JP2024512390A - スチームクラッキングのための方法及びシステム - Google Patents
スチームクラッキングのための方法及びシステム Download PDFInfo
- Publication number
- JP2024512390A JP2024512390A JP2023555251A JP2023555251A JP2024512390A JP 2024512390 A JP2024512390 A JP 2024512390A JP 2023555251 A JP2023555251 A JP 2023555251A JP 2023555251 A JP2023555251 A JP 2023555251A JP 2024512390 A JP2024512390 A JP 2024512390A
- Authority
- JP
- Japan
- Prior art keywords
- steam
- cracking
- combustion
- temperature level
- level
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 172
- 238000004230 steam cracking Methods 0.000 title claims abstract description 135
- 230000008569 process Effects 0.000 claims abstract description 141
- 238000002485 combustion reaction Methods 0.000 claims abstract description 139
- 238000010791 quenching Methods 0.000 claims abstract description 83
- 238000005336 cracking Methods 0.000 claims abstract description 74
- 238000001816 cooling Methods 0.000 claims abstract description 26
- 230000008878 coupling Effects 0.000 claims abstract 2
- 238000010168 coupling process Methods 0.000 claims abstract 2
- 238000005859 coupling reaction Methods 0.000 claims abstract 2
- 239000007789 gas Substances 0.000 claims description 82
- 239000003546 flue gas Substances 0.000 claims description 41
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 37
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 33
- 229930195733 hydrocarbon Natural products 0.000 claims description 28
- 150000002430 hydrocarbons Chemical class 0.000 claims description 28
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 16
- 239000002737 fuel gas Substances 0.000 claims description 16
- 238000004519 manufacturing process Methods 0.000 claims description 15
- 229920006395 saturated elastomer Polymers 0.000 claims description 15
- 229910052739 hydrogen Inorganic materials 0.000 claims description 13
- 239000001257 hydrogen Substances 0.000 claims description 13
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 12
- 229910021529 ammonia Inorganic materials 0.000 claims description 8
- 238000005868 electrolysis reaction Methods 0.000 claims description 5
- 238000003763 carbonization Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 abstract description 7
- 238000010438 heat treatment Methods 0.000 description 25
- 239000004215 Carbon black (E152) Substances 0.000 description 15
- 239000007788 liquid Substances 0.000 description 14
- 238000013461 design Methods 0.000 description 11
- 238000000926 separation method Methods 0.000 description 10
- 238000007906 compression Methods 0.000 description 9
- 230000006835 compression Effects 0.000 description 9
- 230000005611 electricity Effects 0.000 description 8
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 238000011084 recovery Methods 0.000 description 8
- 238000012546 transfer Methods 0.000 description 8
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 239000000446 fuel Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 238000009834 vaporization Methods 0.000 description 6
- 230000008016 vaporization Effects 0.000 description 6
- 239000002918 waste heat Substances 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 238000005485 electric heating Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 238000010793 Steam injection (oil industry) Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000011143 downstream manufacturing Methods 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 238000005338 heat storage Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000012824 chemical production Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006392 deoxygenation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 101150025733 pub2 gene Proteins 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000009420 retrofitting Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G9/00—Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G9/34—Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts
- C10G9/36—Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts with heated gases or vapours
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B1/00—Methods of steam generation characterised by form of heating method
- F22B1/02—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
- F22B1/18—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
- F22B1/1838—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines the hot gas being under a high pressure, e.g. in chemical installations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22D—PREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
- F22D1/00—Feed-water heaters, i.e. economisers or like preheaters
- F22D1/003—Feed-water heater systems
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/20—C2-C4 olefins
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/22—Higher olefins
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Combustion & Propulsion (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
スチームクラッキング装置(1100~1500)を使用するスチームクラッキング方法が提案され、スチームクラッキング装置(1100~1500)は、1つ又は複数の燃焼クラッキング炉(110)と、1つ又は複数のクエンチ冷却列(20)と、回転機器としての1つ又は複数の圧縮器(60)及び/又はポンプとを含み、1つ又は複数のプロセス・ガス流は、少なくとも1つ又は複数の燃焼クラッキング炉(110)及び1つ又は複数のクエンチ冷却列(20)に通され、回転機器は、電気エネルギーによって少なくとも部分的に駆動される。本発明によれば、1つ又は複数の蒸気生成装置(30)は、1つ又は複数のスチームクラッキング装置(1100~1500)と熱結合して動作し、1つ又は複数の蒸気生成装置(30)の使用により、30から175バールの絶対圧力の第1の圧力レベル及び第1の温度レベルで少なくとも過熱高圧蒸気が生成され、第1の温度レベルより高い温度レベルの蒸気は、生成されず、第1の圧力レベルの過熱高圧蒸気は、過熱高圧蒸気の温度レベルが第2の温度レベルまで低下するように、第1の圧力レベルを下回る第2の圧力レベルまで少なくとも部分的に、断熱的及び等エントロピ的に膨張され、第1の温度レベルは、断熱及び等エントロピ膨張の間、20バールより多い中間圧力レベルに到達した各中間温度レベルが、断熱及び等エントロピ膨張の間、それぞれの中間圧力レベルにおいて蒸気の露点を上回る5から120Kの間であるように選択される。対応するシステム(100)も本発明の一部である。【選択図】図2
Description
本発明は、独立請求項のプリアンブルに記載のスチームクラッキングのための方法及びシステムに関する。
本発明は、例えば、Ullmann’s Encyclopedia of Industrial Chemistry、2009年4月15日、オンライン出版、DOI:10.1002/14356007.a10_045.pub2内の項目「エチレン」に記載されるような、オレフィン及び他のベース化学製品を生成するためのスチームクラッキング技術に基づく。
特許文献2によれば、スチームクラッキング炉のための燃焼空気は、中圧蒸気と低圧蒸気との間接的な熱交換によって予熱され、中圧蒸気及び低圧蒸気は、蒸気タービンを通じて、エチレン生成施設の高温区分で生成された高圧蒸気から膨張されている。
蒸気の過熱レベルを増大させるための蒸気との熱交換時に分解ガス(cracked gas)を冷却し、その後、過熱蒸気からの熱を回収することによって、分解ガスをクエンチングし、分解ガスからの熱を回収する方法は、特許文献1で開示されている。
現在、スチームクラッキングにおける吸熱分解反応の開始及び維持に必要な熱エネルギーは、耐火炉内で燃料ガスを燃焼させることによってもたらされる。分解される蒸気及び炭化水素を最初に含有するプロセス・ガスは、放射区域又は区分とも呼ばれる耐火筐体の内側に置かれたいわゆるクラッキング・コイルに通される。この流路において、プロセス・ガスは、連続的に加熱され、クラッキング・コイルの内側で所望の分解反応の発生を可能にし、したがって、プロセス・ガスは、クラッキング生成物中で連続的に富化される。クラッキング・コイルに入るプロセス・ガスの典型的な入口温度は、550から750℃の間であり、出口温度は、典型的には、800から900℃の間の範囲内にある。
放射区域に加えて、燃焼クラッキング炉は、いわゆる対流区域又は区分と、いわゆるクエンチ区域又は区分とを備える。対流区域は、通常、放射区域の上に配置され、放射区域から煙道ガス・ダクトを横断する様々な管バンドルから構成される。対流区域の主な機能は、放射区域を離れる高温煙道ガスから可能な限り多くのエネルギーを回収することである。実際、典型的には、放射区域内の合計燃焼負荷の35から50%のみが、クラッキング・コイルを通じてプロセス・ガスに伝達される。したがって、対流区域は、スチームクラッキングのエネルギー管理において中心的な役割を果たす。というのは、対流区域は、炉への熱入力(即ち、燃焼負荷)の約40から60%の有益な使用を担うためである。実際、放射区域及び対流区域を一緒に用いる場合、現代のスチームクラッキング施設は、(燃料の下限加熱値又は正味の発熱量に基づく)燃焼負荷全体の90から95%を利用する。対流区分において、煙道ガスは、対流区分を離れて煙突を介して雰囲気に解放される前、60から140℃の間の温度まで冷却される。
対流区分内で回収された煙道ガスの熱は、典型的には、ボイラ給水及び/又は炭化水素フィードの予熱、(事前のプロセス蒸気注入を伴う又は伴わない)液体炭化水素フィードの(部分的)気化、並びにプロセス蒸気及び高圧蒸気の過熱等、プロセスの任務のために使用される。
クエンチ区域は、主要プロセス・ガス経路に沿って放射区域の下流に配置される。クエンチ区域は、1つ又は複数の熱交換器ユニットから構成され、1つ又は複数の熱交換器ユニットは、クラッキング反応を停止するため、最大温度レベルより下にプロセス・ガスを急速に冷却すること、下流の処理のためにプロセス・ガスを更に冷却すること、及びエネルギーを更に使用するため、プロセス・ガスからの顕熱を効果的に回収することという主な機能を有する。更に、更なる冷却又はクエンチングは、液体の注入を介して、例えば、スチームクラッキング液体原料の場合のオイル・クエンチ冷却によって達成し得る。
クエンチ区分内で回収されるプロセス・ガスの熱は、典型的には、高圧(HP)又は超高圧(SHP)ボイラ給水(典型的には、30から130バールの絶対圧力の間の圧力範囲にある)を気化させ、蒸気ドラムに供給する前に同じボイラ給水を予熱するために使用される。それに応じて生成された飽和高圧又は超高圧蒸気は、過熱高圧又は超高圧蒸気を生成するために対流区域(上記参照)内で過熱され、対流区域から、施設の中央蒸気システムに分散され、熱交換器及び蒸気タービン又は他の回転機器に熱及び動力をもたらし得る。炉の対流区分内で達成される蒸気過熱の典型的な程度は、飽和温度(露点限界)を上回る150から250Kの間にある。概して、スチームクラッキング炉は、高圧蒸気(典型的には30から60バールにある)又は超高圧蒸気(典型的には60から130バールにある)で動作し得る。明快にするため、本発明の説明において、高圧蒸気とは、30から130バールの間の全圧力範囲のために使用されるが、本発明は175バールまでの圧力で蒸気を使用するので、この上限も越える。
クエンチ冷却後のプロセス・ガスの処理の重要な部分は、圧縮であり、圧縮は、典型的には、分離用にプロセス・ガスを調整するため、重炭化水素及びプロセス水の除去等、更なる処理の後に実施される。プロセス・ガス又は分解ガスの圧縮とも呼ばれるこの圧縮は、典型的には、蒸気タービンによって駆動される多段圧縮器で実施される。蒸気タービンにおいて、上述した施設の中央蒸気システムからの適切な圧力にある蒸気、したがって、対流区分及びクエンチ冷却からの熱を使用して生成された蒸気を含む蒸気を使用し得る。典型的には、従来技術のスチームクラッキング施設において、(対流区域内の)煙道ガスの熱及び(クエンチ区域内の)プロセス・ガスの熱は、加熱及び蒸気タービンの駆動に必要な蒸気量の大部分を生成する熱の需要と良好に平衡が取られている。言い換えれば、廃熱は、多かれ少なかれ、施設内で必要な蒸気の生成に十分に利用し得る。蒸気を生成する更なる熱は、(燃焼)蒸気ボイラ内でもたらし得る。
参考までに、また、本発明の背景を更に説明するため、従来の燃焼スチームクラッキング装置をかなり簡略化した概略部分図で図1に示し、900と示す。
図1に示されるスチームクラッキング装置900は、強調線で示されるように、1つ又は複数のクラッキング炉90を備える。典型的なスチームクラッキング装置900は、同じ又は異なる条件下で動作し得る複数のクラッキング炉90を備え得るが、単に簡潔にするため、以下、「1つの」クラッキング炉90について言及する。更に、クラッキング炉90は、以下で説明する構成要素の1つ又は複数を備え得る。
クラッキング炉90は、放射区域91と、対流区域92とを備える。図1に示すもの以外の他の実施形態では、いくつかの放射区域91を単一の対流区域92等と連携させることもできる。
図示の例では、いくつかの熱交換器921から925は、図示の構成若しくはシーケンスで、又は異なる構成若しくはシーケンスで、対流区域92内に配置される。これらの熱交換器921から925は、典型的には、対流区域92を通過する管バンドルの形態で設けられ、放射区域91からの煙道ガス流内に配置される。
図示の例では、放射区域91は、複数のバーナ911により加熱され、複数のバーナ911は、部分的にのみ示される、放射区域91を形成する耐火物の床側及び壁側に配置される。他の実施形態では、バーナ911は、壁側のみ又は床側のみに設けてもよい。床側のみへの配置は、例えば、純水素を燃焼用に使用する場合、優先的に該当し得る。
図示の例では、炭化水素を含有するガス又は液体フィード流901は、スチームクラッキング装置900に供給される。図示の様式又は異なる様式で、いくつかのフィード流901を使用することも可能である。フィード流901は、対流区域92の熱交換器921内で予熱される。
更に、ボイラ給水流902は、対流区域92、又はより正確にはボイラ給水流902が予熱される熱交換器922に通される。その後、ボイラ給水流902は、蒸気ドラム93に導入される。対流区域92内の熱交換器923において、典型的には、スチームクラッキング装置900の炉システムの外側に位置するプロセス蒸気生成システムから供給されるプロセス蒸気流903は、更に加熱され、図1に示す例では、その後、フィード流901と混合される。
これに応じて生成されたフィード及び蒸気の流れ904は、対流区域92内の更なる熱交換器925に通され、その後、放射区域91を通じて、典型的にはいくつかのクラッキング・コイル912内に通され、分解ガス流905を生成する。図1の例は、かなり簡略化されている。典型的には、対応する流れ904は、いくつかのクラッキング・コイル912にわたり均等に分散され、クラッキング・コイル912内で生成された分解ガスは、分解ガス流905の生成のために収集される。
図1に更に示されるように、蒸気流906は、蒸気ドラム93から回収され、対流区域92内の更なる熱交換器924内で(過)熱され、高圧蒸気流907を生成し得る。高圧蒸気流907は、具体的に例示しない任意の適切な場所及び任意の適切な目的で、スチームクラッキング装置900内で使用し得る。
放射区域12又はクラッキング・コイル912からの分解ガス流905は、1つ又は複数の伝達管路を介して、分解ガス流905が上述の理由で急速に冷却されるクエンチ交換器94に通される。ここで例示されるクエンチ交換器94は、1次クエンチ(熱)交換器を表す。そのような1次クエンチ交換器94に加えて、更なるクエンチ交換器が存在してもよい。
冷却された分解ガス流907は、ここではかなり概略的にのみ示される更なるプロセス・ユニット95に通される。これらの更なるプロセス・ユニット95は、特に、分離ガスの不純物除去、圧縮及び分留のためのプロセス・ユニット、並びに96と示される、蒸気ドラム93からの蒸気を使用して動作し得る蒸気タービンを含む圧縮器装置とし得る。
図示の例では、クエンチ交換器94は、蒸気ドラム93からの水流908で動作する。クエンチ交換器94内で生成される蒸気流909は、蒸気ドラム93に戻される。
本発明の目的
工業プロセスの少なくとも局所的な二酸化炭素排出を低減させる進行中の取組みは、スチームクラッキング施設の稼働にまでも及んでいる。全ての技術分野の場合のように、局所的な二酸化炭素排出の低減は、特に、可能なプロセス・ユニットの一部又は全ての電化によって達成し得る。
工業プロセスの少なくとも局所的な二酸化炭素排出を低減させる進行中の取組みは、スチームクラッキング施設の稼働にまでも及んでいる。全ての技術分野の場合のように、局所的な二酸化炭素排出の低減は、特に、可能なプロセス・ユニットの一部又は全ての電化によって達成し得る。
改質炉に関連して特許文献3に記載されているように、バーナに加えて、電圧源を使用でき、電圧源は、電圧源によって生成された電流が原料を加熱するように反応管に接続される。電気的に加熱されるスチームクラッキング炉が使用されるスチームクラッキング炉は、例えば、特許文献4、特許文献5及び特許文献6で提案された。電気炉技術は、他の状況又はより広範な文脈では、例えば、特許文献7、特許文献8、特許文献9、特許文献10及び特許文献11、又は例えば、特許文献12、特許文献13、特許文献14及び特許文献15等のより古い文献で開示されている。
スチームクラッキング施設の加熱の概念を完全に又は部分的に修正すること、即ち、燃料の燃焼によって生成される熱ではなく、電気エネルギーによって生成される熱を完全に又は部分的に使用することは、かなり大幅な介入である。代替として、特に、既存の施設を改造する場合、あまり侵襲的ではない再設計オプションが望ましいことが多い。これらには、例えば、プロセス・ガス圧縮器又は異なる圧縮器の駆動に使用される蒸気タービンを、少なくとも部分的に電気駆動に代えることを含み得る。前述のように、そのような蒸気タービンは、クラッキング炉の対流区分内で回収された廃熱により生成した蒸気で部分的に動作し得るが、十分な蒸気量を供給するため、典型的には、燃焼蒸気ボイラを更に設けなければならない。したがって、上述した圧縮器の駆動に使用される蒸気タービンを、電気駆動に少なくとも部分的に代えることは、燃焼ボイラの負荷を低減又は回避し、これにより、局所的な二酸化炭素の排出を低減するのに適していることがある。
Ullmann’s Encyclopedia of Industrial Chemistry、2009年4月15日、オンライン出版、DOI:10.1002/14356007.a10_045.pub2内の項目「エチレン」
しかし、以下で更に説明するように、特に、そのような施設の部分の電化は、施設全体の熱平衡に著しい影響を及ぼす。即ち、圧縮器を駆動する蒸気タービンを電気駆動に代えた場合、以前は蒸気タービンの駆動のために使用された、施設内で生成される廃熱をもはや十分に利用することができない。もう一方で、燃焼炉を電気炉に代えた場合、以前は蒸気の供給、フィードの加熱等のために使用された煙道ガスからの廃熱は、利用が可能でなくなる。
言い換えれば、スチームクラッキング部分の任意の二酸化炭素排出部分を代えることは、施設の全体動作に大幅な影響を及ぼすものであり、単に、1つの構成要素を別の構成要素を交換するという問題ではない。したがって、スチームクラッキング施設へのそのような構成要素の効率的で効果的な統合は、全体的な施設設計のため、特にエネルギー管理に関して、最も重要な事項である。したがって、このことが本発明の目的である。
本発明は、これに関連して、特に、燃焼スチームクラッキング炉が使用されるものの、ポンプ、圧縮器又は他の回転機器が、蒸気タービンの使用ではなく、電気モータによって少なくとも部分的に駆動され、したがって、スチームクラッキング施設の少なくとも「部分電化」が実現される状況に関する。また、そのような上述の状況において、適合された動作モードを発見しなければならない。というのは、従来の良好な平衡の蒸気生成及び消費の状況が、蒸気消費器の低減によって平衡が取れなくなるためである。
この背景に対して、本発明は、独立請求項の特徴を有するスチームクラッキングのための方法及びシステムを提案する。本発明の実施形態は、従属請求項及び以下の説明の主題である。
本発明の特徴及び利点を更に説明する前に、本明細書で使用される一部の用語を更に説明する。
用語「プロセス蒸気」は、炭化水素フィードがスチームクラッキングを受ける前、炭化水素フィードに加えられる蒸気を指すものとする。他の用語では、プロセス蒸気は、対応するフィードの一部である。したがって、プロセス蒸気は、一般に公知であるスチームクラッキング反応に関与する。プロセス蒸気は、特に、「プロセス水」の気化からの蒸気を含み、「プロセス水」とは、即ち、混合炭化水素/水流から、例えば、スチームクラッキング炉から回収されたプロセス・ガスから、又はプロセス・ガスの留分から、特に、容器/コアレッサ、脱酸素化ユニット内の重力分離によって、又はフィルタの使用により、事前に分離した水である。
「プロセス・ガス」は、ガス混合体であり、スチームクラッキング炉に通され、その後、クエンチング、圧縮、冷却及び分離等の処理ステップを受ける。プロセス・ガスは、スチームクラッキング炉に供給される場合、スチームクラッキングを受ける蒸気及び抽出炭化水素を含み、即ち、スチームクラッキングにかけられる「フィード流」も、本明細書ではプロセス・ガスとも呼ばれる。識別が必要な場合、プロセス・ガスは、「スチームクラッキング炉に導入されるプロセス・ガス」及び「プロセス・ガス・エフルエント」又は同様のもの等の言い回しによって示される。スチームクラッキング炉を離れる際、プロセス・ガスは、クラッキング生成物中で富化され、特に、エダクト炭化水素中で枯渇される。後続の処理ステップの間、プロセス・ガスの組成は、例えば、プロセス・ガスから分離される留分のために、更に変化し得る。
用語「高純度蒸気」は、プロセス蒸気とは対照的に、浄化ボイラ給水の気化から生成される蒸気を指すものとする。高純度蒸気は、典型的には、VGB-S-010-T-00又は同様のもの等、当技術分野で通例の規格によって指定される。高純度蒸気は、典型的には、プロセス水から生成される蒸気を含まない。というのは、プロセス水は、典型的には、プロセス・ガスからのいくつかの更なる成分を含有するためである。
用語「フィード炭化水素」は、スチームクラッキング炉において、プロセス・ガス中でスチームクラッキングを受ける少なくとも1つの炭化水素を指すものとする。用語「ガス・フィード」が使用される場合、フィード炭化水素は、支配的又は排他的に、分子ごとに2から4個の炭素原子を有する炭化水素を含む。対照的に、用語「液体フィード」は、支配的又は排他的に、分子ごとに4から40個の炭素原子を有する炭化水素を含むフィード炭化水素を指すものとし、「重フィード」は、この範囲の上端にある。
用語「電気炉」は、概して、クラッキング・コイル内でのプロセス・ガスの加熱に必要な熱が、支配的又は排他的に、電気によって供給されるスチームクラッキング炉のために使用し得る。そのような炉は、有線接続及び/又は誘導送電のいずれかを介して、電力供給システムに接続される1つ又は複数の電気加熱デバイスを含み得る。加熱デバイス材料の内側では、印加された電流が、ジュール加熱による体積熱源を生成している。クラッキング・コイル自体を電気加熱デバイスとして使用する場合、放出された熱は、対流-伝導伝熱によってプロセス・ガスに直接伝達される。個別の電気加熱デバイスを使用する場合、ジュール加熱によって放出される熱は、まず、加熱デバイスからクラッキング・コイルに、好ましくは放射を介して、より小規模には、対流を介して、次に、クラッキング・コイルからプロセス・ガスに、対流-伝導伝熱によって、加熱デバイスからプロセス・ガスに間接的に伝達される。プロセス・ガスは、クラッキング炉に供給する前に様々な様式で予熱し得る。
用語「燃焼炉」は、対照的に、概して、クラッキング・コイル内でのプロセス・ガスの加熱に必要な熱が、支配的又は排他的に、1つ又は複数バーナの使用による燃料の燃焼によって供給されるスチームクラッキング炉である。プロセス・ガスは、クラッキング炉に供給する前に様々な様式で予熱し得る。
用語「ハイブリッド加熱概念」は、概して、スチームクラッキングにおいて、電気炉と燃焼炉との組合せが使用される場合に使用し得る。本発明の文脈において、単一のクラッキング・コイルが、1つの燃焼炉又は1つの電気炉に厳密に属することが好ましく見越される。即ち、各クラッキング・コイルは、排他的に電気エネルギーによって、又は排他的に燃焼によって加熱される。
用語「支配的に」は、本明細書では、少なくとも50%、60%、70%、80%、90%又は95%の比率又は含量を指し得る。
本明細書で使用する用語「回転機器」は、圧縮器、送風器、ポンプ及び発電機から選択される1つ又は複数の構成要素に関連することができ、そのような回転機器は、電気モータ、蒸気タービン又はガス・タービン等の機械エネルギー源によって回転駆動である。
「複数流熱交換器」は、特に、例えば最初に述べたUllmannの論文で述べられる「急冷交換器(TLE、transfer line exchanger)」の場合のように、冷却される媒体が複数の通路に通される熱交換器である。
発明の利点
本発明者等の知る限り、上記で表した解釈において、施設の分離区分において主要ガス圧縮器を駆動するのに必要な機械エネルギーを回収する蒸気タービン、又は電力を生成する蒸気タービンを特徴としない燃焼クラッキング炉設計及びスチームクラッカ施設の動作を最適化する記述はなかった。そのような解決策は、本発明により提供され、したがって、初めて、対応する施設の効果的な稼働を可能にする。
本発明者等の知る限り、上記で表した解釈において、施設の分離区分において主要ガス圧縮器を駆動するのに必要な機械エネルギーを回収する蒸気タービン、又は電力を生成する蒸気タービンを特徴としない燃焼クラッキング炉設計及びスチームクラッカ施設の動作を最適化する記述はなかった。そのような解決策は、本発明により提供され、したがって、初めて、対応する施設の効果的な稼働を可能にする。
本発明は、炉設計、及びそのような炉の設置作業における、プロセスの新たな解決策を提案する。概説すると、本発明は、「蒸気消費器が徹底的に修正された場合、蒸気生成デバイスをどのように修正し得るか?」の問題に対する解決策を提供する。前述のように、スチームクラッキング部分の二酸化炭素を排出する可能性のある部分を代えることは、施設の全体動作に強力な影響を及ぼすものであり、1つの構成要素を別の構成要素を交換するという問題ではない。
前述のように、現在のスチームクラッカ施設において、炉から移出される蒸気は、タービン駆動(機械エネルギー回収)及び熱交換器(熱エネルギー回収)の両方によって消費され、熱及び電力の複合システムをもたらす。圧縮器の駆動を電化することによって、再生可能電気の移入から利益を得て、一般にも使用し得る蒸気タービン駆動圧縮器又は発電機によって生じるエクセルギー損失を低減し得る。これと引き替えに、修正された蒸気システムは、好ましくは、熱回収システムに縮小される。
したがって、本発明は、大規模な機械エネルギー回収を伴わない、又はこれを少なくとも伴わない、スチームクラッカ施設への統合を特に目的とし、この修正された使用事例を利用し、排出及びエネルギー効率の点で炉の動作を最適化するクラッキング炉の概念を呈する。
既存の従来技術は、これらの任務をどのように解決するかについての例を含まない。というのは、公知の燃焼炉の統合概念は、そのような蒸気が豊富に利用可能であるため、機械エネルギー回収が意図される蒸気の生成に依拠するためである。
上述した一部の文献では、燃焼炉と一部電化分離列とを結合する実施形態を含むため、上述の問題も提示されている。フィード-エフルエント交換器の提供が示されているが、装置設計についての詳細な情報が示されておらず、実用的な実現についての未解決の問題に答えていない。最新技術から公知の実施形態は、対流区分での強力な過熱蒸気の生成を含み、例えば、分解ガス圧縮器を駆動する蒸気タービンでの使用に適している従来の移出蒸気条件を伴う。しかし、本発明により提供される解決策は、提案されていない。
本発明によれば、スチームクラッキング装置を使用するスチームクラッキング方法が提案され、スチームクラッキング装置は、1つ又は複数の燃焼クラッキング炉と、1つ又は複数のクエンチ冷却列と、回転機器としての1つ又は複数の圧縮器及び/又はポンプとを含み、1つ又は複数のプロセス・ガス流は、少なくとも1つ又は複数の燃焼クラッキング炉及び1つ又は複数のクエンチ冷却列に通され、回転機器は、電気エネルギーによって少なくとも部分的に駆動される。回転機器は、特に、スチームクラッキング装置の1つ又は複数の分離列の一部を形成し得る。又は回転機器は、そのような1つ又は複数の分離列内で分離される1つ若しくは複数のプロセス・ガス流又はこれらから生成される1つ又は複数のガス流の調製に適合し得る。分離列は、文献から一般に公知であるように実現でき、脱メタン化装置、脱エタン化装置、脱プロパン化装置、分割装置、水素化ユニット、吸収カラム、精留カラム、冷凍ユニット、吸収装置及び熱交換器から選択される段又は機器を含み得る。
本発明によれば、蒸気生成装置は、スチームクラッキング装置と熱結合して動作し、スチームクラッキング装置の一部も形成することができ、蒸気生成装置を使用すると、30から175バールの絶対圧力の第1の圧力レベル及び第1の温度レベルにある少なくとも過熱高圧蒸気が生成され、第1の温度レベルより高い温度レベルにある蒸気は、実質的に生成されない。用語「蒸気が実質的に生成されない」は、この関連において、特に、蒸気生成装置内で生成される合計蒸気量の10%より少ない蒸気量を指す。
更に本発明によれば、第1の圧力レベル及び第1の温度レベルの過熱高圧蒸気は、少なくとも部分的に、第1の圧力レベルを下回る第2の圧力レベルまで断熱的及び等エントロピ的に膨張され、第2の圧力レベルは、過熱高圧蒸気の温度レベルが断熱及び等エントロピ膨張のみによって第2の温度レベルまで低下するように、特に、必ずではないが、20バールの絶対圧力を上回る。第1の温度レベルは、断熱及び等エントロピ膨張の間、20バールより多い中間圧力レベルに到達した各中間温度レベルが、断熱及び等エントロピ膨張の間、それぞれの中間圧力レベルにおいて蒸気の露点を上回る5から120Kの間、特に10から100Kの間、更に特に、20から80Kの間であるように選択される。言い換えれば、膨張蒸気は、本発明による第1の温度レベルを選択することによって、中度過熱レベルに保たれる一方で、同時に、20バールを上回る全ての中間圧力レベルの間、膨張プロセス全体を通して沸点曲線から十分な距離で保持される。沸点曲線は、2相領域に達し得る又は2相領域を少なくとも一時的に通過し得る場合のように、40バールより多い第1の圧力レベルから開始される膨張の場合、特に関連する。このことは、本発明により回避される。更に、本発明による蒸気過熱を制限することによって、必須ではない蒸気生成プロセスにおける高温での熱交換負荷が低減され、これにより、必須のプロセス加熱目的、例えば、フィード予熱に対する高温加熱資源の利用可能性を増大する。
第1の圧力レベル及び第1の温度レベルにおける、過熱高圧蒸気は、好ましくは、プロセス水から生成される蒸気を含まず、好ましくは、ボイラ給水から生成される蒸気のみを含む。したがって、過熱高圧蒸気は、好ましくは、蒸気で規定される高純度蒸気である。過熱高圧蒸気は、好ましくは、1つ又は複数のプロセス・ガス流の生成時には使用されない。即ち、過熱高圧蒸気は、スチームクラッキング反応に関与しない。
言い換えれば、本発明によれば、中度過熱高純度蒸気流は、対応する圧力レベル、即ち、第1の圧力レベルで生成、移出され、用語「移出」は、この関連では、蒸気生成装置からの回収に関連し、システム全体からの回収には関連しないか、又は必ずしも関連しない。この蒸気は、蒸気過熱レベルが、例えば、蒸気搬送中に腐食をもたらし得る凝縮を防止するように本質的に選択されるため、「乾き」蒸気とも呼び得る。場合によっては最小圧力、即ち、第2の圧力レベルまで下げられて加えられる断熱及び等エントロピ膨張がある場合、膨張中、20バールを上回る任意の中間圧力レベルにある蒸気流の露点限界は、既に上記で述べた範囲内にある。
本発明は、上記で既に述べ、特に、以下で更に述べる方策と共に、高度に電化された全体的なスチームクラッカ施設設計の文脈において、燃焼スチームクラッカ炉を再設計する新規の概念を提案する。
高圧蒸気の過熱を制限するという、提案される解決策は、従来の燃焼炉及びタービン駆動大型回転機器に基づくスチームクラッカ設計の現在の最新技術を打開するものである。この技術選択は、高度電化スチームクラッカ設計の文脈において、かなり効率的な解決策を表すものであり、「高度電化」とは、スチームクラッキング炉自体ではなく、回転機器に関連するものであり、スチームクラッキング炉は、回転機器とは対照的に、本発明による燃焼炉として少なくとも部分的に依然として設けられる。
実際、炉区分における(典型的には、炉出口において150Kより多い露点限界にある)高過熱圧力蒸気の生成という現在の慣例は、対流区分内に大量の廃熱エネルギーがあること、並びに蒸気タービン内で圧縮器及びポンプ又は発電機を駆動する蒸気の使用が可能であることによって至ったものである。タービン抽気部又はタービン出口から取られ、低減した圧力蒸気は、様々なレベルでプロセス熱を供給するために更に使用される。したがって、従来の装置において、蒸気の生成及び使用に関する柔軟性は、制限されている。
高度電化クラッカの分離列において、蒸気タービンの代わりに、電気圧縮器駆動装置を使用すると、エクセルギー損失の低減をもたらす。したがって、蒸気タービンを除去した後、分離列内に高過熱高圧蒸気の効率的な使用はない。したがって、過熱レベルの低減により、本発明は、主要プロセス流、又はその成分、即ち、フィード炭化水素及び/若しくはプロセス蒸気に必要な予熱のため、炉のクエンチ区分及び対流区分内で回収された熱エネルギーの大部分の使用を可能にする。更に、以下で更に説明するように、そのような熱エネルギーは、燃料が燃焼される燃焼空気の予熱に使用し得る。
したがって、本発明の特に好ましい実施形態によれば、1つ若しくは複数の燃焼クラッキング炉に通される前の1つ若しくは複数のプロセス流、又は1つ若しくは複数のプロセス流の生成に使用されるフィード炭化水素及び/若しくはプロセス蒸気は、1つ若しくは複数の燃焼クラッキング炉、又はより正確には放射区域の下流の1つ又は複数のプロセス流から回収された熱、即ち、「プロセス・ガス」又はプロセス・ガスから生成された「分解ガス」から回収された熱を使用して少なくとも部分的に加熱される。
1つ又は複数の燃焼クラッキング炉の下流の1つ又は複数のプロセス流から回収された熱は、特に、1つ若しくは複数の直接フィード-エフルエント交換器、即ち、1つ又は複数の燃焼クラッキング炉の下流のプロセス流若しくはプロセス流の1つが、1つ又は複数の燃焼クラッキング炉に通される前に1つ若しくは複数のプロセス流と直接熱接触する1つ若しくは複数の熱交換器内の1つ又は複数の燃焼クラッキング炉の下流の1つ若しくは複数のプロセス流、又は1つ若しくは複数のプロセス流の生成に使用されるフィード炭化水素及び/若しくはプロセス蒸気から少なくとも部分的に回収でき、「直接熱接触」とは、本明細書では、中間熱交換流体を介する熱伝達によってではなく、1つ又は複数の直接フィード-エフルエント熱交換器の1つ又は複数の(金属)界面層を通じた熱伝達によって実現されるものと理解されたい。
代替又は追加として、1つ又は複数の燃焼クラッキング炉の下流の1つ又は複数のプロセス流から回収される熱は、蒸気を使用して1つ又は複数の燃焼クラッキング炉の下流の1つ又は複数のプロセス流から少なくとも部分的に回収でき、この蒸気は、その後、1つ又は複数の燃焼クラッキング炉に通される前の1つ又は複数のプロセス流、又は1つ若しくは複数のプロセス流の生成に使用されるフィード炭化水素及び/若しくはプロセス蒸気の加熱に使用される。
本発明の特に好ましい実施形態では、1つ又は複数の燃焼クラッキング炉に通される前の、フィード予熱、即ち、1つ又は複数のプロセス流の加熱の少なくとも一部、又は1つ若しくは複数のプロセス流の生成に使用されるフィード炭化水素及び/若しくはプロセス蒸気、又は燃焼に使用される空気は、蒸気生成装置の複数流熱交換器内の飽和蒸気又は中度過熱高圧蒸気に対して実施し得る。
本発明の全ての実施形態では、所与の範囲内、即ち、第1の温度レベルでの中度過熱は、プロセス熱消費器への簡単で柔軟性のある熱供給を更に可能にする。というのは、異なる温度レベルでの消費器への分散が、炉によって移出される中度過熱蒸気の単相の断熱膨張によって単純に行うことができ、特に、過熱低減のための更なるボイラ給水注入を伴う蒸気レベル全体のための降下ステーション及び/又は従来の装置のようなタービン段を必要としないためである。従来の装置において、そのような方策は、過熱蒸気の蒸気パラメータ及び蒸気膨張が、蒸気によって駆動される回転機器の蒸気要件によって大幅に支配されるため、必要である。
蒸気生成装置は、特に、飽和蒸気の生成、及びその後の飽和蒸気の中度過熱で使用される。飽和蒸気生成は、本発明によれば、1つ又は複数のクエンチ冷却列内、即ち、1つ又は複数の1次クエンチ交換器及び/又は2次クエンチ交換器内で支配的に又は完全に実施し得る一方で、本発明により提供される中度蒸気過熱は、1つ又は複数の対流区分内、特に、フィード予熱バンドルの間に位置する熱交換器バンドル内で支配的に又は完全に実施し得る。蒸気過熱は、中間ボイラ給水注入を伴って又は伴わずに、1つ又は複数の過熱段で行い得る。ある程度のボイラ給水の予熱は、エコノマイザ・バンドル内及び/又は1つ若しくは複数の2次クエンチ交換器若しくは3次クエンチ交換器内で実施し得る。用語「1次」、「2次」及び「3次」は、クエンチ交換器に関連して使用され、本質的に、クエンチ冷却列内のクエンチ交換器の位置を指す一方で、プロセスの任務の観点で固定された関係は、存在しない場合がある。液体フィード炉のための現在の最新技術は、2つのクエンチ交換器を見越している一方で、3つのクエンチ交換器は、典型的にはガス・フィード炉のために設けられる。より以前の炉設計では、1つのみのクエンチ交換器を有する構成が一般に見られる。標準的な炉設計では、1次交換器は、典型的には、気化ボイラ給水に対して冷却する。2次クエンチ交換器は、ボイラ給水を(部分的に)気化する又は予熱する。3次クエンチ交換器は、典型的には、ボイラ給水を予熱する。顕著な例外は、クエンチ交換器がフィードの予熱のために使用されることである。
動的挙動の点で、蒸気システムによる水素又は他の燃料ガス消費の平衡を取り、変化を緩衝することが可能であること(更なる詳細は以下を参照)で、好ましくは再生可能電気が供給される工業コンビナート内へのそのような炉システムの統合を促進する。
本発明により提供される蒸気過熱レベルは、炉システムから移出される蒸気流が消費器へのプロセス熱の供給のみを意図する場合、かなり適している。単なる等エントロピ膨張によって、蒸気過熱レベルは、位相変化を伴わずに、熱シンク、即ち、熱「消費器」が要求する圧力及び温度レベルまで低減し得る。したがって、本発明によれば、好ましくは、1つ又は複数の蒸気生成装置によって生成される蒸気は、1MWより多いシャフト力を送出する蒸気タービン駆動装置内で使用されず、好ましくは、蒸気タービン駆動装置又は他の回転機器内で全く使用されない。言い換えると、本発明によれば、蒸気生成装置(複数可)から供給される蒸気は、蒸気タービン、及び少なくとも1MWより多いシャフト力を送出する蒸気タービンでは使用されない。
詳細には、1つ又は複数の燃焼クラッキング炉の燃焼で使用される燃焼空気の予熱は、燃料ガス消費をより少なくし、煙道ガス排出を低減させる。この予熱は、従来の過熱蒸気を使用して電気を生成するよりも効率的であるとみなされ、したがって、適切な任意の手段を使用して、本発明の一実施形態により提供され、100℃を上回る、好ましくは、150℃を上回る、より好ましくは、200℃を上回る、最も好ましくは、300℃を上回る、例えば、1000℃までの燃焼空気温度レベルがもたらされる。そのような燃焼空気の予熱は、蒸気生成に必要な煙道ガス流の大量の熱に依存する従来の装置ではそれほど有利ではない可能性がある。
一実施形態では、燃焼空気は、煙道ガス経路の外側で予熱され、「外部」燃焼空気予熱とも呼ばれる。燃焼空気の予熱は、本実施形態では、好ましくは、1つ又は複数のクエンチ冷却列、したがって、蒸気生成装置の一部を形成する1つ又は複数の複数流熱交換器内で生成される飽和蒸気の使用によって実施される。代替的に、中度過熱蒸気は、単独で又は飽和蒸気に加えて、燃焼空気の予熱で使用し得る。更に、例えば、施設の中央蒸気ヘッダの1つから取られる外部蒸気は、燃焼空気予熱プロセスの少なくとも一部のためにも使用し得る。空気予熱区分の少なくとも一部は、動作中に得られる燃焼空気予熱温度を修正可能であるように、ガス流全体の少なくとも1つの留分を迂回させ得る。
異なる実施形態では、燃焼空気は、煙道ガス経路内で予熱され、「内部」燃焼空気予熱とも呼ばれる。本実施形態では、燃焼空気予熱システムは、煙道ガスを高温媒体として、燃焼空気を低温媒体として伴う1つ又は複数の複数流熱交換器を備え得る。複数段燃焼空気予熱の場合、他のプロセスの目的で、2つの燃焼空気予熱段の間で、煙道ガスからの熱を回収することも可能である。煙道ガス経路外側の(外部)燃焼空気予熱の場合のように、燃焼空気予熱区分の少なくとも一部は、ここでは、動作中に得られる燃焼空気予熱温度を修正可能であるように、ガス流全体の少なくとも1つの留分を迂回させ得る。
内部燃焼空気予熱及び/又は外部燃焼空気予熱の場合、燃焼空気圧縮デバイスを提供でき、燃焼空気圧縮デバイスは、典型的には、燃焼空気予熱区分の上流に位置し、燃焼空気予熱交換器の圧力降下を補償する。放射区分の燃焼側の好ましい圧力は、空気予熱を伴わない従来のクラッキング炉の場合のように、典型的なわずかに準大気圧の範囲内にある。したがって、更なる煙道ガス送風器/圧縮デバイスは、好ましくは、対流区分出口の下流に位置し得る。
炉システムは、好ましくは、エネルギーが柔軟であるように動作し得る。即ち、炉の所与の化学製品生成負荷を、様々な合計燃料ガス消費率で実現でき、特に、1つ又は複数のプロセス流の形態でスチームクラッキングに供される様々な量のガスの使用を伴う。化学エネルギー入力の対応する差は、蒸気の形態のエネルギー出力を変更することによって、第1の温度レベル及び/又は蒸気移出量、即ち、過熱高圧の生成量を変更することによって、平衡を取り得る。言い換えれば、本発明の一実施形態によれば、スチームクラッキング装置は、様々な動作モードで、様々な合計燃料ガス消費率を使用して、特に、1つ若しくは複数のプロセス流の形態で供給される様々なガス量も使用して、動作される。
本発明の更なる実施形態によれば、1つ又は複数の燃焼クラッキング炉内での燃焼に使用される燃料ガスは、ある温度レベルまで加熱でき、この温度レベルは、炉の動作中に変更される。
1つ又は複数の燃焼クラッキング炉内での燃焼に使用される燃料ガスは、好ましくは、0から100wt%の間、好ましくは、20から100wt%の間、より好ましくは、50から100wt%の間の水素含量を有する。本実施形態では、より高い水素含量の場合、1つ又は複数の燃焼クラッキング炉内での燃焼に使用される燃料ガスは、少なくとも部分的に、電気分解又はアンモニア分解ユニット内で生成される水素を使用して供給することもでき、電気分解又はアンモニア分解ユニットの動作も、本発明により提供される方法の一部とし得る。
本発明によれば、使用されるシステムからの温室効果ガスの排出は、従来の燃焼炉と比較して、20%から100%、好ましくは、30%から100%、より好ましくは、50%から100%低減し得る。この文脈において、従来の燃焼炉とは、燃焼空気の予熱を伴わずに、従来の(クラッカの低温区分からの)最終ガスと天然ガスとの燃料混合体の移出を使用して動作させるものである。
本発明により提供されるスチームクラッキング・システム及びその好ましい実施形態に関連する更なる詳細に関する、上記の本発明の方法及びその好ましい実施形態に関連する説明を参照されたい。有利には、提案される装置は、以前により詳細に説明した実施形態の少なくとも1つの方法の実施に適合する。
図面を参照する本発明の実施形態のより詳細な説明に向かう前に、再度、本発明及びいくつかの実施形態の一部の詳細及び概念を参照されたい。
機械的エネルギー回収を伴わずに移出される蒸気の膨張は、逆効果又は非効率的であるようにみえるかもしれないが、請求する炉の主なエネルギー供給は、従来の燃焼炉と比較して、かなり低減されること、及び好ましくは、エネルギーは、水素富化留分の有益な形態で供給されることを考慮に入れなければならない。この意味において、本発明は、(蒸気生成がより少なく、より多くのフィードを予熱する)燃焼炉内でエネルギー平衡を再構成するという更なる方針を提供するものである。本発明は、炉区分内で最小の主要エネルギー消費を厳密に標的化し、炉設計/動作を高度電化分離列トポロジに適合させることによって、公知の概念の先を行くものでもある。
実際、そのような炉内で蒸気過熱レベルが上昇すると、全体的な主要エネルギー需要の増大をもたらし、このエネルギー需要は、下流のタービンにおける機械エネルギー又は電気の回収によっては完全に補償することはできない。したがって、理想的ではないプロセス性能を考慮すると、(より大きな規模で)システムの観点から、及び(より小さな規模で)プロセス/エネルギーの観点から、プロセス熱消費器が必要とする中度加熱蒸気を断熱的及び等エントロピ的に膨張させることは、より効率的である。このことは、燃料ガス供給時に更なる損失生成器を有する施設、例えば、炉内で燃焼される水素が、電気分解ユニット及び/又はアンモニア分解ユニットによって少なくとも部分的にもたらされる施設の場合、より一層当てはまる。
プロセス熱の目的に対する蒸気の使用を制限し、それに応じて蒸気パラメータを設定することによって、蒸気システムは、柔軟に動作でき、更に、例えば、動作中の蒸気過熱及び/又は圧力レベルを変更することによって、一時的エネルギー緩衝として使用し得る。この一時的エネルギー緩衝は、生成された蒸気が、蒸気条件の変動に対して蒸気ベースの熱交換器ほど耐性がない蒸気タービン内での発電に使用されないことによって促進される。
施設の稼働中、本発明は、例えば、1つ又は複数の予熱交換器周囲の燃料空気の特定の留分を迂回させることによって、例えば、空気予熱温度の修正を可能にする。このことは、燃料ガスの消費及び蒸気生成に影響を及ぼし、施設の一時的エネルギー管理の適合に使用し得る。このことは、炉が電気分解ユニット(若しくはアンモニア分解ユニット)から部分的に生じた燃料ガスを使用する場合、又は炉がハイブリッド施設構成で電気炉と組み合わせられる場合、かなりの重要事項となり得る。蒸気生成及び過熱は、2つの過熱区分の間の任意のボイラ給水注入の変更によっても適合し得る。
一般的に、蒸気生成の変更は、本発明によれば、いくつかの異なる手段によって、例えば、流れの特性(温度、圧力、流量)の設定点の変更によって、迂回管路を(部分的に)開/閉することによって、機器に固有のプロセス・パラメータ(熱負荷、動作圧力)を変更することによって、又はプロセス・パラメータの他の変更によって、行い得る。
更に、炉システム外側の蒸気ヘッダ・システム内の圧力レベルは、本発明の実施形態では、動作中に変更され、全体的な蒸気量の点で更なる緩衝能力をもたらし得る。実際、全体的な熱貯蔵能力は、スチームクラッカ内の蒸気の在庫及び対応する熱能力の合計によるものであり、即ち、スチームクラッカ内の蒸気の在庫は、異なる圧力レベルにおける炉と蒸気消費器との間の全ての蒸気ヘッダ管路を含めたものである。
本発明の更なる特徴及び実施形態は、以下に列挙する。全てのこれらの特徴及び実施形態は、特許請求の範囲によって包含される限り、技術的に実現可能又は分別のある限り、限定せずに、上記で説明した特徴及び実装形態と組み合わせ得る。
-本発明は、好ましくは、分離列と組み合わされ、1MWを上回る動力負荷を伴う全てのガス圧縮器又はポンプが電気モータによって駆動される。
-移出される過熱高圧蒸気は、最も有利には、断熱及び等エントロピ膨張要素によって様々な蒸気圧力レベルに分散される。(例えば、重要なファウリング点検を伴う)単数の熱消費器は、(直接的な水の注入によって又は飽和ドラムの使用によって実施し得る)更なる過熱低減段を更に含み得る。
-本発明による特徴を含むスチームクラッキング装置は、ハイブリッド・システム構成において、電気加熱炉を更に含むことができ、電気加熱炉は、直接抵抗コイル加熱、電気加熱要素による間接放射コイル加熱、及び誘導送電を使用するコイル加熱等、任意の可能な電気加熱原理に従って動作し得る。スチームクラッキング装置は、電気エネルギーから蒸気を生成する他のユニット(例えば、電気熱ポンプ・システム及び電気ボイラ)を含み得る。
-移出される加熱蒸気は、例えば、中圧蒸気消費器及び低圧蒸気消費器に供給するため、20バールの絶対圧力を下回る圧力蒸気レベルまで膨張させ得る。下限として、中間圧力レベルにおける露点限界を特徴付ける20バールの絶対圧力の選択は、最初の蒸気過熱の曲線包絡線の定義を促進するように選択され、沸点曲線への上述の距離が、20バールを上回る全ての中間圧力レベル又は第2の圧力レベルに対して示されるようにする。20バールの絶対圧力を下回る圧力まで膨張すると、本発明の範囲を限定するものではないが、より高い値の露点限界が生じ得る。
-蒸気過熱/圧力の変更を通じた固有のエネルギー貯蔵の可能性に加えて、本発明は、専用エネルギー貯蔵システム、例えば、潜熱貯蔵システム又は同様のものと更に組み合わせ得る。
-本発明は、好ましくは、分離列と組み合わせられ、分離列に対してフィード中で利用可能な水素の全て又は大部分(典型的には、70、75又は80から100%)は、水素から支配的に構成されるプロセス流の形態で回収され、炉内での燃焼に使用される。
-本発明による炉システムは、スチームクラッカ施設又はシステム内で好ましく使用され、スチームクラッカ施設又はシステムは、再生手段により好ましく生成される電気の移出から水素を生成する電気分解ユニットを含む。代替又は追加として、施設又はシステムは、移出されたアンモニアから水素を生成するアンモニア分解ユニットを特徴とし得る(アンモニアは、好ましくは、別の場所で再生可能電気を使用して生成される)。
-フィード-エフルエント1次クエンチ交換器及び中度蒸気過熱を伴う一実施形態も、本発明によって含まれる。
本発明及び本発明の実施形態を添付の図面に関して更に説明する。
図1は、初めに既に説明した通りである。
図2において、本発明の一実施形態によるスチームクラッキング装置1100が示され、スチームクラッキング装置1100は、本発明の一実施形態によるスチームクラッキング方法の実施に使用され、任意で、本発明によるシステムの一部である。スチームクラッキング装置を示す後続の図面の場合のように、方法の方法ステップは、対応するプロセス・ユニット又は使用されるデバイスによって実現でき、したがって、方法ステップに関連する説明は、そのようなプロセス・ユニット及びデバイスに同様に関連し、その逆も同様とし得る。説明の繰返しは、簡潔にする理由で省略されるにすぎず、本発明の実施形態による装置又はシステム及び方法を説明する言い回しの組合せは、明快にするために使用される。構成要素が単数形で説明される場合、この説明は、そのような構成要素が複数で提供されることを除外しない。以下に示される他のスチームクラッキング装置等、スチームクラッキング装置1100は、複数の更なる構成要素を含み得る本発明の一実施形態によるシステム100の一部とすることができ、システムの可能な境界線は、図2にかなり概略的に示すにすぎない。
図2から図6及び図10において、太い実線矢印は、炭化水素フィード流、プロセス蒸気流、プロセス・ガス流、又は分解流、及び炭化水素留分等のこれらから形成される流れを示す。薄い実線矢印は、燃料ガス流、空気流、煙道ガス流及び放出流を指す。細かい点線矢印は、液体ボイラ給水流を示す一方で、破線矢印は、飽和高純度蒸気流を示し、一点鎖線矢印は、過熱高純度蒸気流を示す。凝縮液流は、一点二鎖線矢印で示す。
スチームクラッキング装置1100は、燃焼スチームクラッキング炉110の使用を含み、燃焼スチームクラッキング炉110は、以前に概説したように燃焼放射区域11及び対流区域12によって形成されるか又はこれらを含む。図示の実施形態では、対流区域12において、フィード予熱器121、エコノマイザ122、第1の高温コイル123、第1の蒸気過熱器125、任意の第2の蒸気過熱器125及び第2の高温コイル126は、煙道ガス通路又はダクト内に配置される。煙道ガス流FLは、放射区域11から対流区域12を通じて通され、本実施形態では約89℃の温度で対流区域12を離れる。放射区域11は、燃料ガス流FU及び燃焼空気CAを使用して燃焼され、燃料ガス流FU及び燃焼空気CAは、この図示の例では、約300℃の温度まで予熱される。
1次クエンチ交換器21、2次クエンチ交換器22及び3次クエンチ交換器23は、プロセス・ガス経路内に配置され、スチームクラッキング装置1100のクエンチ冷却列20を形成する。
蒸気生成装置30が設けられ、蒸気生成装置30は、蒸気ドラム31と、蒸気の生成に使用される他の構成要素とを含む。概して、本明細書の全体を通して、主に、特定の機能と共に説明される1つの装置に属する構成要素又は構成要素の群を参照する場合、このことは、相互接続部分を備える施設では典型であるように、この構成要素が、更に、追加の又は異なる機能を有する異なる装置又は構成要素の群の一部ではないことを除外しない。例えば、1次クエンチ交換器21、2次クエンチ交換器22及び3次クエンチ交換器23は、本明細書では、冷却列20の一部として説明されるが、これらは、蒸気生成装置30にも統合される。
図2に示される実施形態では煙道ガス・ダクトの外側、したがって、対流区分12の外側に配置される燃焼空気予熱ユニット40も、スチームクラッキング装置1100の一部である。
スチームクラッキング装置1100を使用する方法において、プロセス蒸気PS及びフィード炭化水素HCは、スチームクラッキング装置1100に供給される。フィード炭化水素HCは、プロセス蒸気PSと結合させてプロセス流PRを生成する前に、フィード予熱器121内で加熱され、プロセス流PRは、燃焼放射区域11に供給される前、高温コイル123及び126内で更に加熱される。ここでは分解ガス又はプロセス・ガスとも呼ばれ、明快にするためにPEと示されるプロセス流は、放射区域11から回収され、以前に概説した1次クエンチ交換器21、2次クエンチ交換器22及び3次クエンチ交換器23内でクエンチ冷却される。
その後、プロセス流PEは、図2のみに示されるように、本発明の一実施形態による、圧縮器60、特に、電気モータMによって駆動されるプロセス・ガス圧縮器内の圧縮を含む任意の種類の処理を受け得る。更なる詳細については、上記の説明を参照されたい。特に、全ての又は本質的に全ての圧縮器が電気的に駆動される分離列が設けられる。
点線矢印でも示されるボイラ給水BFは、蒸気ドラム31に供給する前、3次クエンチ交換器23及びエコノマイザ122内で加熱され、ボイラ給水BF回路は、2次クエンチ交換器22及び1次クエンチ交換器21を通じても形成される。蒸気ドラム31から回収され、鎖線矢印でも示される飽和蒸気SSは、蒸気過熱器124、125内で部分的に過熱され、一点鎖線矢印で示される(中度の)過熱高圧蒸気SUを生成し、(中度の)過熱高圧蒸気SUは、燃焼空気予熱ユニット40に部分的に供給される。過熱高圧蒸気SUのパラメータは、以前に広範囲に説明してある。図示の実施形態では、このパラメータは、約380℃の温度及び約117バールの絶対圧力を有し得る。蒸気過熱器124と125との間に、更なるボイラ給水BFを追加でき(いわゆるボイラ給水注入)、更なるボイラ給水BFは、好ましくは、予熱されず、特に、対流区域12内の熱平衡を全体的に制御し、例えば、異なる動作点に適合させるために使用される。ボイラ給水を注入しない場合、蒸気過熱器125は、省略してもよい。
予熱すべき燃焼空気CA、及び任意の外部蒸気EXも、燃焼空気予熱ユニット40に供給される。燃焼空気予熱ユニット40から、凝縮液流COが回収され、凝縮液流COは、既に広範囲に説明したボイラ給水BFの一部として使用し得る。
参照の目的のみで50で示される蒸気利用装置において、過熱高圧蒸気SUは、加熱の目的で使用されるが、好ましくは、回転機器の駆動の目的では実質的に使用されない。本明細書では、過熱高圧蒸気SUは、膨張ユニット51、52、53を使用して断熱的及び等エントロピ的に膨張され、熱消費器54、55、56に供給される高圧蒸気HP、中圧蒸気MP及び低圧蒸気LPを生成する。全ての炉から移出される蒸気(高圧蒸気又は超高圧蒸気)は、対応する蒸気ヘッダ、即ち、蒸気を施設上で様々な消費器に分散させる大容量の管システム内で収集し得る。より下側の圧力蒸気ヘッダへの供給接続は、この最も高い圧力蒸気ヘッダから行われる。従来の施設において、そのような蒸気ヘッダは、炉の出口における蒸気移出圧力をわずかに下回る、おおよその一定圧力で動作する。本発明の実施形態によれば、この最も高い圧力蒸気ヘッダは、有利な緩衝効果を達成するように、より広範囲に変更し得る。
上記を要約すると、図2によるスチームクラッキング装置1100において、燃焼空気CAは、煙道ガス経路の外側で予熱される(「外側での空気予熱」)。飽和蒸気SSの生成は、(1次クエンチ交換器21及び2次クエンチ交換器22を伴う)クエンチ冷却列20内で完全に行われる一方で、中度蒸気過熱は、高温コイル123と126との間の対流区分12内で行われる。蒸気過熱は、中間ボイラ給水注入を伴って又は伴わずに、1つ又は複数の過熱段で行い得る。ある程度のボイラ給水予熱は、図示のように、エコノマイザ122及び/又は3次クエンチ交換器23内で行い得る。
燃焼空気の予熱は、好ましくは、1つ又は複数の複数流熱交換器において、クエンチ区分20内で生成された飽和蒸気SSの使用によって行われる。代替的に、中度過熱蒸気は、単独で又は飽和蒸気に加えて、空気予熱区分(図2には示されない)内で使用し得る。更に、例えば、施設の中央蒸気ヘッダの1つから取られる外部蒸気EXは、燃焼空気予熱プロセスの少なくとも一部のためにも使用し得る。燃焼空気予熱ユニット40の少なくとも一部は、動作中に得られる空気予熱温度を修正可能であるように、ガス流全体の少なくとも1つの留分を迂回させ得る。
更に図示しないのは、典型的には、燃焼空気予熱ユニット40の上流に位置する空気圧縮デバイスであり、空気圧縮デバイスは、燃焼空気予熱交換器の圧力降下を補償する。放射区分の燃焼側上の好ましい圧力及び更なる詳細は、以前に述べた。
図3において、本発明の一実施形態による更なるスチームクラッキング装置1200が示される。概して、図2によるスチームクラッキング装置1100に関連する説明は、図3によるスチームクラッキング装置1200にも同様に適用され、相違点のみを以下で説明する。
図3によるスチームクラッキング装置1200において、燃焼空気予熱ユニット40は、煙道ガス通路又はダクトに統合され、また、図2によるスチームクラッキング装置1100の場合のようには飽和蒸気SSが供給されない。エコノマイザ122は、対流区分12では省略され、したがって、ボイラ給水BFは、対流区分12においてそのようなエコノマイザでは加熱されない。今度は、クエンチ冷却区分は、2つの交換器21及び23のみから構成され、クエンチ交換器22も省略される。ボイラ給水BFは、2次クエンチ交換器23内で予熱され、蒸気ドラム31は、1次クエンチ交換器21と接続される。
第1の蒸気過熱器124と第1の高温コイル123との間のある位置、及びフィード予熱器121下流のある位置から、図3のFG1及びFG2で示される煙道ガスFGの少なくとも一部は、燃焼空気予熱ユニット40の複数段に通される。次に、燃焼空気予熱ユニット40の高温段からの煙道ガス帰還流FG1Rは、第1の高温コイル123に送られる。燃焼空気予熱ユニット40の低温段において加熱の目的で使用された後、煙道ガスは、本例では約70℃の温度で燃焼空気予熱ユニット40を離れる。好ましくは外部蒸気EXではなく、燃焼空気CAが、燃焼空気予熱ユニット40に供給され、したがって、好ましくは、凝縮液流COは生成されない。予熱燃焼空気CAは、図示の例では約280℃の温度で放射区域11に供給される。
燃焼空気予熱ユニット40の複数段の他の構成、及び対流区域12の複数の熱交換器バンドルとの組合せは、本発明の範囲を限定せずに見越し得ることに留意されたい。例えば、燃焼空気予熱ユニット40の高温段は、図3に示すものより更に上流又は更に下流のいずれかで、対流区域12の交換器バンドルの間の異なる点で挿入し得る。
上記を要約すると、図3によるスチームクラッキング装置1200において、燃焼空気CAは、煙道ガスFG経路の内側で予熱される(「内側での空気予熱」)。そのような空気予熱システムは、煙道ガスFGを高温媒体として、燃焼空気CAを低温媒体として伴う1つ又は複数の複数流熱交換器から構成し得る。複数段空気予熱の場合、2つの燃焼空気CA予熱段の間、他のプロセスの目的で煙道ガスFGからの熱を回収することも可能である。図2によるスチームクラッキング装置1100に関連して示される外部燃焼空気CAの予熱について、燃焼空気CA予熱区分の少なくとも一部は、動作中に得られる空気予熱温度を修正可能であるように、ガス流全体の少なくとも1つの留分を迂回させ得る。
図3によるスチームクラッキング装置1200において、湯沸を同等に使用でき、この湯沸は、単一の1次クエンチ交換器21で、及び(図2に示されるように)1次クエンチ交換器21と2次クエンチ交換器22との組合せで実施される。更に、この実施形態は、対流区分12内のボイラ給水BF予熱段を特徴とせず、これにより、説明したように、燃焼空気予熱のための煙道ガスFG熱の利用可能性を優先させる。
図4において、本発明の一実施形態による更なるスチームクラッキング装置1300が示される。概して、図2によるスチームクラッキング装置1100に関連する説明は、図4によるスチームクラッキング装置1300にも同様に適用され、相違点のみを以下で説明する。図4によるスチームクラッキング装置1300は、液体フィードのクラッキング炉でより典型的であるとみなされる一方で、図2及び図3のそれぞれによるスチームクラッキング装置1100及び1200は、ガス・フィードのクラッキング炉の典型的な設計の特徴を示す。
図2によるスチームクラッキング装置1100と比較すると、3次クエンチ交換器23は、図4によるスチームクラッキング装置1300内では省略されている。蒸気ドラム31に供給されるボイラ給水BFは、エコノマイザ122内で予熱した後、2次クエンチ交換器22内で予熱される。蒸気ドラム31は、1次クエンチ交換器21と接続される。
液体フィード炉の場合、より高い予熱負荷が必要とされる(フィード気化に対する更なる潜熱)ので、スチームクラッキング装置1300は、更なるプロセス蒸気過熱器バンドル127を更に含み、プロセス蒸気は、炭化水素フィード流と混合される前に、煙道ガスに対して過熱される。
図5において、本発明の一実施形態による更なるスチームクラッキング装置1400が示される。概して、図2によるスチームクラッキング装置1100に対する説明に基づく、図3によるスチームクラッキング装置1200及び図4によるスチームクラッキング装置1300に関連する説明は、図5によるスチームクラッキング装置1400にも同様に適用され、相違点のみを以下で説明する。図5によるスチームクラッキング装置1400は、特に、図3によるスチームクラッキング装置1200及び図4によるスチームクラッキング装置1300の特徴を組み合わせるものである。
同様に、図3によるスチームクラッキング装置1200の場合のように、燃焼空気予熱ユニット40は、図5によるスチームクラッキング装置1400において、煙道ガス通路又はダクトに統合され、また、図2のスチームクラッキング装置1100の場合のようには飽和蒸気SSが供給されない。エコノマイザ122は、対流区分12では省略され、したがって、ボイラ給水BFは、対流区分12において加熱されない。
図4によるスチームクラッキング装置1300の場合のように、3次クエンチ交換器23は、特に、図2によるスチームクラッキング装置1100と比較した場合、図5によるスチームクラッキング装置1100内では省略されている。したがって、蒸気ドラム31に供給されるボイラ給水BFは、エコノマイザ122内で予熱されず、単に2次クエンチ交換器22内で予熱される。蒸気ドラム31は、1次クエンチ交換器21と接続される。
特に、図3によるスチームクラッキング装置1200と比較すると、フィード予熱器121下流の位置からのみ、煙道ガスFGは、燃焼空気予熱ユニット40に通される。燃焼空気予熱ユニット40において加熱の目的で使用された後、煙道ガスFGは、本例では約90℃の温度で燃焼空気予熱ユニット40を離れる。
図4及び図5に示されるスチームクラッキング装置1300及び1400は、特に、液体原料を伴って動作し得る。そのような状況において、また、図4及び図5に示されるスチームクラッキング装置1300及び1400では、3次クエンチ交換器23は、典型的には省略され、考慮される炉出口でより高い分解ガス温度をもたらす。このことは、分解ガスを更に冷却する際、重凝縮液の凝縮を回避するのに有利である。したがって、液体フィード・クラッカにおいて、1次クエンチ交換器の下流の分解ガス冷却は、熱分解オイル/ガソリン及び/又はクエンチ水の注入による直接接触冷却によって従来通り行われる。図示の本発明の実施形態によれば、1次クエンチ交換器21及び2次クエンチ交換器22は、図示のように統合される。
スチームクラッキング装置1300のように、より高い予熱負荷が液体フィード炉では必要とされる(フィード気化に対する更なる潜熱)ので、スチームクラッキング装置1400は、更なるプロセス蒸気過熱器バンドル127を更に含み、プロセス蒸気は、炭化水素フィード流と混合される前に、煙道ガスに対して過熱される。
図6において、本発明の一実施形態による更なるスチームクラッキング装置1500が示される。概して、図6によるスチームクラッキング装置1500は、図5によるスチームクラッキング装置1400といくつかの類似点を示し、したがって、図6によるスチームクラッキング装置1500は、再度、図2によるスチームクラッキング装置1100、図3によるスチームクラッキング装置1200、及び図4によるスチームクラッキング装置1300を参照して、適用可能な場合であるが、これを基準に説明する。
図5によるスチームクラッキング装置1400とは対照的に、例えば、図2によるスチームクラッキング装置1100に関連して説明したエコノマイザ122が存在し、ボイラ給水BFを予熱するが、第1の高温コイル123は省略され、プロセス・ガス流PRを予熱しない。
図4及び図5に示されるスチームクラッキング装置1300及び1400のように、図6に示されるスチームクラッキング装置1500も、特に、液体原料を伴って動作し得る。液体フィード炉における予熱負荷は、比較的、フィード炭化水素HCの更なる気化エンタルピのために、ガス供給炉よりかなり大きい。更に、前述のように、クエンチ区分内の複数流交換器内で回収し得る熱は、より少ない(重凝縮液の回避)。同時に、燃料ガスFUの消費及び煙道ガスFG排出を低減するため、燃焼空気CAの予熱を最大化することが重要である。
スチームクラッキング装置1300及び1400のように、スチームクラッキング装置1500は、更なるプロセス蒸気過熱器バンドル127を更に含み、プロセス蒸気PSは、炭化水素フィード流HCと混合してプロセス流PRを生成する前に煙道ガスに対して過熱される。
したがって、2次クエンチ交換器22は、図6に示されるように、スチームクラッキング装置1500内にあり、プロセス・ガス流PRを予熱するフィード-エフルエント交換器として設けられる。本発明は、更なる湯沸1次クエンチ交換器21の更なる分解ガス流PEの軌道に沿って下流に位置する、このフィード-エフルエント交換器の好ましい配置を提案し、これにより、かなり高い熱伝達係数、したがって、高速で効果的な分解ガスのクエンチングを可能にする。
本発明及び本発明の実施形態に特に関連する特徴は、スチームクラッキング装置1100から1500内部の蒸気過熱レベルを制限することにある。図7に示されるように、そのような中度過熱は、炉システムから移出される蒸気流が、消費器へのプロセス熱の供給のみを意図する場合、かなり適している。
図7において、水の場合のモリエ(エンタルピ/エントロピ)線図が示され、エントロピsは、kJ/(K×kg)単位で水平軸上に表示され、エンタルピhは、kJ/kg単位で垂直軸上に表示される。本発明の一実施形態により使用される中度過熱は、点71で示される一方で、従来技術により使用される高過熱は、点72で示される。断熱及び等エントロピ膨張は、本発明及び本発明の実施形態により実施され、蒸気が加熱目的でのみ使用されることを意図とする場合の弁又はレデューサの状態変化を特徴とし、点71から開始される矢印で示される一方で、ポリトロープ膨張は、本発明ではなく、従来技術により実施され、蒸気が、加熱目的で使用する前に、まず機械的な目的で使用されることを意図する場合の蒸気タービンの状態変化を特徴とし、点72から開始される矢印で示される。
本発明によれば、単なる等エントロピ膨張によって、位相変化を伴わずに、熱消費器が必要とする圧力及び温度レベルまで低減し得る。(380℃及び120バールの絶対圧力での支持点を特徴とする)そのような等エントロピ状態変化の例示的な温度展開曲線81は、20から160バールの絶対圧力の間の圧力範囲で、(+20K及び+80Kの露点限界を有する)対応する最も好ましい曲線包絡線82及び83と共に、図8に示される。図8において、バール単位の絶対圧力が水平軸に示され、℃単位の温度は、垂直軸に示される。
同じ例示的等エントロピ曲線81に対応する露点限界は、同じ圧力範囲で図9に示される。図9において、再度、バール単位の絶対圧力が水平軸に示される一方で、K単位の温度差値は、垂直軸に示される。
図10は、本発明の特に好ましい実施形態による更なる蒸気装置を示す。
1600で示される、図10による装置の構成要素に関し、図2から図6、特に図3に関する説明を参照されたい。図10に示される実施形態の必須の態様は、約610℃の温度までの2段燃焼空気予熱を含むことであり、フィードHCは、熱クエンチ冷却熱交換器22及び23内でプロセス蒸気PSと共に燃焼する前後に予熱され、ボイラ給水は予熱されず、対流区分内で3つの熱交換器バンドル124、125及び126のみを使用し、煙道ガス排出温度は、約110℃である。
Claims (14)
- スチームクラッキング装置(1100~1600)を使用するスチームクラッキング方法であって、前記スチームクラッキング装置(1100~1600)は、1つ又は複数の燃焼クラッキング炉(110)と、1つ又は複数のクエンチ冷却列(20)と、回転機器としての1つ又は複数の圧縮器(60)及び/又はポンプとを含み、1つ又は複数のプロセス・ガス流は、少なくとも前記1つ又は複数の燃焼クラッキング炉(110)及び前記1つ又は複数のクエンチ冷却列(20)に通され、前記回転機器は、電気エネルギーによって少なくとも部分的に駆動される、方法において、1つ又は複数の蒸気生成装置(30)は、前記1つ又は複数のスチームクラッキング装置(1100~1600)と熱結合して動作し、前記1つ又は複数の蒸気生成装置(30)の使用により、30から175バールの絶対圧力の間の第1の圧力レベル及び第1の温度レベルで少なくとも過熱高圧蒸気が生成され、前記第1の温度レベルより高い温度レベルの蒸気は、生成されず、前記第1の圧力レベルの前記過熱高圧蒸気は、前記過熱高圧蒸気の温度レベルが第2の温度レベルまで低下するように、少なくとも部分的に、前記第1の圧力レベルを下回る第2の圧力レベルまで断熱的及び等エントロピ的に膨張され、前記第1の温度レベルは、前記断熱及び等エントロピ膨張の間、20バールより多い中間圧力レベルに到達した各中間温度レベルが、前記断熱及び等エントロピ膨張の間、それぞれの前記中間圧力レベルにおいて蒸気の露点を上回る5から120Kの間であるように選択される、方法。
- 前記第1の圧力レベル及び前記第1の温度レベルにおける前記過熱高圧蒸気は、プロセス水から生成される蒸気を含まない、及び/又はボイラ給水から生成される蒸気のみを含み、このため、前記第1の圧力レベル及び前記第1の温度レベルにおける前記過熱高圧蒸気は、高純度過熱高圧蒸気として供給される、請求項1に記載の方法。
- 前記1つ又は複数のスチームクラッキング装置の前記1つ若しくは複数の燃焼クラッキング炉に通される前の1つ若しくは複数のプロセス流、又は前記1つ若しくは複数のプロセス流の生成に使用されるフィード炭化水素及び/若しくはプロセス蒸気は、前記1つ又は複数のスチームクラッキング装置の前記1つ又は複数の燃焼クラッキング炉の下流の前記1つ又は複数のプロセス流から回収される熱を使用して少なくとも部分的に加熱される、請求項1又は2に記載の方法。
- 前記1つ又は複数のスチームクラッキング装置の前記1つ又は複数の燃焼クラッキング炉の下流の前記1つ又は複数のプロセス流から回収される前記熱は、1つ又は複数の直接フィード-エフルエント交換器において、前記1つ又は複数のスチームクラッキング装置の前記1つ又は複数の燃焼クラッキング炉の下流の少なくとも1つのプロセス流から少なくとも部分的に回収される、請求項3に記載の方法。
- 前記1つ又は複数のスチームクラッキング装置の前記1つ又は複数の燃焼クラッキング炉の下流の前記1つ又は複数のプロセス流から回収される前記熱は、前記前記1つ若しくは複数のスチームクラッキング装置の前記1つ若しくは複数の燃焼クラッキング炉に通される前、前記1つ若しくは複数のプロセス流の加熱に後に使用される蒸気に少なくとも部分的に伝達されるか、又は前記1つ若しくは複数のプロセス流の生成に使用されるフィード炭化水素及び/若しくはプロセス蒸気に伝達される、請求項3に記載の方法。
- 前記1つ又は複数の蒸気生成装置(30)によって生成される蒸気は、1MWより多いシャフト力を送出する蒸気タービン内で膨張されない、請求項1から5のいずれか一項に記載の方法。
- 前記1つ又は複数の燃焼クラッキング炉内での燃焼に使用される燃焼空気は、100から1000℃までの温度レベルまで予熱され、前記温度レベルは、動作中に変更される、請求項1から6のいずれか一項に記載の方法。
- 前記燃焼空気は、前記1つ又は複数の燃焼クラッキング炉の前記煙道ガス経路外側の1つ又は複数の複数流熱交換器内で少なくとも部分的に予熱され、前記予熱は、前記1つ又は複数の蒸気生成装置(30)内で生成される飽和蒸気の使用により少なくとも部分的に実施される、請求項1から7のいずれか一項に記載の方法。
- 前記燃焼空気は、前記煙道ガス経路内の前記1つ又は複数の複数流熱交換器内で少なくとも部分的に予熱され、2つの燃焼空気予熱段の間で、前記煙道ガスからの熱は、他のプロセスの目的で使用される、請求項1から8のいずれか一項に記載の方法。
- 前記スチームクラッキング装置又は前記スチームクラッキング装置の少なくとも1つが、複数の動作モードによる異なる合計燃料ガス消費率を利用して動作される一方で、一定の合計クラッキング生成物の収率を維持する、請求項1から9のいずれか一項に記載の方法。
- 前記1つ又は複数の燃焼クラッキング炉内での燃焼に使用される煙道ガスは、ある温度レベルまで加熱され、前記温度レベルは、動作中に変更される、請求項1から10のいずれか一項に記載の方法。
- 前記1つ又は複数の燃焼クラッキング炉内での燃焼に使用される煙道ガスは、0から100wt%の間の水素含量を有する、請求項1から11のいずれか一項に記載の方法。
- 前記1つ又は複数の燃焼クラッキング炉内での燃焼に使用される前記燃料ガスは、電気分解又はアンモニア分解ユニットによって少なくとも部分的に供給される、請求項12に記載の方法。
- スチームクラッキング方法を実施するシステム(100)であって、前記システムは、1つ又は複数のスチームクラッキング装置(1100~1600)を備え、前記1つ又は複数のスチームクラッキング装置(1100~1600)は、1つ又は複数の燃焼クラッキング炉(110)と、1つ又は複数のクエンチ冷却列(20)と、回転機器としての1つ又は複数の圧縮器(60)及び/又はポンプとを含み、前記システム(100)は、少なくとも、前記1つ又は複数のスチームクラッキング装置(1100~1600)の前記1つ又は複数の燃焼クラッキング炉(110)及び前記1つ又は複数のクエンチ冷却列(20)に1つ又は複数のプロセス・ガス流を通すように適合され、前記システム(100)は、少なくとも部分的に電気エネルギーによって回転機器を駆動するように適合される、システム(100)において、1つ又は複数の蒸気生成装置(30)は、前記システム(100)が、前記1つ又は複数のスチームクラッキング装置(1100~1600)と熱結合する前記1つ又は複数の蒸気生成装置(30)の動作に適合され、前記1つ又は複数の蒸気生成装置(30)が、30から175バールの絶対圧力の第1の圧力レベル及び第1の温度レベルで少なくとも過熱高圧蒸気を生成し、前記第1の温度レベルより高い温度レベルで蒸気を生成しないように適合され、手段(51、52、53)が設けられ、前記手段(51、52、53)は、前記第1の温度レベルの前記過熱高圧蒸気を、少なくとも20バールの絶対圧力の前記第1の圧力レベルを下回る第2の圧力レベルまで少なくとも部分的に断熱的及び等エントロピ的に膨張するように適合され、前記温度レベルを第2の温度レベルまで低下させ、前記システム(100)は、前記第1の温度レベルを選択し、前記断熱及び等エントロピ膨張プロセスの間に20バールより多い中間圧力レベルに到達した各中間温度レベルが、前記断熱及び等エントロピ膨張の間、それぞれの前記中間圧力レベルにおける蒸気の露点限界を上回る5から120Kの間であるように適合されることを規定することを特徴とする、システム(100)。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21161768.3A EP4056893A1 (en) | 2021-03-10 | 2021-03-10 | Method and system for steamcracking |
EP21161768.3 | 2021-03-10 | ||
PCT/EP2022/055877 WO2022189423A1 (en) | 2021-03-10 | 2022-03-08 | Method and system for steamcracking |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024512390A true JP2024512390A (ja) | 2024-03-19 |
Family
ID=74870706
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023555251A Pending JP2024512390A (ja) | 2021-03-10 | 2022-03-08 | スチームクラッキングのための方法及びシステム |
Country Status (9)
Country | Link |
---|---|
US (1) | US20240158701A1 (ja) |
EP (2) | EP4056893A1 (ja) |
JP (1) | JP2024512390A (ja) |
KR (1) | KR20230154265A (ja) |
CN (1) | CN117015680A (ja) |
AU (1) | AU2022233542A1 (ja) |
BR (1) | BR112023017609A2 (ja) |
CA (1) | CA3211807A1 (ja) |
WO (1) | WO2022189423A1 (ja) |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE710185C (de) | 1937-11-19 | 1941-09-06 | Siemens Reiniger Werke Akt Ges | Einrichtung zum Bestrahlen mit therapeutisch wirksamen Strahlen |
DE1615278C3 (de) | 1967-06-30 | 1979-06-21 | Gefi Gesellschaft F. Industriewaerme Mbh, 4150 Krefeld | Elektrischer Widerstandsofen insbesondere zur Erhitzung gasförmiger Medien |
DE2362628C3 (de) | 1973-12-17 | 1979-07-26 | Linde Ag, 6200 Wiesbaden | Rohrofen zur thermischen Behandlung von Medien mittels Widerstandsheizung |
US4107226A (en) * | 1977-10-19 | 1978-08-15 | Pullman Incorporated | Method for quenching cracked gases |
DE3334334A1 (de) | 1983-09-22 | 1985-04-11 | Hucke, Hans, Pratteln, Basel | Heizvorrichtung fuer das aufheizen eines in einem elektrisch betriebenen durchstroemelement enthaltenen waermetraegers |
US4617109A (en) * | 1985-12-23 | 1986-10-14 | The M. W. Kellogg Company | Combustion air preheating |
ES2853575T3 (es) | 2012-12-13 | 2021-09-16 | Basf Se | Procedimiento para realizar procesos endotérmicos |
ES2937688T3 (es) | 2014-06-26 | 2023-03-30 | Linde Gmbh | Método para calentar un fluido en una tubería con corriente alterna |
US10017702B2 (en) * | 2014-10-07 | 2018-07-10 | Lummus Technology Inc. | Thermal cracking of crudes and heavy feeds to produce olefins in pyrolysis reactor |
DE102015004121A1 (de) | 2015-03-31 | 2016-10-06 | Linde Aktiengesellschaft | Ofen mit elektrisch sowie mittels Brennstoff beheizbaren Reaktorrohren zur Dampfreformierung eines kohlenwasserstoffhaltigen Einsatzes |
EP3249028A1 (de) | 2016-05-25 | 2017-11-29 | Linde Aktiengesellschaft | Emissionsreduziertes verfahren zur herstellung von olefinen |
DE102016209172A1 (de) | 2016-05-25 | 2017-11-30 | Linde Aktiengesellschaft | Emissionsreduziertes Verfahren zur Herstellung von Olefinen |
WO2019092668A1 (en) * | 2017-11-13 | 2019-05-16 | Sabic Global Technologies B.V. | Methods and systems for olefin production |
CA3109598A1 (en) | 2018-08-16 | 2020-02-20 | Basf Se | Device and method for heating a fluid in a pipeline by means of direct current |
KR20210117295A (ko) | 2019-01-15 | 2021-09-28 | 사빅 글로벌 테크놀러지스 비.브이. | 화학 물질의 생성에서 간헐적 에너지의 사용 |
EP3730592A1 (en) * | 2019-04-24 | 2020-10-28 | SABIC Global Technologies B.V. | Use of renewable energy in olefin synthesis |
-
2021
- 2021-03-10 EP EP21161768.3A patent/EP4056893A1/en not_active Withdrawn
-
2022
- 2022-03-08 CA CA3211807A patent/CA3211807A1/en active Pending
- 2022-03-08 WO PCT/EP2022/055877 patent/WO2022189423A1/en active Application Filing
- 2022-03-08 CN CN202280020250.4A patent/CN117015680A/zh active Pending
- 2022-03-08 US US18/548,881 patent/US20240158701A1/en active Pending
- 2022-03-08 EP EP22710614.3A patent/EP4305344B1/en active Active
- 2022-03-08 BR BR112023017609A patent/BR112023017609A2/pt unknown
- 2022-03-08 AU AU2022233542A patent/AU2022233542A1/en active Pending
- 2022-03-08 JP JP2023555251A patent/JP2024512390A/ja active Pending
- 2022-03-08 KR KR1020237034424A patent/KR20230154265A/ko unknown
Also Published As
Publication number | Publication date |
---|---|
KR20230154265A (ko) | 2023-11-07 |
EP4305344A1 (en) | 2024-01-17 |
US20240158701A1 (en) | 2024-05-16 |
BR112023017609A2 (pt) | 2023-11-07 |
WO2022189423A1 (en) | 2022-09-15 |
CN117015680A (zh) | 2023-11-07 |
EP4056893A1 (en) | 2022-09-14 |
EP4305344B1 (en) | 2024-09-18 |
AU2022233542A1 (en) | 2023-09-07 |
CA3211807A1 (en) | 2022-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3110909B1 (en) | Process for increasing process furnaces energy efficiency | |
US8529866B2 (en) | Process for the production of hydrogen by steam reforming an oil cut with optimized steam production | |
JP2024511736A (ja) | スチームクラッキングのための方法及びシステム | |
US20240158700A1 (en) | Method and System for Steamcracking | |
JP2024512390A (ja) | スチームクラッキングのための方法及びシステム | |
WO2024196383A1 (en) | Electric furnace for cracking hydrocarbon feedstock with heat recovery | |
WO2022268706A1 (en) | Olefins production process | |
WO2024052486A1 (en) | Method and system for steam cracking | |
CN117295806A (zh) | 用于蒸汽裂解的方法和设备 | |
JP2024536472A (ja) | 電動熱分解反応器及び供給物-流出物熱交換器を備えるエチレンプラント | |
CN117545824A (zh) | 烯烃生产方法 |