JP2024514075A - 高ビット深度ビデオデータをコーディングするためのライスパラメータを導出すること - Google Patents

高ビット深度ビデオデータをコーディングするためのライスパラメータを導出すること Download PDF

Info

Publication number
JP2024514075A
JP2024514075A JP2023559732A JP2023559732A JP2024514075A JP 2024514075 A JP2024514075 A JP 2024514075A JP 2023559732 A JP2023559732 A JP 2023559732A JP 2023559732 A JP2023559732 A JP 2023559732A JP 2024514075 A JP2024514075 A JP 2024514075A
Authority
JP
Japan
Prior art keywords
value
sum
video data
block
absolute values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023559732A
Other languages
English (en)
Inventor
ルサノフスキー、ドミトロ
カルチェビチ、マルタ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of JP2024514075A publication Critical patent/JP2024514075A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/13Adaptive entropy coding, e.g. adaptive variable length coding [AVLC] or context adaptive binary arithmetic coding [CABAC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/174Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a slice, e.g. a line of blocks or a group of blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/18Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a set of transform coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/186Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/1887Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a variable length codeword
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/91Entropy coding, e.g. variable length coding [VLC] or arithmetic coding

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

ビデオデータをコーディングするための例示的なデバイスが、ビデオデータを記憶するように構成されたメモリと、回路中に実装された1つまたは複数のプロセッサとを含み、1つまたは複数のプロセッサは、ビデオデータの現在ブロックについての現在係数に対する複数の隣接する係数の絶対値の和を計算することと、ビデオデータについてのビット深度と現在ブロックを含むスライスについてのスライスタイプとに従って、ベースレベルオフセット値を計算することと、ベースレベルオフセット値を使用して、絶対値の和についての正規化された値を計算することと、絶対値の和についての正規化された値を使用して、現在係数をコーディングすることとを行うように構成される。【選択図】図9

Description

優先権の主張
[0001]本出願は、その各々の内容全体が参照により本明細書に組み込まれる、2022年4月7日に出願された米国特許出願第17/658,396号、および2021年4月9日に出願された米国仮出願第63/173,269号の優先権を主張する。2022年4月7日に出願された米国出願第17/658,396号は、2021年4月9日に出願された米国仮出願第63/173,269号の利益を主張する。
[0002]本開示は、ビデオ符号化とビデオ復号とを含む、ビデオコーディングに関する。
[0003]デジタルビデオ能力は、デジタルテレビジョン、デジタルダイレクトブロードキャストシステム、ワイヤレスブロードキャストシステム、携帯情報端末(PDA)、ラップトップまたはデスクトップコンピュータ、タブレットコンピュータ、電子ブックリーダー、デジタルカメラ、デジタル記録デバイス、デジタルメディアプレーヤ、ビデオゲーミングデバイス、ビデオゲームコンソール、セルラー電話または衛星無線電話、いわゆる「スマートフォン」、ビデオ遠隔会議デバイス、ビデオストリーミングデバイスなどを含む、広範囲のデバイスに組み込まれ得る。デジタルビデオデバイスは、MPEG-2、MPEG-4、ITU-T H.263、ITU-T H.264/MPEG-4,Part10,アドバンストビデオコーディング(AVC)、ITU-T H.265/高効率ビデオコーディング(HEVC)、ITU-T H.266/汎用ビデオコーディング(VVC)によって定義された規格、およびそのような規格の拡張、ならびにAlliance for Open Mediaによって開発されたAOMedia Video1(AV1)などのプロプライエタリビデオコーデック/フォーマットに記載されているビデオコーディング技法など、ビデオコーディング技法を実装する。ビデオデバイスは、そのようなビデオコーディング技法を実装することによって、デジタルビデオ情報をより効率的に送信、受信、符号化、復号、および/または記憶し得る。
[0004]ビデオコーディング技法は、ビデオシーケンスに固有の冗長性を低減または除去するための空間(イントラピクチャ)予測および/または時間(インターピクチャ)予測を含む。ブロックベースビデオコーディングでは、ビデオスライス(たとえば、ビデオピクチャまたはビデオピクチャの一部分)が、コーディングツリーユニット(CTU)、コーディングユニット(CU)および/またはコーディングノードと呼ばれることもある、ビデオブロックに区分され得る。ピクチャのイントラコーディングされた(I)スライス中のビデオブロックは、同じピクチャ中の隣接ブロック中の参照サンプルに対する空間予測を使用して符号化される。ピクチャのインターコーディングされた(PまたはB)スライス中のビデオブロックは、同じピクチャ中の隣接ブロック中の参照サンプルに対する空間予測、または他の参照ピクチャ中の参照サンプルに対する時間予測を使用し得る。ピクチャはフレームと呼ばれることがあり、参照ピクチャは参照フレームと呼ばれることがある。
[0005]概して、本開示は、ビデオデータ、たとえば、高ビット深度ビデオデータをコーディングするためのライス(Rice)パラメータを導出するための技法について説明する。特に、ライスパラメータは、符号化および/または復号を含み得る、通常残差コーディング(RRC:regular residual coding)を実施するときに使用され得る。これらの技法は、ITU-T H.266/汎用ビデオコーディング(VVC)または他のビデオコーディング規格において適用され得る。本開示の技法は、概して、ビデオデータの変換ブロックの現在係数を2値化するために使用されるべきライスパラメータの決定を対象とし、ここで、ライスパラメータの決定は、ベースレベルオフセット値を使用することを含む。ベースレベルオフセット値は、ビデオデータについてのビット深度またはビデオデータのスライスについてのスライスタイプのうちの少なくとも1つに従って計算され得る。ベースレベルオフセット値は、次いで、正規化された値を計算するために、現在係数に隣接する係数についての絶対値の和に適用され得る。正規化された値は、たとえばルックアップテーブルから、ライスパラメータを決定するために使用され得る。ライスパラメータは、次いで、現在係数についての値を2値化するために使用され得る。
[0006]一例では、ビデオデータをコーディング(符号化および/または復号)する方法が、ビデオデータの現在ブロックについての現在係数に対する複数の隣接する係数の絶対値の和を計算することと、ビデオデータについてのビット深度または現在ブロックを含むスライスについてのスライスタイプのうちの少なくとも1つに従って、ベースレベルオフセット値を計算することと、ベースレベルオフセット値を使用して絶対値の和についての正規化された値を計算することと、絶対値の和についての正規化された値を使用して現在係数をコーディングすることとを含む。
[0007]別の例では、ビデオデータをコーディング(符号化および/または復号)するためのデバイスが、ビデオデータを記憶するように構成されたメモリと、回路中に実装された1つまたは複数のプロセッサとを含み、1つまたは複数のプロセッサは、ビデオデータの現在ブロックについての現在係数に対する複数の隣接する係数の絶対値の和を計算することと、ビデオデータについてのビット深度または現在ブロックを含むスライスについてのスライスタイプのうちの少なくとも1つに従って、ベースレベルオフセット値を計算することと、ベースレベルオフセット値を使用して絶対値の和についての正規化された値を計算することと、絶対値の和についての正規化された値を使用して現在係数をコーディングすることとを行うように構成される。
[0008]別の例では、コンピュータ可読記憶媒体が、実行されたとき、ビデオデータをコーディングするためのデバイスのプロセッサに、ビデオデータの現在ブロックについての現在係数に対する複数の隣接する係数の絶対値の和を計算することと、ビデオデータについてのビット深度または現在ブロックを含むスライスについてのスライスタイプのうちの少なくとも1つに従って、ベースレベルオフセット値を計算することと、ベースレベルオフセット値を使用して絶対値の和についての正規化された値を計算することと、絶対値の和についての正規化された値を使用して現在係数をコーディングすることとを行わせる命令を記憶している。
[0009]別の例では、ビデオデータをコーディング(符号化および/または復号)するためのデバイスが、ビデオデータの現在ブロックについての現在係数に対する複数の隣接する係数の絶対値の和を計算するための手段と、ビデオデータについてのビット深度または現在ブロックを含むスライスについてのスライスタイプのうちの少なくとも1つに従って、ベースレベルオフセット値を計算するための手段と、ベースレベルオフセット値を使用して絶対値の和についての正規化された値を計算するための手段と、絶対値の和についての正規化された値を使用して現在係数をコーディングするための手段とを含む。
[0010]1つまたは複数の例の詳細が添付の図面および以下の説明に記載される。他の特徴、目的、および利点は、説明、図面、および特許請求の範囲から明らかになろう。
[0011]本開示の技法を実施し得る例示的なビデオ符号化および復号システムを示すブロック図。 [0012]ローカル絶対値の和(locSumAbs)を計算するために使用され得る現在係数に対する隣接する係数の一例を示す概念図。 [0013]ビデオデータの16ビットテストシーケンスについてのコーディングされた変換係数の経験的ヒストグラムを示すグラフ。 [0014]係数値についてのエントロピーコーディング中に作り出されたコードワード長と所与のライスパラメータとの間の関係を示すグラフ。 [0015]本開示の技法を実施し得る例示的なビデオエンコーダを示すブロック図。 [0016]本開示の技法を実施し得る例示的なビデオデコーダを示すブロック図。 [0017]本開示の技法による、現在ブロックを符号化するための例示的な方法を示すフローチャート。 [0018]本開示の技法による、現在ブロックを復号するための例示的な方法を示すフローチャート。 [0019]本開示の技法による、ビデオデータを符号化する例示的な方法を示すフローチャート。 [0020]本開示の技法による、ビデオデータを復号する例示的な方法を示すフローチャート。
[0021]ライスパラメータ値は、ビデオデータの残差ブロックの係数をコーディング(符号化または復号)するために使用され得る。特に、ライスパラメータは、値をエントロピーコーディング(符号化または復号)することに関連して、値を2値化するときに使用され得る。両端値を含む0から3までにわたるライスパラメータ値の使用は、ITU-T H.266/汎用ビデオコーディング(VVC)規格の開発において広範囲にわたってテストされた。一般に、ライスパラメータ値は、対応するビデオデータのビット深度をも入力として使用する、クリッピング式(clipping formula)を使用してスケーリングされる。最初にVVCのために開発されたクリッピング式は、8ビットまたは10ビットのビット深度を前提とした。しかしながら、ビット深度が10ビットを越えて増加される場合、クリッピング関数は、もはやライスパラメータ値を0~3ビットの範囲内になるように効果的にクリッピングしないことがあり、これは、コードワードサイズ、およびしたがって、ビットストリーム中のシグナリングされる値の急激な増加につながり得る。本開示は、高ビット深度(たとえば、10ビットを越えるビット深度)を使用してビデオデータをコーディングするためにライスパラメータを使用するとき、コードワードサイズおよびビットストリーム中でシグナリングされるデータのそのような増加を回避し得る技法について説明する。
[0022]ビデオコーダ(エンコーダまたはデコーダ)が、変換ブロックの現在係数についての値をコーディング(符号化または復号)するために本開示の技法を使用するように構成され得る。特に、ビデオコーダは、最初に、現在係数に対する隣接する係数の絶対値の和を計算し得る。ビデオコーダは、次いで、ビデオデータについてのビット深度および/または変換ブロックを含むスライスについてのスライスタイプのいずれかまたは両方に従って、絶対値の和に適用すべきベースレベルオフセット値を計算し得る。ビデオコーダは、次いで、ベースレベルオフセット値を使用して絶対値の和についての正規化された値を計算し得る。ビデオコーダは、次いで、正規化された値を使用して現在係数をコーディングし得る。上述のように、本開示の技法は、ビット深度が10ビットを越えて拡大することができるコンテキストにおいて適用され得る。したがって、ビット深度に従ってベースレベルオフセット値を計算することは、ライスパラメータが0~3ビット内にとどまるようにクリッピングされることを可能にし得る。
[0023]ビデオコーディング規格は、ITU-T H.261、ISO/IEC MPEG-1 Visual、ITU-T H.262またはISO/IEC MPEG-2 Visual、ITU-T H.263、ISO/IEC MPEG-4 Visual、およびそれのスケーラブルビデオコーディング(SVC)拡張とマルチビュービデオコーディング(MVC)拡張とを含む(ISO/IEC MPEG-4 AVCとしても知られる)ITU-T H.264を含む。高効率ビデオコーディング(HEVC)が、2013年4月のITU-Tビデオコーディングエキスパートグループ(VCEG)とISO/IECモーションピクチャエキスパートグループ(MPEG)とのジョイントコラボレーションチームオンビデオコーディング(JCT-VC)によって確定された。
[0024]ジョイントビデオエキスパートチーム(JVET)、MPEGとITU-T研究グループ16のVCEGとによって形成されたコラボレーティブチームは、汎用ビデオコーディング(VVC)規格のための、およびそれを越えるビデオコーディング技法を開発し続ける。VVCの主目的は、360°全方向没入型マルチメディアおよび高ダイナミックレンジ(HDR)ビデオなど、より高品質のビデオサービスおよび新生のアプリケーションの展開を助ける、既存のHEVC規格を超える圧縮性能における顕著な改善を提供することである。VVC規格のドラフトは、phenix.it-sudparis.eu/jvet/doc_end_user/documents/19_Teleconference/wg11/JVET-S2001-v17.zipにおいて入手可能な、Benjamin Bross、Jianle Chen、Shan LiuおよびYe-Kui Wang、「Versatile Video Coding (Draft 10)」、ITU-T SG16 WP3およびISO/IEC JTC1/SC29/WG11のジョイントビデオエキスパートチーム(JVET)、Doc.JVET-S2001、第19回会合:遠隔会議、2020年6月22日~7月1日において見つけられ得る。
[0025]図1は、本開示の技法を実施し得る例示的なビデオ符号化および復号システム100を示すブロック図である。本開示の技法は、概して、ビデオデータをコーディング(符号化および/または復号)することを対象とする。概して、ビデオデータは、ビデオを処理するための何らかのデータを含む。したがって、ビデオデータは、生のコーディングされていないビデオ、符号化されたビデオ、復号された(たとえば、再構築された)ビデオ、およびシグナリングデータなどのビデオメタデータを含み得る。
[0026]図1に示されているように、システム100は、この例では、宛先デバイス116によって復号および表示されるべき符号化されたビデオデータを提供するソースデバイス102を含む。特に、ソースデバイス102は、コンピュータ可読媒体110を介して宛先デバイス116にビデオデータを提供する。ソースデバイス102と宛先デバイス116とは、デスクトップコンピュータ、ノートブック(すなわち、ラップトップ)コンピュータ、モバイルデバイス、タブレットコンピュータ、セットトップボックス、スマートフォンなどの電話ハンドセット、テレビジョン、カメラ、ディスプレイデバイス、デジタルメディアプレーヤ、ビデオゲーミングコンソール、ビデオストリーミングデバイス、ブロードキャスト受信機デバイスなどを含む、広範囲のデバイスのいずれかを備え得る。いくつかの場合には、ソースデバイス102と宛先デバイス116とは、ワイヤレス通信のために装備され得、したがって、ワイヤレス通信デバイスと呼ばれることがある。
[0027]図1の例では、ソースデバイス102は、ビデオソース104と、メモリ106と、ビデオエンコーダ200と、出力インターフェース108とを含む。宛先デバイス116は、入力インターフェース122と、ビデオデコーダ300と、メモリ120と、ディスプレイデバイス118とを含む。本開示によれば、ソースデバイス102のビデオエンコーダ200と、宛先デバイス116のビデオデコーダ300とは、ライスパラメータを使用して高ビット深度ビデオデータをコーディングするための技法を適用するように構成され得る。したがって、ソースデバイス102はビデオ符号化デバイスの一例を表し、宛先デバイス116はビデオ復号デバイスの一例を表す。他の例では、ソースデバイスおよび宛先デバイスは、他の構成要素または配置を含み得る。たとえば、ソースデバイス102は、外部カメラなどの外部ビデオソースからビデオデータを受信し得る。同様に、宛先デバイス116は、一体型ディスプレイデバイスを含むのではなく、外部ディスプレイデバイスとインターフェースし得る。
[0028]図1に示されているシステム100は一例にすぎない。概して、どんなデジタルビデオ符号化および/または復号デバイスも、ライスパラメータを使用して高ビット深度ビデオデータをコーディングするための技法を実施し得る。ソースデバイス102と宛先デバイス116とは、ソースデバイス102が宛先デバイス116への送信のためにコーディングされたビデオデータを生成するようなコーディングデバイスの例にすぎない。本開示は、データのコーディング(符号化および/または復号)を実施するデバイスとして「コーディング」デバイスに言及する。したがって、ビデオエンコーダ200およびビデオデコーダ300は、コーディングデバイス、特に、それぞれビデオエンコーダおよびビデオデコーダの例を表す。いくつかの例では、ソースデバイス102および宛先デバイス116は、ソースデバイス102および宛先デバイス116の各々がビデオ符号化構成要素およびビデオ復号構成要素を含むように、実質的に対称的に動作し得る。したがって、システム100は、たとえば、ビデオストリーミング、ビデオ再生、ビデオブロードキャスティング、またはビデオテレフォニーのために、ソースデバイス102と宛先デバイス116との間の一方向または二方向ビデオ送信をサポートし得る。
[0029]概して、ビデオソース104は、ビデオデータ(すなわち、生のコーディングされていないビデオデータ)のソースを表し、ビデオデータの連続した一連のピクチャ(「フレーム」とも呼ばれる)をビデオエンコーダ200に提供し、ビデオエンコーダ200はピクチャについてのデータを符号化する。ソースデバイス102のビデオソース104は、ビデオカメラ、前にキャプチャされた生のビデオを含んでいるビデオアーカイブ、および/またはビデオコンテンツプロバイダからビデオを受信するためのビデオフィードインターフェースなど、ビデオキャプチャデバイスを含み得る。さらなる代替として、ビデオソース104は、ソースビデオとしてのコンピュータグラフィックスベースデータ、またはライブビデオとアーカイブされたビデオとコンピュータ生成されたビデオとの組合せを生成し得る。各場合において、ビデオエンコーダ200は、キャプチャされたビデオデータ、プリキャプチャされたビデオデータ、またはコンピュータ生成されたビデオデータを符号化する。ビデオエンコーダ200は、ピクチャを、(「表示順序」と呼ばれることがある)受信順序から、コーディングのためのコーディング順序に並べ替え得る。ビデオエンコーダ200は、符号化されたビデオデータを含むビットストリームを生成し得る。ソースデバイス102は、次いで、たとえば、宛先デバイス116の入力インターフェース122による受信および/または取出しのために、出力インターフェース108を介して、符号化されたビデオデータをコンピュータ可読媒体110上に出力し得る。
[0030]ソースデバイス102のメモリ106と、宛先デバイス116のメモリ120とは、汎用メモリを表す。いくつかの例では、メモリ106、120は、生のビデオデータ、たとえば、ビデオソース104からの生のビデオ、およびビデオデコーダ300からの生の復号されたビデオデータを記憶し得る。追加または代替として、メモリ106、120は、たとえば、それぞれ、ビデオエンコーダ200およびビデオデコーダ300によって実行可能なソフトウェア命令を記憶し得る。メモリ106およびメモリ120は、この例ではビデオエンコーダ200およびビデオデコーダ300とは別個に示されているが、ビデオエンコーダ200およびビデオデコーダ300は、機能的に同様のまたは等価な目的で内部メモリをも含み得ることを理解されたい。さらに、メモリ106、120は、符号化されたビデオデータ、たとえば、ビデオエンコーダ200からの出力、およびビデオデコーダ300への入力を記憶し得る。いくつかの例では、メモリ106、120の部分は、たとえば、生の復号および/または符号化されたビデオデータを記憶するために、1つまたは複数のビデオバッファとして割り振られ得る。
[0031]コンピュータ可読媒体110は、ソースデバイス102から宛先デバイス116に符号化されたビデオデータを移送することが可能な任意のタイプの媒体またはデバイスを表し得る。一例では、コンピュータ可読媒体110は、ソースデバイス102が、たとえば、無線周波数ネットワークまたはコンピュータベースネットワークを介して、符号化されたビデオデータを宛先デバイス116にリアルタイムで直接送信することを可能にするための通信媒体を表す。出力インターフェース108は、符号化されたビデオデータを含む送信信号を変調し得、入力インターフェース122は、ワイヤレス通信プロトコルなどの通信規格に従って、受信された送信信号を復調し得る。通信媒体は、無線周波数(RF)スペクトルまたは1つまたは複数の物理伝送線路など、任意のワイヤレスまたはワイヤード通信媒体を備え得る。通信媒体は、ローカルエリアネットワーク、ワイドエリアネットワーク、またはインターネットなどのグローバルネットワークなど、パケットベースネットワークの一部を形成し得る。通信媒体は、ルータ、スイッチ、基地局、またはソースデバイス102から宛先デバイス116への通信を容易にするために有用であり得る任意の他の機器を含み得る。
[0032]いくつかの例では、ソースデバイス102は、出力インターフェース108からストレージデバイス112に符号化されたデータを出力し得る。同様に、宛先デバイス116は、入力インターフェース122を介してストレージデバイス112からの符号化されたデータにアクセスし得る。ストレージデバイス112は、ハードドライブ、Blu-ray(登録商標)ディスク、DVD、CD-ROM、フラッシュメモリ、揮発性または不揮発性メモリ、あるいは符号化されたビデオデータを記憶するための任意の他の好適なデジタル記憶媒体など、様々な分散されたまたはローカルにアクセスされるデータ記憶媒体のいずれかを含み得る。
[0033]いくつかの例では、ソースデバイス102は、ソースデバイス102によって生成された符号化されたビデオデータを記憶し得るファイルサーバ114または別の中間ストレージデバイスに符号化されたビデオデータを出力し得る。宛先デバイス116は、ストリーミングまたはダウンロードを介してファイルサーバ114からの記憶されたビデオデータにアクセスし得る。
[0034]ファイルサーバ114は、符号化されたビデオデータを記憶し、その符号化されたビデオデータを宛先デバイス116に送信することが可能な任意のタイプのサーバデバイスであり得る。ファイルサーバ114は、(たとえば、ウェブサイトのための)ウェブサーバ、(ファイル転送プロトコル(FTP)またはファイル配信オーバー単方向トランスポート(FLUTE:File Delivery over Unidirectional Transport)プロトコルなどの)ファイル転送プロトコルサービスを提供するように構成されたサーバ、コンテンツ配信ネットワーク(CDN)デバイス、ハイパーテキスト転送プロトコル(HTTP)サーバ、マルチメディアブロードキャストマルチキャストサービス(MBMS)または拡張MBMS(eMBMS)サーバ、および/あるいはネットワーク接続ストレージ(NAS)デバイスを表し得る。ファイルサーバ114は、追加または代替として、動的適応ストリーミングオーバーHTTP(DASH)、HTTPライブストリーミング(HLS)、リアルタイムストリーミングプロトコル(RTSP)、HTTP動的ストリーミングなど、1つまたは複数のHTTPストリーミングプロトコルを実装し得る。
[0035]宛先デバイス116は、インターネット接続を含む任意の標準的なデータ接続を通してファイルサーバ114からの符号化されたビデオデータにアクセスし得る。これは、ファイルサーバ114に記憶された符号化されたビデオデータにアクセスするのに好適であるワイヤレスチャネル(たとえば、Wi-Fi(登録商標)接続)、ワイヤード接続(たとえば、デジタル加入者回線(DSL)、ケーブルモデムなど)、またはその両方の組合せを含み得る。入力インターフェース122は、ファイルサーバ114からメディアデータを取り出すまたは受信するための上記で説明された様々なプロトコル、あるいはメディアデータを取り出すための他のそのようなプロトコルのうちのいずれか1つまたは複数に従って動作するように構成され得る。
[0036]出力インターフェース108および入力インターフェース122は、ワイヤレス送信機/受信機、モデム、ワイヤードネットワーキング構成要素(たとえば、イーサネット(登録商標)カード)、様々なIEEE802.11規格のいずれかに従って動作するワイヤレス通信構成要素、または他の物理的構成要素を表し得る。出力インターフェース108および入力インターフェース122がワイヤレス構成要素を備える例では、出力インターフェース108および入力インターフェース122は、4G、4G-LTE(登録商標)(ロングタームエボリューション)、LTEアドバンスト、5Gなど、セルラー通信規格に従って、符号化されたビデオデータなどのデータを転送するように構成され得る。出力インターフェース108がワイヤレス送信機を備えるいくつかの例では、出力インターフェース108および入力インターフェース122は、IEEE802.11仕様、IEEE802.15仕様(たとえば、ZigBee(登録商標))、Bluetooth(登録商標)規格など、他のワイヤレス規格に従って、符号化されたビデオデータなどのデータを転送するように構成され得る。いくつかの例では、ソースデバイス102および/または宛先デバイス116は、それぞれのシステムオンチップ(SoC)デバイスを含み得る。たとえば、ソースデバイス102は、ビデオエンコーダ200および/または出力インターフェース108に帰属する機能を実施するためのSoCデバイスを含み得、宛先デバイス116は、ビデオデコーダ300および/または入力インターフェース122に帰属する機能を実施するためのSoCデバイスを含み得る。
[0037]本開示の技法は、オーバージエアテレビジョン放送、ケーブルテレビジョン送信、衛星テレビジョン送信、動的適応ストリーミングオーバーHTTP(DASH)などのインターネットストリーミングビデオ送信、データ記憶媒体上に符号化されたデジタルビデオ、データ記憶媒体に記憶されたデジタルビデオの復号、または他の適用例など、様々なマルチメディア適用例のいずれかをサポートするビデオコーディングに適用され得る。
[0038]宛先デバイス116の入力インターフェース122は、コンピュータ可読媒体110(たとえば、通信媒体、ストレージデバイス112、ファイルサーバ114など)から符号化されたビデオビットストリームを受信する。符号化されたビデオビットストリームは、ビデオブロックまたは他のコーディングされたユニット(たとえば、スライス、ピクチャ、ピクチャグループ、シーケンスなど)の特性および/または処理を記述する値を有するシンタックス要素など、ビデオデコーダ300によっても使用される、ビデオエンコーダ200によって定義されるシグナリング情報を含み得る。ディスプレイデバイス118は、復号されたビデオデータの復号されたピクチャをユーザに表示する。ディスプレイデバイス118は、液晶ディスプレイ(LCD)、プラズマディスプレイ、有機発光ダイオード(OLED)ディスプレイ、または別のタイプのディスプレイデバイスなど、様々なディスプレイデバイスのいずれかを表し得る。
[0039]図1には示されていないが、いくつかの例では、ビデオエンコーダ200およびビデオデコーダ300は各々、オーディオエンコーダおよび/またはオーディオデコーダと統合され得、共通のデータストリーム中にオーディオとビデオの両方を含む多重化ストリームをハンドリングするために、適切なMUX-DEMUXユニット、あるいは他のハードウェアおよび/またはソフトウェアを含み得る。
[0040]ビデオエンコーダ200およびビデオデコーダ300は各々、1つまたは複数のマイクロプロセッサ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、ディスクリート論理、ソフトウェア、ハードウェア、ファームウェアなど、様々な好適なエンコーダおよび/またはデコーダ回路のいずれか、あるいはそれらの任意の組合せとして実装され得る。本技法が部分的にソフトウェアで実装されるとき、デバイスは、好適な非一時的コンピュータ可読媒体にソフトウェアのための命令を記憶し、本開示の技法を実施するために1つまたは複数のプロセッサを使用してその命令をハードウェアで実行し得る。ビデオエンコーダ200およびビデオデコーダ300の各々は、1つまたは複数のエンコーダまたはデコーダに含まれ得、そのいずれも、それぞれのデバイスにおいて複合エンコーダ/デコーダ(コーデック)の一部として統合され得る。ビデオエンコーダ200および/またはビデオデコーダ300を含むデバイスは、集積回路、マイクロプロセッサ、および/またはセルラー電話などのワイヤレス通信デバイスを備え得る。
[0041]ビデオエンコーダ200およびビデオデコーダ300は、高効率ビデオコーディング(HEVC)とも呼ばれるITU-T H.265、あるいはマルチビューおよび/またはスケーラブルビデオコーディング拡張などのそれらの拡張など、ビデオコーディング規格に従って動作し得る。代替的に、ビデオエンコーダ200およびビデオデコーダ300は、汎用ビデオコーディング(VVC)とも呼ばれるITU-T H.266など、他のプロプライエタリ規格または業界規格に従って動作し得る。他の例では、ビデオエンコーダ200およびビデオデコーダ300は、AOMedia Video1(AV1)、AVIの拡張、および/またはAV1の後継バージョン(たとえば、AV2)など、プロプライエタリビデオコーデック/フォーマットに従って動作し得る。他の例では、ビデオエンコーダ200およびビデオデコーダ300は、他のプロプライエタリフォーマットまたは業界規格に従って動作し得る。ただし、本開示の技法は、いかなる特定のコーディング規格またはフォーマットにも限定されない。概して、ビデオエンコーダ200およびビデオデコーダ300は、ライスパラメータを使用して高ビット深度ビデオデータをコーディングする任意のビデオコーディング技法とともに、本開示の技法を実施するように構成され得る。
[0042]概して、ビデオエンコーダ200およびビデオデコーダ300は、ピクチャのブロックベースコーディングを実施し得る。「ブロック」という用語は、概して、処理されるべき(たとえば、符号化されるべき、復号されるべき、あるいは、符号化および/または復号プロセスにおいて他の方法で使用されるべき)データを含む構造を指す。たとえば、ブロックは、ルミナンスおよび/またはクロミナンスデータのサンプルの2次元行列を含み得る。概して、ビデオエンコーダ200およびビデオデコーダ300は、YUV(たとえば、Y、Cb、Cr)フォーマットで表されるビデオデータをコーディングし得る。すなわち、ピクチャのサンプルのために赤色、緑色、および青色(RGB)データをコーディングするのではなく、ビデオエンコーダ200およびビデオデコーダ300は、ルミナンス成分とクロミナンス成分とをコーディングし得、ここで、クロミナンス成分は、赤色相と青色相の両方のクロミナンス成分を含み得る。いくつかの例では、ビデオエンコーダ200は、符号化より前に、受信されたRGBフォーマットのデータをYUV表現にコンバートし、ビデオデコーダ300は、YUV表現をRGBフォーマットにコンバートする。代替的に、前処理および後処理ユニット(図示せず)が、これらのコンバージョンを実施し得る。
[0043]本開示は、概して、ピクチャのデータを符号化または復号するプロセスを含むように、ピクチャのコーディング(たとえば、符号化および復号)に言及することがある。同様に、本開示は、ブロックについてのデータを符号化または復号するプロセス、たとえば、予測および/または残差コーディングを含むように、ピクチャのブロックのコーディングに言及することがある。符号化されたビデオビットストリームは、概して、コーディング決定(たとえば、コーディングモード)とブロックへのピクチャの区分とを表すシンタックス要素についての一連の値を含む。したがって、ピクチャまたはブロックをコーディングすることへの言及は、概して、ピクチャまたはブロックを形成するシンタックス要素についての値をコーディングすることとして理解されるべきである。
[0044]HEVCは、コーディングユニット(CU)、予測ユニット(PU)、および変換ユニット(TU)を含む、様々なブロックを定義する。HEVCに従って、(ビデオエンコーダ200などの)ビデオコーダは、クワッドツリー構造に従ってコーディングツリーユニット(CTU)をCUに区分する。すなわち、ビデオコーダは、CTUとCUとを4つの等しい重複しない正方形に区分し、クワッドツリーの各ノードは、0個または4つのいずれかの子ノードを有する。子ノードなしのノードは、「リーフノード」と呼ばれることがあり、そのようなリーフノードのCUは、1つまたは複数のPUおよび/または1つまたは複数のTUを含み得る。ビデオコーダは、PUとTUとをさらに区分し得る。たとえば、HEVCでは、残差クワッドツリー(RQT)は、TUの区分を表す。HEVCでは、PUはインター予測データを表し、TUは残差データを表す。イントラ予測されるCUは、イントラモード指示などのイントラ予測情報を含む。
[0045]別の例として、ビデオエンコーダ200およびビデオデコーダ300は、VVCに従って動作するように構成され得る。VVCに従って、(ビデオエンコーダ200などの)ビデオコーダは、ピクチャを複数のコーディングツリーユニット(CTU)に区分する。ビデオエンコーダ200は、クワッドツリーバイナリツリー(QTBT)構造またはマルチタイプツリー(MTT)構造など、ツリー構造に従ってCTUを区分し得る。QTBT構造は、HEVCのCUとPUとTUとの間の分離など、複数の区分タイプの概念を除去する。QTBT構造は、2つのレベル、すなわち、クワッドツリー区分に従って区分される第1のレベルと、バイナリツリー区分に従って区分される第2のレベルとを含む。QTBT構造のルートノードは、CTUに対応する。バイナリツリーのリーフノードは、コーディングユニット(CU)に対応する。
[0046]MTT区分構造では、ブロックは、クワッドツリー(QT)区分と、バイナリツリー(BT)区分と、1つまたは複数のタイプのトリプルツリー(TT)(ターナリツリー(TT)とも呼ばれる)区分とを使用して区分され得る。トリプルツリーまたはターナリツリー区分は、ブロックが3つのサブブロックにスプリットされる区分である。いくつかの例では、トリプルツリーまたはターナリツリー区分は、中心を通して元のブロックを分割することなしにブロックを3つのサブブロックに分割する。MTTにおける区分タイプ(たとえば、QT、BT、およびTT)は、対称または非対称であり得る。
[0047]AV1コーデックに従って動作するとき、ビデオエンコーダ200およびビデオデコーダ300は、ブロック中のビデオデータをコーディングするように構成され得る。AV1では、処理され得る最大コーディングブロックは、スーパーブロックと呼ばれる。AV1では、スーパーブロックは、128×128ルーマサンプルまたは64×64ルーマサンプルのいずれかであり得る。しかしながら、後継ビデオコーディングフォーマット(たとえば、AV2)では、スーパーブロックは、異なる(たとえば、より大きい)ルーマサンプルサイズによって定義され得る。いくつかの例では、スーパーブロックは、ブロッククワッドツリーのトップレベルである。ビデオエンコーダ200は、さらに、スーパーブロックをより小さいコーディングブロックに区分し得る。ビデオエンコーダ200は、正方形または非正方形区分を使用してスーパーブロックおよび他のコーディングブロックをより小さいブロックに区分し得る。非正方形ブロックは、N/2×N、N×N/2、N/4×N、およびN×N/4ブロックを含み得る。ビデオエンコーダ200およびビデオデコーダ300は、コーディングブロックの各々に対して別個の予測および変換プロセスを実施し得る。
[0048]AV1はまた、ビデオデータのタイルを定義する。タイルは、他のタイルから独立してコーディングされ得るスーパーブロックの矩形アレイである。すなわち、ビデオエンコーダ200およびビデオデコーダ300は、他のタイルからのビデオデータを使用せずにタイル内のコーディングブロックを、それぞれ、符号化および復号し得る。ただし、ビデオエンコーダ200およびビデオデコーダ300は、タイル境界にわたってフィルタ処理を実施し得る。タイルは、サイズが均一または不均一であり得る。タイルベースコーディングは、エンコーダおよびデコーダ実装形態のための並列処理および/またはマルチスレッディングを可能にし得る。
[0049]いくつかの例では、ビデオエンコーダ200およびビデオデコーダ300は、ルミナンス成分とクロミナンス成分との各々を表すために単一のQTBTまたはMTT構造を使用し得、他の例では、ビデオエンコーダ200およびビデオデコーダ300は、ルミナンス成分のための1つのQTBT/MTT構造、および両方のクロミナンス成分のための別のQTBT/MTT構造(またはそれぞれのクロミナンス成分のための2つのQTBT/MTT構造)など、2つまたはそれ以上のQTBTまたはMTT構造を使用し得る。
[0050]ビデオエンコーダ200およびビデオデコーダ300は、クワッドツリー区分、QTBT区分、MTT区分、スーパーブロック区分、または他の区分構造を使用するように構成され得る。
[0051]いくつかの例では、CTUは、ルーマサンプルのコーディングツリーブロック(CTB)、3つのサンプルアレイを有するピクチャのクロマサンプルの2つの対応するCTB、あるいはモノクロームピクチャ、またはサンプルをコーディングするために使用される3つの別個の色プレーンとシンタックス構造とを使用してコーディングされるピクチャのサンプルのCTBを含む。CTBは、CTBへの成分の分割が区分になるような何らかの値のNについて、サンプルのN×Nブロックであり得る。成分は、4:2:0、4:2:2、または4:4:4色フォーマットにおけるピクチャについての3つのアレイ(ルーマおよび2つのクロマ)のうちの1つからのアレイまたは単一のサンプル、あるいはモノクロームフォーマットにおけるピクチャについてのアレイまたはアレイの単一のサンプルであり得る。いくつかの例では、コーディングブロックは、コーディングブロックへのCTBの分割が区分になるような何らかの値のMとNとについて、サンプルのM×Nブロックである。
[0052]ブロック(たとえば、CTUまたはCU)は、ピクチャ中で様々な方法でグループ化され得る。一例として、ブリックは、ピクチャ中の特定のタイル内のCTU行の矩形領域を指し得る。タイルは、ピクチャ中の特定のタイル列および特定のタイル行内のCTUの矩形領域であり得る。タイル列は、ピクチャの高さに等しい高さと、(たとえば、ピクチャパラメータセット中などの)シンタックス要素によって指定された幅とを有するCTUの矩形領域を指す。タイル行は、(たとえば、ピクチャパラメータセット中などの)シンタックス要素によって指定された高さと、ピクチャの幅に等しい幅とを有するCTUの矩形領域を指す。
[0053]いくつかの例では、タイルは複数のブリックに区分され得、それらの各々は、タイル内に1つまたは複数のCTU行を含み得る。複数のブリックに区分されないタイルもブリックと呼ばれることがある。しかしながら、タイルの真のサブセットであるブリックは、タイルと呼ばれないことがある。ピクチャ中のブリックはまた、スライス中に配置され得る。スライスは、もっぱら単一のネットワークアブストラクションレイヤ(NAL)ユニット中に含まれていることがあるピクチャの整数個のブリックであり得る。いくつかの例では、スライスは、いくつかの完全なタイル、または1つのタイルの完全なブリックの連続シーケンスのみのいずれかを含む。
[0054]本開示は、垂直寸法と水平寸法とに関して(CUまたは他のビデオブロックなどの)ブロックのサンプル寸法を指すために、「N×N(NxN)」および「N×N(N by N)」、たとえば、16×16サンプル(16x16 samples)または16×16サンプル(16 by 16 samples)を互換的に使用し得る。概して、16×16のCUは、垂直方向に16個のサンプルを有し(y=16)、水平方向に16個のサンプルを有する(x=16)。同様に、N×NのCUは、概して、垂直方向にN個のサンプルを有し、水平方向にN個のサンプルを有し、ここで、Nは非負整数値を表す。CU中のサンプルは、行と列とに配置され得る。その上、CUは、必ずしも、水平方向において垂直方向と同じ数のサンプルを有する必要があるとは限らない。たとえば、CUはN×Mサンプルを備え得、ここで、Mは必ずしもNに等しいとは限らない。
[0055]ビデオエンコーダ200は、予測および/または残差情報、ならびに他の情報を表す、CUのためのビデオデータを符号化する。予測情報は、CUについて予測ブロックを形成するためにCUがどのように予測されるべきかを示す。残差情報は、概して、符号化より前のCUのサンプルと予測ブロックとの間のサンプルごとの差分を表す。
[0056]CUを予測するために、ビデオエンコーダ200は、概して、インター予測またはイントラ予測を通してCUについて予測ブロックを形成し得る。インター予測は、概して、前にコーディングされたピクチャのデータからCUを予測することを指すが、イントラ予測は、概して、同じピクチャの前にコーディングされたデータからCUを予測することを指す。インター予測を実施するために、ビデオエンコーダ200は、1つまたは複数の動きベクトルを使用して予測ブロックを生成し得る。ビデオエンコーダ200は、概して、たとえば、CUと参照ブロックとの間の差分に関して、CUにぴったり一致する参照ブロックを識別するために動き探索を実施し得る。ビデオエンコーダ200は、参照ブロックが現在CUにぴったり一致するかどうかを決定するために、絶対差分和(SAD)、2乗差分和(SSD)、平均絶対差(MAD)、平均2乗差(MSD)、または他のそのような差分計算を使用して差分メトリックを計算し得る。いくつかの例では、ビデオエンコーダ200は、単方向予測または双方向予測を使用して現在CUを予測し得る。
[0057]VVCのいくつかの例はまた、インター予測モードと見なされ得るアフィン動き補償モードを提供する。アフィン動き補償モードでは、ビデオエンコーダ200は、ズームインまたはアウト、回転、パースペクティブの動き、あるいは他の変則の動きタイプなど、非並進の動きを表す2つまたはそれ以上の動きベクトルを決定し得る。
[0058]イントラ予測を実施するために、ビデオエンコーダ200は、予測ブロックを生成するようにイントラ予測モードを選択し得る。VVCのいくつかの例は、様々な方向性モード、ならびにプレーナ(planar)モードおよびDCモードを含む、67個のイントラ予測モードを提供する。概して、ビデオエンコーダ200は、現在ブロック(たとえば、CUのブロック)のサンプルをそれから予測すべき、現在ブロックに対する隣接サンプルを記述するイントラ予測モードを選択する。そのようなサンプルは、ビデオエンコーダ200がラスタ走査順序で(左から右に、上から下に)CTUとCUとをコーディングすると仮定すると、概して、現在ブロックと同じピクチャ中の現在ブロックの上、左上、または左にあり得る。
[0059]ビデオエンコーダ200は、現在ブロックについて予測モードを表すデータを符号化する。たとえば、インター予測モードでは、ビデオエンコーダ200は、様々な利用可能なインター予測モードのうちのどれが使用されるか、ならびに対応するモードのための動き情報を表すデータを符号化し得る。たとえば、単方向または双方向インター予測では、ビデオエンコーダ200は、高度動きベクトル予測(AMVP)またはマージモードを使用して動きベクトルを符号化し得る。ビデオエンコーダ200は、アフィン動き補償モードのための動きベクトルを符号化するために、同様のモードを使用し得る。
[0060]AV1は、ビデオデータのコーディングブロックを符号化および復号するための2つの一般的な技法を含む。2つの一般的な技法は、イントラ予測(たとえば、イントラフレーム予測または空間予測)およびインター予測(たとえば、インターフレーム予測または時間予測)である。AV1のコンテキストでは、イントラ予測モードを使用するビデオデータの現在のフレームのブロックを予測するとき、ビデオエンコーダ200およびビデオデコーダ300は、ビデオデータの他のフレームからのビデオデータを使用しない。たいていのイントラ予測モードでは、ビデオエンコーダ200は、現在ブロック中のサンプル値と、同じフレーム中の参照サンプルから生成される予測される値との間の差分に基づいて、現在のフレームのブロックを符号化する。ビデオエンコーダ200は、イントラ予測モードに基づいて参照サンプルから生成される予測される値を決定する。
[0061]ブロックのイントラ予測またはインター予測などの予測に続いて、ビデオエンコーダ200は、ブロックについて残差データを計算し得る。残差ブロックなどの残差データは、ブロックと、対応する予測モードを使用して形成された、ブロックについての予測ブロックとの間の、サンプルごとの差分を表す。ビデオエンコーダ200は、サンプル領域ではなく変換領域中に変換されたデータを作り出すために、残差ブロックに1つまたは複数の変換を適用し得る。たとえば、ビデオエンコーダ200は、離散コサイン変換(DCT)、整数変換、ウェーブレット変換、または概念的に同様の変換を残差ビデオデータに適用し得る。さらに、ビデオエンコーダ200は、第1の変換に続いて、モード依存非分離可能2次変換(MDNSST:mode-dependent non-separable secondary transform)、信号依存変換、カルーネンレーベ変換(KLT)などの2次変換を適用し得る。ビデオエンコーダ200は、1つまたは複数の変換の適用に続いて変換係数を作り出す。
[0062]上述のように、変換係数を作り出すための任意の変換に続いて、ビデオエンコーダ200は変換係数の量子化を実施し得る。量子化は、概して、変換係数を表すために使用されるデータの量をできるだけ低減するために変換係数が量子化され、さらなる圧縮を行うプロセスを指す。量子化プロセスを実施することによって、ビデオエンコーダ200は、変換係数の一部または全部に関連するビット深度を低減し得る。たとえば、ビデオエンコーダ200は、量子化中にnビット値をmビット値に丸めることがあり、ここで、nはmよりも大きい。いくつかの例では、量子化を実施するために、ビデオエンコーダ200は、量子化されるべき値のビット単位右シフトを実施し得る。
[0063]量子化に続いて、ビデオエンコーダ200は、変換係数を走査して、量子化された変換係数を含む2次元行列から1次元ベクトルを作り出し得る。走査は、より高いエネルギー(したがって、より低い頻度)の変換係数をベクトルの前方に配置し、より低いエネルギー(したがって、より高い頻度)の変換係数をベクトルの後方に配置するように設計され得る。いくつかの例では、ビデオエンコーダ200は、シリアル化されたベクトルを作り出すために、量子化された変換係数を走査するために、あらかじめ定義された走査順序を利用し、次いで、ベクトルの量子化された変換係数をエントロピー符号化し得る。他の例では、ビデオエンコーダ200は適応型走査を実施し得る。量子化された変換係数を走査して1次元ベクトルを形成した後に、ビデオエンコーダ200は、たとえば、コンテキスト適応型バイナリ算術コーディング(CABAC)に従って、1次元ベクトルをエントロピー符号化し得る。ビデオエンコーダ200はまた、ビデオデータを復号する際のビデオデコーダ300による使用のために、符号化されたビデオデータに関連するメタデータを記述するシンタックス要素についての値をエントロピー符号化し得る。
[0064]変換ブロックの変換係数を符号化するとき、ビデオエンコーダ200は、たとえば、(係数が0よりも大きい絶対値を有するかどうかを示す)有意変換係数フラグと、(係数が1よりも大きい絶対値を有するかどうかを示す)1よりも大きいフラグ(greater than one flag)と、(係数が2よりも大きい絶対値を有するかどうかを示す)2よりも大きいフラグ(greater than two flag)と、(係数の絶対値が2を超える量を表す)残余値(remainder value)と、(係数についての値が正であるのか負であるのかを表す)符号フラグとを含む、シンタックス要素についての値を符号化し得る。
[0065]現在係数の残余値を符号化するとき、ビデオエンコーダ200は、ライスパラメータを使用して残余値を2値化し得る。本開示の技法によれば、ライスパラメータを決定するために、ビデオエンコーダ200は、現在係数に対する隣接する係数の絶対値の和を計算し得る。たとえば、ビデオエンコーダ200は、以下の図2に示されているように、現在係数の右の係数、2つ右の係数、下の係数、2つ下の係数、ならびに下および右の係数についての絶対値を計算し得る。ビデオエンコーダ200は、次いで、絶対値の和の値を形成するために、計算された絶対値の各々を加算し得る。ビデオエンコーダ200は、次いで、ビット深度および/または現在ブロックを含むスライスについてのスライスタイプのうちの少なくとも1つを決定し得る。
[0066]ビデオエンコーダ200は、次いで、たとえば、以下でより詳細に説明される式(1)を使用して、ビット深度および/またはスライスタイプに従ってベースレベルオフセット値を計算し得る。ビデオエンコーダ200は、次いで、ベースレベルオフセット値を使用して絶対値の和についての正規化された値を計算し得る。たとえば、ビデオエンコーダ200は、以下でより詳細に説明される式(2)を使用して、正規化された値を計算し得る。ビデオエンコーダ200は、次いで、たとえば、以下でより詳細に説明される表1に従って、絶対値のローカル和についての正規化された値を使用してライスパラメータを導出し得る。ビデオエンコーダ200は、次いで、ライスパラメータを使用して絶対値の和についての正規化された値についてのゴロムライスコードを形成し得る。
[0067]CABACを実施するために、ビデオエンコーダ200は、コンテキストモデル内のコンテキストを、送信されるべきシンボルに割り当て得る。コンテキストは、たとえば、シンボルの隣接値が0値であるか否かに関係し得る。確率決定は、シンボルに割り当てられたコンテキストに基づき得る。上記の例において説明された変換係数の場合、シンボルは、ゴロムライスコードのビット(ビン)のうちの1つに対応し得る。
[0068]ビデオエンコーダ200は、さらに、ブロックベースシンタックスデータ、ピクチャベースシンタックスデータ、およびシーケンスベースシンタックスデータなどのシンタックスデータを、たとえば、ピクチャヘッダ、ブロックヘッダ、スライスヘッダ、あるいはシーケンスパラメータセット(SPS)、ピクチャパラメータセット(PPS)、またはビデオパラメータセット(VPS)などの他のシンタックスデータ中で、ビデオデコーダ300に対して生成し得る。ビデオデコーダ300は、対応するビデオデータをどのように復号すべきかを決定するために、そのようなシンタックスデータを同様に復号し得る。
[0069]このようにして、ビデオエンコーダ200は、符号化されたビデオデータ、たとえば、ブロック(たとえば、CU)へのピクチャの区分ならびにブロックについての予測および/または残差情報を記述するシンタックス要素を含むビットストリームを生成し得る。最終的に、ビデオデコーダ300は、ビットストリームを受信し、符号化されたビデオデータを復号し得る。
[0070]概して、ビデオデコーダ300は、ビットストリームの符号化されたビデオデータを復号するために、ビデオエンコーダ200によって実施されたものの逆プロセスを実施する。たとえば、ビデオデコーダ300は、ビデオエンコーダ200のCABAC符号化プロセスと逆ではあるが、それと実質的に同様の様式でCABACを使用してビットストリームのシンタックス要素についての値を復号し得る。シンタックス要素は、CTUのCUを定義するために、ピクチャをCTUに区分するための区分情報と、QTBT構造などの対応する区分構造に従う、各CTUの区分とを定義し得る。シンタックス要素は、ビデオデータのブロック(たとえば、CU)についての予測および残差情報をさらに定義し得る。
[0071]残差情報は、たとえば、量子化された変換係数によって表され得る。ビデオデコーダ300は、ブロックのための残差ブロックを再生するために、ブロックの量子化された変換係数を逆量子化し、逆変換し得る。ビデオデコーダ300は、ブロックのための予測ブロックを形成するために、シグナリングされた予測モード(イントラまたはインター予測)と、関連する予測情報(たとえば、インター予測のための動き情報)とを使用する。ビデオデコーダ300は、次いで、元のブロックを再生するために(サンプルごとに)予測ブロックと残差ブロックとを組み合わせ得る。ビデオデコーダ300は、ブロックの境界に沿って視覚的アーティファクトを低減するためにデブロッキングプロセスを実施することなど、追加の処理を実施し得る。
[0072]本開示の技法によれば、ビデオデコーダ300は、変換ブロックの現在係数についてのエントロピー符号化された値を受信し得る。ビデオデコーダ300は、現在係数の値を表すゴロムライスコードを形成するために、エントロピー符号化された値をエントロピー復号し得る。ビデオデコーダ300は、現在係数に対する隣接する係数のローカル絶対値の和を計算し得る。ビデオデコーダ300はまた、たとえば、以下で説明される式(1)を使用して、ベースレベルオフセット値を計算し得る。ビデオデコーダ300は、たとえば、以下で説明される式(2)を使用して、ベースレベルオフセット値を使用して絶対値の和についての正規化された値を計算し得る。ビデオデコーダ300は、次いで、たとえば、以下で説明される表1を使用して、正規化された値からライスパラメータを決定し得る。ビデオデコーダ300は、次いで、ライスパラメータを使用して、およびゴロムライスコードから、現在係数についての値(たとえば、絶対残余値)を2値化し得る。ビデオデコーダ300は、絶対残余値と、現在係数についての他の復号された値、たとえば、符号値、有意変換係数値、1よりも大きい値(greater than one value)、および2よりも大きい値(greater than two value)とから、現在係数を再構築し得る。
[0073]本開示は、概して、シンタックス要素など、ある情報を「シグナリング」することに言及することがある。「シグナリング」という用語は、概して、符号化されたビデオデータを復号するために使用されるシンタックス要素および/または他のデータについての値の通信を指し得る。すなわち、ビデオエンコーダ200は、ビットストリーム中でシンタックス要素についての値をシグナリングし得る。概して、シグナリングは、ビットストリーム中で値を生成することを指す。上述のように、ソースデバイス102は、実質的にリアルタイムでビットストリームを宛先デバイス116に移送するか、または、宛先デバイス116による後の取出しのためにシンタックス要素をストレージデバイス112に記憶するときに行われ得るように、非リアルタイムでビットストリームを宛先デバイス116に移送し得る。
[0074]図2は、ローカル絶対値(local absolute values)の和(locSumAbs)を計算するために使用され得る現在係数に隣接する係数の一例を示す概念図である。VVCの現在の設計では、通常残差コーディング(RRC)のためのライスパラメータは、テンプレートに従う隣接する変換係数の係数値の考慮とともに、ルックアップテーブルを使用して導出される。図2中のグレーで陰影を付けられた隣接する係数は、図2中の黒で陰影を付けられた現在係数についてのテンプレートを表す。
[0075]特に、図2は、様々な変換係数を含む現在ブロック130を示す。現在ブロック130は、現在係数132と、隣接する係数134A~124E(隣接する係数134)とを含む。現在係数132の位置に対して、隣接する係数134Aは右の隣接する係数を表し、隣接する係数134Bは2つ右の隣接する係数を表し、隣接する係数134Cは右下の隣接する係数を表し、隣接する係数134Dは下の隣接する係数を表し、隣接する係数134Eは2つ下の隣接する係数を表す。
[0076]ビデオコーダは、ローカル絶対値の和(locSumAbs)、たとえば、現在係数132についての隣接する係数134の絶対値の和を計算し得る。VVCに従って、ビデオコーダは、図2の場合のような5つの利用可能な隣接する係数の絶対値の和として、locSumAbsについての値を計算する。VVCの一例に従って、ビデオコーダは、次いで、以下の式に従って(減算およびクリッピングを使用して)locSumAbsの値を正規化する。
Figure 2024514075000002
[0077]次いで、VVCに従って、ビデオコーダは、以下の表1を使用して、locSumAbsの正規化された値を使用してライスパラメータを導出する。
Figure 2024514075000003
[0078]VVCでは、ライスパラメータ範囲は、両端値を含む0から3までになるように制約される。
[0079]本開示の技法によれば、ビデオコーダは、以下でより詳細に説明される式(1)に従って、ベースレベルオフセットを計算し得る。すなわち、ビデオコーダは、ビット深度および/または現在ブロック130を含むスライスについてのスライスタイプに従って、ベースレベルオフセット値を計算し得る。
[0080]図3は、ビデオデータの16ビットテストシーケンスについてのコーディングされた変換係数の経験的ヒストグラム136を示すグラフである。
[0081]図4は、係数値についてのエントロピーコーディング中に作り出されたコードワード長と所与のライスパラメータとの間の関係を示すグラフ140である。
[0082]ライスパラメータは、8ビット深度または10ビット深度のビデオソースを符号化するために広範囲にわたってテストされた。1つの例示的な設計では、ライスパラメータ値は、locSumAbs値の値に依存し、クリッピングによって0から3までの範囲に限定される。入力ビデオのビット深度が増加され、または拡張された精度が可能にされ、または量子化パラメータが極めて低く設定されたとき、係数の範囲と、したがって、locSumAbs値とは、著しく増加し得る。そのような場合、許容ライスパラメータの現在のVVCの範囲は十分でなく、なぜなら、それは、大きい値のコーディングされた係数について、長いコードワード、たとえば、32ビットのコードワードの使用を必要とすることになるからである。
[0083]図3および図4は、結果として発生し得る問題の可視化を提供する。特に、図3は、16ビット信号についての(2のべき乗の形態の)コーディングされた係数のヒストグラムを示す。図4は、コーディングされた値についてVVCエントロピーコーディング方法によって作り出されたコードワード長を示す。ライスパラメータの規範範囲が(VVCにおいて定義されているように)3に限定されることは、10よりも大きいコーディングされた値についてのコードワード長の顕著な増加をもたらすことが図4からわかり得る。この問題は、より大きい大きさの係数についてライスパラメータの大きい値を可能にすることによって解決され得る。
[0084]ビデオの様々な入力ビット深度における現在のVVCのライスパラメータ導出の限定に対処し、したがって圧縮効率を改善するための1つの設計(JVET-U会合のCE1.1)では、ライスパラメータのサポートされる範囲が、VVCにおける3から、大きい数、たとえば16まで拡張され得、これは、より効率的な2値化プロセスを提供し、変換係数の大きい値についてより低いビット数を生じることになる。
[0085]localSumbAbsの値は、たとえばVVC仕様の式1517に従って、ライスパラメータを導出するために使用される前に、ビット深度増加または変換係数のダイナミック範囲をハンドリングするためにスケーリング/正規化され得る。スケーリングファクタの量は、値localSumAbs-変換係数のローカルアクティビティを示すために算出されたテンプレート導出の出力、あるいはビットストリーム中でシグナリングされたシンタックス要素または作表された値のセットに依存し得る。
[0086]VVCビデオエンコーダは、localSumAbsの決定された値を、その値を含むダイナミック範囲についてのダイナミカル範囲idを識別するために、作表されたしきい値Tx={Tid}のセットと比較し得る。次いで、ビデオコーダは、範囲idによって決定された、作表されたRx={Rid}の所与のセットからの値スカラーnormShiftによって、localSumAbsの値をスケーリングおよび/または正規化し得る。ビデオコーダは、次いで、あらかじめ定義されたルックアップテーブル、たとえば、VVCにおける現在のルックアップテーブル、表128を使用してライスパラメータを導出するために、正規化されたlocalSumAbsを使用し得る。localSumbAbsの値が、提案された設計の第1のステップにおいて正規化されると、ライスパラメータは、あらかじめ定義された表から、たとえば表128から導出され得、最終的に、ライスパラメータ範囲のダイナミカル範囲を拡張するために、Ridに等しいオフセットを加算することによって修正され得る。
[0087]しきい値TxおよびスケーラRxのセットは、以下のように定義され得る。
[0088]
Figure 2024514075000004
[0089]
Figure 2024514075000005
[0090]アレイTxの値は、2のべき乗であるように制限され得、他の実施形態では、その値は、2のべき乗(2^x)によって誘導され、オフセット、スケーリングまたは右/左シフトなど、限られた数の演算を通して、そのようなものにコンバートされ得る。
[0091]アレイのサイズはNに等しくなり得、ここで、Nは、下側境界よりも大きく、たとえば、>1または>2、上側境界、たとえば、9または5よりも小さい、正の整数である。いくつかの実施形態では、Rxアレイのサイズは、Txのアレイに対して1つのエントリだけ大きい。いくつかの実施形態では、TxおよびRxアレイのサイズは、4に制限され得る。
[0092]いくつかの例では、VVCにおける関係するライスパラメータ導出部分は、以下のように修正され得、作表されたアレイのサイズは4に等しい。
(以下、枠内)
9.3.3.2 abs_remainder[]およびdec_abs_level[]のためのライスパラメータ導出プロセス
このプロセスへの入力は、ベースレベルbaseLevel、色成分インデックスcIdx、現在ピクチャの左上サンプルに対する現在変換ブロックの左上サンプルを指定するルーマロケーション(x0,y0)、現在係数走査ロケーション(xC,yC)、変換ブロック幅のバイナリ対数log2TbWidth、および変換ブロック高さのバイナリ対数log2TbHeightである。
このプロセスの出力は、ライスパラメータcRiceParamである。
成分インデックスcIdxと左上ルーマロケーション(x0,y0)とをもつ変換ブロックのためのアレイAbsLevel[x][y]を仮定すれば、変数locSumAbsは、以下の擬似コードプロセスによって指定されているように導出される。
Figure 2024514075000006
g_riceTおよびg_riceShiftは以下のように定義される。
Figure 2024514075000007
変数locSumAbsを仮定すれば、ライスパラメータcRiceParamは、表128において指定されているように導出される。
cRiceParamは、次いで、次のように改良される。
Figure 2024514075000008
(以上、枠内)
[0093]ライスパラメータの範囲を拡張するために、U会合のCE1.2では、locSumAbsがあるしきい値を超えた場合、シフトで値locSumAbsをスケーリングし、それにより、スケーリングされた値がクリッピングなしにVVC仕様の表128の許容範囲に適合することになることが提案される。これに続いて、表128の出力は、スケーリングプロセスが所与のlocSumAbs値について行われた場合、シフト値で増分することによって調整されている。
[0094]エンコーダ(たとえば、ビデオエンコーダ200)は、シンタックス要素sh_scale_riceについての値を選択し得、これは、値1または2をとり得る。
[0095]
Figure 2024514075000009
[0096]
Figure 2024514075000010
[0097]利用される値sh_scale_riceは、スライスヘッダ中のシンタックス要素としてシグナリングされ、QP値の関数としてエンコーダ側において導出されている。
[0098]VVCについての仕様テキストは、以下の通りであり得る。
1に等しいsps_high_bit_depthは、abs_remaining[]およびdec_abs_levelの2値化のためのライスパラメータのための高ビット深度モードを可能にするために、sh_rice_parameterシンタックス要素がスライスヘッダ中に存在し得ることを指定する。0に等しいsps_high_bit_depthは、sh_rice_parameterシンタックス要素がスライスヘッダ中に存在せず、ライスパラメータ導出のための高ビット深度モードが可能にされ得ないことを指定する。存在しないとき、sps_high_bit_depthの値は0に等しいと推論される。
7.3.7 スライスヘッダシンタックス
Figure 2024514075000011
sh_scale_riceは、ライスパラメータの導出のために利用されるスケール値を指定し、sh_scale_riceの値は、両端値を含む1~2の範囲内にあるものとする。sh_scale_riceが存在しないとき、それは0に等しいと推論される。
(以下、枠内)
9.3.3.2 abs_remainder[]およびdec_abs_level[]のためのライスパラメータ導出プロセス
このプロセスへの入力は、ベースレベルbaseLevel、色成分インデックスcIdx、現在ピクチャの左上サンプルに対する現在変換ブロックの左上サンプルを指定するルーマロケーション(x0,y0)、現在係数走査ロケーション(xC,yC)、変換ブロック幅のバイナリ対数log2TbWidth、および変換ブロック高さのバイナリ対数log2TbHeightである。
このプロセスの出力は、ライスパラメータcRiceParamである。
成分インデックスcIdxと左上ルーマロケーション(x0,y0)とをもつ変換ブロックのためのアレイAbsLevel[x][y]を仮定すれば、変数locSumAbsは、以下の擬似コードプロセスによって指定されているように導出される。
Figure 2024514075000012
変数shiftは以下のように導出される。
Figure 2024514075000013
変数localSumAbsは以下のように更新される。
Figure 2024514075000014
変数locSumAbsを仮定すれば、ライスパラメータcRiceParamは、表128において指定されているように導出される。
cRiceParamは、次いで、次のように改良される。
Figure 2024514075000015
(以上、枠内)
[0099]上記で説明されたRRC方法は、以下で説明されるように、使用されたライスパラメータの履歴を用いて拡張され得る。
[0100]色成分ごとの単一のカウンタが利用され、StatCoeff[3]は、第1の非0のゴロムライスコーディングされた変換係数(abs_remainder[]またはdec_abs_level[])から、TUごとに1回更新されている。
[0101]TUにおける第1の非0のゴロムライスコーディングされた変換係数がabs_remainderとしてコーディングされるとき、色成分cIdxについての履歴カウンタ(StatCoeff)は以下のように更新される。
Figure 2024514075000016
[0102]TUにおける第1の非0のゴロムライスコーディングされた変換係数がabs_remainderとしてコーディングされるとき、色成分cIdxについての履歴カウンタは以下のように更新される。
Figure 2024514075000017
[0103]履歴カウンタStatCoeff[3]は、デフォルト値でCTUレベルにおいてリセットされ得るか、または、履歴は、異なるCTU間で伝搬され得る。
[0104]履歴ライスパラメータ値はテンプレート導出において利用され、この方法の節9.3.3.2実装は、節9.3.3.2についての示されたVVC仕様テキスト抜粋であり、緑色でハイライトされたテキストはCE-1.2からの変更に関係し、黄色ハイライトされたテキストはCE-1.4において利用される分類に関連する。変数g_historyValueは、現在の色成分idに関連する履歴カウンタから、現在TUのコーディングより前に導出される。
Figure 2024514075000018
(以下、枠内)
9.3.3.2 abs_remainder[]およびdec_abs_level[]のためのライスパラメータ導出プロセス
このプロセスへの入力は、ベースレベルbaseLevel、色成分インデックスcIdx、現在ピクチャの左上サンプルに対する現在変換ブロックの左上サンプルを指定するルーマロケーション(x0,y0)、現在係数走査ロケーション(xC,yC)、変換ブロック幅のバイナリ対数log2TbWidth、および変換ブロック高さのバイナリ対数log2TbHeightである。
このプロセスの出力は、ライスパラメータcRiceParamである。
成分インデックスcIdxと左上ルーマロケーション(x0,y0)とをもつ変換ブロックのためのアレイAbsLevel[x][y]を仮定すれば、変数locSumAbsは、以下の擬似コードプロセスによって指定されているように導出される。
Figure 2024514075000019
変数shiftは以下のように導出される。
Figure 2024514075000020
変数localSumAbsは以下のように更新される。
Figure 2024514075000021
変数locSumAbsを仮定すれば、ライスパラメータcRiceParamは、表128において指定されているように導出される。
cRiceParamは、次いで、次のように改良される。
Figure 2024514075000022
(以上、枠内)
[0105]ビデオエンコーダ200およびビデオデコーダ300は、以下で説明されるように、本開示の技法に従って構成され得る。これらの技法は、上記で説明された技法に対する修正を含む。
[0106]いくつかの例では、上記で説明されたローカルベースライス導出技法の場合、ビデオエンコーダ200およびビデオデコーダ300は、以下で示されているように、入力信号ビット深度および/またはスライスタイプの関数としてベースレベルオフセットを導出し、locSumAbs値をスケーリングするためにbaseLevelオフセット値を使用し得る。
[0107]いくつかの例では、ビデオエンコーダ200およびビデオデコーダ300は、以下のように、baseLevelOffsetを導出し得る。
Figure 2024514075000023
[0108]式(1)において、疑問符演算子(?)は、<条件>?X:Yの形態の式を表し、ここで、<条件>が真である場合、Xの値が返されるが、<条件>が偽である場合、Yの値が返される。baseLevelOffset値はベースレベルオフセットを表し、bitDepthはビデオビットストリームのビット深度を表し、Tはしきい値であり、P1、P2、P3、およびP4は、あらかじめ決定されるかまたはビットストリーム中でシグナリングされ得る値である。
[0109]ビデオエンコーダ200およびビデオデコーダ300は、以下のように、localSumAbsを正規化するためにベースレベルオフセット値を使用し得る。
Figure 2024514075000024
[0110]概して、Tはしきい値を表し、P1、P2、P3、およびP4値は整数値を表す。いくつかの例では、T=12、P1=5、P2=10、P3=6、P4=20である。いくつかの例では、T=12、P1=5、P2=10、P3=10、P4=20である。T、P1、P2、P3、およびP4についての他の値も使用され得る。T、P1、P2、P3、およびP4は、あらかじめ定義されるか、ビットストリーム中でシグナリングされるか、または様々な基準に基づいて導出され得る。
[0111]いくつかの例では、上記で説明された履歴ベースライス導出技法の場合、ビデオエンコーダ200およびビデオデコーダ300は、いくつかのブロック(たとえば、いくつかのCTU)間で履歴カウンタStatCoeff[cIdx]のステータスを保存し得る。追加または代替として、ビデオエンコーダ200およびビデオデコーダ300は、StatCoeff[]カウンタの現在のステータスから、ブロックレベル、たとえばCTUレベルにおいて、(明示的にシグナリングされたsh_scale_riceシンタックス要素を置き換える)ScaleRiceパラメータを導出し得る。したがって、ビデオエンコーダ200およびビデオデコーダ300は、sh_rice_initシンタックス要素を明示的にシグナリングする必要がない。
[0112]いくつかの例では、ビデオエンコーダ200およびビデオデコーダ300は、StatCoeff[]のステータスをしきい値と比較することと、整数値の範囲内でパラメータの整数値を指定することとを通して、ScaleRiceパラメータ値を導出し得る。導出の1つのそのような例が、以下で示される。
Figure 2024514075000025
[0113]いくつかの例では、T=4、P2=2およびP1=1である。
[0114]いくつかの例では、ビデオエンコーダ200およびビデオデコーダ300は、各色成分(たとえば、ルーマ、青色相クロマ、および赤色相クロマ)について独立してパラメータScaleRiceを導出し得る。
[0115]いくつかの例では、ビデオエンコーダ200およびビデオデコーダ300は、ScaleRiceパラメータについての値を導出するとき、以下で示されているように、アグリゲーション関数、たとえば、色成分にわたる重み付き関数を通して、2つまたはそれ以上の(たとえば、すべての)色成分についての履歴カウンタについての値を考慮に入れ得る。
Figure 2024514075000026
[0116]いくつかの例では、w0=2、w1=1、w2=1である。
[0117]いくつかの例では、ビデオエンコーダ200およびビデオデコーダ300は、ブロックレベルにおいて、たとえば、CTU、TU、またはサブTUのレベルにおいて、パラメータScaleRiceを導出し得る。ビデオエンコーダ200およびビデオデコーダ300は、後でコーディングされたデータのブロックのデータを復号するとき、ScaleRiceパラメータを使用し得る。代替的に、ビデオエンコーダ200およびビデオデコーダ300は、たとえば、次のブロックの後にブロックを復号するために、あるブロックサイズだけ遅延された様式において、導出されたScaleRice値を使用し得る。
[0118]したがって、if(sps_high_bit_depth)とsh_scale_riceシンタックス要素とについてのチェックは、シンタックステーブルから除去され得る。
[0119]いくつかの例では、ビデオエンコーダ200およびビデオデコーダ300は、デフォルト値またはシグナリングされた値によるStatCoeffの初期化に続いて、上記で説明されたプロセスを通してScaleRice値を導出し得る。
[0120]図5は、本開示の技法を実施し得る例示的なビデオエンコーダ200を示すブロック図である。図5は、説明の目的で提供されており、本開示において広く例示され、説明される技法を限定するものと見なされるべきではない。説明の目的で、本開示は、VVC(開発中のITU-T H.266)およびHEVC(ITU-T H.265)の技法に従って、ビデオエンコーダ200について説明する。しかしながら、本開示の技法は、AV1およびAV1ビデオコーディングフォーマットの後継など、他のビデオコーディング規格およびビデオコーディングフォーマットに構成されたビデオ符号化デバイスによって実施され得る。
[0121]図5の例では、ビデオエンコーダ200は、ビデオデータメモリ230と、モード選択ユニット202と、残差生成ユニット204と、変換処理ユニット206と、量子化ユニット208と、逆量子化ユニット210と、逆変換処理ユニット212と、再構築ユニット214と、フィルタユニット216と、復号ピクチャバッファ(DPB)218と、エントロピー符号化ユニット220とを含む。ビデオデータメモリ230と、モード選択ユニット202と、残差生成ユニット204と、変換処理ユニット206と、量子化ユニット208と、逆量子化ユニット210と、逆変換処理ユニット212と、再構築ユニット214と、フィルタユニット216と、DPB218と、エントロピー符号化ユニット220とのいずれかまたはすべては、1つまたは複数のプロセッサにおいてまたは処理回路において実装され得る。たとえば、ビデオエンコーダ200のユニットは、1つまたは複数の回路または論理要素として、ハードウェア回路の一部として、あるいはプロセッサ、ASIC、またはFPGAの一部として実装され得る。その上、ビデオエンコーダ200は、これらおよび他の機能を実施するための追加または代替のプロセッサまたは処理回路を含み得る。
[0122]ビデオデータメモリ230は、ビデオエンコーダ200の構成要素によって符号化されるべきビデオデータを記憶し得る。ビデオエンコーダ200は、たとえば、ビデオソース104(図1)から、ビデオデータメモリ230に記憶されるビデオデータを受信し得る。DPB218は、ビデオエンコーダ200による後続のビデオデータの予測において使用するための参照ビデオデータを記憶する参照ピクチャメモリとして働き得る。ビデオデータメモリ230およびDPB218は、同期ダイナミックランダムアクセスメモリ(DRAM)(SDRAM)を含むDRAM、磁気抵抗RAM(MRAM)、抵抗性RAM(RRAM(登録商標))、または他のタイプのメモリデバイスなど、様々なメモリデバイスのいずれかによって形成され得る。ビデオデータメモリ230およびDPB218は、同じメモリデバイスまたは別個のメモリデバイスによって提供され得る。様々な例では、ビデオデータメモリ230は、図示のように、ビデオエンコーダ200の他の構成要素とともにオンチップであるか、またはそれらの構成要素に対してオフチップであり得る。
[0123]本開示では、ビデオデータメモリ230への言及は、特にそのように説明されない限り、ビデオエンコーダ200の内部のメモリに限定されるものとして解釈されるべきではなく、または特にそのように説明されない限り、ビデオエンコーダ200の外部のメモリに限定されるものとして解釈されるべきではない。そうではなく、ビデオデータメモリ230への言及は、ビデオエンコーダ200が符号化のために受信するビデオデータ(たとえば、符号化されるべきである現在ブロックのためのビデオデータ)を記憶する参照メモリとして理解されるべきである。図1のメモリ106はまた、ビデオエンコーダ200の様々なユニットからの出力の一時的記憶を提供し得る。
[0124]図5の様々なユニットは、ビデオエンコーダ200によって実施される動作を理解するのを支援するために示されている。ユニットは、固定機能回路、プログラマブル回路、またはそれらの組合せとして実装され得る。固定機能回路は、特定の機能を提供する回路を指し、実施され得る動作に関してプリセットされる。プログラマブル回路は、様々なタスクを実施するように、および実施され得る動作においてフレキシブルな機能を提供するようにプログラムされ得る回路を指す。たとえば、プログラマブル回路は、ソフトウェアまたはファームウェアの命令によって定義された様式でプログラマブル回路を動作させるソフトウェアまたはファームウェアを実行し得る。固定機能回路は、(たとえば、パラメータを受信するかまたはパラメータを出力するために)ソフトウェア命令を実行し得るが、固定機能回路が実施する動作のタイプは、概して不変である。いくつかの例では、ユニットのうちの1つまたは複数は、別個の回路ブロック(固定機能またはプログラマブル)であり得、いくつかの例では、ユニットのうちの1つまたは複数は、集積回路であり得る。
[0125]ビデオエンコーダ200は、算術論理ユニット(ALU)、基本機能ユニット(EFU)、デジタル回路、アナログ回路、および/またはプログラマブル回路から形成されるプログラマブルコアを含み得る。ビデオエンコーダ200の動作が、プログラマブル回路によって実行されるソフトウェアを使用して実施される例では、メモリ106(図1)は、ビデオエンコーダ200が受信し、実行するソフトウェアの命令(たとえば、オブジェクトコード)を記憶し得るか、またはビデオエンコーダ200内の別のメモリ(図示せず)が、そのような命令を記憶し得る。
[0126]ビデオデータメモリ230は、受信されたビデオデータを記憶するように構成される。ビデオエンコーダ200は、ビデオデータメモリ230からビデオデータのピクチャを取り出し、ビデオデータを残差生成ユニット204とモード選択ユニット202とに提供し得る。ビデオデータメモリ230中のビデオデータは、符号化されるべきである生のビデオデータであり得る。
[0127]モード選択ユニット202は、動き推定ユニット222と、動き補償ユニット224と、イントラ予測ユニット226とを含む。モード選択ユニット202は、他の予測モードに従ってビデオ予測を実施するための追加の機能ユニットを含み得る。例として、モード選択ユニット202は、パレットユニット、(動き推定ユニット222および/または動き補償ユニット224の一部であり得る)イントラブロックコピーユニット、アフィンユニット、線形モデル(LM)ユニットなどを含み得る。
[0128]モード選択ユニット202は、概して、符号化パラメータの組合せと、そのような組合せについての得られたレートひずみ値とをテストするために、複数の符号化パスを協調させる。符号化パラメータは、CUへのCTUの区分、CUのための予測モード、CUの残差データのための変換タイプ、CUの残差データのための量子化パラメータなどを含み得る。モード選択ユニット202は、他のテストされた組合せよりも良好であるレートひずみ値を有する符号化パラメータの組合せを最終的に選択し得る。
[0129]ビデオエンコーダ200は、ビデオデータメモリ230から取り出されたピクチャを一連のCTUに区分し、スライス内の1つまたは複数のCTUをカプセル化し得る。モード選択ユニット202は、上記で説明されたMTT構造、QTBT構造、スーパーブロック構造、またはクワッドツリー構造など、ツリー構造に従ってピクチャのCTUを区分し得る。上記で説明されたように、ビデオエンコーダ200は、ツリー構造に従ってCTUを区分することから1つまたは複数のCUを形成し得る。そのようなCUは、概して「ビデオブロック」または「ブロック」と呼ばれることもある。
[0130]概して、モード選択ユニット202はまた、現在ブロック(たとえば、現在CU、またはHEVCでは、PUとTUとの重複する部分)についての予測ブロックを生成するように、それの構成要素(たとえば、動き推定ユニット222、動き補償ユニット224、およびイントラ予測ユニット226)を制御する。現在ブロックのインター予測のために、動き推定ユニット222は、1つまたは複数の参照ピクチャ(たとえば、DPB218に記憶された1つまたは複数の前にコーディングされたピクチャ)中で1つまたは複数のぴったり一致する参照ブロックを識別するために動き探索を実施し得る。特に、動き推定ユニット222は、たとえば、絶対差分和(SAD)、2乗差分和(SSD)、平均絶対差(MAD)、平均2乗差(MSD)などに従って、現在ブロックに対して潜在的参照ブロックがどのくらい類似しているかを表す値を計算し得る。動き推定ユニット222は、概して、現在ブロックと考慮されている参照ブロックとの間のサンプルごとの差分を使用してこれらの計算を実施し得る。動き推定ユニット222は、現在ブロックに最もぴったり一致する参照ブロックを示す、これらの計算から得られた最も低い値を有する参照ブロックを識別し得る。
[0131]動き推定ユニット222は、現在ピクチャ中の現在ブロックの位置に対して参照ピクチャ中の参照ブロックの位置を定義する1つまたは複数の動きベクトル(MV)を形成し得る。動き推定ユニット222は、次いで、動きベクトルを動き補償ユニット224に提供し得る。たとえば、単方向インター予測では、動き推定ユニット222は、単一の動きベクトルを提供し得るが、双方向インター予測では、動き推定ユニット222は、2つの動きベクトルを提供し得る。動き補償ユニット224は、次いで、動きベクトルを使用して予測ブロックを生成し得る。たとえば、動き補償ユニット224は、動きベクトルを使用して参照ブロックのデータを取り出し得る。別の例として、動きベクトルが部分サンプル精度を有する場合、動き補償ユニット224は、1つまたは複数の補間フィルタに従って予測ブロックについての値を補間し得る。その上、双方向インター予測では、動き補償ユニット224は、それぞれの動きベクトルによって識別された2つの参照ブロックについてデータを取り出し、たとえば、サンプルごとの平均化または重み付き平均化を通して、取り出されたデータを組み合わせ得る。
[0132]AV1ビデオコーディングフォーマットに従って動作するとき、動き推定ユニット222および動き補償ユニット224は、並進動き補償、アフィン動き補償、重複ブロック動き補償(OBMC)、および/または複合インター-イントラ予測(compound inter-intra prediction)を使用して、ビデオデータのコーディングブロック(たとえば、ルーマコーディングブロックとクロマコーディングブロックの両方)を符号化するように構成され得る。
[0133]別の例として、イントラ予測、またはイントラ予測コーディングのために、イントラ予測ユニット226は、現在ブロックに隣接しているサンプルから予測ブロックを生成し得る。たとえば、方向性モードでは、イントラ予測ユニット226は、概して、予測ブロックを作り出すために、隣接サンプルの値を数学的に組み合わせ、現在ブロックにわたって定義された方向にこれらの計算された値をポピュレートし得る。別の例として、DCモードでは、イントラ予測ユニット226は、現在ブロックに対する隣接サンプルの平均を計算し、予測ブロックの各サンプルについてこの得られた平均を含むように予測ブロックを生成し得る。
[0134]AV1ビデオコーディングフォーマットに従って動作するとき、イントラ予測ユニット226は、方向性イントラ予測、非方向性イントラ予測、再帰的フィルタイントラ予測、ルーマからのクロマ(CFL:chroma-from-luma)予測、イントラブロックコピー(IBC)、および/またはカラーパレットモードを使用して、ビデオデータのコーディングブロック(たとえば、ルーマコーディングブロックとクロマコーディングブロックの両方)を符号化するように構成され得る。モード選択ユニット202は、他の予測モードに従ってビデオ予測を実施するための追加の機能ユニットを含み得る。
[0135]モード選択ユニット202は、予測ブロックを残差生成ユニット204に提供する。残差生成ユニット204は、ビデオデータメモリ230から現在ブロックの生のコーディングされていないバージョンを受信し、モード選択ユニット202から予測ブロックを受信する。残差生成ユニット204は、現在ブロックと予測ブロックとの間のサンプルごとの差分を計算する。得られたサンプルごとの差分は、現在ブロックについての残差ブロックを定義する。いくつかの例では、残差生成ユニット204はまた、残差差分パルスコード変調(RDPCM)を使用して残差ブロックを生成するために、残差ブロック中のサンプル値間の差分を決定し得る。いくつかの例では、残差生成ユニット204は、バイナリ減算を実施する1つまたは複数の減算器回路を使用して形成され得る。
[0136]モード選択ユニット202がCUをPUに区分する例では、各PUは、ルーマ予測ユニットと、対応するクロマ予測ユニットとに関連付けられ得る。ビデオエンコーダ200およびビデオデコーダ300は、様々なサイズを有するPUをサポートし得る。上記で示されたように、CUのサイズは、CUのルーマコーディングブロックのサイズを指し得、PUのサイズは、PUのルーマ予測ユニットのサイズを指し得る。特定のCUのサイズが2N×2Nであると仮定すると、ビデオエンコーダ200は、イントラ予測のための2N×2NまたはN×NのPUサイズと、インター予測のための2N×2N、2N×N、N×2N、N×N、または同様のものの対称PUサイズとをサポートし得る。ビデオエンコーダ200およびビデオデコーダ300はまた、インター予測のための2N×nU、2N×nD、nL×2N、およびnR×2NのPUサイズに対して非対称区分をサポートし得る。
[0137]モード選択ユニット202がCUをPUにさらに区分しない例では、各CUは、ルーマコーディングブロックと、対応するクロマコーディングブロックとに関連付けられ得る。上記のように、CUのサイズは、CUのルーマコーディングブロックのサイズを指し得る。ビデオエンコーダ200およびビデオデコーダ300は、2N×2N、2N×N、またはN×2NのCUサイズをサポートし得る。
[0138]いくつかの例として、イントラブロックコピーモードコーディング、アフィンモードコーディング、および線形モデル(LM)モードコーディングなどの他のビデオコーディング技法では、モード選択ユニット202は、コーディング技法に関連付けられたそれぞれのユニットを介して、符号化されている現在ブロックについての予測ブロックを生成する。パレットモードコーディングなど、いくつかの例では、モード選択ユニット202は、予測ブロックを生成せず、代わりに、選択されたパレットに基づいてブロックを再構築すべき様式を示すシンタックス要素を生成し得る。そのようなモードでは、モード選択ユニット202は、符号化されるべきこれらのシンタックス要素をエントロピー符号化ユニット220に提供し得る。
[0139]上記で説明されたように、残差生成ユニット204は、現在ブロックのためのビデオデータと、対応する予測ブロックとを受信する。残差生成ユニット204は、次いで、現在ブロックについての残差ブロックを生成する。残差ブロックを生成するために、残差生成ユニット204は、予測ブロックと現在ブロックとの間のサンプルごとの差分を計算する。
[0140]変換処理ユニット206は、(本明細書では「変換係数ブロック」と呼ばれる)変換係数のブロックを生成するために、残差ブロックに1つまたは複数の変換を適用する。変換処理ユニット206は、変換係数ブロックを形成するために、残差ブロックに様々な変換を適用し得る。たとえば、変換処理ユニット206は、離散コサイン変換(DCT)、方向性変換、カルーネンレーベ変換(KLT)、または概念的に同様の変換を残差ブロックに適用し得る。いくつかの例では、変換処理ユニット206は、残差ブロックに複数の変換、たとえば、回転変換など、1次変換および2次変換を実施し得る。いくつかの例では、変換処理ユニット206は、残差ブロックに変換を適用しない。
[0141]AV1に従って動作するとき、変換処理ユニット206は、(本明細書では「変換係数ブロック」と呼ばれる)変換係数のブロックを生成するために、残差ブロックに1つまたは複数の変換を適用し得る。変換処理ユニット206は、変換係数ブロックを形成するために、残差ブロックに様々な変換を適用し得る。たとえば、変換処理ユニット206は、離散コサイン変換(DCT)と、非対称離散サイン変換(ADST)と、反転ADST(たとえば、逆順のADST)と、恒等変換(IDTX)とを含み得る、水平/垂直変換組合せを適用し得る。恒等変換を使用するとき、変換は、垂直方向または水平方向のうちの1つにおいてスキップされる。いくつかの例では、変換処理はスキップされ得る。
[0142]量子化ユニット208は、量子化された変換係数ブロックを作り出すために、変換係数ブロック中の変換係数を量子化し得る。量子化ユニット208は、現在ブロックに関連付けられた量子化パラメータ(QP)値に従って変換係数ブロックの変換係数を量子化し得る。ビデオエンコーダ200は(たとえば、モード選択ユニット202を介して)、CUに関連付けられたQP値を調整することによって、現在ブロックに関連付けられた変換係数ブロックに適用される量子化の程度を調整し得る。量子化は、情報の損失をもたらし得、したがって、量子化された変換係数は、変換処理ユニット206によって作り出された元の変換係数よりも低い精度を有し得る。
[0143]逆量子化ユニット210および逆変換処理ユニット212は、変換係数ブロックから残差ブロックを再構築するために、それぞれ、量子化された変換係数ブロックに逆量子化および逆変換を適用し得る。再構築ユニット214は、再構築された残差ブロックと、モード選択ユニット202によって生成された予測ブロックとに基づいて、(潜在的にある程度のひずみを伴うが)現在ブロックに対応する再構築されたブロックを作り出し得る。たとえば、再構築ユニット214は、再構築されたブロックを作り出すために、モード選択ユニット202によって生成された予測ブロックからの対応するサンプルに、再構築された残差ブロックのサンプルを加算し得る。
[0144]フィルタユニット216は、再構築されたブロックに対して1つまたは複数のフィルタ動作を実施し得る。たとえば、フィルタユニット216は、CUのエッジに沿ってブロッキネスアーティファクトを低減するためのデブロッキング動作を実施し得る。フィルタユニット216の動作は、いくつかの例では、スキップされ得る。
[0145]AV1に従って動作するとき、フィルタユニット216は、再構築されたブロックに対して1つまたは複数のフィルタ動作を実施し得る。たとえば、フィルタユニット216は、CUのエッジに沿ってブロッキネスアーティファクトを低減するためのデブロッキング動作を実施し得る。他の例では、フィルタユニット216は、制約付き方向性強調フィルタ(CDEF:constrained directional enhancement filter)を適用し得、これは、デブロッキングの後に適用され得、推定されたエッジ方向に基づく非分離可能非線形ローパス方向性フィルタの適用を含み得る。フィルタユニット216はまた、ループ復元フィルタを含み得、これは、CDEFの後に適用され、分離可能対称正規化ウィーナーフィルタまたはデュアル自己誘導フィルタを含み得る。
[0146]ビデオエンコーダ200は、再構築されたブロックをDPB218に記憶する。たとえば、フィルタユニット216の動作が実施されない例では、再構築ユニット214は、再構築されたブロックをDPB218に記憶し得る。フィルタユニット216の動作が実施される例では、フィルタユニット216は、フィルタ処理された再構築されたブロックをDPB218に記憶し得る。動き推定ユニット222および動き補償ユニット224は、後で符号化されるピクチャのブロックをインター予測するために、再構築(および潜在的にフィルタ処理)されたブロックから形成された参照ピクチャをDPB218から取り出し得る。さらに、イントラ予測ユニット226は、現在ピクチャ中の他のブロックをイントラ予測するために、現在ピクチャのDPB218中の再構築されたブロックを使用し得る。
[0147]概して、エントロピー符号化ユニット220は、ビデオエンコーダ200の他の機能構成要素から受信されたシンタックス要素をエントロピー符号化し得る。たとえば、エントロピー符号化ユニット220は、量子化ユニット208からの量子化された変換係数ブロックをエントロピー符号化し得る。別の例として、エントロピー符号化ユニット220は、モード選択ユニット202からの予測シンタックス要素(たとえば、インター予測のための動き情報、またはイントラ予測のためのイントラモード情報)をエントロピー符号化し得る。エントロピー符号化ユニット220は、エントロピー符号化されたデータを生成するために、ビデオデータの別の例であるシンタックス要素に対して1つまたは複数のエントロピー符号化動作を実施し得る。たとえば、エントロピー符号化ユニット220は、コンテキスト適応型可変長コーディング(CAVLC)動作、CABAC動作、可変対可変(V2V)長コーディング動作、シンタックスベースコンテキスト適応型バイナリ算術コーディング(SBAC)動作、確率間隔区分エントロピー(PIPE)コーディング動作、指数ゴロム符号化動作、または別のタイプのエントロピー符号化動作をデータに対して実施し得る。いくつかの例では、エントロピー符号化ユニット220は、シンタックス要素がエントロピー符号化されないバイパスモードで動作し得る。
[0148]いくつかの例では、エントロピー符号化ユニット220は、ビデオデータ、たとえば、変換係数の1つまたは複数のシンタックス要素についての値をエントロピー符号化するとき、本開示で説明されるライスパラメータ導出技法のいずれかまたはすべてを適用するように構成され得る。たとえば、エントロピー符号化ユニット220は、量子化ユニット208から変換ブロックを受信し得る。変換ブロックにおける各係数について、エントロピー符号化ユニット220は、有意変換係数シンタックス要素、1よりも大きいシンタックス要素(greater than 1 syntax element)、2よりも大きいシンタックス要素(greater than 2 syntax element)、符号シンタックス要素、および残余値のうちの1つまたは複数についての値を符号化し得る。
[0149]値の中でも、残余値(またはdec_abs_remainder値)をエントロピー符号化するとき、エントロピー符号化ユニット220は、最初に、たとえば、図2に関して上記で説明されたように、現在係数に対する隣接する係数の絶対値の和として、絶対値のローカル和の値を計算し得る。エントロピー符号化ユニット220は、次いで、たとえば、上記の式(1)に従って、ビット深度および/または現在ブロックを含むスライスについてのスライスタイプに従って、ベースレベルオフセット値を計算し得る。エントロピー符号化ユニット220は、たとえば、上記の式(2)に従って、ベースレベルオフセット値を使用して絶対値のローカル和の値についての正規化された値を計算し得る。エントロピー符号化ユニット220は、次いで、たとえば、上記の表1に従って、正規化された値からライスパラメータを計算し得る。エントロピー符号化ユニット220は、次いで、ライスパラメータを使用して残余値についてのゴロムライスコードを決定し、ゴロムライスコードの各ビット(ビン)をエントロピー符号化し得る。
[0150]ビデオエンコーダ200は、スライスまたはピクチャのブロックを再構築するために必要とされるエントロピー符号化されたシンタックス要素を含むビットストリームを出力し得る。特に、エントロピー符号化ユニット220がビットストリームを出力し得る。
[0151]AV1に従って、エントロピー符号化ユニット220は、シンボル間適応型マルチシンボル算術コーダ(symbol-to-symbol adaptive multi-symbol arithmetic coder)として構成され得る。AV1におけるシンタックス要素は、N個の要素のアルファベットを含み、コンテキスト(たとえば、確率モデル)は、N個の確率のセットを含む。エントロピー符号化ユニット220は、nビット(たとえば、15ビット)累積分布関数(CDF)として、確率を記憶し得る。エントロピー符号化ユニット22は、コンテキストを更新するために、アルファベットサイズに基づく更新ファクタを用いて、再帰的スケーリングを実施し得る。
[0152]上記で説明された動作は、ブロックに関して説明されている。そのような説明は、ルーマコーディングブロックおよび/またはクロマコーディングブロックのための動作であるものとして理解されるべきである。上記で説明されたように、いくつかの例では、ルーマコーディングブロックおよびクロマコーディングブロックは、CUのルーマ成分およびクロマ成分である。いくつかの例では、ルーマコーディングブロックおよびクロマコーディングブロックは、PUのルーマ成分およびクロマ成分である。
[0153]いくつかの例では、ルーマコーディングブロックに関して実施される動作は、クロマコーディングブロックのために繰り返される必要はない。一例として、ルーマコーディングブロックのための動きベクトル(MV)と参照ピクチャとを識別するための動作は、クロマブロックのためのMVと参照ピクチャとを識別するために繰り返される必要はない。むしろ、ルーマコーディングブロックのためのMVは、クロマブロックのためのMVを決定するためにスケーリングされ得、参照ピクチャは同じであり得る。別の例として、イントラ予測プロセスは、ルーマコーディングブロックとクロマコーディングブロックとについて同じであり得る。
[0154]このようにして、ビデオエンコーダ200は、ビデオデータを符号化(および復号)するためのデバイスの一例を表し、デバイスは、ビデオデータを記憶するように構成されたメモリと、回路中に実装された1つまたは複数のプロセッサとを含み、1つまたは複数のプロセッサは、ビデオデータの現在ブロックについての現在係数に対する複数の隣接する係数の絶対値の和を計算することと、ビデオデータについてのビット深度または現在ブロックを含むスライスについてのスライスタイプのうちの少なくとも1つに従って、ベースレベルオフセット値を計算することと、ベースレベルオフセット値を使用して絶対値の和についての正規化された値を計算することと、絶対値の和についての正規化された値を使用して現在係数をコーディングすることとを行うように構成される。
[0155]図6は、本開示の技法を実施し得る例示的なビデオデコーダ300を示すブロック図である。図6は、説明の目的で提供されており、本開示において広く例示され、説明される技法を限定するものではない。説明の目的で、本開示は、VVC(開発中のITU-T H.266)およびHEVC(ITU-T H.265)の技法に従って、ビデオデコーダ300について説明する。しかしながら、本開示の技法は、他のビデオコーディング規格に構成されたビデオコーディングデバイスによって実施され得る。
[0156]図6の例では、ビデオデコーダ300は、コード化ピクチャバッファ(CPB)メモリ320と、エントロピー復号ユニット302と、予測処理ユニット304と、逆量子化ユニット306と、逆変換処理ユニット308と、再構築ユニット310と、フィルタユニット312と、復号ピクチャバッファ(DPB)314とを含む。CPBメモリ320と、エントロピー復号ユニット302と、予測処理ユニット304と、逆量子化ユニット306と、逆変換処理ユニット308と、再構築ユニット310と、フィルタユニット312と、DPB314とのいずれかまたはすべては、1つまたは複数のプロセッサにおいてまたは処理回路において実装され得る。たとえば、ビデオデコーダ300のユニットは、1つまたは複数の回路または論理要素として、ハードウェア回路の一部として、あるいはプロセッサ、ASIC、またはFPGAの一部として実装され得る。その上、ビデオデコーダ300は、これらおよび他の機能を実施するための追加または代替のプロセッサまたは処理回路を含み得る。
[0157]予測処理ユニット304は、動き補償ユニット316と、イントラ予測ユニット318とを含む。予測処理ユニット304は、他の予測モードに従って予測を実施するための追加のユニットを含み得る。例として、予測処理ユニット304は、パレットユニット、(動き補償ユニット316の一部を形成し得る)イントラブロックコピーユニット、アフィンユニット、線形モデル(LM)ユニットなどを含み得る。他の例では、ビデオデコーダ300は、より多数の、より少数の、または異なる機能構成要素を含み得る。
[0158]AV1に従って動作するとき、補償ユニット316は、上記で説明されたように、並進動き補償、アフィン動き補償、OBMC、および/または複合インター-イントラ予測を使用して、ビデオデータのコーディングブロック(たとえば、ルーマコーディングブロックとクロマコーディングブロックの両方)を復号するように構成され得る。イントラ予測ユニット318は、上記で説明されたように、方向性イントラ予測、非方向性イントラ予測、再帰的フィルタイントラ予測、CFL、イントラブロックコピー(IBC)、および/またはカラーパレットモードを使用して、ビデオデータのコーディングブロック(たとえば、ルーマコーディングブロックとクロマコーディングブロックの両方)を復号するように構成され得る。
[0159]CPBメモリ320は、ビデオデコーダ300の構成要素によって復号されるべき、符号化されたビデオビットストリームなどのビデオデータを記憶し得る。CPBメモリ320に記憶されるビデオデータは、たとえば、コンピュータ可読媒体110(図1)から取得され得る。CPBメモリ320は、符号化されたビデオビットストリームからの符号化されたビデオデータ(たとえば、シンタックス要素)を記憶するCPBを含み得る。また、CPBメモリ320は、ビデオデコーダ300の様々なユニットからの出力を表す一時データなど、コーディングされたピクチャのシンタックス要素以外のビデオデータを記憶し得る。DPB314は、概して、符号化されたビデオビットストリームの後続のデータまたはピクチャを復号するときにビデオデコーダ300が参照ビデオデータとして出力および/または使用し得る、復号されたピクチャを記憶する。CPBメモリ320およびDPB314は、同期ダイナミックランダムアクセスメモリ(DRAM)(SDRAM)を含むDRAM、磁気抵抗RAM(MRAM)、抵抗性RAM(RRAM)、または他のタイプのメモリデバイスなど、様々なメモリデバイスのいずれかによって形成され得る。CPBメモリ320およびDPB314は、同じメモリデバイスまたは別個のメモリデバイスによって提供され得る。様々な例では、CPBメモリ320は、ビデオデコーダ300の他の構成要素とともにオンチップであるか、またはそれらの構成要素に対してオフチップであり得る。
[0160]追加または代替として、いくつかの例では、ビデオデコーダ300は、メモリ120(図1)からコーディングされたビデオデータを取り出し得る。すなわち、メモリ120は、CPBメモリ320とともに上記で説明されたようにデータを記憶し得る。同様に、メモリ120は、ビデオデコーダ300の機能の一部または全部が、ビデオデコーダ300の処理回路によって実行されるべきソフトウェアにおいて実装されたとき、ビデオデコーダ300によって実行されるべき命令を記憶し得る。
[0161]図6に示されている様々なユニットは、ビデオデコーダ300によって実施される動作を理解するのを支援するために示されている。ユニットは、固定機能回路、プログラマブル回路、またはそれらの組合せとして実装され得る。図5と同様に、固定機能回路は、特定の機能を提供する回路を指し、実施され得る動作に関してプリセットされる。プログラマブル回路は、様々なタスクを実施するように、および実施され得る動作においてフレキシブルな機能を提供するようにプログラムされ得る回路を指す。たとえば、プログラマブル回路は、ソフトウェアまたはファームウェアの命令によって定義された様式でプログラマブル回路を動作させるソフトウェアまたはファームウェアを実行し得る。固定機能回路は、(たとえば、パラメータを受信するかまたはパラメータを出力するために)ソフトウェア命令を実行し得るが、固定機能回路が実施する動作のタイプは、概して不変である。いくつかの例では、ユニットのうちの1つまたは複数は、別個の回路ブロック(固定機能またはプログラマブル)であり得、いくつかの例では、ユニットのうちの1つまたは複数は、集積回路であり得る。
[0162]ビデオデコーダ300は、ALU、EFU、デジタル回路、アナログ回路、および/またはプログラマブル回路から形成されるプログラマブルコアを含み得る。ビデオデコーダ300の動作が、プログラマブル回路上で実行するソフトウェアによって実施される例では、オンチップまたはオフチップメモリは、ビデオデコーダ300が受信し、実行するソフトウェアの命令(たとえば、オブジェクトコード)を記憶し得る。
[0163]エントロピー復号ユニット302は、CPBから、符号化されたビデオデータを受信し、シンタックス要素を再生するためにビデオデータをエントロピー復号し得る。予測処理ユニット304、逆量子化ユニット306、逆変換処理ユニット308、再構築ユニット310、およびフィルタユニット312は、ビットストリームから抽出されたシンタックス要素に基づいて、復号されたビデオデータを生成し得る。
[0164]いくつかの例では、エントロピー復号ユニット302は、ビデオデータ、たとえば、変換係数の1つまたは複数のシンタックス要素についての値をエントロピー復号するとき、本開示で説明されるライスパラメータ導出技法のいずれかまたはすべてを適用するように構成され得る。たとえば、エントロピー復号ユニット302は、有意変換係数シンタックス要素、1よりも大きいシンタックス要素、2よりも大きいシンタックス要素、符号シンタックス要素、および残余値のうちの1つまたは複数についてのエントロピー符号化された値を受信し得る。
[0165]値の中でも、現在係数についての残余値(またはdec_abs_remainder値)を復号するとき、エントロピー復号ユニット302は、現在係数の残余値についてビットストリームからゴロムライスコードをエントロピー復号し得る。エントロピー復号ユニット302は、次いで、たとえば、図2に関して上記で説明されたように、現在係数に対する隣接する係数の絶対値の和として、絶対値のローカル和の値を計算し得る。エントロピー復号ユニット302は、次いで、たとえば、上記の式(1)に従って、ビット深度および/または現在ブロックを含むスライスについてのスライスタイプに従って、ベースレベルオフセット値を計算し得る。エントロピー復号ユニット302は、たとえば、上記の式(2)に従って、ベースレベルオフセット値を使用して絶対値のローカル和の値についての正規化された値を計算し得る。エントロピー復号ユニット302は、次いで、たとえば、上記の表1に従って、正規化された値からライスパラメータを計算し得る。エントロピー復号ユニット302は、次いで、ライスパラメータを使用してゴロムライスコードから残余値を2値化し得る。エントロピー復号ユニット302は、現在係数を再構築するために、有意係数値と、1よりも大きい値と、2よりも大きい値と、残余値とを連結し得る。
[0166]概して、ビデオデコーダ300は、ブロックごとにピクチャを再構築する。ビデオデコーダ300は、各ブロックに対して個々に再構築動作を実施し得る(ここで、現在再構築されている、すなわち、復号されているブロックは、「現在ブロック」と呼ばれることがある)。
[0167]エントロピー復号ユニット302は、量子化された変換係数ブロックの量子化された変換係数を定義するシンタックス要素、ならびに量子化パラメータ(QP)および/または(1つまたは複数の)変換モード指示などの変換情報をエントロピー復号し得る。逆量子化ユニット306は、量子化の程度と、同様に、逆量子化ユニット306が適用すべき逆量子化の程度とを決定するために、量子化された変換係数ブロックに関連付けられたQPを使用し得る。逆量子化ユニット306は、量子化された変換係数を逆量子化するために、たとえば、ビット単位左シフト動作を実施し得る。逆量子化ユニット306は、それにより、変換係数を含む変換係数ブロックを形成し得る。
[0168]逆量子化ユニット306が変換係数ブロックを形成した後に、逆変換処理ユニット308は、現在ブロックに関連付けられた残差ブロックを生成するために、変換係数ブロックに1つまたは複数の逆変換を適用し得る。たとえば、逆変換処理ユニット308は、逆DCT、逆整数変換、逆カルーネンレーベ変換(KLT)、逆回転変換、逆方向変換、または別の逆変換を変換係数ブロックに適用し得る。
[0169]さらに、予測処理ユニット304は、エントロピー復号ユニット302によってエントロピー復号された予測情報シンタックス要素に従って予測ブロックを生成する。たとえば、予測情報シンタックス要素が、現在ブロックがインター予測されることを示す場合、動き補償ユニット316は予測ブロックを生成し得る。この場合、予測情報シンタックス要素は、参照ブロックをそれから取り出すべきDPB314中の参照ピクチャ、ならびに現在ピクチャ中の現在ブロックのロケーションに対する参照ピクチャ中の参照ブロックのロケーションを識別する動きベクトルを示し得る。動き補償ユニット316は、概して、動き補償ユニット224(図5)に関して説明されたものと実質的に同様である様式で、インター予測プロセスを実施し得る。
[0170]別の例として、予測情報シンタックス要素が、現在ブロックがイントラ予測されることを示す場合、イントラ予測ユニット318は、予測情報シンタックス要素によって示されるイントラ予測モードに従って予測ブロックを生成し得る。この場合も、イントラ予測ユニット318は、概して、イントラ予測ユニット226(図5)に関して説明されたものと実質的に同様である様式で、イントラ予測プロセスを実施し得る。イントラ予測ユニット318は、DPB314から、現在ブロックに対する隣接サンプルのデータを取り出し得る。
[0171]再構築ユニット310は、予測ブロックと残差ブロックとを使用して現在ブロックを再構築し得る。たとえば、再構築ユニット310は、現在ブロックを再構築するために、予測ブロックの対応するサンプルに残差ブロックのサンプルを加算し得る。
[0172]フィルタユニット312は、再構築されたブロックに対して1つまたは複数のフィルタ動作を実施し得る。たとえば、フィルタユニット312は、再構築されたブロックのエッジに沿ってブロッキネスアーティファクトを低減するためのデブロッキング動作を実施し得る。フィルタユニット312の動作は、必ずしもすべての例において実施されるとは限らない。
[0173]ビデオデコーダ300は、再構築されたブロックをDPB314に記憶し得る。たとえば、フィルタユニット312の動作が実施されない例では、再構築ユニット310は、再構築されたブロックをDPB314に記憶し得る。フィルタユニット312の動作が実施される例では、フィルタユニット312は、フィルタ処理された再構築されたブロックをDPB314に記憶し得る。上記で説明されたように、DPB314は、イントラ予測のための現在ピクチャのサンプル、および後続の動き補償のための前に復号されたピクチャなど、参照情報を、予測処理ユニット304に提供し得る。その上、ビデオデコーダ300は、DPB314からの復号されたピクチャ(たとえば、復号されたビデオ)を、図1のディスプレイデバイス118などのディスプレイデバイス上での後続の提示のために、出力し得る。
[0174]このようにして、ビデオデコーダ300は、ビデオデータを復号するためのデバイスの一例を表し、デバイスは、ビデオデータを記憶するように構成されたメモリと、回路中に実装された1つまたは複数のプロセッサとを含み、1つまたは複数のプロセッサは、ビデオデータの現在ブロックについての現在係数に対する複数の隣接する係数の絶対値の和を計算することと、ビデオデータについてのビット深度または現在ブロックを含むスライスについてのスライスタイプのうちの少なくとも1つに従って、ベースレベルオフセット値を計算することと、ベースレベルオフセット値を使用して絶対値の和についての正規化された値を計算することと、絶対値の和についての正規化された値を使用して現在係数をコーディングすることとを行うように構成される。
[0175]図7は、本開示の技法による、現在ブロックを符号化するための例示的な方法を示すフローチャートである。現在ブロックは現在CUを備え得る。ビデオエンコーダ200(図1および図5)に関して説明されるが、他のデバイスが図7の方法と同様の方法を実施するように構成され得ることを理解されたい。
[0176]この例では、ビデオエンコーダ200は、最初に、現在ブロックを予測する(350)。たとえば、ビデオエンコーダ200は、現在ブロックのための予測ブロックを形成し得る。ビデオエンコーダ200は、次いで、現在ブロックのための残差ブロックを計算し得る(352)。残差ブロックを計算するために、ビデオエンコーダ200は、元のコーディングされていないブロックと、現在ブロックのための予測ブロックとの間の差分を計算し得る。ビデオエンコーダ200は、次いで、残差ブロックを変換し、残差ブロックの変換係数を量子化し得る(354)。次に、ビデオエンコーダ200は、残差ブロックの量子化された変換係数を走査し得る(356)。走査中に、または走査に続いて、ビデオエンコーダ200は、変換係数をエントロピー符号化し得る(358)。たとえば、ビデオエンコーダ200は、CAVLCまたはCABACを使用して変換係数を符号化し得る。ビデオエンコーダ200は、変換係数をエントロピー符号化するとき、本開示で説明されるライスパラメータ導出技法のいずれかまたはすべてを適用し得る。ビデオエンコーダ200は、次いで、ブロックのエントロピー符号化されたデータを出力し得る(360)。
[0177]ビデオエンコーダ200はまた、(たとえば、インター予測モードまたはイントラ予測モードにおいて)後でコーディングされるデータのための参照データとして現在ブロックの復号されたバージョンを使用するために、現在ブロックを符号化することの後に現在ブロックを復号し得る。したがって、ビデオエンコーダ200は、残差ブロックを再生するために係数を逆量子化し、逆変換し得る(362)。ビデオエンコーダ200は、復号されたブロックを形成するために、残差ブロックを予測ブロックと組み合わせ得る(364)。ビデオエンコーダ200は、次いで、復号されたブロックをDPB218に記憶し得る(366)。
[0178]図8は、本開示の技法による、ビデオデータの現在ブロックを復号するための例示的な方法を示すフローチャートである。現在ブロックは現在CUを備え得る。ビデオデコーダ300(図1および図6)に関して説明されるが、他のデバイスが、図8の方法と同様の方法を実施するように構成され得ることを理解されたい。
[0179]ビデオデコーダ300は、エントロピー符号化された予測情報、および現在ブロックに対応する残差ブロックの変換係数についてのエントロピー符号化されたデータなど、現在ブロックについてのエントロピー符号化されたデータを受信し得る(370)。ビデオデコーダ300は、現在ブロックのための予測情報を決定するために、および残差ブロックの変換係数を再生するために、エントロピー符号化されたデータをエントロピー復号し得る(372)。ビデオデコーダ300は、変換係数をエントロピー復号するとき、本開示で説明されるライスパラメータ導出技法のいずれかまたはすべてを適用し得る。
[0180]ビデオデコーダ300は、現在ブロックのための予測ブロックを計算するために、たとえば、現在ブロックのための予測情報によって示されるイントラ予測またはインター予測モードを使用して、現在ブロックを予測し得る(374)。ビデオデコーダ300は、次いで、量子化された変換係数のブロックを作成するために、再生された変換係数を逆走査し得る(376)。ビデオデコーダ300は、次いで、残差ブロックを作り出すために、変換係数を逆量子化し、変換係数に逆変換を適用し得る(378)。ビデオデコーダ300は、予測ブロックと残差ブロックとを組み合わせることによって、最終的に現在ブロックを復号し得る(380)。
[0181]図9は、本開示の技法による、ビデオデータを符号化する例示的な方法を示すフローチャートである。図9の方法は、概して、図7のステップ358に対応し得る。
[0182]最初に、ビデオエンコーダ200は、ビデオデータの現在ブロックの現在係数値を決定し得る(400)。ビデオエンコーダ200は、現在係数値を、有意係数シンタックス要素、1よりも大きいシンタックス要素、2よりも大きいシンタックス要素、残余シンタックス要素、および符号(sign)シンタックス要素など、シンタックス要素についてのそれぞれの値に区分し得る。図9の方法は、残余シンタックス要素の値の符号化について説明する。しかしながら、dec_abs_level[]シンタックス要素など、他のシンタックス要素が、この方法または同様の方法を使用して符号化され得る。
[0183]ビデオエンコーダ200は、次いで、絶対値のローカル和の値を計算し得る(402)。たとえば、ビデオエンコーダ200は、現在係数に隣接する係数の値についての絶対値を決定し得る。図2の例に関して、たとえば、隣接する係数は、右の隣接する係数と、2つ右の隣接する係数と、右下の隣接する係数と、下の隣接する係数と、2つ下の隣接する係数とを含み得る。ビデオエンコーダ200は、絶対値のローカル和の値として、隣接する係数の絶対値の総和を加算し得る。
[0184]ビデオエンコーダ200は、次いで、ビット深度および/または現在ブロックを含むスライスについてのスライスタイプに従って、ベースレベルオフセット値を計算し得る(404)。たとえば、ビデオエンコーダ200は、以下に従って、ベースレベルオフセット値(baseLevelOffset)を計算し得る。
Figure 2024514075000027
したがって、ビデオエンコーダ200は、ビデオデータについてのビット深度(bitDepth)がしきい値Tよりも大きいかどうかを決定し得る。ビット深度がしきい値よりも大きい場合、ビデオエンコーダ200は、スライスタイプがイントラ予測であるかどうかを決定し得る。スライスタイプがイントラ予測である場合、ビデオエンコーダ200は、ベースレベルオフセット値がP1であると決定し得る。スライスタイプがイントラ予測でない(たとえば、PスライスまたはBスライスなど、インター予測である)場合、ビデオエンコーダ200は、ベースレベルオフセット値がP2であると決定し得る。ビット深度がしきい値よりも小さいかまたはそれに等しい場合、ビデオエンコーダ200は、同じく、スライスタイプがイントラ予測であるかどうかを決定し得る。スライスタイプがイントラ予測である場合、ビデオエンコーダ200は、ベースレベルオフセット値がP3であると決定し得る。スライスタイプがイントラ予測でない(たとえば、PスライスまたはBスライスなど、インター予測である)場合、ビデオエンコーダ200は、ベースレベルオフセット値がP4であると決定し得る。P1、P2、P3、およびP4は、あらかじめ定義された値であり得るか、または、ビデオエンコーダ200が、P1、P2、P3、およびP4についての値を決定し、決定された値をビットストリーム中でシグナリングし得る。
[0185]ビデオエンコーダ200は、次いで、計算されたベースレベルオフセット値を使用して絶対値のローカル和を正規化し得る(406)。たとえば、ビデオエンコーダ200は以下を計算し得る。
Figure 2024514075000028
この例では、locSumAbs(絶対値のローカル和)は、たとえばVVCに従って、クリッピング動作Clip3を使用して、および計算されたbaseLevelOffset値を使用して、更新される。
[0186]ビデオエンコーダ200は、次いで、正規化された値からライスパラメータを決定し得る(408)。たとえば、ビデオエンコーダ200は、ルックアップテーブルとして表1を使用して、ライスパラメータを決定し得る。
[0187]ビデオエンコーダ200は、次いで、ライスパラメータを使用して係数値(たとえば、残余値)についてのゴロムライスコードを決定し得る(410)。ゴロムライスコードは、一連のビット(ビン)であり得る。ビデオエンコーダ200は、次いで、ゴロムライスコードをエントロピー符号化し得る(412)。
[0188]このようにして、図9の方法は、ビデオデータを符号化する方法の一例を表し、方法は、ビデオデータの現在ブロックについての現在係数に隣接する複数の係数の絶対値の和を計算することと、ビデオデータについてのビット深度または現在ブロックを含むスライスについてのスライスタイプのうちの少なくとも1つに従って、ベースレベルオフセット値を計算することと、ベースレベルオフセット値を使用して絶対値の和についての正規化された値を計算することと、絶対値の和についての正規化された値を使用して現在係数をコーディングすることとを含む。
[0189]図10は、本開示の技法による、ビデオデータを復号する例示的な方法を示すフローチャートである。図10の方法は、概して、図8のステップ372に対応し得る。
[0190]最初に、ビデオデコーダ300は、ビデオデータの現在ブロックの現在係数についてのゴロムライスコードをエントロピー復号し得る(420)。ゴロムライスコードは、現在係数の残差値に対応し得、現在係数は、有意係数シンタックス要素と、1よりも大きいシンタックス要素と、2よりも大きいシンタックス要素と、符号シンタックス要素とをさらに含み得る。図10の例は、現在係数についての残余値を復号することを対象とするが、図10の方法は、dec_abs_level[]シンタックス要素についての値など、他の値を復号するためにも使用され得る。
[0191]ビデオデコーダ300は、次いで、絶対値のローカル和の値を計算し得る(422)。たとえば、ビデオデコーダ300は、現在係数に対する隣接する係数の値についての絶対値を決定し得る。図2の例に関して、たとえば、隣接する係数は、右の隣接する係数と、2つ右の隣接する係数と、右下の隣接する係数と、下の隣接する係数と、2つ下の隣接する係数とを含み得る。ビデオデコーダ300は、絶対値のローカル和の値として、隣接する係数の絶対値の総和を加算し得る。
[0192]ビデオデコーダ300は、次いで、ビット深度および/または現在ブロックを含むスライスについてのスライスタイプに従って、ベースレベルオフセット値を計算し得る(424)。たとえば、ビデオデコーダ300は、以下に従って、ベースレベルオフセット値(baseLevelOffset)を計算し得る。
Figure 2024514075000029
したがって、ビデオデコーダ300は、ビデオデータについてのビット深度(bitDepth)がしきい値Tよりも大きいかどうかを決定し得る。ビット深度がしきい値よりも大きい場合、ビデオデコーダ300は、スライスタイプがイントラ予測であるかどうかを決定し得る。スライスタイプがイントラ予測である場合、ビデオデコーダ300は、ベースレベルオフセット値がP1であると決定し得る。スライスタイプがイントラ予測でない(たとえば、PスライスまたはBスライスなど、インター予測である)場合、ビデオデコーダ300は、ベースレベルオフセット値がP2であると決定し得る。ビット深度がしきい値よりも小さいかまたはそれに等しい場合、ビデオデコーダ300は、同じく、スライスタイプがイントラ予測であるかどうかを決定し得る。スライスタイプがイントラ予測である場合、ビデオデコーダ300は、ベースレベルオフセット値がP3であると決定し得る。スライスタイプがイントラ予測でない(たとえば、PスライスまたはBスライスなど、インター予測である)場合、ビデオデコーダ300は、ベースレベルオフセット値がP4であると決定し得る。P1、P2、P3、およびP4は、あらかじめ定義された値であり得るか、または、ビデオデコーダ300が、ビットストリームから、P1、P2、P3、およびP4についての値を復号し得る。
[0193]ビデオデコーダ300は、次いで、計算されたベースレベルオフセット値を使用して絶対値のローカル和を正規化し得る(426)。たとえば、ビデオデコーダ300は以下を計算し得る。
Figure 2024514075000030
この例では、locSumAbs(絶対値のローカル和)は、たとえばVVCに従って、クリッピング動作Clip3を使用して、および計算されたbaseLevelOffset値を使用して、更新される。
[0194]ビデオデコーダ300は、次いで、正規化された値からライスパラメータを決定し得る(428)。たとえば、ビデオデコーダ300は、ルックアップテーブルとして表1を使用して、ライスパラメータを決定し得る。
[0195]ビデオデコーダ300は、次いで、ライスパラメータを使用して、ゴロムライスコードから、残余値を表す2値化された(バイナリ)値を形成し得る(430)。ビデオデコーダ300は、さらに、2値化された値から係数値を再構築し得る(432)。たとえば、ビデオデコーダ300は、有意係数シンタックス要素についての値と、1よりも大きいシンタックス要素についての値と、2よりも大きいシンタックス要素についての値と、残余値についての値とを連結し得る。
[0196]このようにして、図9の方法は、ビデオデータを復号する方法の一例を表し、方法は、ビデオデータの現在ブロックについての現在係数に対する複数の隣接する係数の絶対値の和を計算することと、ビデオデータについてのビット深度または現在ブロックを含むスライスについてのスライスタイプのうちの少なくとも1つに従って、ベースレベルオフセット値を計算することと、ベースレベルオフセット値を使用して絶対値の和についての正規化された値を計算することと、絶対値の和についての正規化された値を使用して現在係数をコーディングすることとを含む。
[0197]本開示の様々な技法のいくつかの例は、以下の条項において要約される。
[0198]条項1: ビデオデータをコーディングする方法であって、方法が、ビデオデータの現在ブロックについての現在係数に対する複数の隣接する係数の絶対値の和を計算することと、ビデオデータについてのビット深度または現在ブロックを含むスライスについてのスライスタイプのうちの少なくとも1つに従って、ベースレベルオフセット値を計算することと、ベースレベルオフセット値を使用して絶対値の和についての正規化された値を計算することと、絶対値の和についての正規化された値を使用して現在係数をコーディングすることとを備える、方法。
[0199]条項2: 複数の隣接する係数が、現在係数に対する5つの隣接する係数を含む、条項1に記載の方法。
[0200]条項3: 複数の隣接する係数が、現在係数に対する2つの右の隣接する係数と、現在係数に対する2つの下の隣接する係数と、現在係数に対する1つの左下の隣接する係数とを含む、条項1および2のいずれかに記載の方法。
[0201]条項4: ベースレベルオフセット値を計算することが、baseLevelOffset=(bitDepth>T)?(isIntra()?P1:P2):(isIntra()?P3:P4)を計算することを備え、ここにおいて、bitDepthがビデオデータについてのビット深度を備え、isIntra()は、スライスについてのスライスタイプがイントラ予測されたスライスである場合に真の値を返すか、またはスライスについてのスライスタイプがインター予測されたスライスである場合に偽の値を返し、T、P1、P2、P3、およびP4がそれぞれの入力値を備える、条項1から3のいずれかに記載の方法。
[0202]条項5: T、P1、P2、P3、およびP4についての入力値があらかじめ決定される、条項4に記載の方法。
[0203]条項6: T、P1、P2、P3、およびP4についての入力値が、ビットストリーム中でシグナリングされる、条項4に記載の方法。
[0204]条項7: T=12、P1=5、P2=10、P3=6、P4=20である、条項4から6のいずれかに記載の方法。
[0205]条項8: T=12、P1=5、P2=10、P3=10、P4=20である、条項4から6のいずれかに記載の方法。
[0206]条項9: 絶対値の和についての正規化された値を計算することが、Clip3(0,31,locSumAbs-baseLevelOffset)を計算することを備え、ここにおいて、locSumAbsが絶対値の和を備え、baseLevelOffsetがベースレベルオフセット値を備える、条項1から8のいずれかに記載の方法。
[0207]条項10: ビデオデータをコーディングする方法であって、方法が、ビデオデータの色成分の係数をコーディングするために使用されたライスパラメータの履歴を表す履歴カウンタを維持することと、ビデオデータの色成分のブロックについてのライスパラメータスケーリング値を、ライスパラメータスケーリング値についての値を明示的にコーディングすることなしに、履歴カウンタについての現在の値から導出することと、ブロックの現在係数に対する複数の隣接する係数の絶対値の和を計算することと、ライスパラメータスケーリング値を使用して絶対値の和についてのスケーリングされた値を計算することと、絶対値の和についてのスケーリングされた値を使用して現在係数をコーディングすることとを備える、方法。
[0208]条項11: 条項1から9のいずれかに記載の方法と条項10に記載の方法との組合せを備える方法。
[0209]条項12: ライスパラメータスケーリング値を導出することが、(StatCoeff[idx]≧T)?P2:P1を計算することを備え、ここにおいて、idxが色成分を表し、StatCoeff[idx]が履歴カウンタについての現在の値を表し、T、P1、およびP2が入力値を表す、条項10および11のいずれかに記載の方法。
[0210]条項13: T、P1、およびP2についての入力値があらかじめ決定される、条項12に記載の方法。
[0211]条項14: T、P1、およびP2についての入力値が、ビデオデータ中でシグナリングされる、条項12に記載の方法。
[0212]条項15: T=4、P2=2およびP1=1である、条項12から14のいずれかに記載の方法。
[0213]条項16: ライスパラメータスケーリング値を導出することが、ビデオデータの色成分を含むすべての色成分についての履歴カウンタを含む、履歴カウンタのアグリゲーションを表すアグリゲートされた履歴カウンタ値を計算することと、アグリゲートされた履歴カウンタ値を使用してライスパラメータスケーリング値を導出することとを備える、条項10および11のいずれかに記載の方法。
[0214]条項17: アグリゲートされた履歴カウンタ値を計算することが、((StatCoeff[0]*w0)+StatCoeff[1]*w1+StatCoeff[2]*w2)/(w1+w2+w3)を計算することを備え、ここにおいて、StatCoeff[0]が、色成分のうちの第1の色成分についての履歴カウンタのうちの第1の履歴カウンタを表し、StatCoeff[1]が、色成分のうちの第2の色成分についての履歴カウンタのうちの第2の履歴カウンタを表し、StatCoeff[2]が、色成分のうちの第3の色成分についての履歴カウンタのうちの第3の履歴カウンタを表し、w1、w2、およびw3がそれぞれの重み付け値を表す、条項16に記載の方法。
[0215]条項18: ライスパラメータスケーリング値を導出することが、(StatCoefAverage≧T)?P2:P1を使用してライスパラメータスケーリング値を導出することを備え、ここにおいて、StatCoefAverageが、アグリゲートされた履歴カウンタ値を表し、T、P1、およびP2が入力値を表す、条項17に記載の方法。
[0216]条項19: T、P1、およびP2についての入力値があらかじめ決定される、条項18に記載の方法。
[0217]条項20: T、P1、およびP2についての入力値が、ビデオデータ中でシグナリングされる、条項18に記載の方法。
[0218]条項21: T=4、P2=2およびP1=1である、条項18から20のいずれかに記載の方法。
[0219]条項22: w0=2、w1=1、およびw2=1である、条項18から21のいずれかに記載の方法。
[0220]条項23: ブロックがコーディングツリーユニット(CTU)を備える、条項10から22のいずれかに記載の方法。
[0221]条項24: ブロックが変換ユニット(TU)を備える、条項10から22のいずれかに記載の方法。
[0222]条項25: ブロックがサブ変換ユニット(サブTU)を備える、条項10から22のいずれかに記載の方法。
[0223]条項26: ブロックが第1のブロックを備え、ライスパラメータスケーリング値が第1のライスパラメータスケーリング値を備え、方法が、第1のライスパラメータスケーリング値を使用して第2のブロックについての第2のライスパラメータスケーリング値を導出することをさらに備える、条項10から22のいずれかに記載の方法。
[0224]条項27: ビデオデータをコーディングする方法であって、方法が、ビデオデータの現在ブロックについての現在係数に対する複数の隣接する係数の絶対値の和を計算することと、ビデオデータについてのビット深度または現在ブロックを含むスライスについてのスライスタイプのうちの少なくとも1つに従って、ベースレベルオフセット値を計算することと、ベースレベルオフセット値を使用して絶対値の和についての正規化された値を計算することと、絶対値の和についての正規化された値を使用して現在係数をコーディングすることとを備える、方法。
[0225]条項28: 複数の隣接する係数が、現在係数に対する5つの隣接する係数を含む、条項27に記載の方法。
[0226]条項29: 複数の隣接する係数が、現在係数に対する2つの右の隣接する係数と、現在係数に対する2つの下の隣接する係数と、現在係数に対する1つの左下の隣接する係数とを含む、条項27に記載の方法。
[0227]条項30: ベースレベルオフセット値を計算することが、baseLevelOffset=(bitDepth>T)?(isIntra()?P1:P2):(isIntra()?P3:P4)を計算することを備え、ここにおいて、bitDepthがビデオデータについてのビット深度を備え、isIntra()は、スライスについてのスライスタイプがイントラ予測されたスライスである場合に真の値を返すか、またはスライスについてのスライスタイプがインター予測されたスライスである場合に偽の値を返し、T、P1、P2、P3、およびP4がそれぞれの入力値を備える、条項27に記載の方法。
[0228]条項31: T、P1、P2、P3、およびP4についての入力値があらかじめ決定される、条項30に記載の方法。
[0229]条項32: T、P1、P2、P3、およびP4についての入力値が、ビットストリーム中でシグナリングされる、条項30に記載の方法。
[0230]条項33: T=12、P1=5、P2=10、P3=6、P4=20である、条項30に記載の方法。
[0231]条項34: T=12、P1=5、P2=10、P3=10、P4=20である、条項30に記載の方法。
[0232]条項35: 絶対値の和についての正規化された値を計算することが、Clip3(0,31,locSumAbs-baseLevelOffset)を計算することを備え、ここにおいて、locSumAbsが絶対値の和を備え、baseLevelOffsetがベースレベルオフセット値を備える、条項27に記載の方法。
[0233]条項36: ビデオデータをコーディングする方法であって、方法が、ビデオデータの色成分の係数をコーディングするために使用されたライスパラメータの履歴を表す履歴カウンタを維持することと、ビデオデータの色成分のブロックについてのライスパラメータスケーリング値を、ライスパラメータスケーリング値についての値を明示的にコーディングすることなしに、履歴カウンタについての現在の値から導出することと、ブロックの現在係数に対する複数の隣接する係数の絶対値の和を計算することと、ライスパラメータスケーリング値を使用して絶対値の和についてのスケーリングされた値を計算することと、絶対値の和についてのスケーリングされた値を使用して現在係数をコーディングすることとを備える、方法。
[0234]条項37: ライスパラメータスケーリング値を導出することが、(StatCoeff[idx]≧T)?P2:P1を計算することを備え、ここにおいて、idxが色成分を表し、StatCoeff[idx]が履歴カウンタについての現在の値を表し、T、P1、およびP2が入力値を表す、条項36に記載の方法。
[0235]条項38: T、P1、およびP2についての入力値があらかじめ決定される、条項37に記載の方法。
[0236]条項39: T、P1、およびP2についての入力値が、ビデオデータ中でシグナリングされる、条項37に記載の方法。
[0237]条項40: T=4、P2=2およびP1=1である、条項37に記載の方法。
[0238]条項41: ライスパラメータスケーリング値を導出することが、ビデオデータの色成分を含むすべての色成分についての履歴カウンタを含む、履歴カウンタのアグリゲーションを表すアグリゲートされた履歴カウンタ値を計算することと、アグリゲートされた履歴カウンタ値を使用してライスパラメータスケーリング値を導出することとを備える、条項36に記載の方法。
[0239]条項42: アグリゲートされた履歴カウンタ値を計算することが、((StatCoeff[0]*w0)+StatCoeff[1]*w1+StatCoeff[2]*w2)/(w1+w2+w3)を計算することを備え、ここにおいて、StatCoeff[0]が、色成分のうちの第1の色成分についての履歴カウンタのうちの第1の履歴カウンタを表し、StatCoeff[1]が、色成分のうちの第2の色成分についての履歴カウンタのうちの第2の履歴カウンタを表し、StatCoeff[2]が、色成分のうちの第3の色成分についての履歴カウンタのうちの第3の履歴カウンタを表し、w1、w2、およびw3がそれぞれの重み付け値を表す、条項41に記載の方法。
[0240]条項43: ライスパラメータスケーリング値を導出することが、(StatCoefAverage≧T)?P2:P1を使用してライスパラメータスケーリング値を導出することを備え、ここにおいて、StatCoefAverageが、アグリゲートされた履歴カウンタ値を表し、T、P1、およびP2が入力値を表す、条項42に記載の方法。
[0241]条項44: T、P1、およびP2についての入力値があらかじめ決定される、条項43に記載の方法。
[0242]条項45: T、P1、およびP2についての入力値が、ビデオデータ中でシグナリングされる、条項43に記載の方法。
[0243]条項46: T=4、P2=2およびP1=1である、条項43に記載の方法。
[0244]条項47: w0=2、w1=1、およびw2=1である、条項43に記載の方法。
[0245]条項48: ブロックがコーディングツリーユニット(CTU)を備える、条項36に記載の方法。
[0246]条項49: ブロックが変換ユニット(TU)を備える、条項36に記載の方法。
[0247]条項50: ブロックがサブ変換ユニット(サブTU)を備える、条項36に記載の方法。
[0248]条項51: ブロックが第1のブロックを備え、ライスパラメータスケーリング値が第1のライスパラメータスケーリング値を備え、方法が、第1のライスパラメータスケーリング値を使用して第2のブロックについての第2のライスパラメータスケーリング値を導出することをさらに備える、条項36に記載の方法。
[0249]条項52: コーディングすることが復号することを備える、条項1から51のいずれかに記載の方法。
[0250]条項53: コーディングすることが符号化することを備える、条項1から52のいずれかに記載の方法。
[0251]条項54: ビデオデータをコーディングするためのデバイスであって、デバイスが、条項1から53のいずれかに記載の方法を実施するための1つまたは複数の手段を備える、デバイス。
[0252]条項55: 1つまたは複数の手段が、回路中に実装された1つまたは複数のプロセッサを備える、条項54に記載のデバイス。
[0253]条項56: 復号されたビデオデータを表示するように構成されたディスプレイをさらに備える、条項54から55のいずれかに記載のデバイス。
[0254]条項57: デバイスが、カメラ、コンピュータ、モバイルデバイス、ブロードキャスト受信機デバイス、またはセットトップボックスのうちの1つまたは複数を備える、条項54から56のいずれかに記載のデバイス。
[0255]条項58: ビデオデータを記憶するように構成されたメモリをさらに備える、条項54から57のいずれかに記載のデバイス。
[0256]条項59: 命令を記憶したコンピュータ可読記憶媒体であって、命令が、実行されたとき、ビデオデータを復号するためのデバイスのプロセッサに、条項1から53のいずれかに記載の方法を実施させる、コンピュータ可読記憶媒体。
[0257]条項60: ビデオデータをコーディングするためのデバイスであって、デバイスが、ビデオデータの現在ブロックについての現在係数に対する複数の隣接する係数の絶対値の和を計算するための手段と、ビデオデータについてのビット深度または現在ブロックを含むスライスについてのスライスタイプのうちの少なくとも1つに従って、ベースレベルオフセット値を計算するための手段と、ベースレベルオフセット値を使用して絶対値の和についての正規化された値を計算するための手段と、絶対値の和についての正規化された値を使用して現在係数をコーディングするための手段とを備える、デバイス。
[0258]条項61: ビデオデータをコーディングするためのデバイスであって、デバイスが、ビデオデータの色成分の係数をコーディングするために使用されたライスパラメータの履歴を表す履歴カウンタを維持するための手段と、ビデオデータの色成分のブロックについてのライスパラメータスケーリング値を、ライスパラメータスケーリング値についての値を明示的にコーディングすることなしに、履歴カウンタについての現在の値から導出するための手段と、ブロックの現在係数に対する複数の隣接する係数の絶対値の和を計算するための手段と、ライスパラメータスケーリング値を使用して絶対値の和についてのスケーリングされた値を計算するための手段と、絶対値の和についてのスケーリングされた値を使用して現在係数をコーディングするための手段とを備える、デバイス。
[0259]条項62: ビデオデータをコーディングする方法であって、方法が、ビデオデータの現在ブロックについての現在係数に対する複数の隣接する係数の絶対値の和を計算することと、ビデオデータについてのビット深度または現在ブロックを含むスライスについてのスライスタイプのうちの少なくとも1つに従って、ベースレベルオフセット値を計算することと、ベースレベルオフセット値を使用して絶対値の和についての正規化された値を計算することと、絶対値の和についての正規化された値を使用して現在係数をコーディングすることとを備える、方法。
[0260]条項63: 複数の隣接する係数が、現在係数に対する5つの隣接する係数を含む、条項62に記載の方法。
[0261]条項64: 複数の隣接する係数が、現在係数に対する2つの右の隣接する係数と、現在係数に対する2つの下の隣接する係数と、現在係数に対する1つの左下の隣接する係数とを含む、条項62に記載の方法。
[0262]条項65: ベースレベルオフセット値を計算することが、baseLevelOffset=(bitDepth>T)?(isIntra()?P1:P2):(isIntra()?P3:P4)を計算することを備え、ここにおいて、bitDepthがビデオデータについてのビット深度を備え、isIntra()は、スライスについてのスライスタイプがイントラ予測されたスライスである場合に真の値を返すか、またはスライスについてのスライスタイプがインター予測されたスライスである場合に偽の値を返し、T、P1、P2、P3、およびP4がそれぞれの入力値を備える、条項62に記載の方法。
[0263]条項66: T=12である、条項65に記載の方法。
[0264]条項67: P1=5、P2=10、P3=6、およびP4=20である、条項66に記載の方法。
[0265]条項68: P1=5、P2=10、P3=10、およびP4=20である、条項66に記載の方法。
[0266]条項69: T、P1、P2、P3、およびP4についての入力値があらかじめ決定される、条項65に記載の方法。
[0267]条項70: T、P1、P2、P3、およびP4についての入力値が、ビットストリーム中でシグナリングされる、条項65に記載の方法。
[0268]条項71: 絶対値の和についての正規化された値を計算することが、Clip3(0,31,locSumAbs-baseLevelOffset)を計算することを備え、ここにおいて、locSumAbsが絶対値の和を備え、baseLevelOffsetがベースレベルオフセット値を備える、条項62に記載の方法。
[0269]条項72: 絶対値の和についての正規化された値を使用して現在係数をコーディングすることが、絶対値の和についての正規化された値に対応するライスパラメータを決定することと、2値化された値を形成するために、ライスパラメータを使用して現在係数についての値を2値化することとを備える、条項62に記載の方法。
[0270]条項73: 現在ブロックが第1のブロックを備え、ビデオデータの色成分が第1のブロックを含み、絶対値の和が絶対値の第1の和を備え、複数の隣接する係数が、第1の複数の隣接する係数を備え、方法が、ビデオデータの色成分の係数をコーディングするために使用されたライスパラメータの履歴を表す履歴カウンタを維持することと、ビデオデータの色成分の第2のブロックについてのライスパラメータスケーリング値を、ライスパラメータスケーリング値についての値を明示的にコーディングすることなしに、履歴カウンタについての現在の値から導出することと、第2のブロックの第2の係数に対する第2の複数の隣接する係数の絶対値の第2の和を計算することと、ライスパラメータスケーリング値を使用して絶対値の第2の和についてのスケーリングされた値を計算することと、絶対値の第2の和についてのスケーリングされた値を使用して第2のブロックの第2の係数をコーディングすることとをさらに備える、条項62に記載の方法。
[0271]条項74: ライスパラメータスケーリング値を導出することが、(StatCoeff[idx]≧T)?P2:P1を計算することを備え、ここにおいて、idxが色成分を表し、StatCoeff[idx]が履歴カウンタについての現在の値を表し、T、P1、およびP2が入力値を表す、条項12に記載の方法。
[0272]条項75: T、P1、およびP2についての入力値があらかじめ決定される、条項13に記載の方法。
[0273]条項76: T、P1、およびP2についての入力値が、ビデオデータ中でシグナリングされる、条項13に記載の方法。
[0274]条項77: T=4、P2=2およびP1=1である、条項13に記載の方法。
[0275]条項78: ライスパラメータスケーリング値を導出することが、ビデオデータの色成分を含むすべての色成分についての履歴カウンタを含む、履歴カウンタのアグリゲーションを表すアグリゲートされた履歴カウンタ値を計算することと、アグリゲートされた履歴カウンタ値を使用してライスパラメータスケーリング値を導出することとを備える、条項12に記載の方法。
[0276]条項79: アグリゲートされた履歴カウンタ値を計算することが、((StatCoeff[0]*w0)+StatCoeff[1]*w1+StatCoeff[2]*w2)/(w1+w2+w3)を計算することを備え、ここにおいて、StatCoeff[0]が、色成分のうちの第1の色成分についての履歴カウンタのうちの第1の履歴カウンタを表し、StatCoeff[1]が、色成分のうちの第2の色成分についての履歴カウンタのうちの第2の履歴カウンタを表し、StatCoeff[2]が、色成分のうちの第3の色成分についての履歴カウンタのうちの第3の履歴カウンタを表し、w1、w2、およびw3がそれぞれの重み付け値を表す、条項17に記載の方法。
[0277]条項80: ライスパラメータスケーリング値を導出することが、(StatCoefAverage≧T)?P2:P1を使用してライスパラメータスケーリング値を導出することを備え、ここにおいて、StatCoefAverageが、アグリゲートされた履歴カウンタ値を表し、T、P1、およびP2が入力値を表す、条項18に記載の方法。
[0278]条項81: T、P1、およびP2についての入力値があらかじめ決定される、条項19に記載の方法。
[0279]条項82: T、P1、およびP2についての入力値が、ビデオデータ中でシグナリングされる、条項19に記載の方法。
[0280]条項83: T=4、P2=2およびP1=1である、条項19に記載の方法。
[0281]条項84: w0=2、w1=1、およびw2=1である、条項19に記載の方法。
[0282]条項85: 第2のブロックが、コーディングツリーユニット(CTU)、変換ユニット(TU)、またはサブ変換ユニット(サブTU)のうちの1つを備える、条項12に記載の方法。
[0283]条項86: 現在係数をコーディングするために、1つまたは複数のプロセッサが、絶対値の和についての正規化された値を使用して現在係数を復号するように構成された、条項62に記載の方法。
[0284]条項87: 現在係数をコーディングするために、1つまたは複数のプロセッサが、絶対値の和についての正規化された値を使用して現在係数を符号化するように構成された、条項62に記載の方法。
[0285]条項88: ビデオデータをコーディングするためのデバイスであって、デバイスが、ビデオデータを記憶するように構成されたメモリと、回路中に実装された1つまたは複数のプロセッサとを備え、1つまたは複数のプロセッサが、ビデオデータの現在ブロックについての現在係数に対する複数の隣接する係数の絶対値の和を計算することと、ビデオデータについてのビット深度または現在ブロックを含むスライスについてのスライスタイプのうちの少なくとも1つに従って、ベースレベルオフセット値を計算することと、ベースレベルオフセット値を使用して絶対値の和についての正規化された値を計算することと、絶対値の和についての正規化された値を使用して現在係数をコーディングすることとを行うように構成された、デバイス。
[0286]条項89: 複数の隣接する係数が、現在係数に対する5つの隣接する係数を含む、条項27に記載のデバイス。
[0287]条項90: 複数の隣接する係数が、現在係数に対する2つの右の隣接する係数と、現在係数に対する2つの下の隣接する係数と、現在係数に対する1つの左下の隣接する係数とを含む、条項27に記載のデバイス。
[0288]条項91: ベースレベルオフセット値を計算するために、1つまたは複数のプロセッサが、baseLevelOffset=(bitDepth>T)?(isIntra()?P1:P2):(isIntra()?P3:P4)を計算するように構成され、ここにおいて、bitDepthがビデオデータについてのビット深度を備え、isIntra()は、スライスについてのスライスタイプがイントラ予測されたスライスである場合に真の値を返すか、またはスライスについてのスライスタイプがインター予測されたスライスである場合に偽の値を返し、T、P1、P2、P3、およびP4がそれぞれの入力値を備える、条項27に記載のデバイス。
[0289]条項92: T=12である、条項30に記載のデバイス。
[0290]条項93: T、P1、P2、P3、およびP4についての入力値があらかじめ決定される、条項30に記載のデバイス。
[0291]条項94: 絶対値の和についての正規化された値を計算するために、1つまたは複数のプロセッサが、Clip3(0,31,locSumAbs-baseLevelOffset)を計算するように構成され、ここにおいて、locSumAbsが絶対値の和を備え、baseLevelOffsetがベースレベルオフセット値を備える、条項27に記載のデバイス。
[0292]条項95: 絶対値の和についての正規化された値を使用して現在係数をコーディングするために、1つまたは複数のプロセッサが、絶対値の和についての正規化された値に対応するライスパラメータを決定することと、2値化された値を形成するために、ライスパラメータを使用して現在係数についての値を2値化することとを行うように構成された、条項27に記載のデバイス。
[0293]条項96: 現在ブロックが第1のブロックを備え、ビデオデータの色成分が第1のブロックを含み、絶対値の和が絶対値の第1の和を備え、複数の隣接する係数が、第1の複数の隣接する係数を備え、ここにおいて、1つまたは複数のプロセッサが、ビデオデータの色成分の係数をコーディングするために使用されたライスパラメータの履歴を表す履歴カウンタを維持することと、ビデオデータの色成分の第2のブロックについてのライスパラメータスケーリング値を、ライスパラメータスケーリング値についての値を明示的にコーディングすることなしに、履歴カウンタについての現在の値から導出することと、第2のブロックの第2の係数に対する第2の複数の隣接する係数の絶対値の第2の和を計算することと、ライスパラメータスケーリング値を使用して絶対値の第2の和についてのスケーリングされた値を計算することと、絶対値の第2の和についてのスケーリングされた値を使用して第2のブロックの第2の係数をコーディングすることとを行うようにさらに構成された、条項27に記載のデバイス。
[0294]条項97: ライスパラメータスケーリング値を導出するために、1つまたは複数のプロセッサが、(StatCoeff[idx]≧T)?P2:P1を計算するように構成され、ここにおいて、idxが色成分を表し、StatCoeff[idx]が履歴カウンタについての現在の値を表し、T、P1、およびP2が入力値を表す、条項35に記載のデバイス。
[0295]条項98: 現在係数をコーディングするために、1つまたは複数のプロセッサが、絶対値の和についての正規化された値を使用して現在係数を符号化すること、または絶対値の和についての正規化された値を使用して現在係数を復号することのうちの少なくとも1つを行うように構成された、条項27に記載のデバイス。
[0296]条項99: 復号されたビデオデータを表示するように構成されたディスプレイをさらに備える、条項27に記載のデバイス。
[0297]条項100: デバイスが、カメラ、コンピュータ、モバイルデバイス、ブロードキャスト受信機デバイス、またはセットトップボックスのうちの1つまたは複数を備える、条項27に記載のデバイス。
[0298]条項101: 命令を記憶したコンピュータ可読記憶媒体であって、命令が、実行されたとき、ビデオデータをコーディングするためのデバイスのプロセッサに、ビデオデータの現在ブロックについての現在係数に対する複数の隣接する係数の絶対値の和を計算することと、ビデオデータについてのビット深度または現在ブロックを含むスライスについてのスライスタイプのうちの少なくとも1つに従って、ベースレベルオフセット値を計算することと、ベースレベルオフセット値を使用して絶対値の和についての正規化された値を計算することと、絶対値の和についての正規化された値を使用して現在係数をコーディングすることとを行わせる、コンピュータ可読記憶媒体。
[0299]条項102: ビデオデータをコーディングするためのデバイスであって、デバイスが、ビデオデータの現在ブロックについての現在係数に対する複数の隣接する係数の絶対値の和を計算するための手段と、ビデオデータについてのビット深度または現在ブロックを含むスライスについてのスライスタイプのうちの少なくとも1つに従って、ベースレベルオフセット値を計算するための手段と、ベースレベルオフセット値を使用して絶対値の和についての正規化された値を計算するための手段と、絶対値の和についての正規化された値を使用して現在係数をコーディングするための手段とを備える、デバイス。
[0300]条項103: ビデオデータをコーディングする方法であって、方法が、ビデオデータの現在ブロックについての現在係数に対する複数の隣接する係数の絶対値の和を計算することと、ビデオデータについてのビット深度または現在ブロックを含むスライスについてのスライスタイプのうちの少なくとも1つに従って、ベースレベルオフセット値を計算することと、ベースレベルオフセット値を使用して絶対値の和についての正規化された値を計算することと、絶対値の和についての正規化された値を使用して現在係数をコーディングすることとを備える、方法。
[0301]条項104: 複数の隣接する係数が、現在係数に対する5つの隣接する係数を含む、条項103に記載の方法。
[0302]条項105: 複数の隣接する係数が、現在係数に対する2つの右の隣接する係数と、現在係数に対する2つの下の隣接する係数と、現在係数に対する1つの左下の隣接する係数とを含む、条項103および104のいずれかに記載の方法。
[0303]条項106: ベースレベルオフセット値を計算することが、baseLevelOffset=(bitDepth>T)?(isIntra()?P1:P2):(isIntra()?P3:P4)を計算することを備え、ここにおいて、bitDepthがビデオデータについてのビット深度を備え、isIntra()は、スライスについてのスライスタイプがイントラ予測されたスライスである場合に真の値を返すか、またはスライスについてのスライスタイプがインター予測されたスライスである場合に偽の値を返し、T、P1、P2、P3、およびP4がそれぞれの入力値を備える、条項103から105のいずれかに記載の方法。
[0304]条項107: T=12である、条項106に記載の方法。
[0305]条項108: P1=5、P2=10、P3=6、およびP4=20である、条項107に記載の方法。
[0306]条項109: P1=5、P2=10、P3=10、およびP4=20である、条項107に記載の方法。
[0307]条項110: T、P1、P2、P3、およびP4についての入力値があらかじめ決定される、条項106から109のいずれかに記載の方法。
[0308]条項111: T、P1、P2、P3、およびP4についての入力値が、ビットストリーム中でシグナリングされる、条項106から109のいずれかに記載の方法。
[0309]条項112: 絶対値の和についての正規化された値を計算することが、Clip3(0,31,locSumAbs-baseLevelOffset)を計算することを備え、ここにおいて、locSumAbsが絶対値の和を備え、baseLevelOffsetがベースレベルオフセット値を備える、条項103から111のいずれかに記載の方法。
[0310]条項113: 絶対値の和についての正規化された値を使用して現在係数をコーディングすることが、絶対値の和についての正規化された値に対応するライスパラメータを決定することと、2値化された値を形成するために、ライスパラメータを使用して現在係数についての値を2値化することとを備える、条項103から112のいずれかに記載の方法。
[0311]条項114: 現在ブロックが第1のブロックを備え、ビデオデータの色成分が第1のブロックを含み、絶対値の和が絶対値の第1の和を備え、複数の隣接する係数が、第1の複数の隣接する係数を備え、方法が、ビデオデータの色成分の係数をコーディングするために使用されたライスパラメータの履歴を表す履歴カウンタを維持することと、ビデオデータの色成分の第2のブロックについてのライスパラメータスケーリング値を、ライスパラメータスケーリング値についての値を明示的にコーディングすることなしに、履歴カウンタについての現在の値から導出することと、第2のブロックの第2の係数に対する第2の複数の隣接する係数の絶対値の第2の和を計算することと、ライスパラメータスケーリング値を使用して絶対値の第2の和についてのスケーリングされた値を計算することと、絶対値の第2の和についてのスケーリングされた値を使用して第2のブロックの第2の係数をコーディングすることとをさらに備える、条項103から113のいずれかに記載の方法。
[0312]条項115: ライスパラメータスケーリング値を導出することが、(StatCoeff[idx]≧T)?P2:P1を計算することを備え、ここにおいて、idxが色成分を表し、StatCoeff[idx]が履歴カウンタについての現在の値を表し、T、P1、およびP2が入力値を表す、条項114に記載の方法。
[0313]条項116: T、P1、およびP2についての入力値があらかじめ決定される、条項115に記載の方法。
[0314]条項117: T、P1、およびP2についての入力値が、ビデオデータ中でシグナリングされる、条項115に記載の方法。
[0315]条項118: T=4、P2=2およびP1=1である、条項115から117のいずれかに記載の方法。
[0316]条項119: ライスパラメータスケーリング値を導出することが、ビデオデータの色成分を含むすべての色成分についての履歴カウンタを含む、履歴カウンタのアグリゲーションを表すアグリゲートされた履歴カウンタ値を計算することと、アグリゲートされた履歴カウンタ値を使用してライスパラメータスケーリング値を導出することとを備える、条項114から118のいずれかに記載の方法。
[0317]条項120: アグリゲートされた履歴カウンタ値を計算することが、((StatCoeff[0]*w0)+StatCoeff[1]*w1+StatCoeff[2]*w2)/(w1+w2+w3)を計算することを備え、ここにおいて、StatCoeff[0]が、色成分のうちの第1の色成分についての履歴カウンタのうちの第1の履歴カウンタを表し、StatCoeff[1]が、色成分のうちの第2の色成分についての履歴カウンタのうちの第2の履歴カウンタを表し、StatCoeff[2]が、色成分のうちの第3の色成分についての履歴カウンタのうちの第3の履歴カウンタを表し、w1、w2、およびw3がそれぞれの重み付け値を表す、条項119に記載の方法。
[0318]条項121: ライスパラメータスケーリング値を導出することが、(StatCoefAverage≧T)?P2:P1を使用してライスパラメータスケーリング値を導出することを備え、ここにおいて、StatCoefAverageが、アグリゲートされた履歴カウンタ値を表し、T、P1、およびP2が入力値を表す、条項120に記載の方法。
[0319]条項122: T、P1、およびP2についての入力値があらかじめ決定される、条項121に記載の方法。
[0320]条項123: T、P1、およびP2についての入力値が、ビデオデータ中でシグナリングされる、条項121に記載の方法。
[0321]条項124: T=4、P2=2およびP1=1である、条項121から123のいずれかに記載の方法。
[0322]条項125: w0=2、w1=1、およびw2=1である、条項121から124のいずれかに記載の方法。
[0323]条項126: 第2のブロックが、コーディングツリーユニット(CTU)、変換ユニット(TU)、またはサブ変換ユニット(サブTU)のうちの1つを備える、条項114から125のいずれかに記載の方法。
[0324]条項127: 現在係数をコーディングするために、1つまたは複数のプロセッサが、絶対値の和についての正規化された値を使用して現在係数を復号するように構成された、条項103から126のいずれかに記載の方法。
[0325]条項128: 現在係数をコーディングするために、1つまたは複数のプロセッサが、絶対値の和についての正規化された値を使用して現在係数を符号化するように構成された、条項103から127のいずれかに記載の方法。
[0326]条項129: ビデオデータをコーディングするためのデバイスであって、デバイスが、ビデオデータを記憶するように構成されたメモリと、回路中に実装された1つまたは複数のプロセッサとを備え、1つまたは複数のプロセッサが、ビデオデータの現在ブロックについての現在係数に対する複数の隣接する係数の絶対値の和を計算することと、ビデオデータについてのビット深度または現在ブロックを含むスライスについてのスライスタイプのうちの少なくとも1つに従って、ベースレベルオフセット値を計算することと、ベースレベルオフセット値を使用して絶対値の和についての正規化された値を計算することと、絶対値の和についての正規化された値を使用して現在係数をコーディングすることとを行うように構成された、デバイス。
[0327]条項130: 複数の隣接する係数が、現在係数に対する5つの隣接する係数を含む、条項129に記載のデバイス。
[0328]条項131: 複数の隣接する係数が、現在係数に対する2つの右の隣接する係数と、現在係数に対する2つの下の隣接する係数と、現在係数に対する1つの左下の隣接する係数とを含む、条項129および130のいずれかに記載のデバイス。
[0329]条項132: ベースレベルオフセット値を計算するために、1つまたは複数のプロセッサが、baseLevelOffset=(bitDepth>T)?(isIntra()?P1:P2):(isIntra()?P3:P4)を計算するように構成され、ここにおいて、bitDepthがビデオデータについてのビット深度を備え、isIntra()は、スライスについてのスライスタイプがイントラ予測されたスライスである場合に真の値を返すか、またはスライスについてのスライスタイプがインター予測されたスライスである場合に偽の値を返し、T、P1、P2、P3、およびP4がそれぞれの入力値を備える、条項129から131のいずれかに記載のデバイス。
[0330]条項133: T=12である、条項132に記載のデバイス。
[0331]条項134: T、P1、P2、P3、およびP4についての入力値があらかじめ決定される、条項132および133のいずれかに記載のデバイス。
[0332]条項135: 絶対値の和についての正規化された値を計算するために、1つまたは複数のプロセッサが、Clip3(0,31,locSumAbs-baseLevelOffset)を計算するように構成され、ここにおいて、locSumAbsが絶対値の和を備え、baseLevelOffsetがベースレベルオフセット値を備える、条項129から134のいずれかに記載のデバイス。
[0333]条項136: 絶対値の和についての正規化された値を使用して現在係数をコーディングするために、1つまたは複数のプロセッサが、絶対値の和についての正規化された値に対応するライスパラメータを決定することと、2値化された値を形成するために、ライスパラメータを使用して現在係数についての値を2値化することとを行うように構成された、条項135に記載のデバイス。
[0334]条項137: 現在ブロックが第1のブロックを備え、ビデオデータの色成分が第1のブロックを含み、絶対値の和が絶対値の第1の和を備え、複数の隣接する係数が、第1の複数の隣接する係数を備え、ここにおいて、1つまたは複数のプロセッサが、ビデオデータの色成分の係数をコーディングするために使用されたライスパラメータの履歴を表す履歴カウンタを維持することと、ビデオデータの色成分の第2のブロックについてのライスパラメータスケーリング値を、ライスパラメータスケーリング値についての値を明示的にコーディングすることなしに、履歴カウンタについての現在の値から導出することと、第2のブロックの第2の係数に対する第2の複数の隣接する係数の絶対値の第2の和を計算することと、ライスパラメータスケーリング値を使用して絶対値の第2の和についてのスケーリングされた値を計算することと、絶対値の第2の和についてのスケーリングされた値を使用して第2のブロックの第2の係数をコーディングすることとを行うようにさらに構成された、条項129から136のいずれかに記載のデバイス。
[0335]条項138: ライスパラメータスケーリング値を導出するために、1つまたは複数のプロセッサが、(StatCoeff[idx]≧T)?P2:P1を計算するように構成され、ここにおいて、idxが色成分を表し、StatCoeff[idx]が履歴カウンタについての現在の値を表し、T、P1、およびP2が入力値を表す、条項137に記載のデバイス。
[0336]条項139: 現在係数をコーディングするために、1つまたは複数のプロセッサが、絶対値の和についての正規化された値を使用して現在係数を符号化すること、または絶対値の和についての正規化された値を使用して現在係数を復号することのうちの少なくとも1つを行うように構成された、条項129から138のいずれかに記載のデバイス。
[0337]条項140: 復号されたビデオデータを表示するように構成されたディスプレイをさらに備える、条項129から139のいずれかに記載のデバイス。
[0338]条項141: デバイスが、カメラ、コンピュータ、モバイルデバイス、ブロードキャスト受信機デバイス、またはセットトップボックスのうちの1つまたは複数を備える、条項129から140のいずれかに記載のデバイス。
[0339]条項142: 命令を記憶したコンピュータ可読記憶媒体であって、命令が、実行されたとき、ビデオデータをコーディングするためのデバイスのプロセッサに、ビデオデータの現在ブロックについての現在係数に対する複数の隣接する係数の絶対値の和を計算することと、ビデオデータについてのビット深度または現在ブロックを含むスライスについてのスライスタイプのうちの少なくとも1つに従って、ベースレベルオフセット値を計算することと、ベースレベルオフセット値を使用して絶対値の和についての正規化された値を計算することと、絶対値の和についての正規化された値を使用して現在係数をコーディングすることとを行わせる、コンピュータ可読記憶媒体。
[0340]条項143: ビデオデータをコーディングするためのデバイスであって、デバイスが、ビデオデータの現在ブロックについての現在係数に対する複数の隣接する係数の絶対値の和を計算するための手段と、ビデオデータについてのビット深度または現在ブロックを含むスライスについてのスライスタイプのうちの少なくとも1つに従って、ベースレベルオフセット値を計算するための手段と、ベースレベルオフセット値を使用して絶対値の和についての正規化された値を計算するための手段と、絶対値の和についての正規化された値を使用して現在係数をコーディングするための手段とを備える、デバイス。
[0341]上記例に応じて、本明細書で説明された技法のいずれかのいくつかの行為またはイベントは、異なるシーケンスで実施され得、追加、マージ、または完全に除外され得る(たとえば、すべての説明された行為またはイベントが本技法の実践のために必要であるとは限らない)ことを認識されたい。その上、いくつかの例では、行為またはイベントは、連続的にではなく、たとえば、マルチスレッド処理、割込み処理、または複数のプロセッサを通して同時に実施され得る。
[0342]1つまたは複数の例では、説明された機能は、ハードウェア、ソフトウェア、ファームウェア、またはそれらの任意の組合せで実装され得る。ソフトウェアで実装される場合、機能は、1つまたは複数の命令またはコードとして、コンピュータ可読媒体上に記憶されるか、あるいはコンピュータ可読媒体を介して送信され、ハードウェアベース処理ユニットによって実行され得る。コンピュータ可読媒体は、データ記憶媒体などの有形媒体に対応する、コンピュータ可読記憶媒体を含み得るか、または、たとえば、通信プロトコルに従って、ある場所から別の場所へのコンピュータプログラムの転送を容易にする任意の媒体を含む通信媒体を含み得る。このようにして、コンピュータ可読媒体は、概して、(1)非一時的である有形コンピュータ可読記憶媒体、あるいは(2)信号または搬送波などの通信媒体に対応し得る。データ記憶媒体は、本開示で説明された技法の実装のための命令、コードおよび/またはデータ構造を取り出すために、1つまたは複数のコンピュータまたは1つまたは複数のプロセッサによってアクセスされ得る、任意の利用可能な媒体であり得る。コンピュータプログラム製品は、コンピュータ可読媒体を含み得る。
[0343]限定ではなく例として、そのようなコンピュータ可読記憶媒体は、RAM、ROM、EEPROM(登録商標)、CD-ROMまたは他の光ディスクストレージ、磁気ディスクストレージ、または他の磁気ストレージデバイス、フラッシュメモリ、あるいは、命令またはデータ構造の形態の所望のプログラムコードを記憶するために使用され得、コンピュータによってアクセスされ得る、任意の他の媒体を備えることができる。また、いかなる接続もコンピュータ可読媒体と適切に呼ばれる。たとえば、命令が、同軸ケーブル、光ファイバーケーブル、ツイストペア、デジタル加入者回線(DSL)、または赤外線、無線、およびマイクロ波などのワイヤレス技術を使用して、ウェブサイト、サーバ、または他のリモートソースから送信される場合、同軸ケーブル、光ファイバーケーブル、ツイストペア、DSL、または赤外線、無線、およびマイクロ波などのワイヤレス技術は媒体の定義に含まれる。しかしながら、コンピュータ可読記憶媒体およびデータ記憶媒体が、接続、搬送波、信号、または他の一時的媒体を含むのではなく、代わりに非一時的な有形の記憶媒体を対象とすることを理解されたい。本明細書で使用されるディスク(disk)およびディスク(disc)は、コンパクトディスク(disc)(CD)、レーザーディスク(登録商標)(disc)、光ディスク(disc)、デジタル多用途ディスク(disc)(DVD)、フロッピー(登録商標)ディスク(disk)およびBlu-rayディスク(disc)を含み、ここで、ディスク(disk)は、通常、データを磁気的に再生し、ディスク(disc)は、データをレーザーで光学的に再生する。上記の組合せもコンピュータ可読媒体の範囲内に含まれるべきである。
[0344]命令は、1つまたは複数のデジタル信号プロセッサ(DSP)、汎用マイクロプロセッサ、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、あるいは他の等価な集積またはディスクリート論理回路など、1つまたは複数のプロセッサによって実行され得る。したがって、本明細書で使用される「プロセッサ」および「処理回路」という用語は、上記の構造、または本明細書で説明された技法の実装に好適な任意の他の構造のいずれかを指し得る。さらに、いくつかの態様では、本明細書で説明された機能は、符号化および復号のために構成された専用ハードウェアおよび/またはソフトウェアモジュール内に提供されるか、あるいは複合コーデックに組み込まれ得る。また、本技法は、1つまたは複数の回路または論理要素において十分に実装され得る。
[0345]本開示の技法は、ワイヤレスハンドセット、集積回路(IC)またはICのセット(たとえば、チップセット)を含む、多種多様なデバイスまたは装置において実装され得る。本開示では、開示される技法を実施するように構成されたデバイスの機能的態様を強調するために、様々な構成要素、モジュール、またはユニットが説明されたが、それらの構成要素、モジュール、またはユニットは、必ずしも異なるハードウェアユニットによる実現を必要とするとは限らない。むしろ、上記で説明されたように、様々なユニットが、好適なソフトウェアおよび/またはファームウェアとともに、上記で説明された1つまたは複数のプロセッサを含めて、コーデックハードウェアユニットにおいて組み合わせられるか、または相互動作可能なハードウェアユニットの集合によって提供され得る。
[0346]様々な例が説明された。これらおよび他の例は以下の特許請求の範囲内に入る。

Claims (40)

  1. ビデオデータをコーディングする方法であって、
    ビデオデータの現在ブロックについての現在係数に対する複数の隣接する係数の絶対値の和を計算することと、
    前記ビデオデータについてのビット深度または前記現在ブロックを含むスライスについてのスライスタイプのうちの少なくとも1つに従って、ベースレベルオフセット値を計算することと、
    前記ベースレベルオフセット値を使用して、絶対値の前記和についての正規化された値を計算することと、
    絶対値の前記和についての前記正規化された値を使用して、前記現在係数をコーディングすることと、
    を備える、方法。
  2. 前記複数の隣接する係数は、前記現在係数に対する5つの隣接する係数を含む、請求項1に記載の方法。
  3. 前記複数の隣接する係数は、前記現在係数に対する2つの右の隣接する係数と、前記現在係数に対する2つの下の隣接する係数と、前記現在係数に対する1つの左下の隣接する係数とを含む、請求項1に記載の方法。
  4. 前記ベースレベルオフセット値を計算することは、baseLevelOffset=(bitDepth>T)?(isIntra()?P1:P2):(isIntra()?P3:P4)を計算することを備え、
    ここにおいて、baseLevelOffsetは、前記ベースレベルオフセット値であり、bitDepthは、前記ビデオデータについての前記ビット深度を備え、isIntra()は、前記スライスについての前記スライスタイプがイントラ予測されたスライスである場合に真の値を返すか、または前記スライスについての前記スライスタイプがインター予測されたスライスである場合に偽の値を返し、T、P1、P2、P3、およびP4は、それぞれの入力値を備える、
    請求項1に記載の方法。
  5. T=12である、請求項4に記載の方法。
  6. P1=5、P2=10、P3=6、およびP4=20である、請求項5に記載の方法。
  7. P1=5、P2=10、P3=10、およびP4=20である、請求項5に記載の方法。
  8. T、P1、P2、P3、およびP4についての前記入力値は、あらかじめ決定されている、請求項4に記載の方法。
  9. T、P1、P2、P3、およびP4についての前記入力値は、ビットストリーム中でシグナリングされる、請求項4に記載の方法。
  10. 絶対値の前記和についての前記正規化された値を計算することは、Clip3(0,31,locSumAbs-baseLevelOffset)を計算することを備え、ここにおいて、locSumAbsは絶対値の前記和を備え、baseLevelOffsetは前記ベースレベルオフセット値を備える、請求項1に記載の方法。
  11. 絶対値の前記和についての前記正規化された値を使用して前記現在係数をコーディングすることは、
    絶対値の前記和についての前記正規化された値を使用してライスパラメータを決定することと、
    2値化された値を形成するために、前記ライスパラメータを使用して前記現在係数についての値を2値化することと、
    を備える、請求項1に記載の方法。
  12. 前記現在ブロックは第1のブロックを備え、前記ビデオデータの色成分は前記第1のブロックを含み、絶対値の前記和は絶対値の第1の和を備え、前記複数の隣接する係数は、第1の複数の隣接する係数を備え、前記方法は、
    前記ビデオデータの前記色成分の係数をコーディングするために使用されたライスパラメータの履歴を表す履歴カウンタを維持することと、
    前記ビデオデータの前記色成分の第2のブロックについてのライスパラメータスケーリング値を、前記ライスパラメータスケーリング値についての値を明示的にコーディングすることなしに、前記履歴カウンタについての現在の値から導出することと、
    前記第2のブロックの第2の係数に対する第2の複数の隣接する係数の絶対値の第2の和を計算することと、
    前記ライスパラメータスケーリング値を使用して、絶対値の前記第2の和についてのスケーリングされた値を計算することと、
    絶対値の前記第2の和についての前記スケーリングされた値を使用して、前記第2のブロックの前記第2の係数をコーディングすることと、
    をさらに備える、請求項1に記載の方法。
  13. 前記ライスパラメータスケーリング値を導出することは、(StatCoeff[idx]≧T)?P2:P1を計算することを備え、
    ここにおいて、idxは前記色成分を表し、StatCoeff[idx]は前記履歴カウンタについての前記現在の値を表し、T、P1、およびP2は入力値を表す、
    請求項12に記載の方法。
  14. T、P1、およびP2についての前記入力値は、あらかじめ決定されている、請求項13に記載の方法。
  15. T、P1、およびP2についての前記入力値は、前記ビデオデータ中でシグナリングされる、請求項13に記載の方法。
  16. T=4、P2=2およびP1=1である、請求項13に記載の方法。
  17. 前記ライスパラメータスケーリング値を導出することは、
    前記ビデオデータの前記色成分を含むすべての色成分についての前記履歴カウンタを含む、履歴カウンタのアグリゲーションを表すアグリゲートされた履歴カウンタ値を計算することと、
    前記アグリゲートされた履歴カウンタ値を使用して、前記ライスパラメータスケーリング値を導出することと、
    を備える、請求項12に記載の方法。
  18. 前記アグリゲートされた履歴カウンタ値を計算することは、((StatCoeff[0]*w0)+StatCoeff[1]*w1+StatCoeff[2]*w2)/(w1+w2+w3)を計算することを備え、
    ここにおいて、StatCoeff[0]は、前記色成分のうちの第1の色成分についての前記履歴カウンタのうちの第1の履歴カウンタを表し、StatCoeff[1]は、前記色成分のうちの第2の色成分についての前記履歴カウンタのうちの第2の履歴カウンタを表し、StatCoeff[2]は、前記色成分のうちの第3の色成分についての前記履歴カウンタのうちの第3の履歴カウンタを表し、w1、w2、およびw3は、それぞれの重み付け値を表す、
    請求項17に記載の方法。
  19. 前記ライスパラメータスケーリング値を導出することは、(StatCoefAverage≧T)?P2:P1を使用して、前記ライスパラメータスケーリング値を導出することを備え、
    ここにおいて、StatCoefAverageは、前記アグリゲートされた履歴カウンタ値を表し、T、P1、およびP2は入力値を表す、
    請求項18に記載の方法。
  20. T、P1、およびP2についての前記入力値は、あらかじめ決定されている、請求項19に記載の方法。
  21. T、P1、およびP2についての前記入力値は、前記ビデオデータ中でシグナリングされる、請求項19に記載の方法。
  22. T=4、P2=2およびP1=1である、請求項19に記載の方法。
  23. w0=2、w1=1、およびw2=1である、請求項19に記載の方法。
  24. 前記第2のブロックは、コーディングツリーユニット(CTU)、変換ユニット(TU)、またはサブ変換ユニット(サブTU)のうちの1つを備える、請求項12に記載の方法。
  25. 前記現在係数をコーディングすることは、絶対値の前記和についての前記正規化された値を使用して、前記現在係数を復号することを備える、請求項1に記載の方法。
  26. 前記現在係数をコーディングすることは、絶対値の前記和についての前記正規化された値を使用して、前記現在係数を符号化することを備える、請求項1に記載の方法。
  27. ビデオデータをコーディングするためのデバイスであって、
    ビデオデータを記憶するように構成されたメモリと、
    回路中に実装された1つまたは複数のプロセッサと、
    を備え、前記1つまたは複数のプロセッサは、
    ビデオデータの現在ブロックについての現在係数に対する複数の隣接する係数の絶対値の和を計算することと、
    前記ビデオデータについてのビット深度または前記現在ブロックを含むスライスについてのスライスタイプのうちの少なくとも1つに従って、ベースレベルオフセット値を計算することと、
    前記ベースレベルオフセット値を使用して、絶対値の前記和についての正規化された値を計算することと、
    絶対値の前記和についての前記正規化された値を使用して、前記現在係数をコーディングすることと、
    を行うように構成された、デバイス。
  28. 前記複数の隣接する係数は、前記現在係数に対する5つの隣接する係数を含む、請求項27に記載のデバイス。
  29. 前記複数の隣接する係数は、前記現在係数に対する2つの右の隣接する係数と、前記現在係数に対する2つの下の隣接する係数と、前記現在係数に対する1つの左下の隣接する係数とを含む、請求項27に記載のデバイス。
  30. 前記ベースレベルオフセット値を計算するために、前記1つまたは複数のプロセッサは、baseLevelOffset=(bitDepth>T)?(isIntra()?P1:P2):(isIntra()?P3:P4)を計算するように構成され、
    ここにおいて、baseLevelOffsetは、前記ベースレベルオフセット値を備え、bitDepthは、前記ビデオデータについての前記ビット深度を備え、isIntra()は、前記スライスについての前記スライスタイプがイントラ予測されたスライスである場合に真の値を返すか、または前記スライスについての前記スライスタイプがインター予測されたスライスである場合に偽の値を返し、T、P1、P2、P3、およびP4は、それぞれの入力値を備える、
    請求項27に記載のデバイス。
  31. T=12である、請求項30に記載のデバイス。
  32. T、P1、P2、P3、およびP4についての前記入力値は、あらかじめ決定されている、請求項30に記載のデバイス。
  33. 絶対値の前記和についての前記正規化された値を計算するために、前記1つまたは複数のプロセッサは、Clip3(0,31,locSumAbs-baseLevelOffset)を計算するように構成され、ここにおいて、locSumAbsは絶対値の前記和を備え、baseLevelOffsetは前記ベースレベルオフセット値を備える、請求項27に記載のデバイス。
  34. 絶対値の前記和についての前記正規化された値を使用して前記現在係数をコーディングするために、前記1つまたは複数のプロセッサは、
    絶対値の前記和についての前記正規化された値を使用してライスパラメータを決定することと、
    2値化された値を形成するために、前記ライスパラメータを使用して前記現在係数についての値を2値化することと、
    を行うように構成された、請求項27に記載のデバイス。
  35. 前記現在ブロックは第1のブロックを備え、前記ビデオデータの色成分は前記第1のブロックを含み、絶対値の前記和は絶対値の第1の和を備え、前記複数の隣接する係数は、第1の複数の隣接する係数を備え、
    前記1つまたは複数のプロセッサは、
    前記ビデオデータの前記色成分の係数をコーディングするために使用されたライスパラメータの履歴を表す履歴カウンタを維持することと、
    前記ビデオデータの前記色成分の第2のブロックについてのライスパラメータスケーリング値を、前記ライスパラメータスケーリング値についての値を明示的にコーディングすることなしに、前記履歴カウンタについての現在の値から導出することと、
    前記第2のブロックの第2の係数に対する第2の複数の隣接する係数の絶対値の第2の和を計算することと、
    前記ライスパラメータスケーリング値を使用して、絶対値の前記第2の和についてのスケーリングされた値を計算することと、
    絶対値の前記第2の和についての前記スケーリングされた値を使用して、前記第2のブロックの前記第2の係数をコーディングすることと、
    を行うようにさらに構成された、請求項27に記載のデバイス。
  36. 前記ライスパラメータスケーリング値を導出するために、前記1つまたは複数のプロセッサは、(StatCoeff[idx]≧T)?P2:P1を計算するように構成され、
    ここにおいて、idxは前記色成分を表し、StatCoeff[idx]は前記履歴カウンタについての前記現在の値を表し、T、P1、およびP2は入力値を表す、
    請求項35に記載のデバイス。
  37. 前記現在係数をコーディングするために、前記1つまたは複数のプロセッサは、絶対値の前記和についての前記正規化された値を使用して、前記現在係数を符号化すること、または絶対値の前記和についての前記正規化された値を使用して、前記現在係数を復号すること、のうちの少なくとも1つを行うように構成された、請求項27に記載のデバイス。
  38. 復号されたビデオデータを表示するように構成されたディスプレイをさらに備える、請求項27に記載のデバイス。
  39. 前記デバイスは、カメラ、コンピュータ、モバイルデバイス、ブロードキャスト受信機デバイス、またはセットトップボックスのうちの1つまたは複数を備える、請求項27に記載のデバイス。
  40. ビデオデータをコーディングするためのデバイスであって、
    ビデオデータの現在ブロックについての現在係数に対する複数の隣接する係数の絶対値の和を計算するための手段と、
    前記ビデオデータについてのビット深度または前記現在ブロックを含むスライスについてのスライスタイプのうちの少なくとも1つに従って、ベースレベルオフセット値を計算するための手段と、
    前記ベースレベルオフセット値を使用して、絶対値の前記和についての正規化された値を計算するための手段と、
    絶対値の前記和についての前記正規化された値を使用して、前記現在係数をコーディングするための手段と、
    を備える、デバイス。
JP2023559732A 2021-04-09 2022-04-08 高ビット深度ビデオデータをコーディングするためのライスパラメータを導出すること Pending JP2024514075A (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US202163173269P 2021-04-09 2021-04-09
US63/173,269 2021-04-09
US17/658,396 2022-04-07
US17/658,396 US11985307B2 (en) 2021-04-09 2022-04-07 Deriving a rice parameter for coding high bit depth video data
PCT/US2022/071628 WO2022217272A1 (en) 2021-04-09 2022-04-08 Deriving a rice parameter for coding high bit depth video data

Publications (1)

Publication Number Publication Date
JP2024514075A true JP2024514075A (ja) 2024-03-28

Family

ID=81750506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023559732A Pending JP2024514075A (ja) 2021-04-09 2022-04-08 高ビット深度ビデオデータをコーディングするためのライスパラメータを導出すること

Country Status (6)

Country Link
US (1) US11985307B2 (ja)
EP (1) EP4320864A1 (ja)
JP (1) JP2024514075A (ja)
KR (1) KR20230165208A (ja)
BR (1) BR112023019905A2 (ja)
WO (1) WO2022217272A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023056219A1 (en) * 2021-09-30 2023-04-06 Qualcomm Incorporated History-based adaptive interpretation of context coded syntax elements for high bit-depth video coding

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7328373B2 (ja) * 2019-06-28 2023-08-16 バイトダンス インコーポレイテッド スクリーンコンテンツ符号化におけるクロマイントラモードの導出
US11722672B2 (en) * 2020-10-06 2023-08-08 Qualcomm Incorporated Adaptively deriving rice parameter values for high bit-depth video coding

Also Published As

Publication number Publication date
KR20230165208A (ko) 2023-12-05
US20220337812A1 (en) 2022-10-20
BR112023019905A2 (pt) 2023-11-14
WO2022217272A1 (en) 2022-10-13
EP4320864A1 (en) 2024-02-14
US11985307B2 (en) 2024-05-14

Similar Documents

Publication Publication Date Title
US20210006792A1 (en) Chroma delta quantization parameter (qp) in video coding
US20190246122A1 (en) Palette coding for video coding
CN113940069A (zh) 用于视频译码中的低频不可分离变换的变换和最后有效系数位置信令
US20220030232A1 (en) Multiple adaptive loop filter sets
JP2023544705A (ja) ビデオコーディング中の、ジョイント成分ニューラルネットワークベースのフィルタ処理
US11457229B2 (en) LFNST signaling for chroma based on chroma transform skip
US11418787B2 (en) Chroma delta QP in video coding
CN114424570A (zh) 用于视频编解码的变换单元设计
JP2024500663A (ja) ビデオコーディングにおける最確モードリスト構築のためのデコーダ側イントラモード導出
US20240015284A1 (en) Reduced complexity multi-mode neural network filtering of video data
US20230421769A1 (en) Adaptively deriving rice parameter values for high bit-depth video coding
US11985307B2 (en) Deriving a rice parameter for coding high bit depth video data
CN113647107A (zh) 用于视频译码的最后位置译码的上下文推导
US20230010869A1 (en) Signaled adaptive loop filter with multiple classifiers in video coding
JP2024514081A (ja) ビデオコーディングのためのイントラモード依存多重変換選択
US11178427B2 (en) Dynamic sub-partition intra prediction for video coding
JP2022552173A (ja) ビデオコーディングのための変換スキップにおける残差値のためのコーディング方式をシグナリングすること
US11736702B2 (en) Rice parameter derivation for high bit-depth video coding
US20230107599A1 (en) History-based adaptive interpretation of context coded syntax elements for high bit-depth video coding
US20240223816A1 (en) Adaptive loop filter classifiers
US20240015312A1 (en) Neural network based filtering process for multiple color components in video coding
CN117413517A (zh) 推导用于对高比特深度视频数据进行译码的rice参数
JP2024501465A (ja) 固定されたフィルタを用いる適応ループフィルタ