochemistry of prostate tissue sections from mice in each group, and a bar graph showing the quantification of positive cells.

以下、明細書の図面及び具体的な実施例を組み合わせて本発明をさらに説明したが、実施例はいかなる形式で本発明を限定するものではない。特に説明しない限り、本発明に用いられる試薬、方法及び装置は本技術分野の従来の試薬、方法及び装置である。 The present invention is further described below in combination with the drawings and specific examples of the specification, but the examples are not intended to limit the present invention in any manner. Unless otherwise specified, the reagents, methods and devices used in the present invention are conventional reagents, methods and devices in the technical field.

特に説明しない限り、以下の実施例で用いられる試薬及び材料は全て市販されている。 Unless otherwise stated, all reagents and materials used in the following examples are commercially available.

実施例1 EPI、Enzaを使用して前立腺がんLNCaP細胞でDTPを生成するプロセス
EPI、Enzaに耐性がある前立腺がんL-DTP細胞株L-DTP-EPI、L-DTP-Enzaは回復可能特性を有する。
Example 1 Process of Producing DTP in Prostate Cancer LNCaP Cells Using EPI and Enza The prostate cancer L-DTP cell lines resistant to EPI and Enza, L-DTP-EPI and L-DTP-Enza, have restorable properties.

1、実験方法:
1×106個のLNCaP細胞を10cm細胞培養皿に播種し、翌日接着後、EPI、Enzaをそれぞれ添加して9日間処置し、この期間、薬剤を含む新鮮な培地を3日ごとに交換し、9日後に退薬し、新鮮な培地に交換してインキュベータで細胞を通常通り培養し、6日目、12日目、17日目にそれぞれ継代し、DTP(9日目)、R5(退薬の5日目)、R10、R20の細胞形態の写真を倒立顕微鏡で撮影した。DTP及びクローン化DTP細胞を生成した後、細胞を消化して計数し、L-parent細胞全体におけるDTP細胞の割合を算出した。L-parent細胞及び退薬後の3世代(R20)の細胞をそれぞれ96ウェルプレートに分けて播種し、一晩接着させた後、高濃度から低濃度まで一連のEPI、Enzaを調製し、対照群をウェルに添加し、各濃度で3つの重複ウェルを設置し、細胞インキュベータで48hインキュベートした後にCCK8を添加し、4h後に全波長多機能マイクロプレートリーダーで450nm波長の細胞OD値を検出し、生存率を計数して生存曲線を描いた。
1. Experimental method:
1x106 LNCaP cells were seeded on a 10cm cell culture dish, and after attachment the next day, EPI and Enza were added and treated for 9 days. During this period, fresh medium containing the drug was replaced every 3 days, and the drug was withdrawn after 9 days, and the medium was replaced with fresh medium and the cells were cultured normally in an incubator. They were passaged on the 6th, 12th, and 17th days, respectively, and photos of the cell morphology of DTP (9th day), R5 (5th day after withdrawal), R10, and R20 were taken with an inverted microscope. After generating DTP and cloned DTP cells, the cells were digested and counted, and the percentage of DTP cells in the total L-parent cells was calculated. L-parent cells and the third generation (R20) cells after withdrawal were seeded separately in 96-well plates and allowed to adhere overnight. A series of EPI and Enza were prepared from high to low concentrations, and the control group was added to the wells. Three duplicate wells were set up for each concentration. After 48 hours of incubation in a cell incubator, CCK8 was added. After 4 hours, the cell OD value at 450 nm wavelength was detected using a full-wavelength multi-function microplate reader, and the survival rate was counted to draw a survival curve.

2、その結果は図1及び表1に示される。図1において、図1AはDTP及び退薬後の細胞回復のプロセスを示し、図1BはDTP-EPIを3世代、DTP-Enzaを3世代退薬した後の、対応する薬剤の感受性の回復特性を示す。

Figure 2024516326000002
その結果は、EPI、Enzaによって生成されるLNCaP-DTP細胞の数が非常に少なく、これらの薬剤耐性細胞が全てEPI、Enzaに対して薬剤耐性を有するが、3世代退薬した後に細胞形態が回復でき、薬剤に対する感受性も回復することを示している。 2, the results are shown in Figure 1 and Table 1. In Figure 1, Figure 1A shows the process of cell recovery after DTP and withdrawal, and Figure 1B shows the recovery characteristics of the sensitivity to the corresponding drugs after three generations of withdrawal of DTP-EPI and three generations of DTP-Enza.
Figure 2024516326000002
The results showed that the number of LNCaP-DTP cells generated by EPI and Enza was very small, and all of these drug-resistant cells were drug-resistant to EPI and Enza, but the cell morphology could be restored after three generations of drug withdrawal, and sensitivity to the drugs was also restored.

実施例2 DTP及び退薬(Recovery Cell)細胞におけるAR関連遺伝子の発現変化の特徴の確立
DTP細胞の3世代退薬した後の細胞形態は回復し、このときの細胞のAR関連遺伝子の発現変化も回復できる。
Example 2 Establishment of characteristics of expression changes of AR-related genes in DTP and drug withdrawal (recovery cells) After three generations of drug withdrawal of DTP cells, the cell morphology is recovered, and the expression changes of AR-related genes in the cells at this time can also be recovered.

1、実験方法:
LNCaP細胞を10cmディッシュに播種し、一晩接着させた後、EPI、Enzaをそれぞれ添加し9日間細胞を処置した後に細胞を回収し、この期間、薬剤を添加した新鮮な培地を3日ごとに交換し、残りのDTP細胞に対して、退薬してから20日後に同様に細胞を回収した。DMSOで9日間処置したLNCaP細胞をNC対照群とし、EPI、Enzaを添加して9日間処置しL-DTP-EPI、L-DTP-Enzaを生成した薬剤耐性細胞を処置群とし、退薬してから20日後のこの処置群の細胞を回復群とし、この3群の細胞に対して、細胞分解、タンパク質の抽出と定量、SDS-PAGEゲル電気泳動、膜転写、ブロッキング、一次抗体のインキュベーション、二次抗体のインキュベーション、造影を行った後にAR-FL及びその関連する標的タンパク質、AR-Vs及びその関連する標的タンパク質の発現変化を観察した。同時に、この3群の細胞に対してq-RTPCR測定を行い、AR-FL及びその関連する標的遺伝子、AR-Vs及びその関連する標的遺伝子の発現変化を検出した。
1. Experimental method:
LNCaP cells were seeded on a 10 cm dish, allowed to adhere overnight, and then EPI and Enza were added to treat the cells for 9 days, after which the cells were harvested. During this period, fresh medium containing the drug was replaced every 3 days, and the remaining DTP cells were harvested in the same manner 20 days after withdrawal. LNCaP cells treated with DMSO for 9 days were used as the NC control group, and drug-resistant cells treated with EPI and Enza for 9 days to produce L-DTP-EPI and L-DTP-Enza were used as the treatment group. The cells of this treatment group 20 days after withdrawal were used as the recovery group, and the three groups of cells were subjected to cell dissolution, protein extraction and quantification, SDS-PAGE gel electrophoresis, membrane transfer, blocking, primary antibody incubation, secondary antibody incubation, and imaging, after which the expression changes of AR-FL and its related target proteins, and AR-Vs and its related target proteins were observed. At the same time, q-RTPCR measurements were performed on the three groups of cells to detect the expression changes of AR-FL and its related target genes, and AR-Vs and its related target genes.

2、結果は図2に示された。図2において、図2AはWBによって検出されたタンパク質発現の変化を示し、図2Bはq-RTPCRによって検出された転写産物発現の変化を示す。 2. The results are shown in Figure 2. In Figure 2, Figure 2A shows the changes in protein expression detected by WB, and Figure 2B shows the changes in transcript expression detected by q-RTPCR.

その結果は、AR及びその関連する標的タンパク質PSA、TMPRSS2、AR-Vs及びその関連する標的タンパク質UBE2C、CDC20の発現は全てDTP段階で異なる程度で減少したが、退薬R20後に発現が回復し、同様に、AR-Vs及びその関連する標的遺伝子、AR-Vs及びその関連する標的遺伝子、及び成長marker:AKT1、C-MYCの発現もDTP段階で減少し、R20の発現が異なる程度で回復することを示している。 The results show that the expression of AR and its associated target proteins PSA, TMPRSS2, AR-Vs and its associated target proteins UBE2C, CDC20 all decreased to different degrees during the DTP stage, but the expression recovered after withdrawal R20; similarly, the expression of AR-Vs and its associated target genes, AR-Vs and its associated target genes, and growth markers: AKT1, C-MYC also decreased during the DTP stage, and the expression of R20 recovered to different degrees.

実施例3 EPI、EnzaのそれぞれとPola薬剤との併用。 Example 3: Combination use of EPI, Enza and Pola drugs.

さらにCCK8を用いて、薬剤耐性L-DTP細胞にそれぞれ単独使用したり、併用したりすることによる、薬剤耐性L-DTP(EPI)及びL-DTP(Enza)細胞におけるPola薬剤のin vitro抗腫瘍効果を説明した。 Furthermore, we used CCK8 to explain the in vitro antitumor effects of Pola drugs in drug-resistant L-DTP(EPI) and L-DTP(Enza) cells, either alone or in combination with other drugs.

1、実験方法
薬剤耐性細胞L-DTP(L-DTP(EPI)及びL-DTP(Enza)を含む)を96ウェルプレートに播種し、接着させた後に、高濃度から低濃度まで一連のPola薬剤を調製することにより、最適なPola薬剤濃度を見つけ、続いて、この濃度で、単独使用(L-DTP(EPI)-Pola)、併用[L-DTP(EPI)-combination(EPI+Pola)]、[L-DTP(Enza)-combination(Enza+Pola)]のそれぞれによる、薬剤耐性細胞L-DTPにおける生存率を測定した。最終的に、Calcusynソフトウェアを利用して、L-DTP細胞でCI値を計算した。
1. Experimental Methods Drug-resistant L-DTP cells (including L-DTP (EPI) and L-DTP (Enza)) were seeded on a 96-well plate and allowed to adhere. A series of Pola drugs were prepared from high to low concentrations to find the optimal Pola drug concentration. Then, at this concentration, the survival rate of the drug-resistant L-DTP cells was measured by using each of the following combinations: single use (L-DTP (EPI)-Pola), combination [L-DTP (EPI)-combination (EPI + Pola)], and [L-DTP (Enza)-combination (Enza + Pola)]. Finally, the CI value was calculated for L-DTP cells using Calcusyn software.

2、結果は図3に示された。図3において、図3AはL-DTP(EPI)、L-DTP(Enza)薬剤耐性細胞における薬剤併用細胞の相対生存率の棒グラフであり、図3BはEPI、EnzaのそれぞれとPolaとの併用による、L-DTP(EPI)、L-DTP(Enz)薬剤耐性細胞のそれぞれにおけるCI値の棒グラフである。 2. The results are shown in Figure 3. In Figure 3, Figure 3A is a bar graph of the relative survival rate of L-DTP (EPI) and L-DTP (Enza) drug-resistant cells treated with the combination of drugs, and Figure 3B is a bar graph of the CI values of L-DTP (EPI) and L-DTP (Enz) drug-resistant cells treated with the combination of EPI and Enza with Pola.

その結果は以下を示している。EPIを9日間連続的に投与し薬剤耐性が発生したL-DTP(EPI)細胞において、EPIを継続投与しても有意な阻害効果が見つけられておらず、Polaを単独で投与しても有意な阻害率もないが、併用(EPI+Pola)の場合に55.74%の阻害率に達することができる。同様に、Enzaを9日間連続的に投与し薬剤耐性が発生したL-DTP(Enza)細胞において、Enzaを継続投与しても有意な阻害効果が見つけられておらず、Polaを単独で投与しても有意な阻害率もないが、併用(Enza+Pola)の場合に、60.765%の阻害率に達することができる。CI値を計算したところ、PolaはL-DTP-EPI細胞において0.525の高い相乗作用に達することができ、L-DTP(Enza)細胞において0.695の高い相乗作用に達することができる。 The results show the following. In L-DTP (EPI) cells in which drug resistance was developed by administering EPI continuously for 9 days, no significant inhibitory effect was found even with continued administration of EPI, and no significant inhibitory rate was found even with administration of Pola alone, but in the case of combined use (EPI + Pola), a 55.74% inhibitory rate could be reached. Similarly, in L-DTP (Enza) cells in which drug resistance was developed by administering Enza continuously for 9 days, no significant inhibitory effect was found even with continued administration of Enza, and no significant inhibitory rate was found even with administration of Pola alone, but in the case of combined use (Enza + Pola), a 60.765% inhibitory rate could be reached. When the CI value was calculated, Pola could reach a high synergistic effect of 0.525 in L-DTP-EPI cells and a high synergistic effect of 0.695 in L-DTP (Enza) cells.

実施例4 C-MYC過剰発現前立腺がんマウスモデルにおける、Enzaを連続的に投与し薬剤耐性が発生した後のEnzaとPolaの併用による効果
さらに、前立腺がんマウスモデルにおいて、化学的去勢(すなわち、Enzaを連続的に投与した)後に再発したマウスに対するEnzaとPolaの併用の効果を説明した。
Example 4 Effect of combined use of Enza and Pola after continuous administration of Enza in a C-MYC-overexpressing prostate cancer mouse model and development of drug resistance Furthermore, the effect of combined use of Enza and Pola on mice that relapsed after chemical castration (i.e., continuous administration of Enza) in a prostate cancer mouse model was described.

1、実験方法
C-MYC(Hi-Myc)を過剰発現する自然発生前立腺がんマウスモデルを構築し、4ヵ月で、マウスはmPIN/Cancer transitionに発症し、このとき、NC対照群(溶媒の胃内投与)、Enza投与群にランダムに分け、その後、3日ごとに1回胃内投与し、Enzaが10mg/Kgであり、合計30日間投与し、その後、数匹のマウスの首を切断し、前立腺がんの写真を撮影して、重量を測定し、Enzaが症状を有意に軽減でき、NC対照群に対して前立腺の重量が半分に減少したことが分かり、その後、上記方法で残りのマウスに30日間継続投与し、Enza群に再発があることが分かり、その後(すなわち、ラットが生後6ヶ月の時)、NC対照群(常に溶媒を胃内投与)、Enza単剤群、Pola単剤群、及びEnzaとPola併用群にランダムに分け、対応する投与処置を行い、全て、3日ごとに1回胃内投与し、毎回Enzaが10mg/Kgであり、Polaが20mg/Kgであり、合計30日間投与した。その後、マウスの首を切断し、その前立腺がんに対して写真撮影、重量測定、及び免疫組織化学等の実験を行った。
1. Experimental Method A spontaneous prostate cancer mouse model overexpressing C-MYC (Hi-Myc) was established, and the mice were transformed into mPIN/Cancer mice within 4 months. The mice were randomly divided into an NC control group (intragastric administration of solvent) and an Enza administration group, and then intragastric administration was performed once every 3 days, with Enza at 10mg/Kg, for a total of 30 days. After that, the necks of several mice were cut off, and the prostate cancer was photographed and weighed. It was found that Enza could significantly alleviate the symptoms, and the prostate weight was reduced to half that of the NC control group. Then, the remaining mice were continuously administered Enza for 30 days using the above method, and it was found that the Enza group had recurrence. After that (i.e., when the rats were 6 months old), the mice were randomly divided into an NC control group (always intragastric administration of solvent), an Enza single agent group, a Pola single agent group, and an Enza and Pola combined group, and the corresponding administration treatment was performed. All were intragastric administration once every 3 days, with Enza at 10mg/Kg and Pola at 20mg/Kg each time, for a total of 30 days. The mice were then decapitated and the prostate cancer was photographed, weighed, and subjected to immunohistochemistry and other experiments.

2、結果は図4及び図5に示された。図4において、図4Aは薬物投与の進行に伴う各群のマウスの前立腺の重量の変化図であり、図4Bは各群のマウスの前立腺を摘出し写真を撮影した比較写真であり、図4Cは薬物投与の進行に伴う各群のマウスの体重の変化図である。図5において、図5Aは各群のマウスの前立腺組織切片のHE染色写真であり、図5Bは各群のマウスの前立腺組織切片のAR、PRDX5免疫組織化学写真及び陽性細胞の定量化の棒グラフである。 2. The results are shown in Figures 4 and 5. In Figure 4, Figure 4A is a graph showing the change in prostate weight of mice in each group as drug administration progresses, Figure 4B is a comparative photograph of the prostate gland excised from mice in each group, and Figure 4C is a graph showing the change in body weight of mice in each group as drug administration progresses. In Figure 5, Figure 5A is a photograph of HE staining of prostate tissue sections from mice in each group, and Figure 5B is a photograph of AR and PRDX5 immunohistochemistry of prostate tissue sections from mice in each group, and a bar graph of quantification of positive cells.

Enzaを30日間連続的に投与したマウスの前立腺の重量の平均値は41.2mgであり、このときNC対照群の平均値は85.3mgであり、60日間継続投与したところ、Enza群のマウスの前立腺の重量の平均値は78.4mgになり、このときNC対照群の平均値は95.6mgであり、薬剤耐性再発が発生し、CRPCが引き起こされたのを示し、このとき、すぐに群別に投与し薬剤併用の効果を説明した。 The average prostate weight of mice administered Enza for 30 consecutive days was 41.2 mg, while the average weight of the NC control group was 85.3 mg. After 60 consecutive days of administration, the average prostate weight of mice in the Enza group was 78.4 mg, while the average weight of the NC control group was 95.6 mg, indicating that drug-resistant recurrence had occurred and CRPC had been induced. At this point, administration was immediately performed separately for each group, explaining the effect of the drug combination.

群別併用及び単独使用の結果は表2に示され。

Figure 2024516326000003
図4及び表2を組み合わせて分かるように、Enzaの単独使用及びPolaの単独使用に比べてEnzaとPolaの併用は非常に顕著な効果があり、前立腺の重量は約53.14mgに減少することができ、それと同時に、Polaの単独使用の効果はEnzaの単独使用の効果とほぼ同等であり、Polaの単独使用は薬剤耐性のあるCRPCに対して顕著な効果がないことを示している。 The results of combination and single-agent use by group are shown in Table 2.
Figure 2024516326000003
As can be seen from the combination of Figure 4 and Table 2, compared with the use of Enza alone and the use of Pola alone, the combination of Enza and Pola has a very significant effect, and the prostate weight can be reduced to about 53.14 mg. At the same time, the effect of using Pola alone is almost the same as that of using Enza alone, indicating that the use of Pola alone has no significant effect on drug-resistant CRPC.

組織切片のHE染色結果(図5)から、併用治療後に、CRPCの前立腺腫瘍は有意な変形及び線維化が見られることが分かる。免疫組織化学から、EnzaとPolaの併用は、Enzaの単独使用及びPolaの単独使用に比べて、AR及びPRDX5の発現が顕著に減少したことが分かる。併用の効果が顕著であることを証明する。 The results of HE staining of tissue sections (Figure 5) show that after combination treatment, CRPC prostate tumors showed significant deformation and fibrosis. Immunohistochemistry showed that the combination of Enza and Pola significantly reduced the expression of AR and PRDX5 compared to the use of Enza alone and the use of Pola alone, proving that the effect of the combination is significant.

群別併用及び単独使用の結果は表3に示された。

Figure 2024516326000004
The results of combined and single use by group are shown in Table 3.
Figure 2024516326000004

Claims (10)

去勢抵抗性前立腺がんの治療薬の調製におけるポラプレジンクの使用。 Use of polaprezinc in the preparation of a medicament for treating castration-resistant prostate cancer. 前記使用は、ポラプレジンクとアンドロゲン受容体拮抗薬を組み合わせて去勢抵抗性前立腺がんの治療薬を調製することを含むことを特徴とする請求項1に記載の使用。 The use according to claim 1, characterized in that the use comprises combining polaprezinc with an androgen receptor antagonist to prepare a therapeutic agent for castration-resistant prostate cancer. 前記組成物はポラプレジンクとアンドロゲン受容体拮抗薬を含むことを特徴とする去勢抵抗性前立腺がんを治療するための医薬組成物。 The composition is a pharmaceutical composition for treating castration-resistant prostate cancer, characterized in that it contains polaprezinc and an androgen receptor antagonist. アンドロゲン受容体拮抗薬とポラプレジンクとの質量比は(1~5):1であることを特徴とする請求項3に記載の医薬組成物。 The pharmaceutical composition according to claim 3, characterized in that the mass ratio of the androgen receptor antagonist to polaprezinc is (1-5):1. アンドロゲン受容体拮抗薬は、エンザルタミド、EPI、アビラテロン、オラパリブのいずれか1種以上を含むことを特徴とする請求項3に記載の医薬組成物。 The pharmaceutical composition according to claim 3, characterized in that the androgen receptor antagonist comprises one or more of enzalutamide, EPI, abiraterone, and olaparib. 前記医薬組成物は医薬賦形剤をさらに含むことを特徴とする請求項3に記載の医薬組成物。 The pharmaceutical composition according to claim 3, characterized in that the pharmaceutical composition further comprises a pharmaceutical excipient. 前記医薬賦形剤は、溶剤、噴射剤、可溶化剤、助溶剤、乳化剤、着色剤、接着剤、崩壊剤、充填剤、潤滑剤、湿潤剤、浸透圧調整剤、安定剤、流動助剤、矯味剤、防腐剤、懸濁助剤、コーティング材、香味剤、接着防止剤、統合剤、浸透促進剤、pH値調整剤、緩衝剤、可塑剤、界面活性剤、発泡剤、消泡剤、増粘剤、包接剤、保湿剤、吸収剤、希釈剤、凝集剤及び解膠剤、濾過助剤及び放出阻害剤を含むことを特徴とする請求項6に記載の医薬組成物。 The pharmaceutical composition according to claim 6, characterized in that the pharmaceutical excipients include solvents, propellants, solubilizers, cosolvents, emulsifiers, colorants, adhesives, disintegrants, fillers, lubricants, wetting agents, osmotic pressure regulators, stabilizers, flow aids, taste masking agents, preservatives, suspension aids, coating materials, flavorings, anti-adhesion agents, integrating agents, penetration enhancers, pH value adjusters, buffers, plasticizers, surfactants, foaming agents, defoamers, thickeners, encapsulating agents, moisturizing agents, absorbents, diluents, flocculants and deflocculants, filter aids and release inhibitors. 前記医薬組成物は医薬担体をさらに含んでもよいことを特徴とする請求項3に記載の医薬組成物。 The pharmaceutical composition according to claim 3, characterized in that the pharmaceutical composition may further comprise a pharmaceutical carrier. 前記医薬担体はマイクロカプセル、マイクロスフェア、ナノ粒子及びリポソームを含むことを特徴とする請求項8に記載の医薬組成物。 The pharmaceutical composition according to claim 8, characterized in that the pharmaceutical carrier comprises a microcapsule, a microsphere, a nanoparticle, and a liposome. 前記医薬組成物の剤型は、注射液、注射用凍結乾燥粉末剤、徐放性注射剤、リポソーム注射剤、懸濁剤、植込剤、塞栓剤、カプセル剤、錠剤、丸剤及び経口液剤を含むことを特徴とする請求項3~9のいずれか1項に記載の医薬組成物。 The pharmaceutical composition according to any one of claims 3 to 9, characterized in that the dosage form of the pharmaceutical composition includes an injection solution, a lyophilized powder for injection, a sustained release injection, a liposome injection, a suspension, an implant, an embolization agent, a capsule, a tablet, a pill, and an oral liquid.
JP2023568658A 2021-05-08 2021-07-26 Use of polaprezinc in the preparation of a medicament for treating castration-resistant prostate cancer Pending JP2024516326A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202110501971.4A CN113197903B (en) 2021-05-08 2021-05-08 Application of polyprenyl zinc in preparation of medicine for treating castration-resistant prostate cancer
CN202110501971.4 2021-05-08
PCT/CN2021/108355 WO2022236963A1 (en) 2021-05-08 2021-07-26 Use of polaprezinc in preparation of drug for treating castration-resistant prostate cancer

Publications (1)

Publication Number Publication Date
JP2024516326A true JP2024516326A (en) 2024-04-12

Family

ID=83364054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023568658A Pending JP2024516326A (en) 2021-05-08 2021-07-26 Use of polaprezinc in the preparation of a medicament for treating castration-resistant prostate cancer

Country Status (2)

Country Link
US (1) US20220305026A1 (en)
JP (1) JP2024516326A (en)

Also Published As

Publication number Publication date
US20220305026A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
TW200916103A (en) Therapeutic compositions and methods
TW200914011A (en) Therapeutic compositions and methods
ES2414472T3 (en) Pharmaceutical composition of sustained release of octreotide acetate
JP2010508349A (en) Dipterinyl calcium pentahydrate (DCP) and therapeutic method based thereon
WO2023272831A1 (en) Application of stachyose in preparation of medicine for treating castration-resistant prostate cancer
CN112274645A (en) Combined pharmaceutical composition for resisting colorectal cancer and application thereof
CN112022871A (en) Application of auranofin in preparing medicine for treating castration-resistant prostate cancer
JP6462147B2 (en) HSP90 inhibitory peptide conjugate and its application in tumor therapy
JP2024516326A (en) Use of polaprezinc in the preparation of a medicament for treating castration-resistant prostate cancer
EP0059148A1 (en) Gallium chloride, an anti-cancer drug
WO2022236963A1 (en) Use of polaprezinc in preparation of drug for treating castration-resistant prostate cancer
JP2024523123A (en) Use of stachyose in the preparation of a medicament for treating castration-resistant prostate cancer
CN110325214A (en) Low-dose drugs for preventing and treating neure damage combine
ES2423944T3 (en) Use of megestrol acetate for the improvement of cardiac function and the treatment of coronary insufficiency
JP2023544310A (en) Use of probiotic ingredients and pharmaceutical compositions containing probiotic ingredients
US10857113B2 (en) Bezafibrate for the treatment of cancer
US20220339175A1 (en) Application of Stachyose in Preparation of Drug for Treating Castration-Resistant Prostate Cancer
KR101819310B1 (en) Pharmaceutical composition comprising cyclosporine
US4517309A (en) Method for the treatment of calcifying pancreatitis
JP7450037B2 (en) Combination drug to treat late-stage non-small cell lung cancer patients with brain metastases
WO2023050297A1 (en) Topical pharmaceutical composition, application, and kit
CN102451183A (en) Application of pregnadienolone compound in preparation of antitumor medicament
CN110721310B (en) Application of pharmaceutical composition in preparation of medicine for treating acute hemorrhagic brain injury
JP4287523B2 (en) Antitumor agent
JP7168228B2 (en) Peptide vaccine and peptide vaccine composition for cranial nerve disease

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240104