JP2024511600A - System and method for precooling in hydrogen or helium liquefaction processing - Google Patents

System and method for precooling in hydrogen or helium liquefaction processing Download PDF

Info

Publication number
JP2024511600A
JP2024511600A JP2023557121A JP2023557121A JP2024511600A JP 2024511600 A JP2024511600 A JP 2024511600A JP 2023557121 A JP2023557121 A JP 2023557121A JP 2023557121 A JP2023557121 A JP 2023557121A JP 2024511600 A JP2024511600 A JP 2024511600A
Authority
JP
Japan
Prior art keywords
stream
nitrogen
gas stream
heat exchanger
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023557121A
Other languages
Japanese (ja)
Inventor
モステロ,ロバート,エー.
Original Assignee
エア ウォーター ガス ソリューションズ,インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エア ウォーター ガス ソリューションズ,インコーポレイテッド filed Critical エア ウォーター ガス ソリューションズ,インコーポレイテッド
Publication of JP2024511600A publication Critical patent/JP2024511600A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/0007Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/001Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0087Propane; Propylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/42Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/42Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/12Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop
    • F25J2270/16External refrigeration with work-producing gas expansion loop with mutliple gas expansion loops of the same refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/904External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by liquid or gaseous cryogen in an open loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

エネルギー消費及び液体窒素の使用量が削減された、液体窒素を使用した液化のために水素又はヘリウムガス流を予冷するためのシステム及びプロセスが本明細書において記載される。システムは、加圧液体窒素の流れ、少なくとも1つのターボ膨張機、及び少なくとも1つの熱交換器を含む。【選択図】図1Systems and processes are described herein for precooling hydrogen or helium gas streams for liquefaction using liquid nitrogen, with reduced energy consumption and liquid nitrogen usage. The system includes a stream of pressurized liquid nitrogen, at least one turboexpander, and at least one heat exchanger. [Selection diagram] Figure 1

Description

この開示は、水素又はヘリウムの液化における液体窒素を使用した予冷プロセスに関する。より具体的には、本開示は、液体窒素の供給に基づくプロセスを使用して、水素又はヘリウムガスを予冷する方法に関し、この方法は少なくとも1つのターボ膨張機及び1つ又は複数の熱交換器を取り入れ、これらは協働して予冷に必要な窒素の量を削減し予冷プロセスにおいて消費されるエネルギーを削減する。 This disclosure relates to a pre-cooling process using liquid nitrogen in the liquefaction of hydrogen or helium. More specifically, the present disclosure relates to a method for precooling hydrogen or helium gas using a process based on the supply of liquid nitrogen, the method comprising at least one turboexpander and one or more heat exchangers. These work together to reduce the amount of nitrogen required for pre-cooling and reduce the energy consumed in the pre-cooling process.

水素及びヘリウムの液化はエネルギーの大量消費を必要とする。水素はあらゆる物質の中で2番目に低い沸点を有し、大気圧で沸点が-253℃である。ヘリウムだけがより低い沸点を有する。液化プロセスは、水素圧縮、予冷、及び液化などのいくつかの段階に分けられる。水素液化の予冷段階において、水素ガスは周囲温度からおよそ-191℃まで冷却され得る。大規模水素液化装置は、関連する窒素/空気液化プラントから供給される液体窒素を利用する。水素及びヘリウムの液化のプロセスは、液化プロセスにおける予冷の目的のために液体窒素を頻繁に使用する。液体窒素の使用は、液体水素又は液体ヘリウムの製造における全体のエネルギーの必要量を削減する。さらに、この利用のために得られる液体窒素は相当なエネルギーの消費により別個に製造される。液化の前に水素又はヘリウムを予冷する手段として、蒸発及び過熱のために従来は低圧及び低温で供給される、液体窒素の直接的な蒸発は、水素又はヘリウムの温流体と低温窒素流体との間の大きな温度差を必要とする。 Liquefaction of hydrogen and helium requires large consumption of energy. Hydrogen has the second lowest boiling point of all substances, boiling at -253°C at atmospheric pressure. Only helium has a lower boiling point. The liquefaction process is divided into several stages such as hydrogen compression, pre-cooling, and liquefaction. In the pre-cooling stage of hydrogen liquefaction, hydrogen gas may be cooled from ambient temperature to approximately -191°C. Large-scale hydrogen liquefiers utilize liquid nitrogen supplied from an associated nitrogen/air liquefaction plant. Hydrogen and helium liquefaction processes frequently use liquid nitrogen for pre-cooling purposes in the liquefaction process. The use of liquid nitrogen reduces the overall energy requirements in the production of liquid hydrogen or liquid helium. Furthermore, the liquid nitrogen obtained for this application is produced separately with considerable energy consumption. Direct evaporation of liquid nitrogen, conventionally supplied at low pressure and low temperature for evaporation and superheating, as a means of pre-cooling the hydrogen or helium prior to liquefaction, is a method of combining a hot hydrogen or helium fluid with a cold nitrogen fluid. Requires a large temperature difference between

図5は、液体窒素(500)による水素ガスの従来の予冷処理の例である。液体窒素(LIN)は流れ(504)において供給され、水素ガス(温かい又は周囲温度)は流れ(501)において供給される。液体窒素流(504)及び水素ガス流(501)は熱交換器(502)を向かい合う向きで流れ、冷却された水素ガス流(503)及び加温された窒素ガス流(505)が得られる。供給される液体窒素の状態は、極低温の空気分離プラントにより製造されるものに典型的な状態である。 FIG. 5 is an example of a conventional pre-cooling treatment of hydrogen gas with liquid nitrogen (500). Liquid nitrogen (LIN) is provided in stream (504) and hydrogen gas (warm or ambient temperature) is provided in stream (501). A stream of liquid nitrogen (504) and a stream of hydrogen gas (501) flow in opposite directions through a heat exchanger (502), resulting in a cooled stream of hydrogen gas (503) and a stream of warmed nitrogen gas (505). The conditions of the liquid nitrogen supplied are typical of those produced by cryogenic air separation plants.

予冷プロセスは、水素又はヘリウムの液化に必要な全体のエネルギーに直接影響を与える。必要な液体窒素を製造するためのエネルギーにより表される、予冷に必要なエネルギーは、液体水素又はヘリウムを液化するための全体のエネルギーのかなりの部分である。近年の研究は、予冷冷蔵を供給するための様々な手段により水素又はヘリウムを液化するのに必要な全体のエネルギーを削減するための手段、及び液体窒素の必要量を削減するための手段に焦点を合わせてきた。 The pre-cooling process directly impacts the overall energy required for hydrogen or helium liquefaction. The energy required for pre-cooling, represented by the energy to produce the required liquid nitrogen, is a significant portion of the total energy for liquefying liquid hydrogen or helium. Recent research has focused on means to reduce the overall energy required to liquefy hydrogen or helium by various means to provide pre-cooled refrigeration, and on means to reduce the amount of liquid nitrogen required. I have combined it.

液体窒素流を使用して液化前に水素又はヘリウムガスを予冷する方法が開示される。この方法は、a.)約15bar(a)~約70bar(a)の圧力の、液体窒素を含有する加圧液体窒素流を提供するステップと;b.)加圧液体窒素流と部分冷却された水素又はヘリウムガス流との間で熱交換する第1の熱交換器に、加圧液体窒素流及び部分冷却された水素又はヘリウムガス流を通して、第1の部分加温窒素流及び予冷された水素又はヘリウムガス流を得るステップと;c.)部分加温窒素流の温度及び圧力を低下させる1つ又は複数のターボ膨張機に、第1の部分加温窒素流を通して、低温窒素流を得るステップと;d.)低温窒素流を第1の熱交換器及び第2の熱交換器に通して、予冷された水素又はヘリウムガス流、及び完全加温窒素ガス流を得るステップとを含む。ステップ(d)は、低温窒素流と部分冷却された水素又はヘリウムガス流との間で熱交換する第1の熱交換器に、低温窒素流を通して、第2の部分加温窒素ガス流及び予冷された水素又はヘリウムガス流を得るステップと;第2の部分加温窒素ガス流と温水素又は温ヘリウムガス流との間で熱交換する第2の熱交換器に、第2の部分加温窒素ガス流を通して、完全加温窒素ガス流及び部分冷却された水素又はヘリウムガス流を得るステップとを含んでもよい。第1の熱交換器及び第2の熱交換器は、別々のデバイス、又は1つの熱交換器内の2つの部分であってもよい。この方法は、第2の熱交換器に連結された補助冷蔵システムを利用するステップをさらに含んでもよい。 A method of precooling hydrogen or helium gas prior to liquefaction using a stream of liquid nitrogen is disclosed. This method consists of a. ) providing a pressurized liquid nitrogen stream containing liquid nitrogen at a pressure of about 15 bar(a) to about 70 bar(a); b. ) passing the pressurized liquid nitrogen stream and the partially cooled hydrogen or helium gas stream through a first heat exchanger that exchanges heat between the pressurized liquid nitrogen stream and the partially cooled hydrogen or helium gas stream; obtaining a partially warmed nitrogen stream and a pre-cooled hydrogen or helium gas stream; c. ) passing a first partially warmed nitrogen stream through one or more turboexpanders that reduce the temperature and pressure of the partially warmed nitrogen stream to obtain a cold nitrogen stream; d. ) passing the cold nitrogen stream through a first heat exchanger and a second heat exchanger to obtain a pre-cooled hydrogen or helium gas stream and a fully warmed nitrogen gas stream. Step (d) includes passing the cold nitrogen stream through a first heat exchanger that exchanges heat between the cold nitrogen stream and the partially cooled hydrogen or helium gas stream to the second partially warmed nitrogen gas stream and the precooled nitrogen gas stream. a second heat exchanger for exchanging heat between the second partially heated nitrogen gas stream and the heated hydrogen or helium gas stream; passing a nitrogen gas stream to obtain a fully warmed nitrogen gas stream and a partially cooled hydrogen or helium gas stream. The first heat exchanger and the second heat exchanger may be separate devices or two parts within one heat exchanger. The method may further include utilizing a supplemental refrigeration system coupled to the second heat exchanger.

ステップ(a)は、約10bar(a)未満の飽和圧力で製造される液体窒素流を供給するステップと、続いて液体窒素流の圧力を増加させて加圧液体窒素流を得るステップとを含んでもよい。ステップ(a)は、約10bar(a)未満の飽和圧力で製造される液体窒素流を供給するステップと;液体窒素流を液体窒素流の第1の部分及び液体窒素流の第2の部分に分流させるステップと;液体窒素流の第1の部分の圧力を増加させて加圧液体窒素流を得るステップとを含んでもよい。液体窒素流の第2の部分は第1の熱交換器を通って第3の部分加温窒素流を得ることができる。第3の部分加温窒素流は第2の熱交換器を通って第2の完全加温窒素ガス流を得ることができる。加圧液体窒素は約15bar(a)~約70bar(a)、又は約20bar(a)~約55bar(a)の圧力を有する。 Step (a) includes providing a stream of liquid nitrogen produced at a saturation pressure of less than about 10 bar(a) and subsequently increasing the pressure of the stream of liquid nitrogen to obtain a pressurized stream of liquid nitrogen. But that's fine. Step (a) comprises providing a liquid nitrogen stream produced at a saturation pressure of less than about 10 bar(a); and increasing the pressure of the first portion of the liquid nitrogen stream to obtain a pressurized liquid nitrogen stream. The second portion of the liquid nitrogen stream may pass through the first heat exchanger to obtain a third partially heated nitrogen stream. The third partially warmed nitrogen stream can be passed through a second heat exchanger to obtain a second fully warmed nitrogen gas stream. Pressurized liquid nitrogen has a pressure of about 15 bar(a) to about 70 bar(a), or about 20 bar(a) to about 55 bar(a).

加圧液体窒素流を第1の加圧液体窒素流及び第2の加圧液体窒素流に分流させてもよく、第1の加圧液体窒素流及び第2の加圧液体窒素流は、第1及び第2の加圧液体窒素流と部分冷却された水素又はヘリウムガス流との間で熱交換するための第1の熱交換器に別々に通される。 The pressurized liquid nitrogen stream may be split into a first pressurized liquid nitrogen stream and a second pressurized liquid nitrogen stream, the first pressurized liquid nitrogen stream and the second pressurized liquid nitrogen stream and a first heat exchanger for exchanging heat between the first and second pressurized liquid nitrogen streams and the partially cooled hydrogen or helium gas stream.

a.)約10bar(a)未満の飽和圧力で製造される液体窒素流を供給するステップと;b.)液体窒素流の第1の部分を第1の熱交換器へ導いて第1の部分加温窒素流を得るステップと;c.)第1の部分加温窒素流を第2の熱交換器へ導いて第1の完全加温窒素ガス流を得るステップと;c.)液体窒素流の第2の部分の圧力を増加させて約15bar(a)~約70bar(a)の圧力の加圧液体窒素流を得るステップと;d.)加圧液体窒素流及び部分冷却された水素又はヘリウムガス流を第1の熱交換器に向かい合う向きで通して、第2の部分加温窒素ガス流及び予冷された水素又はヘリウムガス流を得るステップと;e.)第2の部分加温窒素ガス流と温水素又は温ヘリウムガス流との間で熱交換する第2の熱交換器に、第2の部分加温窒素ガス流を通して、第2の完全加温窒素ガス流及び部分冷却された水素又はヘリウムガス流を得るステップと;f.)第2の完全加温窒素ガス流の温度及び圧力を低下させる1つ又は複数のターボ膨張機に、第2の完全加温窒素ガス流を通して、低温窒素流を得るステップと;e.)低温窒素流と部分冷却された水素又はヘリウムガス流との間で熱交換する第1の熱交換器に、低温窒素流を通して、第3の部分加温窒素ガス流及び予冷された水素又はヘリウムガス流を得るステップと;f.)第3の部分加温窒素ガス流と温水素又は温ヘリウムガス流との間で熱交換する第2の熱交換器に、第3の部分加温窒素ガス流を通して、第3の完全加温窒素ガス流及び部分冷却された水素又はヘリウムガス流を得るステップとを含む、液体窒素流を使用して水素又はヘリウムガスを予冷するための別の方法が開示される。ステップ(g)は、第2の完全加温窒素流を1つ又は複数のターボ膨張機に通す前に、第2の完全加温窒素流に1つ又は複数の圧縮機及び1つ又は複数の冷却器を経由させるステップを含んでもよい。ステップ(g)は、第2の完全加温窒素流を直列で接続された2台のターボ膨張機に通すステップを含んでもよい。この方法は、第2の熱交換器に連結された補助冷蔵システムを利用するステップをさらに含んでもよい。 a. ) providing a liquid nitrogen stream produced at a saturation pressure of less than about 10 bar(a); b. ) directing a first portion of the liquid nitrogen stream to a first heat exchanger to obtain a first partially warmed nitrogen stream; c. ) directing the first partially warmed nitrogen stream to a second heat exchanger to obtain a first fully warmed nitrogen gas stream; c. ) increasing the pressure of the second portion of the liquid nitrogen stream to obtain a pressurized liquid nitrogen stream at a pressure of about 15 bar(a) to about 70 bar(a); d. ) passing a pressurized liquid nitrogen stream and a partially cooled hydrogen or helium gas stream in opposite directions through a first heat exchanger to obtain a second partially warmed nitrogen gas stream and a precooled hydrogen or helium gas stream; step; e. ) passing the second partially heated nitrogen gas stream through a second heat exchanger that exchanges heat between the second partially warmed nitrogen gas stream and the warm hydrogen or warm helium gas stream; obtaining a nitrogen gas stream and a partially cooled hydrogen or helium gas stream; f. ) passing a second fully warmed nitrogen gas stream through one or more turboexpanders that reduce the temperature and pressure of the second fully warmed nitrogen gas stream to obtain a cold nitrogen stream; e. ) A third partially warmed nitrogen gas stream and a pre-cooled hydrogen or helium stream are passed through a first heat exchanger that exchanges heat between the cold nitrogen stream and a partially cooled hydrogen or helium gas stream. obtaining a gas flow; f. ) passing a third partially heated nitrogen gas stream through a second heat exchanger that exchanges heat between the third partially heated nitrogen gas stream and a warm hydrogen or warm helium gas stream; Another method for precooling hydrogen or helium gas using a liquid nitrogen stream is disclosed, the method comprising obtaining a nitrogen gas stream and a partially cooled hydrogen or helium gas stream. Step (g) includes passing the second fully warmed nitrogen stream through one or more compressors and one or more turboexpanders before passing the second fully warmed nitrogen stream through the one or more turboexpanders. It may also include a step of passing through a cooler. Step (g) may include passing the second fully warmed nitrogen stream through two turboexpanders connected in series. The method may further include utilizing a supplemental refrigeration system coupled to the second heat exchanger.

加圧液体窒素流を第1の加圧液体窒素流及び第2の加圧液体窒素流に分流させてもよく;第1の加圧液体窒素流及び第2の加圧液体窒素流は別々に第1の熱交換器を経由し、場合により、第2の熱交換器を経由してもよい。 The pressurized liquid nitrogen stream may be split into a first pressurized liquid nitrogen stream and a second pressurized liquid nitrogen stream; the first pressurized liquid nitrogen stream and the second pressurized liquid nitrogen stream are separately The heat exchanger may be passed through the first heat exchanger, and in some cases, it may be passed through the second heat exchanger.

この方法は、第2又は第3の完全加温窒素ガス流を再冷却するシステムを含んでもよく、再冷却のシステムは、i.)第2又は第3の完全加温窒素ガス流を第1の圧縮機及び第1の冷却器に通して圧縮及び冷却された窒素ガス流を得るステップであって、第1の圧縮機が第2の熱交換器及び第1の冷却器に連結されているステップと;ii.)圧縮及び冷却された窒素ガス流を1つ又は複数のターボ膨張機に通すステップと;iii).ターボ膨張窒素ガス流を第2の熱交換器に通して第4の完全加温窒素ガス流を得るステップとを含む。ステップ(ii)は、圧縮及び冷却された窒素ガス流を直列で接続された2台のターボ膨張機に通すステップを含む。 The method may include a system for recooling the second or third fully warmed nitrogen gas stream, the system for recooling comprising i. ) passing the second or third fully warmed nitrogen gas stream through a first compressor and a first cooler to obtain a compressed and cooled nitrogen gas stream, the first compressor a second heat exchanger and a first cooler; ii. ) passing the compressed and cooled nitrogen gas stream through one or more turboexpanders; iii). passing the turbo-expanded nitrogen gas stream through a second heat exchanger to obtain a fourth fully warmed nitrogen gas stream. Step (ii) includes passing the compressed and cooled nitrogen gas stream through two turboexpanders connected in series.

水素又はヘリウム液化のための液体窒素を使用した予冷システムも開示される。このシステムは、温水素又は温ヘリウムガス流と;液化窒素の供給源からの加圧液化窒素流と;熱交換器と;熱交換器に連結され熱交換器から放出された部分加温窒素ガス流の温度を低下させるように構成された、少なくとも1つのターボ膨張機とを含んでもよい。熱交換器は、加圧液化窒素流と温水素又は温ヘリウムガス流との間で熱交換して、加圧液化窒素流の温度を上昇させ温水素又は温ヘリウムガス流の温度を低下させて、予冷された水素又はヘリウムガス流、及び温窒素ガス流を得るように構成されてもよい。別の態様において、システムは、加圧液化窒素流と部分冷却された水素又はヘリウムガス流との間で熱交換して、加圧液化窒素流の温度を上昇させて部分加温窒素ガス流を得て、部分冷却された水素又はヘリウムガス流の温度を低下させるように構成された、第1の熱交換器と;部分加温窒素ガス流の温度を低下させるように構成された少なくとも1つのターボ膨張機と;部分加温窒素ガス流と温水素又は温ヘリウムガス流との間で熱交換して、部分加温窒素ガス流の温度を上昇させて完全加温窒素ガス流を得て、温水素又は温ヘリウムガス流の温度を低下させるように構成された、第2の熱交換器とを含む。 A pre-cooling system using liquid nitrogen for hydrogen or helium liquefaction is also disclosed. The system comprises: a stream of warm hydrogen or helium gas; a stream of pressurized liquefied nitrogen from a source of liquefied nitrogen; a heat exchanger; a partially heated nitrogen gas coupled to the heat exchanger and discharged from the heat exchanger. and at least one turboexpander configured to reduce the temperature of the stream. The heat exchanger exchanges heat between the pressurized liquefied nitrogen stream and the warm hydrogen or warm helium gas stream to increase the temperature of the pressurized liquefied nitrogen stream and decrease the temperature of the hot hydrogen or warm helium gas stream. , a pre-cooled hydrogen or helium gas stream, and a warm nitrogen gas stream. In another aspect, the system exchanges heat between a pressurized liquefied nitrogen stream and a partially cooled hydrogen or helium gas stream to increase the temperature of the pressurized liquefied nitrogen stream to form a partially warmed nitrogen gas stream. a first heat exchanger configured to reduce the temperature of the partially heated hydrogen or helium gas stream; at least one heat exchanger configured to reduce the temperature of the partially warmed nitrogen gas stream; a turboexpander; exchanging heat between a partially warmed nitrogen gas stream and a hot hydrogen or warm helium gas stream to increase the temperature of the partially warmed nitrogen gas stream to obtain a fully warmed nitrogen gas stream; a second heat exchanger configured to reduce the temperature of the hot hydrogen or hot helium gas stream.

システムはまた、熱交換器から放出された温窒素ガス流を受け入れるように構成された少なくとも1つの圧縮機及び少なくとも1つの冷却器、少なくとも1つの圧縮機及び少なくとも1つの冷却器を通った後の温窒素ガス流を受け入れるように構成された少なくとも1つのターボ膨張機、並びに/又は場合により、ターボ膨張機に連結されたバルブも含んでもよい。 The system also includes at least one compressor and at least one cooler configured to receive the warm nitrogen gas stream discharged from the heat exchanger, after passing through the at least one compressor and at least one cooler. It may also include at least one turboexpander configured to receive a flow of warm nitrogen gas, and/or optionally a valve coupled to the turboexpander.

液体窒素、第1及び第2の熱交換器、ターボ膨張機、並びに補助冷蔵を使用して水素ガスを予冷するシステムの概略図である。1 is a schematic diagram of a system for pre-cooling hydrogen gas using liquid nitrogen, first and second heat exchangers, a turbo expander, and supplemental refrigeration. FIG. 液体窒素、第1及び第2の熱交換器、ターボ膨張機、補助冷蔵、並びに他の部材を使用して水素ガスを予冷するシステムの概略図である。1 is a schematic diagram of a system for precooling hydrogen gas using liquid nitrogen, first and second heat exchangers, a turbo expander, supplemental refrigeration, and other components. FIG. 液体窒素、第1及び第2の熱交換器、複数のターボ膨張機、複数の圧縮機、複数の冷却器、補助冷蔵、並びに他の部材を使用して水素ガスを予冷するシステムの概略図である。1 is a schematic diagram of a system for precooling hydrogen gas using liquid nitrogen, first and second heat exchangers, multiple turboexpanders, multiple compressors, multiple coolers, auxiliary refrigeration, and other components; be. 液体窒素、第1及び第2の熱交換器、2台のターボ膨張機、2台の圧縮機、2台の冷却器、及び他の部材を使用して水素ガスを予冷するシステムの概略図である。1 is a schematic diagram of a system for precooling hydrogen gas using liquid nitrogen, first and second heat exchangers, two turboexpanders, two compressors, two coolers, and other components. be. 液体窒素を使用して水素又はヘリウムガスを予冷する従来のシステムの概略図である。1 is a schematic diagram of a conventional system for precooling hydrogen or helium gas using liquid nitrogen; FIG.

液化のプロセスにおいて水素又はヘリウムガスを予冷するのに必要な液体窒素の量をある程度削減するために、本明細書で開示されるプロセスが開発された。これらのプロセス及び予冷システムは、予冷システムに供給される液体窒素の量をさらに完全に利用するためのさらなるステップ及び装置を採用する。すなわち、外部に由来する液体窒素は、従来の予冷システムと比較してより少ない流量で消費される。液化プロセスで使用される他の水素又はヘリウム流を予冷するのにも液体窒素が使用されていた場合(いわゆるリサイクル流)、そこで液体窒素の消費を削減する手段がやはり適用可能であることも理解される。 The process disclosed herein was developed to reduce to some extent the amount of liquid nitrogen required to pre-cool hydrogen or helium gas in the liquefaction process. These processes and pre-cooling systems employ additional steps and equipment to more fully utilize the amount of liquid nitrogen supplied to the pre-cooling system. That is, externally derived liquid nitrogen is consumed at a lower flow rate compared to conventional precooling systems. It is also understood that if liquid nitrogen is also used to pre-cool other hydrogen or helium streams used in the liquefaction process (so-called recycle streams), measures to reduce the consumption of liquid nitrogen there are also applicable. be done.

本明細書で開示される、液体窒素流を使用して水素又はヘリウムガスを予冷するための方法において、液体窒素供給物は加圧され、水素又はヘリウムガスとの熱交換におけるその冷却能力の大部分を供給し、これは窒素を加温し;加温窒素を次いで機械膨張させて低温とし、水素又はヘリウムとの熱交換のために再導入する。実際に、供給される液体窒素は同じ熱交換器を2回目に通り(ループ内で)、そのため液体窒素の必要量及びその製造のために必要な付随するエネルギーを削減する。この削減された量の液体窒素を製造するためのエネルギーコストはそれにより削減される。このコストは液体水素又は液体ヘリウムを製造するためのエネルギーコストの重要な要素であるので、液化の全体のコストが削減され、このことは商業的に重要である。予冷のコストは約20%~約50%削減され得る。 In the method disclosed herein for precooling hydrogen or helium gas using a stream of liquid nitrogen, the liquid nitrogen feed is pressurized to increase its cooling capacity in heat exchange with the hydrogen or helium gas. The heated nitrogen is then mechanically expanded to a lower temperature and reintroduced for heat exchange with hydrogen or helium. In fact, the supplied liquid nitrogen passes through the same heat exchanger a second time (within the loop), thus reducing the amount of liquid nitrogen required and the associated energy required for its production. The energy costs for producing this reduced amount of liquid nitrogen are thereby reduced. The overall cost of liquefaction is reduced, which is of commercial importance, since this cost is a significant component of the energy cost for producing liquid hydrogen or liquid helium. The cost of pre-cooling can be reduced by about 20% to about 50%.

本明細書で使用する「機械膨張させる」という用語は、膨張させる流体のエンタルピーを減少させることにより仕事量を生み出すのに利用される任意のデバイス、例えばターボ膨張機又はレシプロ式エンジンなどを含む。 As used herein, the term "mechanically expanding" includes any device that is utilized to produce work by reducing the enthalpy of the fluid being expanded, such as a turboexpander or a reciprocating engine.

水素のための従来の液体窒素予冷プロセスでは、液体窒素消費が液化水素1kg当たり約7~約10kgの液体窒素である。本明細書で開示される予冷プロセスでは、液体窒素消費が液化水素1kg当たり約4~約6kgの液体窒素、又は約4.30~約5.35kgの液体窒素となり得る。これは従来のプロセスに対して著しい液体窒素消費の削減である。 In conventional liquid nitrogen precooling processes for hydrogen, the liquid nitrogen consumption is about 7 to about 10 kg of liquid nitrogen per kg of liquid hydrogen. In the pre-cooling process disclosed herein, liquid nitrogen consumption can be from about 4 to about 6 kg of liquid nitrogen per kg of liquid hydrogen, or from about 4.30 to about 5.35 kg of liquid nitrogen. This is a significant reduction in liquid nitrogen consumption over conventional processes.

液体窒素流を使用して水素又はヘリウムガスを予冷するための方法が開示され、これにより従来の予冷と比較して液体窒素の量の全体的な削減が使用される。 A method is disclosed for precooling hydrogen or helium gas using a stream of liquid nitrogen, whereby an overall reduction in the amount of liquid nitrogen is used compared to conventional precooling.

この方法は、約15bar(a)~約70bar(a)、約20bar(a)~約60bar(a)、又は20bar(a)~約50bar(a)の圧力を有し得る加圧液体窒素流を準備するステップを含む。加圧液体窒素は、約-147℃~約-196℃、約-169℃~約-195℃、又は約-189℃~約-194℃の温度を有し得る。 The method includes a pressurized liquid nitrogen stream that can have a pressure of about 15 bar(a) to about 70 bar(a), about 20 bar(a) to about 60 bar(a), or 20 bar(a) to about 50 bar(a). including the steps of preparing. The pressurized liquid nitrogen may have a temperature of about -147°C to about -196°C, about -169°C to about -195°C, or about -189°C to about -194°C.

加圧液体窒素は本明細書で開示される方法に直接供給されてもよい。あるいは液体窒素は約1bar(a)~約10bar(a)の飽和圧力を有する外部供給源から供給されてもよく、次いでこれは当技術分野において既知の任意の手段により加圧されてもよい。液体窒素は、ポンプを利用することにより又は圧縮して圧力を増加させることにより加圧されてもよい。 Pressurized liquid nitrogen may be supplied directly to the methods disclosed herein. Alternatively, liquid nitrogen may be supplied from an external source having a saturation pressure of about 1 bar(a) to about 10 bar(a), which may then be pressurized by any means known in the art. Liquid nitrogen may be pressurized by utilizing a pump or by compressing to increase pressure.

一実施形態において、加圧液体窒素流は第1の加圧液体窒素流及び第2の加圧液体窒素流に分流させてもよく、第1の加圧液体窒素流及び第2の加圧液体窒素流の各々を第1の熱交換器に通すように導いて、第1及び第2の加圧液体窒素流の各々と部分冷却された水素又はヘリウムガス流との間で熱交換させてもよい。第1の熱交換器を別々に通った2つの部分加温窒素流を、少なくとも1つのターボ膨張機に通すように導く前に合流させて1つの流れとしてもよい。 In one embodiment, the pressurized liquid nitrogen stream may be split into a first pressurized liquid nitrogen stream and a second pressurized liquid nitrogen stream, the first pressurized liquid nitrogen stream and the second pressurized liquid nitrogen stream. Each of the nitrogen streams may be directed through a first heat exchanger to exchange heat between each of the first and second pressurized liquid nitrogen streams and the partially cooled hydrogen or helium gas stream. good. The two partially warmed nitrogen streams passed separately through the first heat exchanger may be combined into a single stream before being directed through the at least one turboexpander.

一実施形態において、約10bar(a)未満の飽和圧力で製造される液体窒素流をシステムに供給し、液体窒素流の第1の部分及び液体窒素流の第2の(又は残りの)部分に分流させる。液体窒素流の第1の部分は、当技術分野において既知の任意の手段により、加圧液体窒素流を得るために、例えばポンプ又は圧縮により増加させた圧力を有してもよく、液体窒素流の第2の部分を加圧液体窒素流の経路とは別に第1の熱交換器へ、次いで場合により第2の熱交換器へ導いてもよい。 In one embodiment, a liquid nitrogen stream produced at a saturation pressure of less than about 10 bar(a) is provided to the system, and the first portion of the liquid nitrogen stream and the second (or remaining) portion of the liquid nitrogen stream are Divert the flow. The first portion of the liquid nitrogen stream may have increased pressure by any means known in the art, such as by pumping or compression, to obtain a pressurized liquid nitrogen stream. A second portion of the pressurized liquid nitrogen stream may be conducted separately from the path of the pressurized liquid nitrogen stream to the first heat exchanger and then optionally to the second heat exchanger.

本明細書で使用する「ポンプ」とは、液体の圧力を増加させる機械的デバイスを意味する。 As used herein, "pump" refers to a mechanical device that increases the pressure of a liquid.

温水素又は温ヘリウムガス流が予冷のために供給され、1つ若しくは複数の水素若しくはヘリウム供給流又は循環の水素若しくはヘリウム供給流から供給されてもよい。温水素ガス流は、天然ガス、水の電気分解、又は他の化学的方法から製造されてもよい。温水素若しくは温ヘリウムガス流は、液化プロセスの外部の供給源から供給されてもよく、又はプロセス内の他の部分からのリサイクル流であってもよい。温水素ガス流は、その最終的な液化に適した任意の圧力であってもよい。温水素ガス流は、約20bar(a)~約80bar(a)、又は約20bar(a)~約40bar(a)の圧力を有していてもよく、及び/又は約25℃~約35℃の温度を有していてもよい。温水素ガス流は、約75%のオルト及び約25%のパラスピン異性体の組成を有していてもよい。 A hot hydrogen or helium gas stream is provided for pre-cooling and may be provided from one or more hydrogen or helium feed streams or from a circulating hydrogen or helium feed stream. The hot hydrogen gas stream may be produced from natural gas, water electrolysis, or other chemical methods. The hot hydrogen or helium gas stream may be supplied from a source external to the liquefaction process, or may be a recycle stream from other parts within the process. The hot hydrogen gas stream may be at any pressure suitable for its final liquefaction. The hot hydrogen gas stream may have a pressure of about 20 bar(a) to about 80 bar(a), or about 20 bar(a) to about 40 bar(a), and/or about 25°C to about 35°C. It may have a temperature of The warm hydrogen gas stream may have a composition of about 75% ortho and about 25% para spin isomers.

水素ガスのオルト-パラ変換は、水素ガスが冷却される際に組み込まれてもよい。オルト-パラ変換は第1の熱交換器において及び第2の熱交換器において行われてもよく、熱交換器(複数可)の経路は場合により供給物の水素のための触媒が充填されている。触媒はこの目的における当技術分野での使用で知られている任意のものであってもよい。これは液化プロセスの全体のエネルギー効率を改善し得る。予冷された水素ガス流は、約-173℃~約-196℃、約-180℃~約-196℃、又は約-190℃~約-192℃の温度、及び/又は約15bar(a)~約100bar(a)、又は約20bar(a)~約80bar(a)の圧力を有していてもよい。予冷された水素ガス流は約53%オルト及び約47%パラであってもよい。 Ortho-para conversion of hydrogen gas may be incorporated as the hydrogen gas is cooled. The ortho-para conversion may take place in the first heat exchanger and in the second heat exchanger, the passage of the heat exchanger(s) optionally being filled with a catalyst for the feed hydrogen. There is. The catalyst may be any known for use in the art for this purpose. This may improve the overall energy efficiency of the liquefaction process. The pre-cooled hydrogen gas stream has a temperature of from about -173°C to about -196°C, from about -180°C to about -196°C, or from about -190°C to about -192°C, and/or from about 15 bar(a) to It may have a pressure of about 100 bar(a), or from about 20 bar(a) to about 80 bar(a). The pre-cooled hydrogen gas stream may be about 53% ortho and about 47% para.

本明細書で使用する「熱交換器」とは、1つの媒体から別の媒体へ、例えば少なくとも2つの別個の流体の間などで熱エネルギー又は冷熱エネルギーを移動させることが可能な任意のデバイスを意味する。熱交換器は「直接熱交換器」及び「間接熱交換器」を含む。したがって、熱交換器は、任意の適切なデザイン、例えば並流又は対向流熱交換器、間接熱交換器(例えば渦巻き型熱交換器、又はブレーズドアルミニウムプレートフィン型などのプレートフィン熱交換器)、直接接触熱交換器、シェルアンドチューブ熱交換器、スパイラル型、ヘアピン型、コア型、コア及びケトル型、プリント回路型、二重管型など、又は任意の他の種類の既知の熱交換器であってもよい。 As used herein, "heat exchanger" refers to any device capable of transferring thermal or cold energy from one medium to another, such as between at least two separate fluids. means. Heat exchangers include "direct heat exchangers" and "indirect heat exchangers". The heat exchanger may therefore be of any suitable design, for example a co-current or counter-current heat exchanger, an indirect heat exchanger (e.g. a spiral heat exchanger, or a plate fin heat exchanger such as a blazed aluminum plate fin type). , direct contact heat exchanger, shell and tube heat exchanger, spiral type, hairpin type, core type, core and kettle type, printed circuit type, double tube type, etc., or any other type of known heat exchanger. It may be.

本明細書で使用する第1の熱交換器は、プロセスの冷却ステップにおいて対向する流れ同士の間でエネルギーを移動させ、一方第2の熱交換器はプロセスの加温部において対向する流れ同士の間でエネルギーを移動させる。予冷された水素又はヘリウムガス流は第1の熱交換器から出るが、一方完全加温窒素ガス流は第2の熱交換器から出る。第1及び第2の熱交換器は1つの熱交換器の2つの部分であってもよく、又はそれらは2つの別々の熱交換器であってもよい。第1及び第2の熱交換器が1つの熱交換器の2つの部分である場合、熱交換器は、それを通る流れのための複数の出口を含み、限定はされないが、ユニットの様々な場所のバルブの出口点が挙げられる。 As used herein, a first heat exchanger transfers energy between opposing streams in the cooling step of the process, while a second heat exchanger transfers energy between opposing streams in the heating section of the process. transfer energy between A pre-cooled hydrogen or helium gas stream exits the first heat exchanger, while a fully warmed nitrogen gas stream exits the second heat exchanger. The first and second heat exchangers may be two parts of one heat exchanger, or they may be two separate heat exchangers. When the first and second heat exchangers are two parts of one heat exchanger, the heat exchanger includes multiple outlets for flow therethrough, including, but not limited to, various outlets of the unit. The location of the valve's exit point is mentioned.

本明細書で使用する、「間接熱交換」という用語は、流体どうしが互いに物理的接触することなく又は混合することなく、2つの流体を熱交換関係にすることを意味する。コアインケトル熱交換器及びブレーズドアルミニウムプレートフィン熱交換器は、間接熱交換を促進する装置の例である。 As used herein, the term "indirect heat exchange" means bringing two fluids into a heat exchange relationship without physical contact or mixing of the fluids with each other. Core-in-kettle heat exchangers and blazed aluminum plate fin heat exchangers are examples of devices that promote indirect heat exchange.

次のステップは、部分加温窒素流の温度及び圧力を低下させて低温窒素流を得る少なくとも1つのターボ膨張機に、部分加温窒素流を通すステップを含む。ターボ膨張機は、当技術分野で既知の任意の手段により第1の熱交換器に連結されてもよい。ターボ膨張機の排出物は第1の熱交換器へ流れ得る。ターボ膨張機は、循環及び冷却させてエネルギーを消散する、ブロワー、ファン、又はオイルポンプなどのブレーキを含んでもよい。ターボ膨張機は、ターボ膨張機により生じるエネルギーを捕捉するための圧縮機に連結されてもよい。 The next step includes passing the partially warmed nitrogen stream through at least one turboexpander that reduces the temperature and pressure of the partially warmed nitrogen stream to obtain a cold nitrogen stream. The turboexpander may be coupled to the first heat exchanger by any means known in the art. The turboexpander exhaust may flow to the first heat exchanger. The turboexpander may include a brake, such as a blower, fan, or oil pump, to circulate and cool and dissipate energy. The turboexpander may be coupled to a compressor to capture energy produced by the turboexpander.

1つのターボ膨張機を通ることにより、温窒素流を約30度~約130度、又は約50~約100度冷却することができ、及び/又は圧力を約2bar~約100bar、4bar~約60bar、又は約30bar~約50bar低下させることができる。第1のターボ膨張機に直列で接続された第2のターボ膨張機に流れを通すことにより、流れの温度及び圧力をさらに低下させることができる。第1のターボ膨張機は第2のターボ膨張機に連結されてもよい。 By passing through one turboexpander, the warm nitrogen stream can be cooled from about 30 degrees to about 130 degrees, or from about 50 degrees to about 100 degrees, and/or at a pressure of about 2 bar to about 100 bar, 4 bar to about 60 bar. , or about 30 bar to about 50 bar. The temperature and pressure of the stream can be further reduced by passing the stream through a second turboexpander connected in series with the first turboexpander. The first turboexpander may be coupled to a second turboexpander.

本明細書で使用する「ターボ膨張機」は、圧力の低下を生じさせることにより温度の低下を実現すると同時に、必要とされる冷却プロセスを仕事の実行により助けるために取り出すか又は捕捉することができる有用なエネルギーを生成させるのに使用される、任意のデバイス、限定はされないが、典型的には極低温処理において使用される内向き半径流装置などを意味する。ターボ膨張機は膨張したガスのエネルギーを使用して回転により機械的エネルギーを生成する。ターボ膨張機が高速で回転し、次いでシャフトを介してエネルギーを圧縮機へ伝達させることができ、圧縮機は別の供給ガス流を圧縮することによりエネルギーを回収する。このプロセスは圧力供給ガス流を圧縮機へ引き上げ、これにより有用なエネルギーをシステムに戻すように供給することが可能になる。 As used herein, a "turboexpander" is a device that achieves a decrease in temperature by creating a decrease in pressure while at the same time being able to be removed or captured to assist in the required cooling process by performing work. refers to any device that is used to produce useful energy that can be used to generate energy, such as, but not limited to, inward radial flow devices typically used in cryogenic processing. Turbo expanders use the energy of expanded gas to generate mechanical energy through rotation. A turboexpander rotates at high speed and energy can then be transferred through a shaft to a compressor, which recovers energy by compressing another feed gas stream. This process pulls up the pressurized feed gas stream to the compressor, which allows useful energy to be supplied back to the system.

場合により、この方法は、少なくとも1つの圧縮機及び少なくとも1つのターボ膨張機に、任意の順番で部分加温窒素流を通して、第1の熱交換器又は第2の熱交換器を経由して戻る低温窒素流を得るステップを含む。この方法は、2~5台の圧縮機及び2~5台のターボ膨張機に部分加温窒素流を通して、第1の熱交換器又は第2の熱交換器を経由して戻る低温窒素流を得るステップを含んでもよい。この方法は、2~5台の圧縮機、2~5台のターボ膨張機、及び2~5台の冷却器に部分加温窒素流を通して、第1の熱交換器を経由して戻る低温窒素流を得るステップを含んでもよい。圧縮機の数と同じ数の冷却器がプロセスにおいて使用されてもよい。ターボ膨張機のうちの1つ又は複数はシャフトにより1つの圧縮機に接続されてもよい。 Optionally, the method includes passing a partially warmed nitrogen stream through at least one compressor and at least one turboexpander in any order and returning via a first heat exchanger or a second heat exchanger. obtaining a flow of cold nitrogen. This method involves passing a partially warmed nitrogen stream through two to five compressors and two to five turboexpanders, and returning the cold nitrogen stream via a first heat exchanger or a second heat exchanger. It may also include a step of obtaining. The method involves passing a partially warmed nitrogen stream through 2 to 5 compressors, 2 to 5 turboexpanders, and 2 to 5 coolers, with cold nitrogen returning via a first heat exchanger. The method may include a step of obtaining a flow. The same number of coolers as compressors may be used in the process. One or more of the turboexpanders may be connected to one compressor by a shaft.

本明細書で使用する「冷却器」は、システムから熱を取り出す、当技術分野で既知の任意の水又は空気冷却器、例えば、外気によりプロセスの流れを冷却するためのフィン-ファンユニット、シェルアンドチューブ型ユニット、又はプロセスの流れを高温から周囲温度付近まで冷却するために水又はブラインシステムを使用するプレート冷却器などを意味する。流れを冷却器に通すステップは、流れの温度を約40℃~約100℃低下させることができる。 As used herein, "chiller" refers to any water or air cooler known in the art that extracts heat from a system, such as a fin-fan unit, shell, or shell for cooling a process stream with outside air. Refers to an and-tube type unit, or a plate cooler that uses a water or brine system to cool a process stream from elevated temperatures to near ambient temperature. Passing the stream through the cooler can reduce the temperature of the stream from about 40°C to about 100°C.

低温窒素流を第1の熱交換器に通す場合、これは予冷のプロセスにおいてループを作り、これは第1の熱交換器を通る窒素流の2回目の通過である。これは同じ最初に供給された窒素が、第1の熱交換器において水素又はヘリウムガス流を2回目に冷却するためにリサイクルされ向流で使用されることを可能にする。低温窒素流は、予冷のプロセスにおいて第1の熱交換器を2回目に通前に、バルブを経由してもよい。ターボ膨張機は限られた範囲の圧力比(入口圧力/出口圧力)を有し、そのため必要に応じて、例えば第2のターボ膨張機を加える代わりに、バルブをシステムに加えてさらに圧力を低下させてもよい。したがって、バルブを使用する場合、バルブの前後で窒素流の圧力損失がある。バルブは窒素流の温度及び圧力を低下させ、窒素流中のガスの割合を増加させ得る。 When passing the cold nitrogen stream through the first heat exchanger, this creates a loop in the process of pre-cooling, and this is the second pass of the nitrogen stream through the first heat exchanger. This allows the same initially supplied nitrogen to be recycled and used countercurrently to cool the hydrogen or helium gas stream a second time in the first heat exchanger. The cold nitrogen stream may be passed through a valve before passing through the first heat exchanger a second time in the pre-cooling process. Turboexpanders have a limited range of pressure ratios (inlet pressure/outlet pressure), so if necessary, instead of adding a second turboexpander, for example, a valve can be added to the system to further reduce the pressure. You may let them. Therefore, when using a valve, there is a pressure drop in the nitrogen flow across the valve. The valve may reduce the temperature and pressure of the nitrogen stream and increase the proportion of gas in the nitrogen stream.

第2の熱交換器を通った後、完全加温窒素ガス流は約15℃~約30℃、又は約20℃~約28℃の温度、及び約0.5bar(a)~約2bar(a)、又は約1bar(a)~約2bar(a)の圧力を有し得る。完全加温窒素ガス流は、加圧及び冷却のために、少なくとも1つのターボ膨張機、及び場合により少なくとも1つの圧縮機を含む別の処理ループを経由し、次に第2の熱交換器へ再導入されてもよい。完全加温窒素ガス流は、加圧及び冷却のために、少なくとも1つのターボ膨張機、及び場合により少なくとも1つの圧縮機を含む別の処理ループを経由し、次に第1の熱交換器及び次いで第2の熱交換器へ再導入されてもよい。 After passing through the second heat exchanger, the fully warmed nitrogen gas stream has a temperature of about 15°C to about 30°C, or about 20°C to about 28°C, and about 0.5 bar(a) to about 2 bar(a ), or from about 1 bar(a) to about 2 bar(a). The fully warmed nitrogen gas stream passes through another processing loop including at least one turboexpander and optionally at least one compressor for pressurization and cooling, and then to a second heat exchanger. May be reintroduced. The fully warmed nitrogen gas stream passes through another processing loop for pressurization and cooling, including at least one turboexpander and optionally at least one compressor, then a first heat exchanger and It may then be reintroduced into the second heat exchanger.

水素又はヘリウム液化のための、液体窒素を使用した予冷システムも開示される。システムは、温水素又は温ヘリウムガス流と;液化窒素の供給源からの加圧液化窒素流と;加圧液化窒素流と部分冷却された水素又はヘリウムガス流との間で熱交換して、加圧液化窒素流の温度を上昇させて部分加温窒素ガス流を得て、部分冷却された水素又はヘリウムガス流の温度を低下させるように構成された、第1の熱交換器と;部分加温窒素ガス流の温度を低下させるように構成された少なくとも1つのターボ膨張機と;部分加温窒素ガス流と温水素又は温ヘリウムガス流との間で熱交換して、部分加温窒素ガス流の温度を上昇させ温水素又は温ヘリウムガス流の温度を低下させるように構成された、第2の熱交換器とを含んでもよい。第1の熱交換器又は第2の熱交換器は、1つのターボ膨張機に連結されてもよい。予冷システムは、1つのターボ膨張機に連結されたバルブを含んでもよい。バルブは窒素ガス流の圧力を低下させるように構成されてもよい。 A pre-cooling system using liquid nitrogen for hydrogen or helium liquefaction is also disclosed. The system exchanges heat between a stream of warm hydrogen or helium gas; a stream of pressurized liquefied nitrogen from a source of liquefied nitrogen; a stream of pressurized liquefied nitrogen and a partially cooled hydrogen or helium gas stream; a first heat exchanger configured to increase the temperature of the pressurized liquefied nitrogen stream to obtain a partially warmed nitrogen gas stream and reduce the temperature of the partially cooled hydrogen or helium gas stream; at least one turboexpander configured to reduce the temperature of the heated nitrogen gas stream; exchanging heat between the partially heated nitrogen gas stream and the heated hydrogen or warm helium gas stream to produce the partially heated nitrogen gas; and a second heat exchanger configured to increase the temperature of the gas stream and decrease the temperature of the hot hydrogen or helium gas stream. The first heat exchanger or the second heat exchanger may be coupled to one turboexpander. The pre-cooling system may include a valve connected to one turboexpander. The valve may be configured to reduce the pressure of the nitrogen gas flow.

予冷システムは、少なくとも1つの圧縮機及び少なくとも1つの冷却器、及び場合により、第2の熱交換器を通った後の完全加温窒素ガス流を受け入れるように構成された少なくとも1つのターボ膨張機を含んでもよい。予冷システムは、少なくとも1つの圧縮機及び少なくとも1つの冷却器を通った後の温窒素ガス流を受け入れるように構成された、少なくとも1つのターボ膨張機を含んでもよい。予冷システムは、1~4台の圧縮機と、1~4台の冷却器と、第2の熱交換器を通った後に完全加温窒素ガス流を受け入れるように構成された1~4台のターボ膨張機とを含んでもよく、各圧縮機は冷却器に連結され、1~4台のターボ膨張機はシステムにおいて圧縮機及び冷却器の後に接続される。 The precooling system includes at least one compressor and at least one cooler, and optionally at least one turboexpander configured to receive the fully warmed nitrogen gas flow after passing through the second heat exchanger. May include. The pre-cooling system may include at least one turboexpander configured to receive the warm nitrogen gas flow after passing through at least one compressor and at least one cooler. The precooling system includes 1 to 4 compressors, 1 to 4 coolers, and 1 to 4 compressors configured to receive the fully heated nitrogen gas flow after passing through a second heat exchanger. each compressor is connected to a cooler, and one to four turboexpanders are connected after the compressor and cooler in the system.

水素又はヘリウム液化のための、液体窒素を使用した予冷システムも開示され、システムは、温水素又は温ヘリウムガス流と;液化窒素の供給源からの加圧液化窒素流と;加圧液化窒素流と温水素又は温ヘリウムガス流との間で熱交換して、加圧液化窒素流の温度を上昇させて温窒素ガス流を得て、温水素又は温ヘリウムガス流の温度を低下させて予冷された水素又はヘリウムガス流を得るように構成された、熱交換器と;熱交換器に連結され熱交換器から放出される部分加温窒素ガス流の温度を低下させるように構成された、少なくとも1つのターボ膨張機とを含む。予冷システムは、熱交換器を通った後に温窒素ガス流を受け入れるように構成された少なくとも1つの圧縮機及び少なくとも1つの冷却器、並びに場合により、少なくとも1つの圧縮機及び少なくとも1つの冷却器を通った後に温窒素ガス流を受け入れるように構成された少なくとも1つのターボ膨張機も含んでもよい。予冷システムは、窒素ガス流の圧力を低下させるように構成されたターボ膨張機に連結されたバルブも含んでもよい。 A pre-cooling system using liquid nitrogen for hydrogen or helium liquefaction is also disclosed, the system comprising: a stream of warm hydrogen or warm helium gas; a stream of pressurized liquefied nitrogen from a source of liquefied nitrogen; a stream of pressurized liquefied nitrogen. and a hot hydrogen or hot helium gas stream to increase the temperature of the pressurized liquefied nitrogen stream to obtain a warm nitrogen gas stream, and lower the temperature of the hot hydrogen or hot helium gas stream to precool it. a heat exchanger configured to obtain a heated hydrogen or helium gas stream; coupled to the heat exchanger and configured to reduce the temperature of a partially heated nitrogen gas stream discharged from the heat exchanger; at least one turboexpander. The precooling system includes at least one compressor and at least one cooler configured to receive the warm nitrogen gas flow after passing through the heat exchanger, and optionally at least one compressor and at least one cooler. It may also include at least one turboexpander configured to receive the warm nitrogen gas flow therethrough. The pre-cooling system may also include a valve coupled to the turboexpander configured to reduce the pressure of the nitrogen gas stream.

液体窒素流を使用した水素又はヘリウムガスの予冷に関するシステム及びプロセスが本明細書に記載される。本開示の特定の実施形態は、図を参照して説明される以下の段落に示されるものを含む。いくつかの構成が1つの図(図1、2、3、4など)のみを特に参照して説明されるが、それらは他の図に同様に適用可能であり、他の図又は前述の議論と組み合わせて使用されてもよい。 Systems and processes for precooling hydrogen or helium gas using a stream of liquid nitrogen are described herein. Particular embodiments of the present disclosure include those set forth in the following paragraphs described with reference to the figures. Although some configurations are described with specific reference to only one figure (e.g., FIGS. 1, 2, 3, 4, etc.), they are equally applicable to other figures and may be modified from other figures or the discussion above. May be used in combination with

図1~4は、この開示にしたがって、液体窒素流を使用して水素又はヘリウムガスを予冷するための、様々なシステム及びプロセス100、200、300、400の非限定的な例を示す。液体窒素流(LIN)104、204、304、404は、任意のLIN供給システム、例えば1つ又は複数のタンカー、タンク、パイプラインなど、又はそれらの任意の組み合わせから供給される。システムは、少なくとも1つの熱交換器、例えば、第1の熱交換器131、231、331、431、及び第2の熱交換器130、230、330、430を含む。これらのシステムは、液体窒素流を受け入れ圧力を増加させて加圧液体窒素流105、250、306、406を作るためのポンプ132、232、332、432を含む。加圧液体窒素流は、1つを超える流れ、例えば2つの流れ250、240に分流させてもよい。温水素又は温ヘリウムガスは、流れ101、201、301、401の任意の供給源から供給され、これは第2の熱交換器を経由して部分冷却された水素又はヘリウムガス流102、202、302、402を得て、これはさらなる冷却のための第1の熱交換器を経由して予冷された水素又はヘリウムガス流103、203、303、403を得る。 1-4 illustrate non-limiting examples of various systems and processes 100, 200, 300, 400 for pre-cooling hydrogen or helium gas using a stream of liquid nitrogen in accordance with this disclosure. The liquid nitrogen stream (LIN) 104, 204, 304, 404 is supplied from any LIN supply system, such as one or more tankers, tanks, pipelines, etc., or any combination thereof. The system includes at least one heat exchanger, for example a first heat exchanger 131, 231, 331, 431 and a second heat exchanger 130, 230, 330, 430. These systems include pumps 132, 232, 332, 432 for receiving a liquid nitrogen stream and increasing the pressure to create a pressurized liquid nitrogen stream 105, 250, 306, 406. The pressurized liquid nitrogen stream may be split into more than one stream, eg, two streams 250, 240. Hot hydrogen or helium gas is supplied from any source in stream 101, 201, 301, 401, which is partially cooled via a second heat exchanger in hydrogen or helium gas stream 102, 202, 302, 402, which obtains a pre-cooled hydrogen or helium gas stream 103, 203, 303, 403 via a first heat exchanger for further cooling.

図1は、液体窒素流を使用して水素又はヘリウムガスを予冷するためのシステム100を示す。ポンプ132を通るように液体窒素流104を導いて圧力を増加させる。加圧液体窒素流105は、向かい合う向きで流れる部分冷却された水素又はヘリウムガス流102と加圧液体窒素流105との間でエネルギーを移動させる第1の熱交換器131を経由し、それにより窒素流の温度を上昇させる。次いで部分加温窒素ガス流106はターボ膨張機133を経由して、流れ106よりも低い圧力及び低い温度を有する低温窒素ガス流107を得る。システムは、第1の熱交換器に再び入る前に窒素流の温度及び圧力を低下させるために、直列で接続された1つを超えるターボ膨張機を含んでもよいことが想定される。開示は、流れの圧力をさらに低下させることが必要な場合に、ターボ膨張機の各々の特定される位置において、2、3、又は4台などの複数のターボ膨張機が直列で接続されてもよい、別の実施形態を含む。 FIG. 1 shows a system 100 for precooling hydrogen or helium gas using a stream of liquid nitrogen. Liquid nitrogen flow 104 is directed through pump 132 to increase pressure. The pressurized liquid nitrogen stream 105 passes through a first heat exchanger 131 that transfers energy between the opposingly flowing partially cooled hydrogen or helium gas stream 102 and the pressurized liquid nitrogen stream 105, thereby Increase the temperature of the nitrogen stream. Partially warmed nitrogen gas stream 106 then passes through turboexpander 133 to obtain cold nitrogen gas stream 107 having a lower pressure and lower temperature than stream 106. It is envisioned that the system may include more than one turboexpander connected in series to reduce the temperature and pressure of the nitrogen stream before re-entering the first heat exchanger. The disclosure also provides that multiple turboexpanders, such as 2, 3, or 4 turboexpanders, may be connected in series at each specified location of the turboexpanders if further reduction in flow pressure is required. Good, including alternative embodiments.

低温窒素ガス流107は次いで第1の熱交換器を経由してループを完成させ、窒素ガス流が第1の熱交換器を通る2回目の通過において、部分冷却された水素又はヘリウムガス流102と低温窒素流107との間でエネルギーを移動させて、部分加温窒素ガス流108及び予冷された水素又はヘリウムガス流103を得る。 The cold nitrogen gas stream 107 then completes the loop via the first heat exchanger, and on the second pass of the nitrogen gas stream through the first heat exchanger, the partially cooled hydrogen or helium gas stream 102 and a cold nitrogen stream 107 to obtain a partially warmed nitrogen gas stream 108 and a pre-cooled hydrogen or helium gas stream 103.

部分加温窒素ガス流108は次いで第2の熱交換器130を経由し、ここでは温水素又は温ヘリウムガス流101と部分加温窒素ガス流108との間でエネルギーを移動させて、完全加温窒素ガス流109及び部分冷却された水素又はヘリウムガス流102が得られ、これは次いで第1の熱交換器131を経由する。 Partially warmed nitrogen gas stream 108 then passes through a second heat exchanger 130 where energy is transferred between hot hydrogen or warm helium gas stream 101 and partially warmed nitrogen gas stream 108 to achieve complete heating. A warm nitrogen gas stream 109 and a partially cooled hydrogen or helium gas stream 102 are obtained, which then passes through a first heat exchanger 131 .

第2の熱交換器130は、ここではプロペン流114、115として示される補助冷蔵を含んでもよい。液体プロペン流114は、補助冷蔵と温水素又は温ヘリウムガス流101との間で熱交換する第2の熱交換器を通り、ガスプロペン流115として出る。第2の熱交換器は第2の熱交換器に連結された補助冷蔵を含んでもよい。補助冷蔵は予冷プロセスの冷却材を補い、冷蔵の任意の他の既知の供給源から供給されてもよい。補助冷蔵は、蒸気圧縮冷蔵、吸収冷蔵、混合冷媒冷蔵、又は温水素若しくは温ヘリウムガス流から熱を抽出することが知られている任意の他の手段であってもよい。補助冷蔵は、1つの冷蔵流、又は同じ若しくは異なる2つの冷蔵流を含んでもよい。補助冷蔵は、約-20℃~-50℃の温度の液体流を供給しガス流としてシステムから出るプロペン冷蔵流であってもよい。 The second heat exchanger 130 may include supplemental refrigeration, shown here as propene streams 114, 115. Liquid propene stream 114 passes through a second heat exchanger that exchanges heat between supplemental refrigeration and hot hydrogen or warm helium gas stream 101 and exits as gaseous propene stream 115. The second heat exchanger may include supplemental refrigeration coupled to the second heat exchanger. Supplemental refrigeration supplements the coolant for the pre-cooling process and may be supplied from any other known source of refrigeration. Supplemental refrigeration may be vapor compression refrigeration, absorption refrigeration, mixed refrigerant refrigeration, or any other means known to extract heat from hot hydrogen or helium gas streams. Auxiliary refrigeration may include one refrigeration stream or two refrigeration streams that may be the same or different. The supplemental refrigeration may be a propene refrigeration stream that provides a liquid stream at a temperature of about -20°C to -50°C and exits the system as a gas stream.

本開示の実施形態を説明したので、ここでさらなる態様を説明することにする。図2は、液体窒素流を使用して水素又はヘリウムガスを予冷するためのシステム200を示す。図2において、液体窒素はポンピングされて高圧となり、水素の冷却のために蒸発及び過熱後に、ターボ膨張機を通り水素のさらなる冷却を行うために戻る。バルブ235は、必要に応じてターボ膨張機の空気力学的制限を満たすために、流れ208と209の間に示される。補助冷蔵は、冷却プロセスの一部として、例えばプロペン蒸気-圧縮冷蔵から、液体窒素の温度よりも大幅に高い温度レベルで提供される。 Having described embodiments of the disclosure, further aspects will now be described. FIG. 2 shows a system 200 for precooling hydrogen or helium gas using a stream of liquid nitrogen. In FIG. 2, liquid nitrogen is pumped to high pressure and after evaporation and superheating for hydrogen cooling, passes through a turbo expander and returns for further cooling of the hydrogen. A valve 235 is shown between flows 208 and 209 to meet the aerodynamic constraints of the turboexpander as needed. Supplemental refrigeration is provided as part of the refrigeration process, for example from propene vapor-compression refrigeration, at a temperature level significantly higher than that of liquid nitrogen.

図2のシステムは、分流した加圧液体窒素流240、250が第1の熱交換器231を経由し、それにより分流した加圧液体窒素流240、250が加温され圧力が実質的に一定のままである、例えば圧力差が約1bar(a)未満となり得るように構成される。流れは任意の所望の出口を出て所望の熱交換を実現し得ることが想定されるが、分流した部分加温窒素流241、251の各々は異なる出口で第1の熱交換器から出る。分流した部分加温窒素流241、251を次いで合流させて1つの部分加温窒素流207とし、ブレーキ234に連結されたターボ膨張機233に通す。ターボ膨張機を通る際には、1つの温窒素流207が冷却され、圧力が低下し、それにより流れの中の液体の量も、例えば約0%から流れ207では約6%まで流れ208では約10%まで増加する。バルブ235がターボ膨張機233と第1の熱交換器231の間に示され、これは低温窒素流208が第1の熱交換器に戻り第1の熱交換器を2回目に通る前に低温窒素流208の温度及び圧力を低下させる。第1の熱交換器231を通ることにより、低温、低圧窒素流209が加温される。第1の熱交換器231を通る際には、低温、低圧窒素流209の中の液体は気化し、その結果部分加温窒素ガス流210は液体が約0%である。次いで部分加温窒素ガス流を第2の熱交換器230に通すように導き、ここでは部分加温窒素ガス流210が加温され温水素又は温ヘリウムガス流201が冷却されて完全加温窒素ガス流211及び部分冷却された水素又はヘリウムガス流202を得る。部分加温窒素ガス流210は第1の熱交換器231を出て次いで第2の熱交換器230に入ることが図から分かるが、第1の熱交換器及び第2の熱交換器が1つのユニットの2つの部分である場合、流れは1つの熱交換器ユニット内にとどまりながら第1の熱交換器から第2の熱交換器へ直接流れることを理解することができる。第2の熱交換器230はプロペン流214、215などの補助冷蔵を含んでもよい。液体プロペン流214は補助冷蔵と温水素又は温ヘリウムガス流201との間で熱交換する第2の熱交換器230を通り、その結果液体プロペン流214は第2の熱交換器を通りガスプロペン流215として出る。表2は、図2に示される流れ及び装置のリスト、並びに流れの各々の特性を含む。LIN供給流量を予冷された水素流量(すなわち、流れ204/203の流量)で割ることにより計算される液体窒素消費は5.18kg LIN/kg LHである。 In the system of FIG. 2, the divided pressurized liquid nitrogen streams 240, 250 pass through a first heat exchanger 231, which warms the divided pressurized liquid nitrogen streams 240, 250 and maintains a substantially constant pressure. For example, the pressure difference may be less than about 1 bar(a). Although it is envisioned that the streams may exit any desired outlet to achieve the desired heat exchange, each of the split partially warmed nitrogen streams 241, 251 exits the first heat exchanger at a different outlet. The separated partially warmed nitrogen streams 241 , 251 are then combined into a single partially warmed nitrogen stream 207 and passed to a turboexpander 233 connected to a brake 234 . As it passes through the turboexpander, one warm nitrogen stream 207 is cooled, the pressure is reduced, and the amount of liquid in the stream is also reduced, for example from about 0% in stream 207 to about 6% in stream 208. It increases to about 10%. A valve 235 is shown between the turbo expander 233 and the first heat exchanger 231, which cools the cold nitrogen stream 208 before returning to the first heat exchanger and passing through the first heat exchanger a second time. The temperature and pressure of nitrogen stream 208 is reduced. By passing through the first heat exchanger 231, the cold, low pressure nitrogen stream 209 is warmed. Upon passing through the first heat exchanger 231, the liquid in the cold, low pressure nitrogen stream 209 is vaporized such that the partially warmed nitrogen gas stream 210 is approximately 0% liquid. The partially warmed nitrogen gas stream is then directed through a second heat exchanger 230 where the partially warmed nitrogen gas stream 210 is heated and the warm hydrogen or warm helium gas stream 201 is cooled to completely warm nitrogen. A gas stream 211 and a partially cooled hydrogen or helium gas stream 202 are obtained. It can be seen from the figure that the partially warmed nitrogen gas stream 210 exits the first heat exchanger 231 and then enters the second heat exchanger 230, although the first and second heat exchangers are In the case of two parts of one unit, it can be understood that the flow flows directly from the first heat exchanger to the second heat exchanger while remaining within one heat exchanger unit. The second heat exchanger 230 may include supplemental refrigeration, such as propene streams 214, 215. The liquid propene stream 214 passes through a second heat exchanger 230 that exchanges heat between the auxiliary refrigeration and the hot hydrogen or hot helium gas stream 201, such that the liquid propene stream 214 passes through the second heat exchanger to the gas propene. It comes out as stream 215. Table 2 includes a list of the streams and equipment shown in FIG. 2, as well as the characteristics of each of the streams. The liquid nitrogen consumption calculated by dividing the LIN feed flow rate by the pre-cooled hydrogen flow rate (ie, the flow rate of streams 204/203) is 5.18 kg LIN/kg LH 2 .

図3は、液体窒素流、並びに4台のターボ膨張機-圧縮機、並びに-26℃~-46℃で供給される補助冷蔵を使用して、水素又はヘリウムガスを予冷するためのプロセス及びシステム300を示す。図3のシステムは、液体窒素流304が分流され液体窒素供給の一部がポンプ332を経由して加圧液体窒素流306を得るように構成される。液体窒素供給の他の部分305はバルブ384を経由し、次いで流れ325は第1の熱交換器331に入り、ここで加温されて第1の部分加温窒素ガス流326を得て、次いでこれはさらなる加温のために第2の熱交換器に通されて第1の完全加温窒素ガス流327を得る。加圧液体窒素流306も第1の熱交換器331を通り、それにより加圧液体窒素流306の温度が上昇し、圧力は実質的に一定のままであり、例えば圧力差が約1bar(a)未満となり得る。第2の部分加温窒素ガス流322は次いでさらなる加温のために第2の熱交換器330を通り、中央の出口から出て窒素ガス流307を得て、各々が圧縮機335、336に連結されているターボ膨張機333、334を通って窒素ガス流308、309を得る。ターボ膨張機は、圧縮機、ポンプ、油圧ブレーキ、又はシステム300からエネルギーを取り出す任意の他の同様の電力消費デバイスを駆動させるように設計されてもよい。第1のターボ膨張機333を通る際に、窒素ガス流307は冷却されて低温窒素ガス流308となる。第2のターボ膨張機334を通る際に、低温窒素ガス流308は冷却されて低温、低圧窒素ガス流309となる。各ターボ膨張機はそれを通る窒素流の圧力を低下させる。低温、低圧窒素流が第1の熱交換器へ戻り第1の熱交換器を2回目に通る前に低温、低圧窒素流の温度及び圧力を低下させるために、場合により第2のターボ膨張機と第1の熱交換器の間にバルブ(図示せず)があってもよい。第1の熱交換器331を通った後、第3の部分加温窒素ガス流310は次いで第2の熱交換器330を通り、ここで第3の部分加温窒素ガス流310が加温され温水素ガス流301が冷却されて、完全加温窒素ガス流311及び部分冷却水素ガス流302を得る。第2の熱交換器330は、プロペン流350、351を含む第1の補助冷蔵システム、及びプロペン流360、361を含む第2の補助冷蔵システムを含む、図示されるような2つの補助冷蔵システムなどの補助冷蔵を含んでもよい。これらの補助冷蔵システムにおいて、液体プロペン流350、360はプロペン流と温水素ガス流301の間で熱交換する第2の熱交換器を通り、その結果液体プロペン流350、360は第2の熱交換器を通りガスプロペン流351、361として出る。 Figure 3 shows a process and system for precooling hydrogen or helium gas using a liquid nitrogen stream and four turboexpander-compressors and auxiliary refrigeration supplied at -26°C to -46°C. 300 is shown. The system of FIG. 3 is configured such that liquid nitrogen stream 304 is diverted and a portion of the liquid nitrogen supply is routed through pump 332 to obtain pressurized liquid nitrogen stream 306. Another portion of the liquid nitrogen supply 305 passes through valve 384 and stream 325 then enters a first heat exchanger 331 where it is warmed to obtain a first partially warmed nitrogen gas stream 326 and then This is passed through a second heat exchanger for further warming to obtain a first fully warmed nitrogen gas stream 327. A stream of pressurized liquid nitrogen 306 also passes through a first heat exchanger 331, whereby the temperature of the stream of pressurized liquid nitrogen 306 increases and the pressure remains substantially constant, for example with a pressure difference of about 1 bar (a ) may be less than The second partially warmed nitrogen gas stream 322 then passes through a second heat exchanger 330 for further warming and exits through a central outlet to obtain a nitrogen gas stream 307, each of which is sent to a compressor 335, 336. Nitrogen gas streams 308, 309 are obtained through coupled turboexpanders 333, 334. The turboexpander may be designed to drive a compressor, pump, hydraulic brake, or any other similar power consuming device that extracts energy from the system 300. Upon passing through the first turboexpander 333 , the nitrogen gas stream 307 is cooled to a cold nitrogen gas stream 308 . Upon passing through the second turboexpander 334, the cold nitrogen gas stream 308 is cooled to a cold, low pressure nitrogen gas stream 309. Each turboexpander reduces the pressure of the nitrogen flow through it. optionally a second turboexpander to reduce the temperature and pressure of the low temperature, low pressure nitrogen stream before it returns to the first heat exchanger and passes through the first heat exchanger a second time; There may be a valve (not shown) between the heat exchanger and the first heat exchanger. After passing through the first heat exchanger 331, the third partially warmed nitrogen gas stream 310 then passes through the second heat exchanger 330, where the third partially warmed nitrogen gas stream 310 is heated. Warm hydrogen gas stream 301 is cooled to provide a fully warmed nitrogen gas stream 311 and a partially cooled hydrogen gas stream 302. The second heat exchanger 330 has two auxiliary refrigeration systems as shown, including a first auxiliary refrigeration system comprising propene streams 350, 351 and a second auxiliary refrigeration system comprising propene streams 360, 361. Supplemental refrigeration may also be included. In these supplemental refrigeration systems, the liquid propene stream 350, 360 passes through a second heat exchanger that exchanges heat between the propene stream and the hot hydrogen gas stream 301, such that the liquid propene stream 350, 360 has a second heat exchanger. It passes through the exchanger and exits as gas propene streams 351, 361.

図3では、完全加温窒素ガス流311は圧縮機335、336、337、338、それに続く冷却器382、383、381、380の4組を経由し、次いで第3及び第4のターボ膨張機339、340を経由する。任意の組数の圧縮機及び冷却器(例えば、1組~6組)、それに続く任意の数のターボ膨張機(例えば、1~4台)がシステムに組み込まれることが想定される。圧縮機とそれに続く冷却器は、外気により又は冷却水若しくはブラインにより圧縮の熱を除去する。窒素流311が圧縮機を経由し、窒素流312が冷却器を経由し、窒素流313が圧縮機を経由し、窒素流314が冷却器を経由し、窒素流315が圧縮機を経由し、窒素流316が冷却器を経由し、窒素流317が圧縮機を経由し、窒素流318が冷却器を経由し、窒素流319、320がターボ膨張機を経由した後、窒素ガス流321は第2の熱交換器330を通り、完全加温窒素ガス流323は完全加温窒素ガス流327と合わされて、合流した完全加温窒素ガス流324を得る。 In FIG. 3, a fully warmed nitrogen gas stream 311 passes through four sets of compressors 335, 336, 337, 338 followed by coolers 382, 383, 381, 380, and then a third and fourth turbo-expander. 339 and 340. It is envisioned that any number of compressor and cooler sets (eg, 1 to 6) followed by any number of turboexpanders (eg, 1 to 4) may be incorporated into the system. The compressor and subsequent cooler remove the heat of compression with outside air or with cooling water or brine. Nitrogen stream 311 passes through a compressor, nitrogen stream 312 passes through a condenser, nitrogen stream 313 passes through a compressor, nitrogen stream 314 passes through a condenser, nitrogen stream 315 passes through a compressor, After nitrogen stream 316 passes through a cooler, nitrogen stream 317 passes through a compressor, nitrogen stream 318 passes through a cooler, and nitrogen streams 319, 320 pass through a turboexpander, nitrogen gas stream 321 is 2 heat exchanger 330, fully warmed nitrogen gas stream 323 is combined with fully warmed nitrogen gas stream 327 to obtain a combined fully warmed nitrogen gas stream 324.

表3は、図3に示される流れ及び装置のリスト、並びに流れの各々の特性を含む。LIN供給流量を予冷された水素流量で割ることにより計算される液体窒素消費は4.30kg LIN/kg LHである。 Table 3 includes a list of the streams and equipment shown in FIG. 3, as well as the characteristics of each of the streams. The liquid nitrogen consumption calculated by dividing the LIN feed flow rate by the pre-cooled hydrogen flow rate is 4.30 kg LIN/kg LH 2 .

図4は、液体窒素流を使用して水素又はヘリウムガスを予冷するためのプロセス及びシステム400を示し、ここでシステムは補助冷蔵ユニットを使用しない予冷のための2組のターボ膨張機-圧縮機の組み合わせを含む。図4のシステムは、液体窒素供給が2つの流れに分流し、液体窒素供給の第1の部分がポンプ432を経由して加圧液体窒素流406を得るように構成される。液体窒素供給の他の部分405は第1の熱交換器431を経由し、ここで加温及び気化されて第1の部分加温窒素ガス流421を得て、次いでこれはさらなる加温のために第2の熱交換器を通って第1の完全加温窒素ガス流422を得る。加圧液体窒素流406は2つの加圧液体窒素流409、407に分流され、その各々は第1の熱交換器431を通り異なる出口から出て、それにより加圧液体窒素流の温度は上昇し圧力は実質的に一定のままであり、例えば圧力差は約1bar(a)未満であり、次いで第2の部分加温窒素ガス流411に合流する。次いで第2の部分加温窒素ガス流411はさらなる加温のために第2の熱交換器430を通って完全加温窒素ガス流412を得る。この例において、完全加温窒素ガス流412は圧縮機434、436とそれに続く冷却器481、480の2組を経由し、続いてターボ膨張機435、433を経由し、その各々は圧縮機434、436の1つに連結されている。任意の組数の圧縮機及び冷却器(例えば、1組~6組)、それに続く任意の数のターボ膨張機(例えば、1~4台)がシステムに組み込まれ得ることが想定される。流れ412が圧縮機を経由し、流れ413が冷却器を経由し、流れ414が圧縮機を経由し、流れ415が冷却器を経由し、流れ416がターボ膨張機を経由し、流れ417がターボ膨張機を経由した後、低温、低圧窒素ガス流418は第1の熱交換器431を通って別の部分加温窒素ガス流419を得て、次いで第2の熱交換器430を通って完全加温窒素ガス流420を得て、これは流れ422と合わされて、合流した完全加温窒素ガス流423を得る。 FIG. 4 shows a process and system 400 for precooling hydrogen or helium gas using a stream of liquid nitrogen, where the system includes two turboexpander-compressor sets for precooling without the use of an auxiliary refrigeration unit. including combinations of The system of FIG. 4 is configured such that the liquid nitrogen supply is split into two streams, with a first portion of the liquid nitrogen supply passing through pump 432 to obtain pressurized liquid nitrogen stream 406. Another portion of the liquid nitrogen supply 405 passes through a first heat exchanger 431 where it is warmed and vaporized to obtain a first partially warmed nitrogen gas stream 421 which is then used for further warming. A first fully warmed nitrogen gas stream 422 is obtained through a second heat exchanger. The pressurized liquid nitrogen stream 406 is split into two pressurized liquid nitrogen streams 409, 407, each passing through a first heat exchanger 431 and exiting from a different outlet, thereby increasing the temperature of the pressurized liquid nitrogen stream. The pressure remains substantially constant, eg, the pressure difference is less than about 1 bar(a), and then joins the second partially warmed nitrogen gas stream 411. The second partially warmed nitrogen gas stream 411 then passes through a second heat exchanger 430 for further warming to obtain a fully warmed nitrogen gas stream 412. In this example, the fully warmed nitrogen gas stream 412 passes through two sets of compressors 434, 436 followed by coolers 481, 480, followed by turboexpanders 435, 433, each of which , 436. It is envisioned that any number of compressor and cooler pairs (eg, 1 to 6) followed by any number of turboexpanders (eg, 1 to 4) may be incorporated into the system. Stream 412 goes through the compressor, stream 413 goes through the cooler, stream 414 goes through the compressor, stream 415 goes through the cooler, stream 416 goes through the turbo expander, and stream 417 goes through the turbo expander. After passing through the expander, the low temperature, low pressure nitrogen gas stream 418 passes through a first heat exchanger 431 to obtain another partially warmed nitrogen gas stream 419, and then passes through a second heat exchanger 430 to obtain a completely heated nitrogen gas stream 419. A warmed nitrogen gas stream 420 is obtained which is combined with stream 422 to obtain a combined complete warmed nitrogen gas stream 423.

表4は、図4に示される流れ及び装置のリスト、並びに流れの各々の特性を含む。LIN供給流量を予冷された水素流量で割ることにより計算される液体窒素消費は5.35kg LIN/kg LHである。 Table 4 includes a list of the streams and devices shown in FIG. 4, as well as the characteristics of each of the streams. The liquid nitrogen consumption calculated by dividing the LIN feed flow rate by the pre-cooled hydrogen flow rate is 5.35 kg LIN/kg LH 2 .

従来の予冷プロセスは図5に示され、上記で説明される。表5は、図5に示される流れ及び装置のリスト、並びに流れの各々の特性を含む。液体窒素流504の流量を予冷された水素流503の流量で割ることにより、液体窒素必要量は水素供給1kg当たり7.28kgの液体窒素であり(7.28kg LIN/kgLH)、ここで水素はオルト-パラ変換も行われる。 A conventional pre-cooling process is shown in FIG. 5 and described above. Table 5 includes a list of the streams and devices shown in FIG. 5, as well as the characteristics of each of the streams. By dividing the flow rate of liquid nitrogen stream 504 by the flow rate of pre-cooled hydrogen stream 503, the liquid nitrogen requirement is 7.28 kg of liquid nitrogen per kg of hydrogen supply (7.28 kg LIN/kg LH 2 ), where hydrogen is also subjected to ortho-para transformation.

本開示において様々な態様であると考えられるもの、及び本開示の特定の望ましい実施形態が説明されているが、当業者は、本開示の趣旨から逸脱することなく変更及び修正をそれらに加えてもよいこと、並びに本開示の真の範囲内に含まれるようなあらゆるそのような変更及び修正を含むことを意図していることを認識することになる。 While this disclosure has described what are considered to be various aspects and certain preferred embodiments of this disclosure, those skilled in the art will be able to make changes and modifications thereto without departing from the spirit of this disclosure. It will be appreciated that the present disclosure is intended to include all such changes and modifications as fall within the true scope of this disclosure.

Claims (30)

液体窒素流を使用して水素又はヘリウムガスを予冷するための方法であって、
a.約15bar(a)~約70bar(a)の圧力の、液体窒素を含有する加圧液体窒素流を提供するステップと;
b.前記加圧液体窒素流と部分冷却された水素又はヘリウムガス流との間で熱交換する第1の熱交換器に、前記加圧液体窒素流及び前記部分冷却された水素又はヘリウムガス流を通して、第1の部分加温窒素流及び予冷された水素又はヘリウムガス流を得るステップと;
c.前記部分加温窒素流の温度及び圧力を低下させる1つ又は複数のターボ膨張機に、前記第1の部分加温窒素流を通して、低温窒素流を得るステップと;
d.前記低温窒素流を前記第1の熱交換器及び第2の熱交換器に通して、前記予冷された水素又はヘリウムガス流、及び完全加温窒素ガス流を得るステップと
を含む、方法。
A method for precooling hydrogen or helium gas using a stream of liquid nitrogen, the method comprising:
a. providing a pressurized liquid nitrogen stream containing liquid nitrogen at a pressure of about 15 bar(a) to about 70 bar(a);
b. passing the pressurized liquid nitrogen stream and the partially cooled hydrogen or helium gas stream through a first heat exchanger that exchanges heat between the pressurized liquid nitrogen stream and the partially cooled hydrogen or helium gas stream; obtaining a first partially warmed nitrogen stream and a pre-cooled hydrogen or helium gas stream;
c. passing the first partially warmed nitrogen stream through one or more turboexpanders that reduce the temperature and pressure of the partially warmed nitrogen stream to obtain a cold nitrogen stream;
d. passing the cold nitrogen stream through the first heat exchanger and second heat exchanger to obtain the pre-cooled hydrogen or helium gas stream and a fully warmed nitrogen gas stream.
ステップ(d)が、前記低温窒素流と前記部分冷却された水素又はヘリウムガス流との間で熱交換する前記第1の熱交換器に、前記低温窒素流を通して、第2の部分加温窒素ガス流及び前記予冷された水素又はヘリウムガス流を得るステップと;前記第2の部分加温窒素ガス流と温水素又は温ヘリウムガス流との間で熱交換する前記第2の熱交換器に、前記第2の部分加温窒素ガス流を通して、完全加温窒素ガス流及び前記部分冷却された水素又はヘリウムガス流を得るステップとを含む、請求項1に記載の方法。 Step (d) comprises passing the cold nitrogen stream through the first heat exchanger that exchanges heat between the cold nitrogen stream and the partially cooled hydrogen or helium gas stream. obtaining a gas stream and said pre-cooled hydrogen or helium gas stream; , through the second partially warmed nitrogen gas stream to obtain a fully warmed nitrogen gas stream and the partially cooled hydrogen or helium gas stream. 前記第1の熱交換器及び前記第2の熱交換器が別々のデバイスである、請求項2に記載の方法。 3. The method of claim 2, wherein the first heat exchanger and the second heat exchanger are separate devices. 前記第1の熱交換器及び前記第2の熱交換器が1つの熱交換器内の部分である、請求項1に記載の方法。 2. The method of claim 1, wherein the first heat exchanger and the second heat exchanger are parts within one heat exchanger. 前記加圧液体窒素が約15bar(a)~約70bar(a)の圧力を有する、請求項1から4のいずれか一項に記載の方法。 5. A method according to any preceding claim, wherein the pressurized liquid nitrogen has a pressure of about 15 bar(a) to about 70 bar(a). 前記加圧液体窒素が約20bar(a)~約55bar(a)の圧力を有する、請求項1から4のいずれか一項に記載の方法。 5. A method according to any preceding claim, wherein the pressurized liquid nitrogen has a pressure of about 20 bar(a) to about 55 bar(a). ステップ(a)が、約10bar(a)未満の飽和圧力で製造される液体窒素流を供給するステップと;続いて前記液体窒素流の前記圧力を増加させて前記加圧液体窒素流を得るステップとを含む、請求項1から6のいずれか一項に記載の方法。 step (a) providing a liquid nitrogen stream produced at a saturation pressure of less than about 10 bar(a); and subsequently increasing the pressure of the liquid nitrogen stream to obtain the pressurized liquid nitrogen stream. 7. The method according to any one of claims 1 to 6, comprising: ステップ(a)が、約10bar(a)未満の飽和圧力で製造される液体窒素流を供給するステップと;前記液体窒素流を前記液体窒素流の第1の部分及び前記液体窒素流の第2の部分に分流させるステップと;前記液体窒素流の前記第1の部分の圧力を増加させて前記加圧液体窒素流を得るステップとを含む、請求項1から6のいずれか一項に記載の方法。 step (a) providing a liquid nitrogen stream produced at a saturation pressure of less than about 10 bar(a); and increasing the pressure of the first portion of the liquid nitrogen stream to obtain the pressurized liquid nitrogen stream. Method. 前記液体窒素流の前記第2の部分を前記第1の熱交換器に通して第3の部分加温窒素流を得るステップをさらに含む、請求項8に記載の方法。 9. The method of claim 8, further comprising passing the second portion of the liquid nitrogen stream through the first heat exchanger to obtain a third partially warmed nitrogen stream. 前記第3の部分加温窒素流を前記第2の熱交換器に通すように導いて第2の完全加温窒素ガス流を得るステップをさらに含む、請求項9に記載の方法。 10. The method of claim 9, further comprising directing the third partially warmed nitrogen stream through the second heat exchanger to obtain a second fully warmed nitrogen gas stream. 前記第2の熱交換器に連結された補助冷蔵システムを利用するステップをさらに含む、請求項1から10のいずれか一項に記載の方法。 11. The method of any one of claims 1 to 10, further comprising utilizing an auxiliary refrigeration system coupled to the second heat exchanger. 前記加圧液体窒素流が第1の加圧液体窒素流及び第2の加圧液体窒素流に分流され、前記第1の熱交換器に前記第1の加圧液体窒素流及び前記第2の加圧液体窒素流が別々に通され、前記第1及び前記第2の加圧液体窒素流と前記部分冷却された水素又はヘリウムガス流の間で熱交換する、請求項2に記載の方法。 The pressurized liquid nitrogen stream is divided into a first pressurized liquid nitrogen stream and a second pressurized liquid nitrogen stream, and the first pressurized liquid nitrogen stream and the second pressurized liquid nitrogen stream are divided into the first heat exchanger. 3. The method of claim 2, wherein streams of pressurized liquid nitrogen are passed separately to exchange heat between the first and second streams of pressurized liquid nitrogen and the partially cooled hydrogen or helium gas stream. ステップ(c)が、前記第1の部分加温窒素流を1台又は2台のターボ膨張機に通すステップを含む、請求項1から12のいずれか一項に記載の方法。 13. A method according to any preceding claim, wherein step (c) comprises passing the first partially warmed nitrogen stream through one or two turboexpanders. ステップ(c)が、前記第1の部分加温窒素流を前記1つ又は複数のターボ膨張機に通す前に1つ又は複数の圧縮機に通すステップを含む、請求項1から12のいずれか一項に記載の方法。 13. Any of claims 1 to 12, wherein step (c) comprises passing the first partially warmed nitrogen stream through one or more compressors before passing it through the one or more turboexpanders. The method described in paragraph 1. 前記第2の熱交換器に連結された補助冷蔵システムを利用するステップをさらに含む、請求項12から14のいずれか一項に記載の方法。 15. The method of any one of claims 12 to 14, further comprising utilizing an auxiliary refrigeration system coupled to the second heat exchanger. 液体窒素流を使用して、水素又はヘリウムガスを予冷するための方法であって、
a.約10bar(a)未満の飽和圧力で製造される液体窒素流を供給するステップと;
b.前記液体窒素流の第1の部分を第1の熱交換器へ導いて第1の部分加温窒素流を得るステップと;
c.前記第1の部分加温窒素流を第2の熱交換器へ導いて第1の完全加温窒素ガス流を得るステップと;
d.前記液体窒素流の第2の部分の圧力を増加させて約15bar(a)~約70bar(a)の圧力の加圧液体窒素流を得るステップと;
e.前記加圧液体窒素流及び部分冷却された水素又はヘリウムガス流を前記第1の熱交換器に向かい合う向きで通して、第2の部分加温窒素ガス流及び予冷された水素又はヘリウムガス流を得るステップと;
f.前記第2の部分加温窒素ガス流と温水素又は温ヘリウムガス流との間で熱交換する前記第2の熱交換器に、前記第2の部分加温窒素ガス流を通して、第2の完全加温窒素ガス流及び前記部分冷却された水素又はヘリウムガス流を得るステップと;
g.前記第2の完全加温窒素ガス流の温度及び圧力を低下させる1つ又は複数のターボ膨張機に、前記第2の完全加温窒素ガス流を通して、低温窒素流を得るステップと;
h.前記低温窒素流と前記部分冷却された水素又はヘリウムガス流との間で熱交換する前記第1の熱交換器に、前記低温窒素流を通して、第3の部分加温窒素ガス流及び前記予冷された水素又はヘリウムガス流を得るステップと;
i.前記第3の部分加温窒素ガス流と温水素又は温ヘリウムガス流との間で熱交換する前記第2の熱交換器に、前記第3の部分加温窒素ガス流を通して、第3の完全加温窒素ガス流及び前記部分冷却された水素又はヘリウムガス流を得るステップと
を含む、方法。
A method for precooling hydrogen or helium gas using a stream of liquid nitrogen, the method comprising:
a. providing a liquid nitrogen stream produced at a saturation pressure of less than about 10 bar(a);
b. directing a first portion of the liquid nitrogen stream to a first heat exchanger to obtain a first partially warmed nitrogen stream;
c. directing the first partially warmed nitrogen stream to a second heat exchanger to obtain a first fully warmed nitrogen gas stream;
d. increasing the pressure of the second portion of the liquid nitrogen stream to obtain a pressurized liquid nitrogen stream at a pressure of about 15 bar(a) to about 70 bar(a);
e. passing the pressurized liquid nitrogen stream and partially cooled hydrogen or helium gas stream in opposing directions through the first heat exchanger to generate a second partially warmed nitrogen gas stream and precooled hydrogen or helium gas stream; Steps to obtain;
f. A second fully heated nitrogen gas stream is passed through the second heat exchanger that exchanges heat between the second partially warmed nitrogen gas stream and a warm hydrogen or warm helium gas stream. obtaining a heated nitrogen gas stream and said partially cooled hydrogen or helium gas stream;
g. passing the second fully warmed nitrogen gas stream through one or more turboexpanders that reduce the temperature and pressure of the second fully warmed nitrogen gas stream to obtain a cold nitrogen stream;
h. The third partially warmed nitrogen gas stream and the pre-cooled nitrogen gas stream are passed through the first heat exchanger that exchanges heat between the cold nitrogen stream and the partially cooled hydrogen or helium gas stream. obtaining a hydrogen or helium gas stream;
i. A third fully heated nitrogen gas stream is passed through the second heat exchanger that exchanges heat between the third partially warmed nitrogen gas stream and a warm hydrogen or warm helium gas stream. obtaining a heated nitrogen gas stream and said partially cooled hydrogen or helium gas stream.
ステップ(g)が前記第2の完全加温窒素流を1つ又は複数のターボ膨張機に通す前に、前記第2の完全加温窒素流に1つ又は複数の圧縮機及び1つ又は複数の冷却器を経由させるステップを含む、請求項16に記載の方法。 before step (g) passing said second fully warmed nitrogen stream through one or more turboexpanders, passing said second fully warmed nitrogen stream through one or more compressors and one or more 17. The method of claim 16, including passing through a cooler. ステップ(g)が、前記第2の完全加温窒素流を直列で接続された2台のターボ膨張機に通すステップを含む、請求項16に記載の方法。 17. The method of claim 16, wherein step (g) comprises passing the second fully warmed nitrogen stream through two turboexpanders connected in series. 前記加圧液体窒素流が第1の加圧液体窒素流及び第2の加圧液体窒素流に分流され;前記第1の加圧液体窒素流及び前記第2の加圧液体窒素流が前記第1の熱交換器を別々に経由する、請求項16から18のいずれか一項に記載の方法。 The pressurized liquid nitrogen stream is divided into a first pressurized liquid nitrogen stream and a second pressurized liquid nitrogen stream; the first pressurized liquid nitrogen stream and the second pressurized liquid nitrogen stream are separated from the pressurized liquid nitrogen stream. 19. The method according to any one of claims 16 to 18, wherein the heat exchanger is passed through one heat exchanger separately. 前記第1の熱交換器及び前記第2の熱交換器が別々のデバイスである、請求項16から19のいずれか一項に記載の方法。 20. A method according to any one of claims 16 to 19, wherein the first heat exchanger and the second heat exchanger are separate devices. 前記第1の熱交換器及び前記第2の熱交換器が1つの熱交換器内の部分である、請求項16から19のいずれか一項に記載の方法。 20. A method according to any one of claims 16 to 19, wherein the first heat exchanger and the second heat exchanger are parts within one heat exchanger. 前記第2の熱交換器に連結された補助冷蔵システムを利用するステップをさらに含む、請求項16から21のいずれか一項に記載の方法。 22. The method of any one of claims 16 to 21, further comprising utilizing an auxiliary refrigeration system coupled to the second heat exchanger. 前記第2又は第3の完全加温窒素ガス流を再冷却するシステムをさらに含む方法であって、再冷却のシステムが、
i.前記第2の又は第3の完全加温窒素ガス流を第1の圧縮機及び第1の冷却器に通して圧縮及び冷却された窒素ガス流を得るステップであって、前記第1の圧縮機が前記第2の熱交換器及び前記第1の冷却器に連結されているステップと;
ii.前記圧縮及び冷却された窒素ガス流を1つ又は複数のターボ膨張機に通すステップと;
iii.前記ターボ膨張窒素ガス流を前記第2の熱交換器に通して第4の完全加温窒素ガス流を得るステップと
を含む、請求項16から21のいずれか一項に記載の方法。
A method further comprising a system for recooling the second or third fully warmed nitrogen gas stream, the system for recooling comprising:
i. passing said second or third fully warmed nitrogen gas stream through a first compressor and a first cooler to obtain a compressed and cooled nitrogen gas stream, said first compressor is coupled to the second heat exchanger and the first cooler;
ii. passing the compressed and cooled nitrogen gas stream through one or more turboexpanders;
iii. passing the turbo-expanded nitrogen gas stream through the second heat exchanger to obtain a fourth fully warmed nitrogen gas stream.
ステップ(ii)が、前記圧縮及び冷却された窒素ガス流を直列で接続された2台のターボ膨張機に通すステップを含む、請求項23に記載の方法。 24. The method of claim 23, wherein step (ii) comprises passing the compressed and cooled nitrogen gas stream through two turboexpanders connected in series. 水素又はヘリウム液化のために液体窒素を使用する予冷システムであって、
温水素又は温ヘリウムガス流と;
液化窒素の供給源からの加圧液化窒素流と;
前記加圧液化窒素流と温水素又は温ヘリウムガス流との間で熱交換して、前記加圧液化窒素流の温度を上昇させて温窒素ガス流を得て、前記温水素又は温ヘリウムガス流の温度を低下させて予冷された窒素ガス流を得るように構成された、熱交換器と;
前記熱交換器に連結され、前記熱交換器から放出された部分加温窒素ガス流の温度を低下させるように構成された、少なくとも1つのターボ膨張機と
を含む、予冷システム。
A pre-cooling system using liquid nitrogen for hydrogen or helium liquefaction, the system comprising:
a stream of hot hydrogen or helium gas;
a pressurized liquefied nitrogen stream from a source of liquefied nitrogen;
heat exchange between the pressurized liquefied nitrogen stream and a warm hydrogen or warm helium gas stream to increase the temperature of the pressurized liquefied nitrogen stream to obtain a warm nitrogen gas stream; a heat exchanger configured to reduce the temperature of the stream to obtain a pre-cooled nitrogen gas stream;
and at least one turboexpander coupled to the heat exchanger and configured to reduce the temperature of a partially warmed nitrogen gas stream discharged from the heat exchanger.
前記熱交換器から放出された前記温窒素ガス流を受け入れるように構成された少なくとも1つの圧縮機及び少なくとも1つの冷却器をさらに含む、請求項25に記載の予冷システム。 26. The precooling system of claim 25, further comprising at least one compressor and at least one cooler configured to receive the warm nitrogen gas stream discharged from the heat exchanger. 前記少なくとも1つの圧縮機及び前記少なくとも1つの冷却器を通った後に前記温窒素ガス流を受け入れるように構成された少なくとも1つのターボ膨張機をさらに含む、請求項26に記載の予冷システム。 27. The precooling system of claim 26, further comprising at least one turboexpander configured to receive the warm nitrogen gas flow after passing through the at least one compressor and the at least one cooler. 前記窒素ガス流の前記圧力を低下させるように構成された、前記ターボ膨張機に連結されたバルブをさらに含む、請求項25に記載の予冷システム。 26. The precooling system of claim 25, further comprising a valve coupled to the turboexpander configured to reduce the pressure of the nitrogen gas stream. 水素又はヘリウム液化のために液体窒素を使用した予冷システムであって、
温水素又は温ヘリウムガス流と;
液化窒素の供給源からの加圧液化窒素流と;
前記加圧液化窒素流と部分冷却された水素又はヘリウムガス流との間で熱交換して、前記加圧液化窒素流の温度を上昇させて部分加温窒素ガス流を得て、前記部分冷却された水素又はヘリウムガス流の温度を低下させるように構成された、第1の熱交換器と;
前記部分加温窒素ガス流の前記温度を低下させるように構成された少なくとも1つのターボ膨張機と;
前記部分加温窒素ガス流と前記温水素又は温ヘリウムガス流との間で熱交換して、前記部分加温窒素ガス流の温度を上昇させて完全加温窒素ガス流を得て、前記温水素又は温ヘリウムガス流の温度を低下させるように構成された、第2の熱交換器と
を含む、予冷システム。
A pre-cooling system using liquid nitrogen for hydrogen or helium liquefaction, comprising:
a stream of hot hydrogen or helium gas;
a pressurized liquefied nitrogen stream from a source of liquefied nitrogen;
exchanging heat between the pressurized liquefied nitrogen stream and a partially cooled hydrogen or helium gas stream to increase the temperature of the pressurized liquefied nitrogen stream to obtain a partially warmed nitrogen gas stream; a first heat exchanger configured to reduce the temperature of the hydrogen or helium gas stream;
at least one turboexpander configured to reduce the temperature of the partially heated nitrogen gas stream;
exchanging heat between the partially warmed nitrogen gas stream and the warmed hydrogen or warm helium gas stream to increase the temperature of the partially warmed nitrogen gas stream to obtain a fully warmed nitrogen gas stream; a second heat exchanger configured to reduce the temperature of the hydrogen or hot helium gas stream.
前記第2の熱交換器を通った後に前記完全加温窒素ガス流を受け入れるように構成された少なくとも1つの圧縮機及び少なくとも1つの冷却器をさらに含む、請求項29に記載の予冷システム。 30. The precooling system of claim 29, further comprising at least one compressor and at least one cooler configured to receive the fully warmed nitrogen gas stream after passing through the second heat exchanger.
JP2023557121A 2021-03-15 2022-03-10 System and method for precooling in hydrogen or helium liquefaction processing Pending JP2024511600A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202163207684P 2021-03-15 2021-03-15
US63/207,684 2021-03-15
PCT/US2022/019734 WO2022197526A2 (en) 2021-03-15 2022-03-10 System and method for precooling in hydrogen or helium liquefaction processing

Publications (1)

Publication Number Publication Date
JP2024511600A true JP2024511600A (en) 2024-03-14

Family

ID=80999503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023557121A Pending JP2024511600A (en) 2021-03-15 2022-03-10 System and method for precooling in hydrogen or helium liquefaction processing

Country Status (6)

Country Link
US (1) US20220290919A1 (en)
EP (1) EP4308865A2 (en)
JP (1) JP2024511600A (en)
KR (1) KR20230171430A (en)
CA (1) CA3212384A1 (en)
WO (1) WO2022197526A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024027949A1 (en) * 2022-08-05 2024-02-08 Linde Gmbh Method and an apparatus for liquefying hydrogen

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU37632A1 (en) * 1955-08-29
US3400547A (en) * 1966-11-02 1968-09-10 Williams Process for liquefaction of natural gas and transportation by marine vessel
DE1960515B1 (en) * 1969-12-02 1971-05-27 Linde Ag Method and device for liquefying a gas
JPS59122868A (en) * 1982-12-27 1984-07-16 高エネルギ−物理学研究所長 Cascade-turbo helium refrigerating liquefier utilizing neon gas
US5060480A (en) * 1990-10-30 1991-10-29 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the liquefaction of a flow of gaseous oxygen
TWI641789B (en) * 2015-07-10 2018-11-21 艾克頌美孚上游研究公司 System and methods for the production of liquefied nitrogen gas using liquefied natural gas
AU2016372711B2 (en) * 2015-12-14 2019-05-02 Exxonmobil Upstream Research Company Method of natural gas liquefaction on LNG carriers storing liquid nitrogen
FR3045796A1 (en) * 2015-12-17 2017-06-23 Engie HYBRID PROCESS FOR THE LIQUEFACTION OF A COMBUSTIBLE GAS AND INSTALLATION FOR ITS IMPLEMENTATION
AU2018218197B2 (en) * 2017-02-13 2020-07-02 Exxonmobil Upstream Research Company Increasing efficiency in an LNG production system by pre-cooling a natural gas feed stream
US11493270B2 (en) * 2019-05-24 2022-11-08 Praxair Technology, Inc. Dual mode Liquefied Natural Gas (LNG) liquefier

Also Published As

Publication number Publication date
EP4308865A2 (en) 2024-01-24
KR20230171430A (en) 2023-12-20
WO2022197526A3 (en) 2022-12-08
WO2022197526A2 (en) 2022-09-22
CA3212384A1 (en) 2022-09-22
US20220290919A1 (en) 2022-09-15

Similar Documents

Publication Publication Date Title
CA3005327C (en) Pre-cooling of natural gas by high pressure compression and expansion
CA3053323C (en) Pre-cooling of natural gas by high pressure compression and expansion
JP5647299B2 (en) Liquefaction method and liquefaction apparatus
CN100410609C (en) Hybrid gas liquefaction cycle with multiple expanders
RU2753342C2 (en) Low-temperature mixed refrigerant for large-scale pre-cooling of hydrogen
JP4980051B2 (en) Integrated multi-loop cooling method for gas liquefaction
JP5139292B2 (en) Natural gas liquefaction method for LNG
JP6140713B2 (en) Multiple nitrogen expansion process for LNG production
CN104520660B (en) System and method for natural gas liquefaction
JP5642697B2 (en) Method and related apparatus for producing a subcooled liquefied natural gas stream using a natural gas feed stream
CA2907931C (en) Integrally-geared compressors for precooling in lng applications
JP2010189622A (en) Natural gas liquefaction system and natural gas liquefaction method
JPH0147717B2 (en)
JP2003517561A (en) Natural gas liquefaction by expansion cooling
KR20190120776A (en) Polar cascade method for liquefying natural gas in high pressure cycle with precooling by ethane and auxiliary cooling by nitrogen and plant for its implementation
RU2568697C2 (en) Liquefaction of fraction enriched with hydrocarbons
Kuendig et al. Large scale hydrogen liquefaction in combination with LNG re-gasification
CA2898745C (en) Process for cooling a hydrocarbon-rich fraction
JP2001526376A (en) Liquefaction process and equipment
JP2019066166A (en) Improved multiple-pressure mixed refrigerant cooling system
JP6835902B2 (en) Improved methods and systems for cooling hydrocarbon streams using vapor phase refrigerants
JP6835903B2 (en) Improved methods and systems for cooling hydrocarbon streams using vapor phase refrigerants
JP2024511600A (en) System and method for precooling in hydrogen or helium liquefaction processing
JP2022543263A (en) Refrigeration equipment and systems
US20240200868A1 (en) Device and method for pre-cooling a stream of a target fluid to a temperature less than or equal to 90 k