JP2024513678A - ホールスライド画像についてのアテンションベースの複数インスタンス学習 - Google Patents

ホールスライド画像についてのアテンションベースの複数インスタンス学習 Download PDF

Info

Publication number
JP2024513678A
JP2024513678A JP2023555289A JP2023555289A JP2024513678A JP 2024513678 A JP2024513678 A JP 2024513678A JP 2023555289 A JP2023555289 A JP 2023555289A JP 2023555289 A JP2023555289 A JP 2023555289A JP 2024513678 A JP2024513678 A JP 2024513678A
Authority
JP
Japan
Prior art keywords
image
digital pathology
slide image
classification
tiles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023555289A
Other languages
English (en)
Inventor
ファン-ヤオ フー,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genentech Inc
Original Assignee
Genentech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genentech Inc filed Critical Genentech Inc
Publication of JP2024513678A publication Critical patent/JP2024513678A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/174Segmentation; Edge detection involving the use of two or more images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/764Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/776Validation; Performance evaluation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/86Arrangements for image or video recognition or understanding using pattern recognition or machine learning using syntactic or structural representations of the image or video pattern, e.g. symbolic string recognition; using graph matching
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • G06V20/695Preprocessing, e.g. image segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • G06V20/698Matching; Classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/70Labelling scene content, e.g. deriving syntactic or semantic representations
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20021Dividing image into blocks, subimages or windows
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30024Cell structures in vitro; Tissue sections in vitro
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30204Marker

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Multimedia (AREA)
  • Evolutionary Computation (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Computing Systems (AREA)
  • Artificial Intelligence (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Quality & Reliability (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computational Linguistics (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Public Health (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Medical Treatment And Welfare Office Work (AREA)
  • Image Analysis (AREA)

Abstract

一実施形態では、方法は、ホールスライド画像を受信することと、ホールスライド画像を複数の画像タイルにセグメント化することと、を含む。本方法は、複数のタイルの各タイルに対応する特徴ベクトルを生成することを含み、タイルのそれぞれの特徴ベクトルは、タイルの埋め込みを表す。本方法は、アテンションネットワークを使用して各埋め込み特徴ベクトルに対応する重み値を計算することを含む。本方法は、埋め込み特徴ベクトルに基づいて画像埋め込みを計算することを含み、各埋め込み特徴ベクトルは、埋め込み特徴ベクトルに対応する重み値に基づいて重み付けされる。本方法は、画像埋め込みに基づいてホールスライド画像の分類を生成することを含む。【選択図】図2

Description

関連出願への相互参照
本出願は、2021年3月12日に出願された「ATTENTION-BASED MULTIPLE INSTANCE LEARNING FOR WHOLE SLIDE IMAGES」と題する米国仮出願第63/160,493号の利益および優先権を主張し、その全体があらゆる目的のために参照により本明細書に組み込まれる。
本開示は、一般に、デジタル病理画像を分析および分類するためのツールに関する。
ホールスライド画像(WSI)は、サンプルの画像のスキャンまたはデジタルネイティブスキャンから得られる。スキャン、および対応するWSIは、多くの場合非常に大きく、例えば、いくつかの色チャネルのそれぞれにおいて100,000画素×100,000画素であり、従来の計算方法を使用して全体的なレベルでWSIを効率的に分析することを困難にする。WSIの大規模フォーマットを処理するための現在のアプローチは、WSIをより小さな部分にセグメント化することと、複数のプロセッサまたは分散処理を使用して並列分析を実行することとを含む。セグメント化および分散処理は、離散部分の理解を集めるのに有用であり得るが、全体としてWSIの理解を生成することはできない。
病理医または他の訓練された専門家は、多くの場合、示された組織における異常の証拠についてWSIを評価する。WSIのラベル付けは、画像全体を指す傾向があり、例えば、画像の特定の部分を指す傾向はない。例えば、病理医は、肺の画像内の組織異常(例えば、腫瘍)を識別し、画像を「異常」としてラベル付けし得る。しかしながら、ほとんどの場合、病理医は、組織異常が画像のどこに現れるかを指定するために画像に注釈を付けない。この「全てまたはなし」のラベリングスタイルは、WSIを評価するためにコンピュータ実装アルゴリズムを訓練するのにあまり有用ではない。しかしながら、全画像ラベリングの下でさえ、病理医による分析は時間がかかる。個々の位置をマークするために病理医に古いサンプルを再評価させることは、非常に時間がかかる。さらに、多くの症状は相互に排他的ではないため、単一のWSIは、複数の症状を同時に示すことがあり、複数の専門家が同時に画像を確認して全ての異常症状がラベル付けされていることを確認する必要がある場合がある。
したがって、「正常画像」または「異常画像」としての画像のバイナリラベルを超える改良を提供するWSIラベルまたは注釈が望まれている。さらに、そのような注釈が、異常を描写する画像の部分または画像内の位置を特定することが望まれている。
特定の実施形態では、コンピュータ実装方法は、ホールスライド画像を受信するか、そうでなければアクセスすることと、ホールスライド画像を複数のタイルにセグメント化することと、を含む。特に、ホールスライド画像は、大規模フォーマットの画像であってもよく、セグメント化されたタイルのサイズは、効率的な管理および処理を容易にするように選択されてもよい。本方法は、複数のタイルの各タイルに対応する埋め込み特徴ベクトルを生成することを含む。特定の実施形態では、埋め込み特徴ベクトルは、自然画像を使用して訓練されたニューラルネットワークを使用して生成される。本方法は、アテンションネットワークを使用して各埋め込み特徴ベクトルに対応する重み値を計算することを含む。本方法は、埋め込み特徴ベクトルから画像埋め込みを計算することを含む。各埋め込み特徴ベクトルは、埋め込み特徴ベクトルに対応する重み値から重み付けされる。特定の実施形態では、本方法は、画像埋め込みを計算する前に重み値を正規化することをさらに含む。本方法は、画像埋め込みからホールスライド画像の分類を生成することを含む。ホールスライド画像の分類は、ホールスライド画像に示される組織における1つまたは複数の生物学的異常の存在を示し得て、肥大、クッパー細胞異常、壊死、炎症、グリコーゲン異常、脂質異常、腹膜炎、異所性核症、細胞浸潤、核腫大、微小肉芽腫、過形成または空胞化を含み得る。ホールスライド画像の分類は、ホールスライド画像に描写された組織に関連付けられた潜在的毒性事象の評価を含み得る。特定の実施形態では、コンピュータは、複数のアテンションネットワークを使用して各埋め込み特徴ベクトルに対応する重み値を計算し、各アテンションネットワークからホールスライド画像のそれぞれの分類を生成し得る。特定の実施形態では、分類は、ホールスライド画像がホールスライド画像に示された組織に関連付けられた1つまたは複数の異常を示すことを示している。特定の実施形態では、本方法は、検証のために病理医にホールスライド画像の分類を提供することを含む。
特定の実施形態では、コンピュータは、ホールスライド画像に対応するヒートマップを生成し得る。ヒートマップは、ホールスライド画像のタイルに対応するタイルを含み得る。ヒートマップの各タイルに関連付けられた強度値は、ホールスライド画像の対応するタイルの埋め込み特徴ベクトルに対応する重み値から決定され得る。特定の実施形態では、本方法は、ホールスライド画像の注釈を生成することをさらに含む。コンピュータは、閾値を超えるなどの所定の基準を満たす1つまたは複数の重み値を識別し、識別された重み値に対応する1つまたは複数の埋め込み特徴ベクトルを識別し、識別された埋め込み特徴ベクトルに対応する1つまたは複数のタイルを識別することによって、ホールスライド画像の注釈を生成する。ホールスライド画像の注釈は、識別されたタイルをマークすることによって、または対話型オーバーレイとして、ホールスライド画像に関連して表示するために提供されてもよい。
特定の実施形態では、コンピュータは、少なくとも重み値からホールスライド画像の分類に関連付けられた信頼スコアを計算し、ホールスライド画像の分類に関連して表示するための信頼スコアを提供し得る。特定の実施形態では、コンピュータは、埋め込み特徴ベクトル、重み値、およびスライド埋め込み特徴ベクトルから、ホールスライド画像の分類に関連する派生特性を識別し得る。特定の実施形態では、コンピュータは、複数のホールスライド画像の複数の分類をそれぞれ生成し、分類をホールスライド画像に関連付けられたグラウンドトゥルースとして使用して、1つまたは複数の症状にそれぞれ関連付けられた重み値を予測するように1つまたは複数のアテンションネットワークを訓練し得る。特定の実施形態では、ホールスライド画像がユーザ装置から受信され、本方法は、表示のためにホールスライド画像の分類をユーザ装置に提供することを含む。特定の実施形態では、ホールスライド画像は、本方法を実行するデジタル病理画像処理システムと通信可能に結合されたデジタル病理画像生成システムから受信される。
なお、本明細書に開示された実施形態は例にすぎず、本開示の範囲はこれらに限定されない。特定の実施形態は、本明細書に開示された実施形態の構成要素、要素、特徴、機能、動作、またはステップの全て、一部、またはいずれも含まなくてもよい。本発明にかかる実施形態は、特に、方法、記憶媒体、システム、およびコンピュータプログラム製品に関する添付の特許請求の範囲に開示されており、1つの請求項カテゴリ、例えば方法で言及された任意の特徴は、別の請求項カテゴリ、例えばシステムでも特許請求され得る。添付の特許請求の範囲における従属性または参照は、形式的な理由のみのために選択される。しかしながら、請求項とその特徴との任意の組み合わせが開示され、添付の請求項において選択された従属性に関係なく特許請求され得るように、任意の先行する請求項(特に複数の従属性)への意図的な参照から生じる任意の主題も同様に特許請求され得る。特許請求され得る主題は、添付の特許請求の範囲に記載されているような特徴の組み合わせだけでなく、特許請求の範囲内の特徴の任意の他の組み合わせも含み、特許請求の範囲に記載された各特徴は、特許請求の範囲内の任意の他の特徴または他の特徴の組み合わせと組み合わせられ得る。さらにまた、本明細書に記載または図示された実施形態および特徴のいずれも、別個の請求項に、および/または本明細書に記載または図示された任意の実施形態または特徴と、または添付の特許請求の範囲の特徴のいずれかとの任意の組み合わせで特許請求され得る。
複数インスタンス学習を使用したデジタル病理画像分類の例示的な実施形態を示している。
例示的なデジタル病理画像処理システムおよびデジタル病理画像生成システムを示している。
例示的な全結合アテンションネットワークを示している。
ホールスライド画像の例示的なタイルベースのヒートマップを示している。
例示的な注釈付きホールスライド画像を示している。
デジタル病理画像のためのアテンションベースのネットワークおよび分類ネットワークを訓練する例示的な実施形態を示している。
デジタル病理画像分類のための例示的な方法を示している。
例示的なコンピュータシステムを示している。
本明細書に記載されるように、WSIは、物理的スライドを高解像度画像ファイルにデジタル化することから生じるか、または医療用スキャン装置によって直接出力され得る、非常に大規模フォーマットのデジタル画像である。WSIは、通常、取り込まれる画像の性質のために可能な限り最高の解像度フォーマットで保存され、通常は画像の圧縮および操作から生じるアーチファクトのためにWSIに示された組織の誤診断を回避する。WSIは、通常のデジタル画像よりも数桁多い数の画素を含むことが多く、100,000画素×100,000画素(例えば、10,000メガ画素)以上の解像度を含み得る。
WSIの分析は、WSIのレビュー、異常の認識および識別、異常の分類、WSIのラベル付け、および潜在的に組織の診断を行うために、知識および器用さを有する高度に専門化された個人を必要とする労働集約的なプロセスである。さらに、WSIは広範囲の組織種類に使用されるため、異常を識別する知識および技能を有する人は、正確な分析および診断を提供するためにさらに専門化されなければならない。WSIから検出され得る組織異常は、ほんの例として、限定されないが、数ある中でも、炎症、色素沈着、変性、異所性核症、肥大、有糸分裂増加、単核細胞浸潤、炎症細胞浸潤、炎症細胞病巣、グリコーゲンの減少、グリコーゲン蓄積(びまん性または濃縮)、髄外骨髄形成、髄外造血、髄外赤血球形成、単一細胞壊死、びまん性壊死、著しい壊死、凝固性壊死、アポトーシス、核肥大、胆管周囲、細胞充実性の増加、グリコーゲン沈着、脂質沈着、微小肉芽腫、鬱血、クッパー細胞色素沈着、ヘモシデリンの増加、組織球症、過形成または空胞化を含む。したがって、作業の労働集約的且つ知識集約的な性質のために、WSIは特定の機能を自動化するための候補と見なされる。しかしながら、WSIのサイズが大きいと、典型的な技術は効果がなく、遅く、高価になる。精度を高めるためにWSIの多数のサンプルの複数ラウンドの分析を必要とする標準的な画像認識および深層学習技術を実行することは実用的ではない。本明細書に記載の技術は、WSIにおける特徴認識を自動化する問題を解決することを目的としており、十分に文書化された制限のためにWSIでは以前は実行することができなかった新規なデータ分析および提示技術の開発を可能にする。
本明細書で開示されるシステムは、標準WSIラベルに基づいて特徴認識のための訓練データを効率的に生成し得る。さらに、本システムは、WSIが異常を含むかどうか、およびWSIのどこに異常が位置するかを識別し得る。
図1A~図1Bは、複数インスタンス学習を使用してホールスライド画像(WSI)を分類するための例示的なプロセス100を示している。図2は、本開示のいくつかの実施形態にかかる、ニューラルネットワークおよびアテンションベースの技術を使用してホールスライド画像を分類するために、本明細書に記載されるように使用され得る対話型コンピュータシステムのネットワーク200を示している。図1Aに示すように、110において、デジタル病理画像処理システム210は、ホールスライド画像105を受信する。単なる例として、限定として、デジタル病理画像処理システム210は、デジタル病理画像生成システム220またはその1つもしくは複数の構成要素からホールスライド画像105を受信し得る。別の例として、デジタル病理画像処理システム210は、1つまたは複数のユーザ装置230からホールスライド画像105を受信してもよい。ユーザ装置230は、1つまたは複数のネットワークを介してデジタル病理画像処理システム210に接続された病理医または臨床医によって使用されるコンピュータであってもよい。ユーザ装置230のユーザは、ユーザ装置230を使用してホールスライド画像105をアップロードするか、またはホールスライド画像105をデジタル病理画像処理システム210に提供するように1つまたは複数の他の装置に指示し得る。
120において、デジタル病理画像処理システム210は、例えばタイル生成モジュール211を使用して、ホールスライド画像105を複数のタイル115a、115b、...115nにセグメント化する。
130において、デジタル病理画像処理システム210は、例えばタイル埋め込みモジュール212を使用して、埋め込みネットワーク125を使用して複数のタイルの各タイルについての埋め込みを生成する。例として、タイル115aの場合、タイル埋め込みモジュール212は、対応する埋め込み135aを生成し、タイル115bの場合、タイル埋め込みモジュール212は、対応する埋め込み135bを生成し、タイル115nの場合、タイル埋め込みモジュール212は、対応する埋め込み135nを生成する。本明細書で説明されるように、埋め込みは、タイルのコンテンツまたはコンテキストに関するいくつかの情報を保存するタイルの固有の表現を含み得る。タイル埋め込みはまた、タイルを対応するタイル埋め込み空間に変換することから導出されてもよく、タイル埋め込み空間内の異なるものは、タイルの類似性と相関する。例えば、類似の主題を描写する、または類似の視覚的特徴を有するタイルは、異なる主題を描写する、または異なる視覚的特徴を有するタイルよりも埋め込み空間の近くに配置される。タイル埋め込みは、特徴ベクトルとして表され得る。
図1Bに示すように、140において、デジタル病理画像処理システム210は、例えば重み値生成モジュール213を使用して、各埋め込み135a、135b、...135nの重み値を生成する。例えば、重み値生成モジュール213は、ベクトル135aに対する重み値a、b、およびcを生成し、ベクトル135bに対する重み値a、b、およびcを生成し、ベクトル135nに対する重み値a、b、およびcを生成する。重み値を生成するために、重み値生成モジュール213は、複数のアテンションネットワーク145a、145b、...145cを使用して、埋め込みの前に、本明細書で説明される埋め込みに対するアテンションスコアを生成し、その後、重み値として使用するために正規化され得る。特定の実施形態では、各アテンションネットワークは、各埋め込みに対して生成された重み値の数が、重み値生成モジュール213によって使用されるアテンションネットワークの数と等しくなるように、各埋め込みに対する重み値を生成する。
150において、デジタル病理画像処理システム210は、例えば画像埋め込みモジュール214を使用して、それぞれの埋め込みを重み付けするために各埋め込みに対して生成された重み値を使用して、重み付き組み合わせにおいてタイル埋め込みを組み合わせることによってホールスライド画像105についての画像埋め込みV、V、...Vを計算する。いくつかの実施形態では、複数の画像埋め込みV、V、...Vには、例えば各アテンションネットワーク145a、145b、145cに対して1つの画像埋め込みが生成されてもよい。画像埋め込みVは、重み付き組み合わせ、
Figure 2024513678000002
として計算されてもよい。いくつかの実施形態では、全ての重み値(例えば、全てのアテンションネットワークからの重み値)を使用して単一の画像埋め込みが生成されてもよい。
160において、デジタル病理画像処理システム210は、例えば画像分類モジュール215を使用して、画像埋め込みV、V、...Vを使用してホールスライド画像105を分類する。いくつかの実施形態では、画像分類モジュール215は、分類ネットワーク155を使用して分類を生成する。次いで、分類は、ホールスライド画像の評価として提示され、評価は、ホールスライド画像に存在する1つまたは複数の症状の予測と同等である。例えば、評価は、ホールスライド画像が正常な生物学的症状を示すか、または診断可能な生物学的異常を含むという決定を含み得る。診断可能な生物学的異常は、肥大(例えば、肝細胞肥大、クッパー細胞肥大など)、クッパー細胞(例えば、クッパー細胞の色素沈着、クッパー細胞の肥大など)、壊死(例えば、拡散、焦点、凝固など)、グリコーゲン(例えば、グリコーゲン枯渇、グリコーゲン沈着など)、炎症、脂質(例えば、脂質枯渇、脂質沈着など)、腹膜炎、および他の症状に関連付けられた異常を含み得る。別の例として、評価は、1つまたは複数の症状の指示がホールスライド画像に存在するという決定を含み得る。評価は、レビューのためにデジタル病理画像処理システム210のユーザまたはオペレータに提供され得る。評価はまた、1つまたは複数のユーザ装置230に提供されてもよい。
本明細書で説明するように、デジタル病理画像処理システム210からの出力は、デジタル病理画像処理システムによって行われた評価の単純な列挙を含む、いくつかの形態で提供され得る。より高度な出力も提供され得る。例として、デジタル病理画像処理システム210は、ホールスライド画像の「ヒートマップ」を生成してもよく、ヒートマップの各タイルの値は、アテンションネットワークによって生成された重み値のうちの1つまたは複数の値に相関される。例示的なヒートマップが図4Aおよび図4Bに示されている。デジタル病理画像処理システム210は、特定のカテゴリに関連するか、そうでなければユーザ装置230のユーザによるレビューのために提案される画像の領域をグループ化および識別する画像の注釈オーバーレイをさらに生成し得る。例示的な注釈オーバーレイが図5Aおよび図5Bに示されている。
図2は、本開示のいくつかの実施形態にかかる、ニューラルネットワークおよびアテンションベースの技術を使用してホールスライド画像を分類するために、本明細書に記載されるように使用され得る対話型コンピュータシステムのネットワーク200を示している。
デジタル病理画像生成システム220は、特定のサンプルに対応する、ホールスライド画像を含むがこれに限定されない、1つまたは複数のデジタル病理画像を生成し得る。例えば、デジタル病理画像生成システム220によって生成された画像は、生検サンプルの染色された部分を含み得る。別の例として、デジタル病理画像生成システム220によって生成された画像は、液体サンプルのスライド画像(例えば、血液フィルム)を含み得る。別の例として、デジタル病理画像生成システム220によって生成された画像は、蛍光プローブが標的DNAまたはRNA配列に結合した後の蛍光インサイチュハイブリダイゼーション(FISH)を描写するスライド画像などの蛍光顕微鏡法を含み得る。
いくつかの種類のサンプル(例えば、生検、固体サンプルおよび/または組織を含むサンプル)は、サンプル調製システム221によって処理されて、サンプルを固定および/または埋め込み得る。サンプル調製システム221は、固定剤(例えば、ホルムアルデヒド溶液などの液体固定剤)および/または包埋物質(例えば、組織学的ワックス)をサンプルに浸透させることを容易にし得る。例えば、サンプル固定サブシステムは、少なくとも閾値時間(例えば、少なくとも3時間、少なくとも6時間、または少なくとも12時間)にわたって、サンプルを固定剤に曝すことによってサンプルを固定し得る。脱水サブシステムは、(例えば、固定サンプルおよび/または固定サンプルの一部を1つまたは複数のエタノール溶液に曝すことによって)サンプルを脱水し、潜在的に、(例えば、エタノールおよび組織学的ワックスを含む)透明化中間剤を使用して脱水されたサンプルを透明化し得る。サンプル埋め込みサブシステムは、加熱された(例えば、液体の)組織学的ワックスをサンプルに浸透させ得る(例えば、対応する所定の期間の1回以上)。組織学的ワックスは、パラフィンワックスおよび潜在的に1つまたは複数の樹脂(例えば、スチレンまたはポリエチレン)を含み得る。次いで、サンプルおよびワックスが冷却され、ワックス浸透サンプルがブロックされ得る。
サンプルスライサー222は、固定されて埋め込まれたサンプルを受け取り、切片のセットを作製し得る。サンプルスライサー222は、固定されて埋め込まれたサンプルを低温またはさらなる低温に曝し得る。次いで、サンプルスライサー222は、冷却されたサンプル(またはそのトリミングされたバージョン)を切断して、切片のセットを作製し得る。各切片は、(例えば)100μm未満、50μm未満、10μm未満、または5μm未満の厚さを有し得る。各切片は、(例えば)0.1μmよりも大きい、1μmよりも大きい、2μmよりも大きい、または4μmよりも大きい厚さを有し得る。冷却されたサンプルの切断は、温水浴(例えば、少なくとも30℃、少なくとも35℃または少なくとも40℃の温度で)中で行われ得る。
自動染色システム223は、各切片を1つまたは複数の染色剤に曝すことによって、サンプルの切片の1つまたは複数の染色を容易にし得る。各切片は、所定の期間にわたって所定量の染色剤に曝され得る。場合によっては、単一の切片が複数の染色剤に同時にまたは連続的に曝される。
1つまたは複数の染色された切片のそれぞれは、切片のデジタル画像を取り込み得る画像スキャナ224に提示され得る。画像スキャナ224は、顕微鏡カメラを含み得る。画像スキャナ224は、複数の倍率(例えば、10倍対物レンズ、20倍対物レンズ、40倍対物レンズなどを使用する)でデジタル画像を取り込み得る。画像の操作が使用されて、所望の倍率範囲でサンプルの選択された部分を取り込み得る。画像スキャナ224は、人間のオペレータによって識別された注釈および/または形態素をさらに取り込み得る。場合によっては、切片が洗浄され、1つまたは複数の他の染色剤に曝され、再び撮像され得るように、1つまたは複数の画像が取り込まれた後、切片は、自動染色システム223に戻される。複数の染色剤が使用される場合、第1の染色剤を大量に吸収した第1の切片に対応する画像の第1の領域が、第2の染色剤を大量に吸収した第2の切片に対応する画像の第2の領域(または異なる画像)と区別され得るように、異なる色プロファイルを有するように染色剤が選択され得る。
デジタル病理画像生成システム220の1つまたは複数の構成要素は、場合によっては、人間のオペレータに関連して動作することができることが理解されよう。例えば、人間のオペレータは、様々なサブシステム(例えば、サンプル調製システム221またはデジタル病理画像生成システム220)にわたってサンプルを移動させ、および/またはデジタル病理画像生成システム220の1つまたは複数のサブシステム、システムまたは構成要素の動作を開始または終了させ得る。別の例として、デジタル病理画像生成システムの1つまたは複数の構成要素(例えば、サンプル調製システム221の1つまたは複数のサブシステム)の一部または全部は、人間のオペレータの動作によって部分的または全体的に置き換えられ得る。
さらに、デジタル病理画像生成システム220の様々な説明および図示された機能および構成要素は、固体および/または生検サンプルの処理に関するが、他の実施形態は、液体サンプル(例えば、血液サンプル)に関し得ることが理解されよう。例えば、デジタル病理画像生成システム220は、ベーススライド、汚れた液体サンプルおよびカバーを含む液体サンプル(例えば、血液または尿)スライドを受け取り得る。次いで、画像スキャナ224は、サンプルスライドの画像を取り込み得る。デジタル病理画像生成システム220のさらなる実施形態は、本明細書に記載のFISHなどの高度なイメージング技術を使用してサンプルの画像を取り込むことに関し得る。例えば、蛍光プローブがサンプルに導入され、標的配列に結合することが可能にされると、さらなる分析のためにサンプルの画像を取り込むために適切なイメージングが使用され得る。
所与のサンプルは、処理およびイメージング中に1人以上のユーザ(例えば、1人以上の医師、検査技師および/または医療提供者)と関連付けられ得る。関連するユーザは、限定ではなく例として、とりわけ、撮像されているサンプルを生成した試験または生検を注文した人、試験または生検の結果を受け取る許可を得た人、または試験または生検サンプルの分析を行った人を含み得る。例えば、ユーザは、医師、病理医、臨床医、または被験者に対応し得る。ユーザは、1つまたは複数のユーザ装置230を使用して、サンプルがデジタル病理画像生成システム220によって処理され、得られた画像がデジタル病理画像処理システム210によって処理されるという1つまたは複数の要求(例えば、被験者を識別する)を提出し得る。
デジタル病理画像生成システム220は、画像スキャナ224によって生成された画像をユーザ装置230に送り返し得る。次いで、ユーザ装置230は、デジタル病理画像処理システム210と通信して、画像の自動処理を開始する。場合によっては、デジタル病理画像生成システム220は、画像スキャナ224によって生成された画像を、例えばユーザ装置230のユーザの指示において、デジタル病理画像処理システム210に直接提供する。図示しないが、他の中間装置(例えば、デジタル病理画像生成システム220またはデジタル病理画像処理システム210に接続されたサーバのデータストア)が使用され得る。さらに、簡単にするために、ネットワーク200には、ただ1つのデジタル病理画像処理システム210、画像生成システム220、およびユーザ装置230が示されている。本開示は、本開示の教示から必ずしも逸脱することなく、各種のシステムおよびその構成要素のうちの1つまたは複数の使用を予期する。
図2に示すネットワーク200および関連するシステムは、ホールスライド画像などのデジタル病理画像のスキャンおよび評価が作業の不可欠な構成要素である様々なコンテキストにおいて使用され得る。例として、ネットワーク200は、ユーザが可能な診断目的でサンプルを評価している臨床環境に関連付けられ得る。ユーザは、デジタル病理画像処理システム210に画像を提供する前に、ユーザ装置230を使用して画像をレビューし得る。ユーザは、デジタル病理画像処理システム210による画像の分析を案内または指示するために使用され得る追加の情報をデジタル病理画像処理システム210に提供し得る。例えば、ユーザは、スキャン内の特徴の予測診断または予備評価を提供し得る。ユーザはまた、レビューされる組織の種類などの追加のコンテキストを提供し得る。別の例として、ネットワーク200は、例えば、薬物の有効性または潜在的な副作用を決定するために組織が検査されている実験室環境に関連付けられ得る。これに関連して、前記薬物の全身に対する効果を決定するために、複数の種類の組織をレビューのために提出することは一般的であり得る。これは、撮像されている組織の種類に大きく依存し得る画像の様々なコンテキストを決定する必要があり得る人間のスキャン検査者に特定の課題を提示し得る。これらのコンテキストは、任意に、デジタル病理画像処理システム210に提供され得る。
デジタル病理画像処理システム210は、ホールスライド画像を含むデジタル病理画像を処理して、デジタル病理画像を分類し、デジタル病理画像および関連する出力の注釈を生成し得る。タイル生成モジュール211は、各デジタル病理画像に対してタイルのセットを定義し得る。タイルのセットを定義するために、タイル生成モジュール211は、デジタル病理画像をタイルのセットにセグメント化し得る。本明細書で具現化されるように、タイルは、重なり合わない(例えば、各タイルは、任意の他のタイルに含まれていない画像の画素を含む)か、または重なり合い得る(例えば、各タイルは、少なくとも1つの他のタイルに含まれる画像の画素の一部を含む)。各タイルのサイズおよびウィンドウのストライド(例えば、タイルと後続のタイルとの間の画像距離または画素)に加えて、タイルが重なり合うかどうかなどの特徴は、分析のためのデータセットを増減し得て、より多くのタイル(例えば、重なり合うタイルまたはより小さいタイルを介して)は、最終的な出力および視覚化の潜在的な分解能を高める。場合によっては、タイル生成モジュール211は、各タイルが所定のサイズである、および/またはタイル間のオフセットが所定である、画像用のタイルのセットを定義する。さらにまた、タイル生成モジュール211は、各画像について、様々なサイズ、重複、ステップサイズなどのタイルの複数のセットを作成し得る。いくつかの実施形態では、デジタル病理画像自体は、イメージング技術から生じ得るタイル重複を含み得る。タイル重複のないセグメンテーションであっても、タイル処理要件のバランスをとり、本明細書で説明する埋め込み生成および重み値生成への影響を回避するための好ましい解決策であり得る。タイルサイズまたはタイルオフセットは、例えば、各サイズ/オフセットについて1つまたは複数の性能メトリック(例えば、適合率、再現率、精度、および/またはエラー)を計算し、所定の閾値を超える1つまたは複数の性能メトリックに関連付けられた、および/または1つまたは複数の最適な(例えば、高適合率、最高の再現率、最高の精度、および/または最低のエラー)性能メトリックに関連付けられたタイルサイズおよび/またはオフセットを選択することによって決定され得る。タイル生成モジュール211は、検出されている異常の種類に応じてタイルサイズをさらに定義し得る。例えば、タイル生成モジュール211は、デジタル病理画像処理システム210が探索する組織異常の種類を認識して構成され得て、検出を最適化するために組織異常に応じてタイルサイズをカスタマイズし得る。例えば、画像生成モジュール211は、組織異常が肺組織の炎症または壊死を検索することを含む場合、タイルサイズを縮小してスキャン速度を増加させるべきであり、組織異常が肝臓組織のクッパー細胞の異常を含む場合、タイルサイズを拡大して、デジタル病理画像処理システム210がクッパー細胞を全体的に分析する機会を増加させるべきであると決定し得る。場合によっては、タイル生成モジュール211は、各画像について、セット内のタイルの数、セットのタイルのサイズ、セットのタイルの解像度、または他の関連するプロパティが定義され、1つまたは複数の画像のそれぞれについて一定に保持される場合、タイルのセットを定義する。
本明細書で具現化されるように、タイル生成モジュール211は、さらに、1つまたは複数のカラーチャネルまたは色の組み合わせに沿って各デジタル病理画像のタイルのセットを定義し得る。例として、デジタル病理画像処理システム210によって受信されたデジタル病理画像は、いくつかのカラーチャネルのうちの1つに対して指定された画像の各画素の画素色値を有する大規模フォーマットマルチカラーチャネル画像を含み得る。使用され得る色仕様または色空間の例は、RGB、CMYK、HSL、HSV、またはHSBの色仕様を含む。タイルのセットは、カラーチャネルをセグメント化すること、および/または各タイルの輝度マップまたはグレースケール等価物を生成することに基づいて定義され得る。例えば、画像の各セグメントについて、タイル生成モジュール211は、赤色タイル、青色タイル、緑色タイル、および/または輝度タイル、または使用される色指定と同等のものを提供し得る。本明細書で説明するように、画像のセグメントおよび/またはセグメントの色値に基づいてデジタル病理画像をセグメント化することは、タイルおよび画像についての埋め込みを生成し、画像の分類を生成するために使用されるネットワークの精度および認識率を改善し得る。さらに、デジタル病理画像処理システム210は、例えばタイル生成モジュール211を使用して、色仕様間で変換し、および/または複数の色仕様を使用してタイルのコピーを作成し得る。色仕様変換は、所望の種類の画像拡張(例えば、特定のカラーチャネル、飽和レベル、輝度レベルなどの強調または増強)に基づいて選択され得る。色仕様変換はまた、デジタル病理画像生成システム220とデジタル病理画像処理システム210との間の互換性を改善するように選択され得る。例えば、特定の画像スキャンコンポーネントは、HSL色仕様で出力を提供し得て、本明細書に記載のように、デジタル病理画像処理システム210において使用されるモデルは、RGB画像を使用して訓練され得る。タイルを互換性のある色仕様に変換することは、タイルが依然として分析され得ることを保証し得る。さらに、デジタル病理画像処理システムは、デジタル病理画像処理システムによって使用可能であるように特定の色深度(例えば、8ビット、16ビットなど)で提供される画像をアップサンプリングまたはダウンサンプリングし得る。さらにまた、デジタル病理画像処理システム210は、撮像された画像の種類(例えば、蛍光画像は、色強度またはより広い範囲の色に関するより詳細を含むことができる)に応じてタイルを変換させ得る。
本明細書で説明するように、タイル埋め込みモジュール212は、対応する特徴埋め込み空間内の各タイルの埋め込み(例えば、135a、135b、...135n)を生成し得る。埋め込みは、タイルの特徴ベクトルとしてデジタル病理画像処理システム210によって表され得る。タイル埋め込みモジュール212は、ニューラルネットワーク(例えば、畳み込みニューラルネットワーク)を使用して、画像の各タイルを表す特徴ベクトルを生成し得る。特定の実施形態では、タイル埋め込みニューラルネットワークは、ImageNetデータセットなどの自然(例えば、非医療)画像に基づくデータセットで訓練されたResNet画像ネットワークに基づき得る。特殊化されていないタイル埋め込みネットワークを使用することにより、タイル埋め込みモジュール212は、画像を効率的に処理して埋め込みを生成する際の既知の進歩を活用し得る。さらにまた、自然画像データセットを使用することは、埋め込みニューラルネットワークが、全体論的レベルでタイルセグメント間の違いを識別することを学習することを可能にする。
他の実施形態では、タイル埋め込みモジュール212によって使用されるタイル埋め込みネットワークは、デジタル病理ホールスライド画像などの大規模フォーマットの画像の多数のタイルを処理するようにカスタマイズされた埋め込みネットワークであり得る。さらに、タイル埋め込みモジュール212によって使用されるタイル埋め込みネットワークは、カスタムデータセットを使用して訓練され得る。例えば、タイル埋め込みネットワークは、ホールスライド画像の様々なサンプルを使用して訓練され得て、または埋め込みネットワークが埋め込みを生成する主題に関連するサンプルを使用して訓練されることさえもできる(例えば、特定の組織型のスキャン)。画像の特殊なセットまたはカスタマイズされたセットを使用してタイル埋め込みネットワークを訓練することは、タイル埋め込みネットワークがタイル間のより細かい違いを識別することを可能にし得て、その結果、画像を取得するための追加の時間、ならびにタイル埋め込みモジュール212による使用のために複数のタイル生成ネットワークを訓練する計算コストおよび経済的コストを犠牲にして、埋め込み空間内のタイル間のより詳細で正確な距離をもたらし得る。タイル埋め込みモジュール212は、デジタル病理画像処理システム210によって処理されている画像の種類に基づいてタイル埋め込みネットワークのライブラリから選択し得る。
本明細書で説明するように、タイル埋め込み(例えば、135a、135b、...135n)は、タイルの視覚的特徴を使用して深層学習ニューラルネットワークから生成され得る。タイル埋め込みは、タイルに関連するコンテキスト情報から、またはタイルに示されたコンテンツからさらに生成され得る。例えば、タイル埋め込みは、描写されたオブジェクトのサイズ(例えば、示された細胞のサイズまたは収差)および/または描写されたオブジェクトの密度(例えば、示された細胞の密度または収差)を示すおよび/またはそれに対応する1つまたは複数の特徴を含み得る。サイズおよび密度は、絶対的に(例えば、画素単位で表される、または画素からナノメートルに変換された幅)または同じデジタル病理画像から、デジタル病理画像のクラス(例えば、同様の技術を使用して、または単一のデジタル病理画像生成システムもしくはスキャナによって生成される)から、またはデジタル病理画像の関連ファミリーからの他のタイルに対して測定され得る。さらにまた、タイル埋め込みモジュール212が埋め込みを準備するときに分類を考慮するように、タイル埋め込みモジュール212がタイルの埋め込みを生成する前にタイルが分類され得る。
一貫性のために、タイル埋め込みモジュール212は、所定のサイズ(例えば、512項目のベクトル、2048バイトのベクトルなど)の埋め込みを生成する。タイル埋め込みモジュール212は、様々な任意のサイズの埋め込みを生成し得る。タイル埋め込みモジュール212は、ユーザ方向に基づいて埋め込みのサイズを調整し得て、または、例えば、計算効率、精度、または他のパラメータを最適化するように選択され得る。特定の実施形態では、埋め込みサイズは、埋め込みを生成した深層学習ニューラルネットワークの制限または仕様に基づき得る。より大きい埋め込みサイズが使用されて、埋め込みに取り込まれる情報の量を増加させ、結果の品質および精度を改善し得る一方で、より小さい埋め込みサイズが使用されて計算効率を改善し得る。
重み値生成モジュール213は、タイルおよび対応する埋め込みに関連して使用される各タイルの重み値を生成し得る。本明細書で説明するように、重み値は、タイル埋め込みを入力として受信し、アテンションニューラルネットワークまたは単にアテンションネットワークとも呼ばれる、出力としてアテンションスコアを生成するニューラルネットワークによって生成されたアテンションスコアであってもよい。例えば、アテンションスコアは、所与のタイルが特定の出力を予測する程度であるように定義および/または解釈されてもよい。セット内の他のタイルと比較して高いアテンションスコアを有するタイル、またはタイル埋め込みは、デジタル病理画像の分類において高い影響を有するアテンションネットワークによって識別されたと言える。例えば、アテンションネットワークは、タイルまたはタイル埋め込み内の特定の特徴が、正常もしくは異常として、または炎症もしくは壊死を示すものとして分類されるデジタル病理画像に非常に関連することを学習し得る。重み値生成モジュール213は、デジタル病理画像処理システム210が検出し得る出力のクラスごとに少なくとも1つを含む、複数のアテンションネットワークを必要に応じて使用し得る。例として、重み値生成モジュール213は、デジタル病理画像において検出可能な複数の症状のそれぞれに関連付けられたタイルの重要なインスタンスを決定するために、本明細書に記載されているように、訓練された1つまたは複数のアテンションネットワークを使用してもよい。限定ではなく、例として、重み値生成モジュール213は、エンドユーザにとっての有用性の類似性または可能性にしたがってグループ化され得る特定の診断を検出するように訓練されたネットワークを含んでもよい。例えば、ネットワークは、肥大(例えば、肝細胞肥大、クッパー細胞肥大など)、クッパー細胞(例えば、クッパー細胞の色素沈着、クッパー細胞の肥大など)、壊死(例えば、拡散、焦点、凝固など)、グリコーゲン(例えば、グリコーゲン枯渇、グリコーゲン沈着など)、炎症、脂質(例えば、脂質枯渇、脂質沈着など)、腹膜炎、およびデジタル病理画像において検出可能な他の症状を含む症状を検出するように訓練され得る。さらに、重み値生成モジュール213は、デジタル病理画像のタイルの異常を決定し、異常対正常の全体的な重み値を割り当てるように訓練されたアテンションネットワークを含み得る。
いくつかの実施形態は、それぞれのアテンションスコアを有する各所与のタイルを含み得るが、他の実施形態は、1つまたは複数のタイルまたはタイルの一部を含むかまたは含み得る画像の領域に対応するアテンションコアを含んでもよい。例えば、そのような画像領域は、単一のタイルの境界を越えて延在してもよく、または単一のタイルの境界よりも小さい周囲を有してもよい。アテンションスコアは、タイルまたは画像領域内の画像関連詳細(例えば、強度および/または色値)の処理から生じ得る。デジタル病理画像内のタイルの位置などのタイルのコンテキスト情報もまた、アテンションスコアを生成するためにアテンションネットワークによって使用され得る。アテンションネットワークは、画素強度のセットまたは埋め込み空間内の位置に対応する一連の埋め込み(例えば、ベクトル表現)を受信する。アテンションネットワークは、例えば、フィードフォワードネットワーク、パーセプトロンネットワーク(例えば、多層パーセプトロン)、および/または1つもしくは複数の全結合層を有するネットワークを含み得る。ニューラルネットワークは、畳み込みニューラルネットワークおよび1つまたは複数の追加の層(例えば、全結合層)をさらに含み得る。
画像埋め込みモジュール214は、タイル埋め込み(例えば、135a、135b、...135n)および重み値を使用してデジタル病理画像(例えば、ホールスライド画像)の埋め込みを生成する。画像埋め込みは、画像を表すために別の特徴ベクトルの形態をとり得る。本明細書で具現化されるように、画像埋め込みは、重み値生成モジュール213によって生成された重み値がタイル埋め込みを重み付けするために使用されるタイル埋め込みの組み合わせから生じ得る。換言すれば、画像埋め込みは、各アテンションネットワークからのアテンションスコアにしたがってタイル埋め込みの重み付き組み合わせの結果であってもよい。画像埋め込みを生成する際に、画像埋め込みモジュール214は、タイル埋め込み(例えば、135a、135b、...135n)および重み値にさらなる変換および/または正規化を適用し得る。したがって、1つまたは複数の画像埋め込みが生成され得る。特に、画像埋め込みモジュール214は、各アテンションネットワーク(したがって、評価される各症状)に対して1つの画像埋め込みを生成してもよい。画像埋め込みモジュール214はまた、アテンションネットワークにわたる埋め込み値および重み値が組み合わされる、1つまたは複数の合成埋め込みを生成してもよい。
次いで、画像分類モジュール215は、画像埋め込みを処理して、どの分類がデジタル病理画像に適用されるべきかを決定する。画像分類モジュール215は、画像埋め込みからデジタル病理画像を分類するように訓練された1つまたは複数の分類ネットワーク155を含み得るか、または使用し得る。例えば、単一の分類ネットワーク155が訓練されて、分類を識別および区別し得る。別の例では、各分類ネットワーク155が画像埋め込みがその被験者分類または症状を示すか否かを決定するように、関心のある各分類または症状に対して1つの分類ネットワーク155が使用され得る。得られた1つまたは複数の分類は、デジタル病理画像の評価およびデジタル病理画像が1つまたは複数の指定された症状の指標を含むという決定として解釈され得る。例えば、画像分類モジュール215の出力は、一連の症状に対する一連のバイナリのはいまたはいいえの決定を含み得る。出力は、はい判定またはいいえ判定から構成されるベクトルとしてさらに編成され得る。決定は、例えば、画像分類モジュール215またはその構成要素分類ネットワーク155が特定の決定において有する信頼度を表す信頼スコアまたは間隔で増強され得る。例えば、画像分類モジュール215は、デジタル画像が異常細胞を含む可能性が85%、肥大を示さない可能性が80%、炎症を示す可能性が60%などであることを示し得る。さらに、分類器ネットワークの出力は、各潜在的な分類に関連付けられたスコアのセットを含み得る。次いで、画像分類モジュール215は、スコアを評価して信頼性レベルを割り当てる前に、スコアに正規化関数(例えば、ソフトマックス、平均化など)を適用し得る。このようにして、デジタル病理画像処理システム210は、ひいてはタイル埋め込みおよび重み値に基づいて、画像埋め込みからデジタル病理画像を自動的にラベル付けし得る。
本明細書で説明するように、画像埋め込みネットワーク、アテンションネットワーク、および分類ネットワークは、特定の機能のために設計および訓練された人工ニューラルネットワーク(「ANN」)であってもよい。図3は、例示的なANN300を示している。ANNは、1つまたは複数のノードを備える計算モデルを指し得る。例示的なANN300は、入力層310、隠れ層320、330、340、および出力層350を含む。ANN300の各層は、ノード305またはノード315などの1つまたは複数のノードを含み得る。特定の実施形態では、ANNの1つまたは複数のノードは、ANNの別のノードに接続され得る。全結合ANNでは、ANNの各ノードは、ANNの先行層および/または後続層の各ノードに接続される。限定ではなく、例として、入力層310の各ノードは、隠れ層320の各ノードに接続されてもよく、隠れ層320の各ノードは、隠れ層330の各ノードに接続されてもよく、以下同様である。特定の実施形態では、1つまたは複数のノードは、バイアスノードであり、バイアスノードは、前の層のいずれのノードにも接続されておらず、前の層のいずれのノードからも入力を受信しないノードであり得る。図3は、特定の数の層、特定の数のノード、およびノード間の特定の接続を有する特定のANN300を示しているが、本開示は、任意の適切な数の層、任意の適切な数のノード、およびノード間の任意の適切な接続を有する任意の適切なANNを想定している。例として、図3は、入力層310の各ノードと隠れ層320の各ノードとの間の接続を描写するが、特定の実施形態では、入力層310の1つまたは複数のノードは、隠れ層320の1つまたは複数のノードに接続されず、同じことがANN300の残りのノードおよび層にも当てはまる。
特定の実施形態において使用されるANNは、サイクルまたはループを有さず、ノード間の通信が入力層から始まって連続する層に進む一方向に流れるフィードフォワードANNであり得る。例として、隠れ層320の各ノードへの入力は、入力層310の1つまたは複数のノードの出力を含み得る。同様に、出力層350の各ノードへの入力は、隠れ層340のノードの出力を含んでもよい。特定の実施形態において使用されるANNは、少なくとも2つの隠れ層を有する深層ニューラルネットワークであってもよい。特定の実施形態において使用されるANNは、残差ブロックに編成された隠れ層を含むフィードフォワードANNである深層残差ネットワークであってもよい。第1の残差ブロックの後の各残差ブロックへの入力は、前の残差ブロックの出力および前の残差ブロックの入力の関数であり得る。限定ではなく、例として、残差ブロックへの
Figure 2024513678000003
と表されてもよく、ここで、
Figure 2024513678000004
は、残差ブロックの
Figure 2024513678000005
である。本開示は、特定のANNを記載しているが、本開示は、任意の適切なANNを想定している。
特定の実施形態では、ANNの各ノードは、活性化関数を含み得る。ノードの活性化関数は、所与の入力に対するノードの出力を定義または記述する。特定の実施形態では、ノードへの入力は、単数入力であってもよく、または入力のセットを含んでもよい。例示的な活性化関数は、恒等関数、バイナリステップ関数、ロジスティック関数、または任意の他の適切な関数を含み得る。
Figure 2024513678000006
ノードに対応する活性化関数の入力は、重み付けされてもよい。各ノードは、重み付き入力に基づいて対応する活性化関数を使用して出力を生成し得る。本明細書で具現化されるように、ノード間の各接続は、重みに関連付けられ得る。例えば、ノード305とノード315との間の接続325は、0.4の重み係数を有してもよく、これは、ノード315の入力がノード305の出力と乗算された0.4(重み係数)であることを示す。より一般的には、
Figure 2024513678000007
本明細書で具現化されるように、入力層310のノードへの入力は、オブジェクトのベクトル表現とも呼ばれるオブジェクトを表すベクトル、対応する埋め込み空間へのオブジェクトの埋め込み、または他の適切な入力に基づき得る。本開示は、ノードへの特定の入力およびノードの出力を記載しているが、本開示は、ANNにおけるノードへの任意の適切な入力およびノードの出力を想定している。さらに、本開示は、ノード間の特定の接続および重みを記載しているが、本開示は、ノード間の任意の適切な接続および重みを想定している。
特定の実施形態では、ANN300は、訓練データを使用して訓練され得る。限定ではなく、例として、訓練データは、ANN300への入力と、入力に対応するグラウンドトゥルース値のような、予想される出力とを含み得る。例えば、訓練データは、訓練オブジェクトおよび訓練オブジェクトの予想ラベルを表す1つまたは複数のベクトルを含み得る。訓練は、典型的には、同時にまたは連続して複数の訓練オブジェクトによって行われる。ANNを訓練することは、目的関数を最適化することによって、ANNのノード間の接続に関連付けられた重みを修正することを含み得る。限定ではなく、例として、誤差値を逆伝播するために訓練方法が使用されてもよい。誤差値は、例えば誤差を最小化するコスト関数、または二乗和誤差などの誤差から導出される値を使用して、訓練対象を表す各ベクトル間の距離として測定され得る。訓練方法の例は、共役勾配法、勾配降下法、確率的勾配降下法などを含むが、これらに限定されない。特定の実施形態では、ANNは、1つまたは複数のノードが、入力を受信しないか、または出力を生成しないように訓練する間、一時的に省略されるドロップアウト技術を使用して訓練され得る。各訓練オブジェクトについて、ANNの1つまたは複数のノードは、省略される確率を有する。特定の訓練オブジェクトのために省略されるノードは、他の訓練オブジェクトのために省略されるノードとは異なり得る。本開示は、特定の方式においてANNを訓練することを記載しているが、本開示は、任意の適切な方式においてANNを訓練することを想定している。
重み値生成モジュール213は、タイルの各埋め込みに関連付けられたアテンションスコアに正規化関数をさらに適用し得る。正規化関数は、タイルにわたる重み値(例えば、アテンションスコア)を正規化するために使用され得る。例えば、適用され得る1つの正規化関数は、以下のソフトマックス関数である:
Figure 2024513678000008
ここで、
Figure 2024513678000009
ソフトマックス関数は、入力ベクトルの各要素に標準指数関数を適用し、全ての指数関数の和を除算することによって値を正規化する。正規化は、出力ベクトルの成分の合計が1に等しいことを保証する。正規化関数は、(例えば、異なる指数関数を使用した)ソフトマックス関数に対する修正を含んでもよく、またはソフトマックス関数の代替を完全に使用してもよい。
デジタル病理画像処理システム210の出力生成モジュール216は、デジタル病理画像、タイル、タイル埋め込み、重み値、画像埋め込み、および分類を使用して、入力として受信したデジタル病理画像に対応する出力を生成し得る。本明細書に記載されるように、デジタル病理画像のラベルおよび注釈に加えて、出力は、様々な視覚化および対話型グラフィックを含み得る。多くの実施形態では、出力は、表示のためにユーザ装置230に提供されるが、特定の実施形態では、出力は、デジタル病理画像処理システム210から直接アクセスされ得る。
一実施形態では、所与のデジタル病理画像の出力は、デジタル病理画像内の関心領域を識別して強調表示するいわゆるヒートマップを含み得る。ヒートマップは、特定の症状または診断を表示または相関する画像の部分を示すことができ、そのような表示の精度または統計的信頼度を示し得る。図4Aは、例示的なヒートマップ400および同じヒートマップの詳細図405を示している。ヒートマップは、複数のセルから構成される。セルは、デジタル病理画像から生成されたタイルに直接対応してもよく、または(例えば、ヒートマップに有用であるよりも多数のタイルが生成される場合)タイルのグループに対応してもよい。各セルに強度値が割り当てられ、強度値は全てのセルにわたって正規化され得る(例えば、セルの強度値が0から1、0から100などの範囲となるように)。ヒートマップを表示する際に、セルの強度値は、異なる色、パターン、または強度の他の視覚的表現などに変換されてもよい。図4Aに示す例では、セル407は、高強度セル(赤色タイルによって表される)であり、セル409は、低強度セル(青色タイルによって表される)である。いくつかの実施形態では、異なる強度を示すために色勾配も使用され得る。特定の実施形態では、各セルの強度値は、1つまたは複数のアテンションネットワークによって対応するタイルに対して決定された重み値から導出されるか、またはそれに対応し得る。したがって、ヒートマップが使用されて、デジタル病理画像処理システム210、特に重み値生成モジュール213が特定の症状の指標を含む可能性が高いと識別したデジタル病理画像のタイルを迅速に識別し得る。図4Aに示す例では、単一のヒートマップのみが生成されている。このヒートマップは、関心のある分類に基づいてもよく、これは、デジタル病理画像に示される最も可能性の高い症状として選択されたもの、またはレビューのためにユーザによって選択されたものであり得る。単一のヒートマップはまた、1つまたは複数のアテンションネットワークによって生成された重み値の合成を含み得る。
重み値生成モジュール213は、複数のアテンションネットワークを使用してアテンションスコアおよび重み値を生成し得るため、出力生成モジュール216は、等しい数のヒートマップ(例えば、アテンションネットワークが症状の指標のインスタンスを識別するように構成されている各分類に対応する1つのヒートマップ)を生成し得る。図4Bは、単一のデジタル病理画像415に対していくつかのヒートマップ410a~410iが生成された例を示している。図4Bに示すように、異なる色を表示する異なるヒートマップは、アテンションネットワークを使用して、異常(図4B、410a;図4Cに示す拡大版)、肥大(図4B、410b;図4Dに示す拡大版)、クッパー細胞(図4B、410c;図4Eに示す拡大版)、壊死(図4B、410d;図4Fに示す拡大版)、グリコーゲン(図4B、410e;図4Gに示す拡大版)、炎症(図4B、410f;図4Hに示す拡大版)、脂質(図4B、410g;図4Iに示す拡大版)、腹膜炎(図4B、410h;図4Jに示す拡大版)、またはその他(図4B、410i;図4Kに示す拡大版)などの異なる種類の細胞、細胞構造、または組織の種類を識別した場合の異なる結果を表す。各ヒートマップは、タイルが対応するアテンションネットワークの関連付けられた症状の指標であるか、またはその指標を含む可能性の高さに基づいて、デジタル病理画像のタイルの相対的な重みを示す。
出力生成モジュール216によって生成され得る別の例示的な出力は、デジタル病理画像の注釈である。注釈は、デジタル病理画像内のユーザにとって関心領域(例えば、病理医または臨床医)を自動的に示し得る。本明細書に記載されるように、デジタル病理画像のための注釈の生成は、多くの場合、かなりの量の訓練を受けた個人の入力を必要とする困難で時間のかかるタスクである。アテンションネットワークによって生成された重み値を使用して、デジタル病理画像処理システム210は、ユーザが注目すべき領域を、関心のある症状の指標を含むものとして識別し得る。例として、出力生成モジュールは、デジタル病理画像のタイルのセットにわたる重み値を比較し、画像または種類の画像についてのノルム外の重み値を有するタイルを識別し得る。出力生成モジュールは、重み値を、ユーザによって選択され得るか、またはデジタル病理画像処理システム210によって予め決定され得る閾値重み値と比較し得る。閾値は、評価されている症状の種類に基づいて異なり得る(例えば、「異常」注釈の閾値は、「壊死」注釈の閾値とは異なり得る)。したがって、入力されたデジタル病理画像の注釈は、デジタル病理画像のタイルのセット内のキーインスタンスの識別に基づき得る。
さらにまた、注釈は、パターンマッチングを適用することによって、例えば画像全体にわたって同じ異常を含むタイルに注意を払うことによって、同じデジタル病理画像内に含まれる視覚的一致を識別するプロセスを単純化し得る。本明細書で具現化されるように、デジタル病理画像処理システム210は、(例えば、重み値を使用して)関心のあるタイルを識別した後、識別されたタイルの画素に対して勾配降下を実行して、アテンションネットワークによって見落とされた可能性がある識別されたタイルと同様の視覚的特性を有するタイルの認識および関連付けを最大化し得る。したがって、デジタル病理画像処理システム210は、どの視覚パターンが関心のある各タイルの分類決定を最大化するかを学習および識別し得る。この認識は、新たなパターンが検討中の各デジタル病理画像について学習されるアドホックベースで実行されてもよく、または共通パターンのライブラリに基づいてもよい。例えば、デジタル病理画像処理システム210は、各分類について頻繁に発生するパターンを記憶し、タイルをそれらのパターンと積極的に比較して、デジタル病理画像のタイルおよび領域の識別を支援し得る。
タイル埋め込みのセット(例えば、135a、135b、...135n)が注釈付けのために識別されると、デジタル病理画像処理システム210は、後方に働き、それらのタイル埋め込みに対応するタイルを識別する。例えば、各埋め込みは、タイル埋め込み内のタイル識別子を介して識別され得るタイルに一意に関連付けられ得る。次いで、デジタル病理画像処理システム210は、タイルの集合が同じ症状または表示を提示するように決定された状況で、近接タイルをグループ化しようと試みる。タイルの各グループ化は、収集され、関連する注釈とともに表示する準備がされ得る。
注釈を含むデジタル病理画像の第1の例が図5Aに示されている。デジタル病理画像500は、表示のためにユーザ装置230(図示せず)に提供され得る。画像500は、関心領域の周りに描かれたボックスとして示される注釈505aおよび505bに関連して示され得る。したがって、観察者は、関心領域の周囲の領域の状況を容易に見得る。注釈は、ユーザがオンまたはオフにし得る対話型オーバーレイとして提供され得る。ユーザ装置230のインターフェース内で、ユーザはまた、ズーム、パンなどのデジタル病理画像を閲覧する典型的な機能を実行し得る。
注釈を含むデジタル病理画像の第2の例が図5Bに示されている。デジタル病理画像510は、画像の一部を強調する対話型オーバーレイとともに示されている。例えば領域515a、515b、および515cなどの強調表示は、強調表示された領域間の類似性および差異を示す色分けまたは他の視覚的表示とともに示されてもよい。例えば、領域515bおよび515cは、同じ色によって示され、領域515aとは異なって示されてもよい。これは、例えば、領域515bおよび515cが第1の症状に関連付けられ、領域515aが第2の症状に関連付けられていることを示し得る。色分けはまた、例えば、領域に利用可能な詳細情報があること、またはユーザが領域に関するレポートを既に見ていることをユーザに示すために使用されてもよい。オーバーレイインターフェースは、対話型であってもよい。例えば、ユーザは、ユーザ装置230の適切なユーザ入力装置を使用して、領域515cなどの領域を選択し得る。領域選択を検出すると、オーバーレイは、ユーザによる検討のために領域に関する追加の詳細を提供し得る。図示のように、ユーザは、領域515cを選択している。ユーザの選択を検出すると、デジタル病理画像処理システム210は、ユーザ装置230のユーザインターフェースに表示される情報ボックス525をプロンプトし得る。情報ボックスは、領域515cに関連付けられた様々な情報を含み得る。例えば、情報ボックスは、検出された症状およびこの症状における情報処理システム210の信頼性のレベルに関する詳細なレポートを提供し得る。情報ボックスは、限定されないが、領域内のタイルの数、(絶対的またはサンプルに対する)領域のおおよそのサイズ、同様の症状を示す他のタイルが検出されたこと、および他の適切な情報を含む、領域515cを構成するタイルに関する情報を提供し得る。情報ボックスは、限定ではなく例として、領域サイズ、細胞サイズ、核サイズ、領域内の細胞間の距離、領域内の核間の距離、異なる細胞種類間の距離(例えば、炎症細胞と正常細胞との間の距離、炎症細胞と腫瘍細胞との間の距離など)、特定の症状を示す領域間の距離(例えば、領域内の壊死領域間の距離)、および領域内の1つまたは複数の細胞と異なる種類の組織またはオブジェクトとの間の距離(例えば、細胞と最も近い血管との間の距離など)を含む、領域に描かれた組織に関する情報をさらに提供し得る。
図6A~図6Dは、デジタル病理画像処理システム210を訓練するための、特に重み値を生成するために使用されるアテンションネットワークを訓練するための、およびデジタル病理画像処理システム210の様々なサブシステムおよびモジュールによって使用される分類ネットワークを訓練するための例示的なプロセス600を示している。一般に、訓練プロセスは、グラウンドトゥルースラベルを有する訓練データ(例えば、ホールスライド画像)をデジタル病理画像処理システム210に提供することと、アテンションネットワークに、正常データを異常データと区別するキーインスタンス(例えば、タイル)を識別することを学習させることと、分類ネットワークに、関心のある分類に正に対応するタイル埋め込み値を識別することを学習させることと、を含む。様々なネットワークおよびモデルの統合された使用は、比較的構造化されていない学習アプローチが一般的に利用可能なラベリング(例えば、正常および異常)から始まり、タイルおよびその分類における異常組織を識別するように学習するため、大きなホールスライド画像などのデジタル病理画像において特に有利である。これは、異常組織の位置の特定、注釈の生成、およびそれらの正の分類に必要な負担を軽減する。
この種の学習構造のモデルは、複数インスタンス学習と呼ばれることがある。複数インスタンス学習では、インスタンスの集合がラベルを有するセットとして一緒に提供される。個々のインスタンスは、多くの場合、セットのみにラベル付けされないことに留意されたい。ラベルは、典型的には、存在する症状に基づく。記載されたシステムによって使用される複数インスタンス学習技術における基本的な仮定は、セットが存在する症状を有するとしてラベル付けされた場合(例えば、ホールスライド画像が異常とラベル付けされた場合)、セット内の少なくとも1つのインスタンスが異常であることである。逆に、セットがインスタンスを有していないとラベル付けされている場合(例えば、ホールスライド画像に通常のラベルが付けられている場合)、セット内のインスタンスは異常ではない。この原理および反復訓練アプローチから、アテンションネットワークは、異常なスライドに相関するタイル(または、より具体的には、タイル埋め込み)の特徴を識別することを学習し得る。
デジタル病理画像処理システム210の訓練コントローラ217は、デジタル病理画像処理システム210によって使用される1つまたは複数のモデル(例えば、ニューラルネットワーク)および/または機能の訓練を制御し得る。場合によっては、デジタル病理画像処理システム210によって使用される複数または全てのニューラルネットワーク(例えば、タイル埋め込みを生成するために使用されるアテンションネットワーク、重み値を生成するために使用されるネットワーク、画像埋め込みに基づいて画像を分類するために使用されるネットワーク)は、訓練コントローラ217によって一緒に訓練される。場合によっては、訓練コントローラ217は、デジタル病理画像処理システム210によって使用してモデルを選択的に訓練し得る。例えば、デジタル病理画像処理システム210は、タイル埋め込みを生成するために予め構成されたモデルを使用し、重み値を生成するためにアテンションネットワークを訓練することに焦点を合わせ得る。
図6Aに示すように、610において、訓練コントローラ217は、デジタル病理画像のセット(例えば、ホールスライド画像605a、605b、605c)を含む訓練データを選択、取得、および/またはアクセスし得る。訓練データは、ラベルの対応するセット(例えば、それぞれ「異常」、「異常」、「正常」)をさらに含む。620において、訓練コントローラ217は、例えばタイル生成モジュール211を使用して、デジタル病理画像処理システム210に、各ホールスライド画像を複数のタイルにセグメント化させる。例えば、図6Aに示すように、ホールスライド画像605aをタイル606a、606b、...、606nにセグメント化し、ホールスライド画像605bをタイル607a、607b、...、607nにセグメント化し、ホールスライド画像605cをタイル608a、608b、...、608nにセグメント化する。訓練目的のために、異常とラベル付けされたホールスライド画像からセグメント化されたタイルも異常とラベル付けされる。630において、訓練コントローラ217は、例えばタイル埋め込みモジュール212を使用して、デジタル病理画像処理システム210に、埋め込みネットワーク625を使用して複数のタイルの各タイルの埋め込みを生成させる。例えば、図6Aに示すように、タイル埋め込みモジュール212は、タイル606aの埋め込み611a、タイル607aの埋め込み612a、タイル608aの埋め込み613a、タイル606bの埋め込み611b、タイル607bの埋め込み612b、タイル608bの埋め込み613b、タイル606nの埋め込み611n、タイル607nの埋め込み612n、およびタイル608nの埋め込み613nを生成する。
図6Bは、各ホールスライド画像から生成された埋め込みからキーインスタンス(例えば、高い注目値)を識別するように重み値生成モジュール213のアテンションネットワークを訓練するためのプロセスを示している。このプロセスは、何度も繰り返され、各訓練サイクルは、エポックと呼ばれる。簡単にするために、プロセスは、ただ1つのアテンションネットワーク635を使用して示されているが、同じ技術が複数のアテンションネットワークに同時に適用されてもよい。各エポックの間、各ホールスライド画像からランダムにサンプリングされた埋め込みの選択が、アテンションネットワーク635への入力として提供される。例えば、訓練コントローラ217は、各エポックに使用される埋め込みセットを選択するためにサンプリング関数633を使用し得る。アテンションネットワーク635は、サンプリングされた各選択から埋め込みのためのアテンションスコアA、A、...Aを生成する。
訓練コントローラ217は、エポックの間に生成されたアテンションスコアを評価するために、1つまたは複数の損失またはスコアリング関数637を使用する。訓練コントローラ217は、各個々の画像に対応する埋め込みにわたってアテンションスコアの変動または差にペナルティを課す損失関数を使用し得る。「正常」および「異常」画像の「正常」タイルの差を最小限に抑えるべきであるという直感に基づいて、損失関数は、各ランダムサンプリングに対して生成されたアテンションスコアの分布と基準分布との差にペナルティを課し得る。基準分布は、(例えば)デルタ分布(例えば、ディラックデルタ関数)または一様もしくはガウス分布を含み得る。基準分布および/またはアテンションスコア分布の前処理が実行され得て、これは(例えば)2つの分布の一方または双方を同じ質量中心または平均を有するようにシフトすることを含み得る。あるいは、アテンションスコアは、分布を生成する前に前処理されてもよいことが理解されよう。損失関数は、(例えば)カルバック・ライブラー(KL)発散を使用して分布間の差を特徴付け得る。アテンションスコア分布が複数の異なるピークを含む場合、デルタ分布または一様分布を有する発散は、より劇的であり得て、これはより高いペナルティをもたらし得る。「正常な」埋め込みのアテンションスコアの差は最小化されるが、損失関数は、「異常な」タイルの差に報酬を与え、アテンションネットワークに、正常なタイルの中から異常なタイルを識別することを学習するように効果的に促し得る。別の技術は、タイルアテンションスコアにわたる変動性の欠如にペナルティを課す損失関数を使用してもよい。例えば、損失関数は、アテンションスコア分布とデルタまたは一様分布との間のK-L発散と逆の方法でペナルティをスケーリングし得る。したがって、場合によっては、異なるラベルに関連付けられたタイルに異なる種類(例えば、反対の種類)の損失が使用される。損失関数の結果R、R、...、Rは、アテンションネットワーク635に提供され、アテンションネットワーク635に修正を適用または保存してスコアを最適化する。アテンションネットワーク635が修正された後、別の訓練エポックは、入力タイルのランダム化されたサンプルによって始まる。
訓練コントローラ217は、いつ訓練を中止すべきかを決定する。例えば、訓練コントローラ217は、設定された数のエポックに対してアテンションネットワーク635を訓練することを決定し得る。別の例として、訓練コントローラ217は、損失関数が、アテンションネットワークが分布間の発散の閾値を超えたことを示すまで、アテンションネットワーク635を訓練することを決定してもよい。別の例として、訓練コントローラ217は、訓練を周期的に一時停止し、適切なラベルが既知であるタイルの試験セットを提供してもよい。訓練コントローラ217は、試験セット上の既知のラベルに対してアテンションネットワーク635の出力を評価して、アテンションネットワーク635の精度を決定し得る。精度が設定閾値に到達すると、訓練コントローラ217は、アテンションネットワーク635の訓練を中止し得る。
より高いアテンションスコアを異常タイルに関連付けることによって提供されたタイル埋め込みセットのキーインスタンスを識別するように十分に訓練されたアテンションネットワーク635を用いて、訓練コントローラ217は、分類器ネットワークを訓練し得る。図6Cおよび図6Dは、埋め込みネットワーク625が埋め込みを生成した後、図6Aに示す例に続く。図6Cに示すように、640において、訓練コントローラ217は、例えば重み値生成モジュール213を使用して、デジタル病理画像処理システム210に、各画像から埋め込みの重み値を生成させる。例えば、重み値生成モジュール213は、画像605aからそれぞれ埋め込み611a、611b、...611nのための重み値a、b、...nを生成し、画像605bからそれぞれ埋め込み612a、612b、...612nのための重み値a、b、...、nを生成し、画像605cからそれぞれ埋め込み613a、613b、...613nのための重み値a、b、...nを生成する。重み値を生成するために、重み値生成モジュール213は、本明細書で説明されるように、埋め込みのためのアテンションスコアを生成するために、1つまたは複数のアテンションネットワーク635を生成し得る。アテンションスコアは、重み値として使用する前にさらに正規化され得る。簡略化のために単一のアテンションネットワーク635のみが図6Cに示されているが、いくつかのアテンションネットワーク(例えば、異なる症状の指標を識別するように訓練される)が使用されてもよい。
650において、訓練コントローラ217は、例えば画像埋め込みモジュール214を使用して、デジタル病理画像処理システム210に、それぞれの埋め込みに重みを付けるために各埋め込みに対して生成された重み値を使用して、重み付き組み合わせにおいてタイル埋め込みを組み合わせることによって各ホールスライド画像の画像埋め込みV、V、...Vを計算させる。例えば、画像605aの画像ベクトルVは、重み値a1、b1、...、n1と組み合わせて埋め込み611a、611b、...、611nから生成されてもよく、画像605bの画像ベクトルVは、重み値a、b、...、nと組み合わせて埋め込み612a、612b、...、612nから生成されてもよく、画像605cの画像ベクトルVは、重み値a、b、...、nと組み合わせて埋め込み613a、613b、...、613nから生成されてもよい。
図6Dに示すように、660において、訓練コントローラ217は、例えば画像分類モジュール215を使用して、デジタル病理画像処理システム210に、画像埋め込みV、V、...Vを使用して画像605a、605b、および605cを分類させ得る。画像埋め込みは、分類を生成するために、1つまたは複数の分類ネットワーク655への入力として提供される。簡略化のために、単一の分類ネットワークのみが示されているが、いくつかの分類ネットワークが一緒に使用され、訓練されてもよい。分類ネットワーク635は、画像埋め込みに基づいて画像分類を生成し、例えば、分類Cは、画像ベクトルVから生成され、分類Cは、画像ベクトルVから生成され、分類Cは、画像ベクトルVから生成される。分類ネットワーク635が、画像ベクトルが設定されたクラスに属するか否かのバイナリ判定を行うように訓練される場合、複数の分類ネットワーク635は、画像ベクトルがある範囲のクラスに属することを識別するように並列に訓練されてもよい。
670において、訓練コントローラ217は、分類されている画像のそれぞれについてのグラウンドトゥルース分類にアクセスする。図6Dに示すように、グラウンドトゥルース分類Tは、画像605aに対応し、グラウンドトゥルース分類Tは、画像605bに対応し、グラウンドトゥルース分類Tは、画像605cに対応する。グラウンドトゥルース分類は、正確または理想的な分類であることが知られている分類である。例えば、グラウンドトゥルース分類は、訓練画像のデータセットの一部として提供されてもよく、病理医または他の人間のオペレータによって生成されてもよい。アテンションネットワーク635を訓練するのと同様に、損失またはスコアリング関数675を使用して、訓練コントローラ217は、画像分類をグラウンドトゥルース分類と比較し、各画像の結果R、R、...Rを準備する。スコアリング関数675は、不正確な分類にペナルティを課し、正確な分類に報酬を与え得る。さらに、分類ネットワーク635が信頼区間を生成する実施形態では、スコアリング関数675は、例えば、強く信頼できるが不正確な分類が、軽度に信頼できる分類よりも厳しくペナルティを課されるように、それらの信頼をさらに強化し得る。結果は、分類ネットワーク635にフィードバックされ得て、分類ネットワークは、スコアリング結果を最適化するための変更を行うかまたは保存する。分類ネットワークは、指定された数のエポックに到達するまで、またはスコアリング閾値に到達するまで、同じ画像埋め込みセットを繰り返し使用して訓練および更新され得る。訓練コントローラはまた、様々な訓練画像を使用して分類ネットワーク635を訓練するために複数の反復を実行し得る。分類ネットワークはまた、画像の予約された試験セットを使用して検証されてもよい。
場合によっては、訓練コントローラ217は、特定のラベルに関連付けられた訓練画像を優先的に選択、取得、および/またはアクセスする。したがって、訓練データセットは、特定のラベルに関連付けられたデジタル病理画像に向かってバイアスされ得る。訓練データセットは、正常症状を示すラベルに関連付けられた画像と比較して、異常症状または指定された異常症状(例えば、炎症および壊死)を示すラベルに関連付けられたより多くの画像を含むように定義され得る。これは、より「正常な」画像が容易に利用可能になるという予想を説明するために行われ得るが、デジタル病理画像処理システム210は、異常画像を識別することを目的とし得る。
本明細書で説明するように、デジタル病理画像(例えば、ホールスライド画像)のラベルを取得するための従来のプロセスは、困難で時間がかかる。本明細書に記載のデジタル病理画像処理システム210ならびに前記システムの使用および訓練方法は、デジタル病理画像処理システムの様々なネットワークを訓練するために利用可能な画像のセットを増加させるために使用され得る。例えば、既知のラベル(潜在的に注釈を含む)を有するデータを使用する初期訓練パスの後、デジタル病理画像処理システム210が使用されて、既存のラベルなしで画像を分類し得る。生成された分類は、人間のエージェントによって検証されてもよく、補正が必要な場合、デジタル病理画像処理システム210(例えば、分類ネットワーク)は、新たなデータを使用して再訓練されてもよい。このサイクルは繰り返してもよく、これまで見られなかった例では精度率を改善するために観察者の介入が必要になると予想される。さらに、指定された精度レベルに到達すると、デジタル病理画像処理システム210によって生成されたラベルは、例えば、重み値生成モジュール213によって使用されるアテンションネットワーク635など、訓練のためのグラウンドトゥルースとして使用され得る。
図7は、アテンションネットワークおよび分類ネットワークを使用して、ホールスライド画像を含むデジタル病理画像の画像分類のための例示的な方法700を示している。本方法は、ステップ710において開始し得て、デジタル病理画像処理システム210において、デジタル病理画像を受信するか、そうでなければアクセスする。本明細書に記載されるように、デジタル病理画像処理システム210は、デジタル病理画像生成システムから画像を直接受信してもよく、またはユーザ装置230から画像を受信してもよい。他の実施形態では、デジタル病理画像処理システム210は、デジタル病理画像処理システム210が分析用画像を受信するのを容易にするデジタル病理画像を記憶するためのデータベースまたは他のシステムと通信可能に結合され得る。
ステップ715において、デジタル病理画像処理システム210は、画像をタイルにセグメント化する。本明細書に記載されるように、デジタル病理画像は、標準的な画像よりも大幅に大きく、標準的な画像認識および分析に通常実行可能であるよりもはるかに大きいと予想される(例えば、100,000画素×100,000画素程度)。分析を容易にするために、デジタル病理画像処理システムは、画像をタイルにセグメント化する。タイルのサイズおよび形状は、分析の目的のために均一であるが、サイズおよび形状は、可変であってもよい。いくつかの実施形態では、タイルは、デジタル病理画像処理システム210によって画像コンテキストが適切に分析される機会を増やすために重複し得る。行われる作業と精度とのバランスをとるために、重複しないタイルを使用することが好ましい場合がある。さらに、画像をタイルにセグメント化することは、画像に関連付けられたカラーチャネルまたは主要な色に基づいて画像をセグメント化することを含み得る。
ステップ720において、デジタル病理画像処理システム210は、各タイルに対応するタイル埋め込みを生成する。タイル埋め込みは、タイルを適切な埋め込み空間にマッピングし得て、タイルに示された特徴を表すと見なされ得る。埋め込み空間内では、空間的に近接したタイルは類似していると見なされ、埋め込み空間内のタイル間の距離は非類似性を示す。タイル埋め込みは、タイル(例えば、画像)を入力として受信し、埋め込み(例えば、ベクトル表現)を出力として生成する埋め込みネットワークによって生成され得る。埋め込みネットワークは、自然(例えば、非医療)画像で訓練されてもよく、または埋め込みネットワークへの入力と同様であると予想される画像に特化されてもよい。自然な画像を使用すると、利用可能な訓練データの洗練度が向上するが、特殊な画像を使用すると、埋め込みネットワークの弾力性が向上し、画像埋め込みネットワークが入力画像内のより細かい詳細を識別することを学習することを可能にし得る。
ステップ725において、デジタル病理画像処理システム210は、1つまたは複数のアテンションネットワークを使用して各タイルのアテンションスコアを計算する。アテンションスコアは、1つまたは複数の特別に訓練されたアテンションネットワークによって生成されてもよい。アテンションネットワークは、タイル埋め込みおよび入力を受信し、タイルの相対的な重要度を示す各タイル埋め込みのスコアを生成する。タイルの重要度、したがってアテンションスコアは、「通常の」タイルとは異なるタイルを識別することに基づいている。これは、異常を有する組織を描写するデジタル病理画像であっても、タイルの圧倒的大部分が正常に見える組織を描写するという直感に基づいている。したがって、アテンションネットワークは、各セット内の残りのタイルとは異なるタイル埋め込み(したがって、タイル)を効率的に抽出し得る。複数のアテンションネットワークが同時に使用されてもよく、各アテンションネットワークは、特定の方法で異常なタイル(例えば、異なる種類の異常を示す)を識別するように訓練される。
ステップ730において、デジタル病理画像処理システム210は、対応するアテンションスコアに基づいて各埋め込みの重み値を計算する。重み値は、アテンションスコアと高度に相関しているが、アテンションスコアの値のバランスをとり、異なるタイル、画像、およびアテンションネットワークにわたるアテンションスコアの比較を容易にするために正規化関数(例えば、ソフトマックス関数)を適用するなどの正規化方法から生じ得る。
ステップ735において、デジタル病理画像処理システム210は、タイル埋め込みおよび対応する重み値に基づいて画像に対応する画像埋め込みを計算する。画像埋め込みは、(例えば、キータイルを識別するアテンションネットワークに基づいて)画像のコンテキストを失うことなく、通常の大規模フォーマットデジタル病理画像の効率的な表現として機能する。画像埋め込みは、組み合わせにおける重みとして重み値を使用するタイル埋め込みの重み付き組み合わせから生じ得る。複数のアテンションネットワークを使用して複数の症状を識別しようとする実施形態では、デジタル病理画像処理システム210は、(それぞれが画像を分類するために使用され得る)複数の画像埋め込みを生成し得て、またはデジタル病理画像処理システム210は、タイル埋め込みおよび複数の重み値セットに基づいて統一画像表現を作成し得る。
ステップ740において、デジタル病理画像処理システム210は、1つまたは複数の分類ネットワークを使用して、画像埋め込みに基づいてデジタル病理画像分類を生成する。分類ネットワークは、入力として画像埋め込みを受信し、画像の予測された分類(例えば、正常、異常、炎症の描写など)または画像が指定された分類に属するという決定のいずれかを生成する人工ニューラルネットワークを含み得る(例えば、複数の分類ネットワークが使用され、それぞれが画像の単一の分類を識別するように訓練される実施形態では)。分類ネットワークはまた、分類ネットワークの確度を示し得る検出された分類の信頼スコアまたは間隔を生成し得る。デジタル病理画像処理システム210は、デジタル病理画像処理システムに追加され得る分類の数または種類に限定されず、したがって、新たな分類のための追加の訓練サンプルが識別されると、デジタル病理画像処理システムの能力は、半モジュール式に拡張され得る。
ステップ745において、デジタル病理画像処理システム210は、デジタル病理画像のための拡張オーバーレイまたは対話型インターフェースを生成し得る。強化されたオーバーレイまたは対話型インターフェースは、デジタル病理画像処理システムの内部動作に対する洞察も提供しながら、画像の観察者の理解を高めるように設計されたデジタル病理画像の視覚化を含み得る。例えば、本明細書で説明するように、デジタル病理画像処理システム210は、デジタル病理画像のタイル(または関連するグループ)にマッピングするデジタル病理画像の1つまたは複数の「ヒートマップ」を生成し得る。ヒートマップのセルの強度は、例えば、アテンションネットワークによって生成されたアテンションスコアまたは重み値に対応し得る。したがって、複数のヒートマップ(各アテンションネットワークに対応するヒートマップ)が作成されてもよく、または、様々なアテンションネットワークの出力を示す単一のヒートマップが作成されてもよい。デジタル病理画像処理システム210はまた、観察者にとって関心があり得る画像の領域を識別するデジタル病理画像のための注釈を生成し得る。例えば、アテンションスコアまたは重み値を使用して、デジタル病理画像処理システム210は、画像の領域を識別し、その領域に関連付けられたタイルの、分類ネットワークによって決定された分類を示し、その領域およびその領域内のタイルに関する追加データを提供し得る。システムはまた、注釈特徴内のタイルを使用して、画像内の他のタイルに対して画像分析および認識を実行し、同様の特徴がどこで見つかるかを示し得る。これらの形態の出力、および他の多くの出力は、ユーザ装置230を介して提供されるように設計され得る。
ステップ750において、デジタル病理画像処理システム210は、タイル埋め込み、画像埋め込み、および/または分類に基づいて、デジタル病理画像またはそこに描写された組織の派生特性を識別し得る。例えば、デジタル病理画像処理システム210は、タイル埋め込みにおいて取り込まれた特定の種類の分類または特徴間の関連付けおよび相関を記憶し得る。例えば、デジタル病理画像処理システムは、デジタル病理画像に描写され得る異常の種類間の自然な関連を学習し得る。したがって、派生特性は、デジタル病理画像内の追加の特徴を探すためのユーザへの警告またはリマインダとして機能し得る。派生特性はまた、デジタル病理画像にわたってタイル埋め込みを相関させ得る。例えば、デジタル病理画像処理システム210は、タイル埋め込みまたはタイル埋め込みのパターンを記憶し、以前にレビューされた画像間の類似性に注意を払うために評価されている画像とパターンマッチングを実行し得る。したがって、デジタル病理画像処理システム210は、基礎となる類似性および特性を識別するためのツールとして機能し得る。
ステップ755において、デジタル病理画像処理システム210は、表示のために生成された出力を提供する。生成された出力は、例えば、デジタル病理画像分類、拡張オーバーレイもしくは対話型インターフェース、またはそれらの派生特性および統計を含み得る。これらの出力などは、例えば、適切に構成されたユーザ装置230を介してユーザに提供され得る。出力は、デジタル病理画像処理システム210によって実行された分析をユーザがレビューすることを容易にすると同時に、ユーザの独立した分析もサポートする対話型インターフェースにおいて提供され得る。例えば、ユーザは、出力の様々な特徴をオンまたはオフにし、ズームし、パンし、そうでなければデジタル病理画像を操作し、分類、注釈、および派生特性に関するフィードバックまたはノートを提供し得る。
ステップ760において、デジタル病理画像処理システム210は、提供された出力に関するフィードバックを受信し得る。ユーザは、分類または注釈の精度に関するフィードバックを提供し得る。ユーザは、例えば、デジタル病理画像処理システム210によって以前に識別されなかったユーザにとって関心領域(および関心がある理由)を示すことができる。ユーザは、デジタル病理画像処理システム210によってまだ提案されていないかまたは取り込まれていない画像の追加の分類をさらに示し得る。このフィードバックはまた、例えば臨床ノートとして、ユーザの後のアクセスのために記憶され得る。
ステップ765において、デジタル病理画像処理システム210は、フィードバックを使用して、生成された分類に使用されたネットワーク、例えばアテンションネットワークまたは分類ネットワークのうちの1つまたは複数を再訓練する。デジタル病理画像処理システム210は、フィードバックを使用して、デジタル病理画像処理システム210に利用可能なデータセットを、フィードバックがその信頼性を高める人間の専門家によって提供されているというさらなる利点で補い得る。デジタル病理画像処理システム210は、その分類の精度を高めるとともに、デジタル病理画像処理システムが主要な関心領域(例えば、高いアテンションスコアを非常に記述的なタイルに帰属させる)を識別する速度を高めることを目的として、システムによって提供される分析の基礎となるネットワークを連続的に修正し得る。したがって、デジタル病理画像処理システム210は、静的なシステムではなく、継続的な改善を提供し、利益を得てもよい。
特定の実施形態は、適切な場合には、図7の方法の1つまたは複数のステップを繰り返し得る。本開示は、図7の方法の特定のステップを特定の順序で発生するものとして説明および図示しているが、本開示は、任意の適切な順序で発生する図7の方法の任意の適切なステップを想定している。さらに、本開示は、図7の方法の特定のステップを含むアテンションネットワークおよび分類ネットワークを使用したデジタル病理画像の画像分類のための例示的な方法を説明および図示しているが、本開示は、アテンションネットワークおよび分類ネットワークを使用したデジタル病理画像の画像分類のための任意の適切な方法を想定しており、任意の適切なステップは、適切な場合には、図7の方法のステップの全て、一部、またはいずれも含まなくてもよい。さらにまた、本開示は、図7の方法の特定のステップを実行する特定の構成要素、装置、またはシステムを説明および図示しているが、本開示は、図7の方法の任意の適切なステップを実行する任意の適切な構成要素、装置、またはシステムの任意の適切な組み合わせを想定している。
本明細書に記載の一般的な技術は、様々なツールおよび使用事例に統合され得る。例えば、上述したように、ユーザ(例えば、病理学または臨床医)は、デジタル病理画像処理システム210と通信するユーザ装置230にアクセスし、分析のためのデジタル病理画像を提供し得る。デジタル病理画像処理システム210、またはデジタル病理画像処理システムへの接続は、デジタル病理画像に自動的に注釈を付け、および/または分析中の画像を評価するヒートマップを生成するスタンドアロンのソフトウェアツールまたはパッケージとして提供され得る。合理化されたベースで購入またはライセンス付与され得るスタンドアロンツールまたはプラグインとして、ツールは、研究または臨床研究室の能力を増強するために使用され得る。さらに、ツールは、デジタル病理画像生成システムの顧客に利用可能にされたサービスに統合され得る。例えば、ツールは、統一されたワークフローとして提供され得て、作成されるデジタル病理画像を実行または要求するユーザは、注釈付き画像またはヒートマップ同等物を自動的に受け取る。したがって、デジタル病理画像分析を改善することに加えて、これらの技術が既存のシステムに統合されて、以前には考慮されていない、または可能ではない追加の特徴を提供し得る。
さらに、デジタル病理画像処理システム210は、特定の設定において使用するために訓練およびカスタマイズされ得る。例えば、デジタル病理画像処理システム210は、特定の種類の組織(例えば、肺、心臓、血液、肝臓など)に関する臨床診断を提供する際に使用するために特別に訓練され得る。別の例として、デジタル病理画像処理システム210は、例えば、薬物または他の潜在的な治療処置に関連する毒性のレベルまたは程度を決定する際に、安全性評価を支援するように訓練され得る。特定の主題または使用事例における使用のために訓練されると、デジタル病理画像処理システム210は、必ずしもその使用事例に限定されない。例えば、デジタル病理画像処理システムは、肝臓組織の毒性評価に使用するために訓練されてもよいが、得られたモデルは、診断設定に適用され得る。訓練は、少なくとも部分的にラベル付けまたは注釈付けされたデジタル病理画像の比較的大きなセットのために、特定の状況、例えば毒性評価において実行され得る。含まれる付録は、一般的な毒性事象を同定することを含む、毒性評価を実行するために本明細書に記載される技術を使用した結果に関し、毒性評価に関連する出力例を例示する。
図8は、例示的なコンピュータシステム800を示している。特定の実施形態では、1つまたは複数のコンピュータシステム800は、本明細書に記載または図示された1つまたは複数の方法の1つまたは複数のステップを実行する。特定の実施形態では、1つまたは複数のコンピュータシステム800は、本明細書に記載または図示された機能を提供する。特定の実施形態では、1つまたは複数のコンピュータシステム800上で実行されるソフトウェアは、本明細書に記載または図示された1つまたは複数の方法の1つまたは複数のステップを実行するか、または本明細書に記載または図示された機能を提供する。特定の実施形態は、1つまたは複数のコンピュータシステム800の1つまたは複数の部分を含む。本明細書では、コンピュータシステムへの言及は、適切な場合には、コンピューティング装置を包含し得て、逆もまた同様である。さらに、コンピュータシステムへの言及は、適切な場合には、1つまたは複数のコンピュータシステムを包含し得る。
本開示は、任意の適切な数のコンピュータシステム800を想定している。本開示は、任意の適切な物理的形態をとるコンピュータシステム800を想定している。限定ではなく、例として、コンピュータシステム800は、組み込みコンピュータシステム、システム・オン・チップ(SOC)、シングルボードコンピュータシステム(SBC)(例えば、コンピュータ・オン・モジュール(COM)またはシステム・オン・モジュール(SOM))、デスクトップコンピュータシステム、ラップトップもしくはノートブックコンピュータシステム、インタラクティブキオスク、メインフレーム、コンピュータシステムのメッシュ、携帯電話、携帯情報端末(PDA)、サーバ、タブレットコンピュータシステム、拡張/仮想現実装置、またはこれらのうちの複数の組み合わせであり得る。適切な場合には、コンピュータシステム800は、1つまたは複数のコンピュータシステム800を含んでもよく、単一であるかまたは分布し、複数の位置にまたがり、複数の機械にまたがり、複数のデータセンタにまたがり、1つまたは複数のネットワーク内の1つまたは複数のクラウドコンポーネントを含み得るクラウド内に存在する。適切な場合には、1つまたは複数のコンピュータシステム800は、本明細書に記載または図示された1つまたは複数の方法の1つまたは複数のステップを実質的な空間的または時間的制限なしに実行し得る。限定ではなく、例として、1つまたは複数のコンピュータシステム800は、本明細書に記載または図示された1つまたは複数の方法の1つまたは複数のステップをリアルタイムまたはバッチモードで実行し得る。1つまたは複数のコンピュータシステム800は、適切な場合には、本明細書に記載または図示された1つまたは複数の方法の1つまたは複数のステップを異なる時間または異なる位置で実行し得る。
特定の実施形態では、コンピュータシステム800は、プロセッサ802、メモリ804、記憶装置806、入力/出力(I/O)インターフェース808、通信インターフェース810、およびバス812を含む。本開示は、特定の構成内の特定の数の特定の構成要素を有する特定のコンピュータシステムを記載および図示しているが、本開示は、任意の適切な構成内の任意の適切な数の任意の適切な構成要素を有する任意の適切なコンピュータシステムを想定している。
特定の実施形態では、プロセッサ802は、コンピュータプログラムを構成するものなどの命令を実行するためのハードウェアを含む。限定ではなく、例として、命令を実行するために、プロセッサ802は、内部レジスタ、内部キャッシュ、メモリ804、または記憶装置806から命令を取り出し得て(またはフェッチする)、復号して実行し得て、次いで、内部レジスタ、内部キャッシュ、メモリ804、または記憶装置806に1つまたは複数の結果を書き込み得る。特定の実施形態では、プロセッサ802は、データ、命令、またはアドレスのための1つまたは複数の内部キャッシュを含み得る。本開示は、適切な場合には、任意の適切な数の任意の適切な内部キャッシュを含むプロセッサ802を想定している。限定ではなく、例として、プロセッサ802は、1つまたは複数の命令キャッシュ、1つまたは複数のデータキャッシュ、および1つまたは複数の変換ルックアサイドバッファ(TLB)を含み得る。命令キャッシュ内の命令は、メモリ804または記憶装置806内の命令のコピーであり得て、命令キャッシュは、プロセッサ802によるそれらの命令の取り出しを高速化し得る。データキャッシュ内のデータは、プロセッサ802において実行して、プロセッサ802において実行される後続の命令によるアクセスのため、またはメモリ804もしくは記憶装置806への書き込みのためにプロセッサ802において実行される先行する命令の結果、または他の適切なデータに対して動作する命令のためのメモリ804または記憶装置806内のデータのコピーであり得る。データキャッシュは、プロセッサ802による読み出し動作または書き込み動作を高速化し得る。TLBは、プロセッサ802の仮想アドレス変換を高速化し得る。特定の実施形態では、プロセッサ802は、データ、命令、またはアドレスのための1つまたは複数の内部レジスタを含み得る。本開示は、適切な場合には、任意の適切な数の任意の適切な内部レジスタを含むプロセッサ802を想定している。適切な場合には、プロセッサ802は、1つまたは複数の算術論理演算ユニット(ALU)を含み得るか、マルチコアプロセッサであり得るか、または1つまたは複数のプロセッサ802を含み得る。本開示は、特定のプロセッサを記載および図示しているが、本開示は、任意の適切なプロセッサを想定している。
特定の実施形態では、メモリ804は、プロセッサ802が実行するための命令またはプロセッサ802が動作するためのデータを記憶するためのメインメモリを含む。限定ではなく、例として、コンピュータシステム800は、記憶装置806または別のソース(例えば、別のコンピュータシステム800など)からメモリ804に命令をロードし得る。次いで、プロセッサ802は、メモリ804から内部レジスタまたは内部キャッシュに命令をロードし得る。命令を実行するために、プロセッサ802は、内部レジスタまたは内部キャッシュから命令を取り出し、それらを復号し得る。命令の実行中または実行後に、プロセッサ802は、(中間結果または最終結果であり得る)1つまたは複数の結果を内部レジスタまたは内部キャッシュに書き込み得る。次いで、プロセッサ802は、それらの結果のうちの1つまたは複数をメモリ804に書き込み得る。特定の実施形態では、プロセッサ802は、(記憶装置806または他の位置とは対照的に)1つまたは複数の内部レジスタもしくは内部キャッシュまたはメモリ804内の命令のみを実行し、(記憶装置806または他の位置とは対照的に)1つまたは複数の内部レジスタもしくは内部キャッシュまたはメモリ804内のデータのみに対して動作する。(それぞれがアドレスバスおよびデータバスを含み得る)1つまたは複数のメモリバスは、プロセッサ802をメモリ804に結合し得る。バス812は、後述するように、1つまたは複数のメモリバスを含み得る。特定の実施形態では、1つまたは複数のメモリ管理ユニット(MMU)が、プロセッサ802とメモリ804との間に存在し、プロセッサ802によって要求されるメモリ804へのアクセスを容易にする。特定の実施形態では、メモリ804は、ランダムアクセスメモリ(RAM)を含む。このRAMは、必要に応じて揮発性メモリであってもよい。適切な場合には、このRAMは、ダイナミックRAM(DRAM)またはスタティックRAM(SRAM)であってもよい。さらに、適切な場合には、このRAMは、シングルポートまたはマルチポートRAMであってもよい。本開示は、任意の適切なRAMを想定している。メモリ804は、適切な場合には、1つまたは複数のメモリ804を含み得る。本開示は、特定のメモリを記載および図示しているが、本開示は、任意の適切なメモリを想定している。
特定の実施形態では、記憶装置806は、データまたは命令のための大容量記憶装置を含む。限定ではなく、例として、記憶装置806は、ハードディスクドライブ(HDD)、フロッピーディスクドライブ、フラッシュメモリ、光ディスク、光磁気ディスク、磁気テープ、もしくはユニバーサルシリアルバス(USB)ドライブ、またはこれらのうちの複数の組み合わせを含み得る。記憶装置806は、適切な場合には、取り外し可能または取り外し不可能な(または固定された)媒体を含み得る。記憶装置806は、適切な場合には、コンピュータシステム800の内部または外部にあってもよい。特定の実施形態では、記憶装置806は、不揮発性ソリッドステートメモリである。特定の実施形態では、記憶装置806は、読み出し専用メモリ(ROM)を含む。適切な場合には、このROMは、マスクプログラムROM、プログラマブルROM(PROM)、消去可能PROM(EPROM)、電気的消去可能PROM(EEPROM)、電気的変更可能ROM(EAROM)、またはフラッシュメモリ、またはこれらのうちの2つもしくはそれ以上の組み合わせであってもよい。本開示は、任意の適切な物理的形態をとる大容量記憶装置806を想定している。記憶装置806は、適切な場合には、プロセッサ802と記憶装置806との間の通信を容易にする1つまたは複数の記憶制御ユニットを含み得る。適切な場合には、記憶装置806は、1つまたは複数の記憶装置806を含み得る。本開示は、特定の記憶装置を記載および図示しているが、本開示は、任意の適切な記憶装置を想定している。
特定の実施形態では、I/Oインターフェース808は、コンピュータシステム800と1つまたは複数のI/O装置との間の通信のための1つまたは複数のインターフェースを提供するハードウェア、ソフトウェア、またはその双方を含む。コンピュータシステム800は、適切な場合には、これらのI/O装置のうちの1つまたは複数を含み得る。これらのI/O装置のうちの1つまたは複数は、人とコンピュータシステム800との間の通信を可能にし得る。限定ではなく、例として、I/O装置は、キーボード、キーパッド、マイクロフォン、モニタ、マウス、プリンタ、スキャナ、スピーカ、スチルカメラ、スタイラス、タブレット、タッチスクリーン、トラックボール、ビデオカメラ、別の適切なI/O装置、またはこれらのうちの2つもしくはそれ以上の組み合わせを含み得る。I/O装置は、1つまたは複数のセンサを含み得る。本開示は、任意の適切なI/O装置およびそれらのための任意の適切なI/Oインターフェース808を想定している。適切な場合には、I/Oインターフェース808は、プロセッサ802がこれらのI/O装置のうちの1つまたは複数を駆動することを可能にする1つまたは複数の装置ドライバを含み得る。I/Oインターフェース808は、適切な場合には、1つまたは複数のI/Oインターフェース808を含み得る。本開示は、特定のI/Oインターフェースを記載および図示しているが、本開示は、任意の適切なI/Oインターフェースを想定している。
特定の実施形態では、通信インターフェース810は、コンピュータシステム800と、1つまたは複数の他のコンピュータシステム800または1つまたは複数のネットワークとの間の通信(例えば、パケットベースの通信など)のための1つまたは複数のインターフェースを提供するハードウェア、ソフトウェア、またはその双方を含む。限定ではなく、例として、通信インターフェース810は、イーサネット(登録商標)もしくは他の有線ベースのネットワークと通信するためのネットワークインターフェースコントローラ(NIC)もしくはネットワークアダプタ、またはWI-FIネットワークなどの無線ネットワークと通信するための無線NIC(WNIC)もしくは無線アダプタを含み得る。本開示は、任意の適切なネットワークおよびそのための任意の適切な通信インターフェース810を想定している。限定ではなく、例として、コンピュータシステム800は、アドホックネットワーク、パーソナルエリアネットワーク(PAN)、ローカルエリアネットワーク(LAN)、ワイドエリアネットワーク(WAN)、メトロポリタンエリアネットワーク(MAN)、またはインターネットの1つまたは複数の部分、またはこれらのうちの複数の組み合わせと通信し得る。これらのネットワークのうちの1つまたは複数の1つまたは複数の部分は、有線または無線であり得る。例として、コンピュータシステム800は、無線PAN(WPAN)(例えば、BLUETOOTH WPANなど)、WI-FIネットワーク、WI-MAXネットワーク、携帯電話ネットワーク(例えば、グローバル・システム・フォー・モバイル・コミュニケーションズ(GSM)ネットワーク)、またはその他の適切な無線ネットワーク、またはこれらのうちの複数の組み合わせと通信し得る。コンピュータシステム800は、適切な場合には、これらのネットワークのいずれかのための任意の適切な通信インターフェース810を含み得る。通信インターフェース810は、適切な場合には、1つまたは複数の通信インターフェース810を含み得る。本開示は、特定の通信インターフェースを記載および図示しているが、本開示は、任意の適切な通信インターフェースを想定している。
特定の実施形態では、バス812は、コンピュータシステム800の構成要素を互いに結合するハードウェア、ソフトウェア、またはその双方を含む。限定ではなく、例として、バス812は、アクセラレーテッドグラフィクスポート(AGP)もしくは他のグラフィックスバス、エンハンストインダストリスタンダードアーキテクチャ(EISA)バス、フロントサイドバス(FSB)、ハイパートランスポート(HT)インターコネクト、インダストリスタンダードアーキテクチャ(ISA)バス、インフィニバンドインターコネクト、ローピンカウント(LPC)バス、メモリバス、マイクロチャネルアーキテクチャ(MCA)バス、ペリフェラルコンポーネントインターコネクト(PCI)バス、PCIエクスプレス(PCIe)バス、シリアルアドバンスドテクノロジーアタッチメント(SATA)バス、ビデオエレクトロニクススタンダーズアソシエーションローカル(VLB)バス、または別の適切なバス、またはこれらのうちの2つもしくはそれ以上の組み合わせを含み得る。バス812は、適切な場合には、1つまたは複数のバス812を含み得る。本開示は、特定のバスを記載および図示しているが、本開示は、任意の適切なバスまたは相互接続を想定している。
本明細書では、コンピュータ可読非一時的記憶媒体は、1つまたは複数の半導体ベースもしくは他の集積回路(IC)(例えば、フィールドプログラマブルゲートアレイ(FPGA)または特定用途向けIC(ASIC)など)、ハードディスクドライブ(HDD)、ハイブリッドハードドライブ(HHD)、光ディスク、光ディスクドライブ(ODD)、光磁気ディスク、光磁気ドライブ、フロッピーディスク、フロッピーディスクドライブ(FDD)、磁気テープ、ソリッドステートドライブ(SSD)、RAMドライブ、セキュアデジタルカードもしくはドライブ、任意の他の適切なコンピュータ可読非一時的記憶媒体、または適切な場合にはこれらのうちの2つまたはそれ以上の任意の適切な組み合わせを含み得る。コンピュータ可読非一時的記憶媒体は、必要に応じて、揮発性、不揮発性、または揮発性と不揮発性との組み合わせであってもよい。
本明細書では、「または」は包括的であり、排他的ではないが、他に明示的に示されているか、またはコンテキストによって他に示されている場合は除く。したがって、本明細書では、「AまたはB」は、他に明示的に示されない限り、またはコンテキストによって他に示されない限り、「A、B、またはその双方」を意味する。さらに、「および」は、明示的に別段の指示がない限り、またはコンテキストによって別段の指示がない限り、結合およびいくつかの双方である。したがって、本明細書では、「AおよびB」は、他に明示的に示されない限り、またはコンテキストによって他に示されない限り、「AおよびB、一緒にまたは別々に」を意味する。
本開示の範囲は、当業者が理解するであろう、本明細書に記載または図示された例示的な実施形態に対する全ての変形、置換、バリエーション、代替、および変更を包含する。本開示の範囲は、本明細書に記載または図示された例示的な実施形態に限定されない。さらに、本開示は、特定の構成要素、要素、特徴、機能、動作、またはステップを含むものとして本明細書のそれぞれの実施形態を記載および図示しているが、これらの実施形態のいずれも、当業者が理解するであろう本明細書のどこかに記載または図示されている構成要素、要素、特徴、機能、動作、またはステップのいずれかの任意の組み合わせまたは順列を含んでもよい。さらにまた、特定の機能を実行するように適合され、配置され、可能にされ、構成され、有効にされ、動作可能にされ、または動作する装置またはシステムまたはシステムの構成要素に対する添付の特許請求の範囲における言及は、その装置、システムまたは構成要素がそのように適合され、配置され、可能にされ、構成され、有効にされ、動作可能にされ、または動作する限り、それまたはその特定の機能が起動され、オンにされ、またはロック解除されているか否かにかかわらず、その装置、システム、構成要素を包含する。さらに、本開示は、特定の利点を提供するものとして特定の実施形態を記載または図示しているが、特定の実施形態は、これらの利点の全てを提供しなくてもよく、いくつか、または全てを提供してもよい。

Claims (20)

  1. コンピュータ実装方法であって、
    ホールスライド画像を受信することと、
    前記ホールスライド画像を複数のタイルにセグメント化することと、
    前記タイルのそれぞれについての特徴ベクトルを生成することであって、前記タイルのそれぞれについての前記特徴ベクトルが、前記タイルについての埋め込みを表す、特徴ベクトルを生成することと、
    アテンションネットワークを使用して前記特徴ベクトルのそれぞれに対応する重み値を計算することと、
    前記特徴ベクトルに基づいて画像埋め込みを計算することであって、前記特徴ベクトルのそれぞれが、前記特徴ベクトルに対応する前記重み値に基づいて重み付けされる、画像埋め込みを計算することと、
    前記画像埋め込みに基づいて前記ホールスライド画像の分類を生成することと、を含む、方法。
  2. 前記ホールスライド画像に対応するヒートマップを生成することであって、前記ヒートマップが、複数の強度値にそれぞれ関連付けられた複数の領域を含み、前記複数の領域のうちの1つまたは複数の領域が、前記ホールスライド画像における症状の表示に関連付けられ、前記1つまたは複数の領域に関連付けられたそれぞれの前記強度値が、前記表示の統計的信頼度に相関する、ヒートマップを生成することをさらに含む、請求項1に記載の方法。
  3. 前記ホールスライド画像の前記分類が、前記ホールスライド画像に示される組織における1つまたは複数の生物学的異常の存在を示し、前記1つまたは複数の生物学的異常が、肥大、クッパー細胞異常、壊死、炎症、グリコーゲン異常、脂質異常、腹膜炎、異核症、細胞浸潤、核腫大、微小肉芽腫、過形成または空胞化を含む、請求項1に記載の方法。
  4. 前記ホールスライド画像の前記分類が、前記ホールスライド画像に描写された組織に関連付けられた毒性事象の評価を含む、請求項1に記載の方法。
  5. 複数のアテンションネットワークの各アテンションネットワークに基づいて前記ホールスライド画像のそれぞれの分類を生成することをさらに含む、請求項1に記載の方法。
  6. 所定の基準を満たす1つまたは複数の重み値を識別し、
    識別された前記重み値に対応する1つまたは複数の特徴ベクトルを識別し、
    識別された前記特徴ベクトルに対応する1つまたは複数のタイルを識別することによって、前記重み値に基づいて前記ホールスライド画像に対する注釈を生成することをさらに含む、請求項1に記載の方法。
  7. 前記ホールスライド画像に関連して表示するために前記ホールスライド画像に対する前記注釈を提供することをさらに含み、前記注釈を提供することが、前記1つまたは複数の識別されたタイルをマークすることを含む、請求項6に記載の方法。
  8. 前記ホールスライド画像の前記分類を検証のために病理医に提供することをさらに含む、請求項1に記載の方法。
  9. 少なくとも前記重み値に基づいて、前記ホールスライド画像の前記分類に関連付けられた信頼スコアを計算することと、
    前記ホールスライド画像の前記分類に関連して表示するための前記信頼スコアを提供することと、をさらに含む、請求項1に記載の方法。
  10. 前記特徴ベクトル、重み値、およびスライド埋め込み特徴値に基づいて、前記ホールスライド画像の前記分類に関連付けられた1つまたは複数の派生特性を識別することをさらに含む、請求項1に記載の方法。
  11. 複数のホールスライド画像についてそれぞれ複数の分類を生成することと、
    前記複数の分類を使用して、1つまたは複数の症状にそれぞれ関連付けられた重み値を予測するように1つまたは複数のアテンションネットワークを訓練することと、をさらに含む、請求項1に記載の方法。
  12. 前記分類は、前記ホールスライド画像が前記ホールスライド画像に示された組織に関連付けられた1つまたは複数の異常を示すことを示している、請求項1に記載の方法。
  13. 前記ホールスライド画像がユーザ装置から受信され、前記方法が、表示のために前記ホールスライド画像の前記分類を前記ユーザ装置に提供することを含む、請求項1に記載の方法。
  14. 前記ホールスライド画像が、前記方法を実行するデジタル病理画像処理システムと通信可能に結合されたデジタル病理画像生成システムから受信される、請求項1に記載の方法。
  15. デジタル病理画像処理システムであって、
    1つまたは複数のプロセッサと、
    前記プロセッサのうちの1つまたは複数に結合され、且つ前記プロセッサのうちの1つまたは複数によって実行されると、前記システムに動作を実行させるように動作可能な命令を含む、1つまたは複数のコンピュータ可読非一時的記憶媒体であって、前記動作が、
    ホールスライド画像を受信することと、
    前記ホールスライド画像を複数のタイルにセグメント化することと、
    前記タイルのそれぞれについての特徴ベクトルを生成することであって、前記タイルのそれぞれについての前記特徴ベクトルが、前記タイルについての埋め込みを表す、特徴ベクトルを生成することと、
    アテンションネットワークを使用して前記特徴ベクトルのそれぞれに対応する重み値を計算することと、
    前記特徴ベクトルに基づいて画像埋め込みを計算することであって、前記特徴ベクトルのそれぞれが、前記特徴ベクトルに対応する前記重み値に基づいて重み付けされる、画像埋め込みを計算することと、
    前記画像埋め込みに基づいて前記ホールスライド画像の分類を生成することと、を含む、1つまたは複数のコンピュータ可読非一時的記憶媒体と、を備える、デジタル病理画像処理システム。
  16. 前記命令が、前記プロセッサのうちの1つまたは複数によって実行されると、前記システムに動作を実行させるようにさらに動作可能であり、前記動作が、さらに、
    前記ホールスライド画像に対応するヒートマップを生成することであって、前記ヒートマップが、複数の強度値にそれぞれ関連付けられた複数の領域を含み、前記複数の領域のうちの1つまたは複数の領域が、前記ホールスライド画像における症状の表示に関連付けられ、前記1つまたは複数の領域に関連付けられたそれぞれの前記強度値が、前記表示の統計的信頼度に相関する、ヒートマップを生成することを含む、請求項15に記載のデジタル病理画像処理システム。
  17. 前記ホールスライド画像の前記分類が、前記ホールスライド画像に示される組織における1つまたは複数の生物学的異常の存在を示し、前記1つまたは複数の生物学的異常が、肥大、クッパー細胞異常、壊死、炎症、グリコーゲン異常、脂質異常、腹膜炎、異核症、細胞浸潤、核腫大、微小肉芽腫、過形成または空胞化を含む、請求項15に記載のデジタル病理画像処理システム。
  18. 命令を含む1つまたは複数のコンピュータ可読非一時的記憶媒体であって、前記命令が、1つまたは複数のプロセッサによって実行されると、デジタル病理画像処理システムの前記1つまたは複数のプロセッサに、
    ホールスライド画像を受信することと、
    前記ホールスライド画像を複数のタイルにセグメント化することと、
    前記タイルのそれぞれについての特徴ベクトルを生成することであって、前記タイルのそれぞれについての前記特徴ベクトルが、前記タイルについての埋め込みを表す、特徴ベクトルを生成することと、
    アテンションネットワークを使用して前記特徴ベクトルのそれぞれに対応する重み値を計算することと、
    前記特徴ベクトルに基づいて画像埋め込みを計算することであって、前記特徴ベクトルのそれぞれが、前記特徴ベクトルに対応する前記重み値に基づいて重み付けされる、画像埋め込みを計算することと、
    前記画像埋め込みに基づいて前記ホールスライド画像の分類を生成することと、を含む動作を実行させるように構成される、1つまたは複数のコンピュータ可読非一時的記憶媒体。
  19. 前記命令が、前記デジタル病理画像処理システムの前記1つまたは複数のプロセッサに、動作を実行させるようにさらに構成され、前記動作が、さらに、
    前記ホールスライド画像に対応するヒートマップを生成することであって、前記ヒートマップが、複数の強度値にそれぞれ関連付けられた複数の領域を含み、前記複数の領域のうちの1つまたは複数の領域が、前記ホールスライド画像における症状の表示に関連付けられ、前記1つまたは複数の領域に関連付けられたそれぞれの前記強度値が、前記表示の統計的信頼度に相関する、ヒートマップを生成することを含む、請求項18に記載の1つまたは複数のコンピュータ可読非一時的記憶媒体。
  20. 前記ホールスライド画像の前記分類が、前記ホールスライド画像に示される組織における1つまたは複数の生物学的異常の存在を示し、前記1つまたは複数の生物学的異常が、肥大、クッパー細胞異常、壊死、炎症、グリコーゲン異常、脂質異常、腹膜炎、異核症、細胞浸潤、核腫大、微小肉芽腫、過形成または空胞化を含む、請求項18に記載の1つまたは複数のコンピュータ可読非一時的記憶媒体。
JP2023555289A 2021-03-12 2022-03-11 ホールスライド画像についてのアテンションベースの複数インスタンス学習 Pending JP2024513678A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202163160493P 2021-03-12 2021-03-12
US63/160,493 2021-03-12
PCT/US2022/020059 WO2022192747A1 (en) 2021-03-12 2022-03-11 Attention-based multiple instance learning for whole slide images

Publications (1)

Publication Number Publication Date
JP2024513678A true JP2024513678A (ja) 2024-03-27

Family

ID=80979017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023555289A Pending JP2024513678A (ja) 2021-03-12 2022-03-11 ホールスライド画像についてのアテンションベースの複数インスタンス学習

Country Status (6)

Country Link
US (1) US20230419491A1 (ja)
EP (1) EP4305592A1 (ja)
JP (1) JP2024513678A (ja)
KR (1) KR20230156075A (ja)
CN (1) CN117015800A (ja)
WO (1) WO2022192747A1 (ja)

Also Published As

Publication number Publication date
US20230419491A1 (en) 2023-12-28
EP4305592A1 (en) 2024-01-17
CN117015800A (zh) 2023-11-07
WO2022192747A1 (en) 2022-09-15
KR20230156075A (ko) 2023-11-13

Similar Documents

Publication Publication Date Title
Niazi et al. Digital pathology and artificial intelligence
Zhu et al. Wsisa: Making survival prediction from whole slide histopathological images
US11080855B1 (en) Systems and methods for predicting tissue characteristics for a pathology image using a statistical model
Swiderska-Chadaj et al. Impact of rescanning and normalization on convolutional neural network performance in multi-center, whole-slide classification of prostate cancer
US20230162515A1 (en) Assessing heterogeneity of features in digital pathology images using machine learning techniques
US20200372638A1 (en) Automated screening of histopathology tissue samples via classifier performance metrics
US20240265541A1 (en) Biological context for analyzing whole slide images
US20240087122A1 (en) Detecting tertiary lymphoid structures in digital pathology images
JP2023543044A (ja) 組織の画像を処理する方法および組織の画像を処理するためのシステム
US20240086460A1 (en) Whole slide image search
Choudhury et al. Detecting breast cancer using artificial intelligence: Convolutional neural network
US20220301689A1 (en) Anomaly detection in medical imaging data
EP4111411A1 (en) System and method of managing workflow of examination of pathology slides
El-Hossiny et al. Classification of thyroid carcinoma in whole slide images using cascaded CNN
Selcuk et al. Automated HER2 Scoring in Breast Cancer Images Using Deep Learning and Pyramid Sampling
JP2024513678A (ja) ホールスライド画像についてのアテンションベースの複数インスタンス学習
CN117378015A (zh) 从数字病理学图像预测可操作突变
JP2024503977A (ja) ペットの癌を特定するためのシステム及び方法
Khan et al. Volumetric segmentation of cell cycle markers in confocal images
WO2024030978A1 (en) Diagnostic tool for review of digital pathology images
Topuz et al. ConvNext Mitosis Identification—You Only Look Once (CNMI-YOLO): Domain Adaptive and Robust Mitosis Identification in Digital Pathology
US20230016472A1 (en) Image representation learning in digital pathology
US20240242835A1 (en) Automated digital assessment of histologic samples
WO2024073444A1 (en) Techniques for determining dopaminergic neural cell loss using machine learning
Pan et al. Semi-supervised recognition for artificial intelligence assisted pathology image diagnosis