JP2024511210A - Combustion systems used in vehicles and vehicles - Google Patents

Combustion systems used in vehicles and vehicles Download PDF

Info

Publication number
JP2024511210A
JP2024511210A JP2023559699A JP2023559699A JP2024511210A JP 2024511210 A JP2024511210 A JP 2024511210A JP 2023559699 A JP2023559699 A JP 2023559699A JP 2023559699 A JP2023559699 A JP 2023559699A JP 2024511210 A JP2024511210 A JP 2024511210A
Authority
JP
Japan
Prior art keywords
intake
intake valve
combustion system
exhaust
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023559699A
Other languages
Japanese (ja)
Inventor
チャン、ペイイ
ワン、ミンミン
ヤン、ピンタオ
ティアン、チソン
リウ、リフア
リ、ホンチョウ
チャン、ユチュン
チョウ、ウーミン
スチョルテン、インゴ
ワン、ルイピン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Geely Holding Group Co Ltd
Original Assignee
Zhejiang Geely Holding Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Geely Holding Group Co Ltd filed Critical Zhejiang Geely Holding Group Co Ltd
Publication of JP2024511210A publication Critical patent/JP2024511210A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/06Valve members or valve-seats with means for guiding or deflecting the medium controlled thereby, e.g. producing a rotary motion of the drawn-in cylinder charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/20Shapes or constructions of valve members, not provided for in preceding subgroups of this group
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/101Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on or close to the cylinder centre axis, e.g. with mixture formation using spray guided concepts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/26Pistons  having combustion chamber in piston head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10242Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
    • F02M35/10262Flow guides, obstructions, deflectors or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L2003/25Valve configurations in relation to engine
    • F01L2003/255Valve configurations in relation to engine configured other than parallel or symmetrical relative to piston axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/01Absolute values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F2001/244Arrangement of valve stems in cylinder heads
    • F02F2001/245Arrangement of valve stems in cylinder heads the valve stems being orientated at an angle with the cylinder axis

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

Figure 2024511210000001

燃焼システム(100)及び車両であって、燃焼システムは吸気通路(10)、排気通路(20)、吸気バルブ(30)及び排気バルブ(40)を備え、吸気バルブの軸線と排気バルブの軸線との夾角は予め設定された角度であり、吸気バルブが吸気通路を閉鎖し、排気バルブが排気通路を閉鎖する場合、吸気バルブの中心位置は排気バルブの中心位置より高い。該燃焼システムは吸気バルブの軸線と排気バルブの軸線との間の夾角を固定し、吸気バルブの中心位置の高さを排気バルブの中心位置の高さより高いように設計することで、吸気バルブの上部気流は燃焼室(50)の内部の壁面と排気バルブの壁面に沿って燃焼室内に入り、排気バルブ付近の流速デッドゾーンを減少し、ガスの燃焼室内における高いタンブル流の状況を実現し、燃焼システム内のガスの燃焼速度を高め、エンジンの効率を向上させると共に動力的需要を満足する。
【選択図】図1

Figure 2024511210000001

A combustion system (100) and a vehicle, the combustion system includes an intake passage (10), an exhaust passage (20), an intake valve (30), and an exhaust valve (40), and an axis of the intake valve and an axis of the exhaust valve. The included angle is a preset angle, and when the intake valve closes the intake passage and the exhaust valve closes the exhaust passage, the center position of the intake valve is higher than the center position of the exhaust valve. The combustion system fixes the included angle between the axis of the intake valve and the axis of the exhaust valve, and the height of the center of the intake valve is designed to be higher than the height of the center of the exhaust valve. The upper airflow enters the combustion chamber along the internal wall of the combustion chamber (50) and the wall of the exhaust valve, reduces the flow velocity dead zone near the exhaust valve, and realizes a high tumble flow situation in the combustion chamber of the gas, Increase the combustion rate of gas in the combustion system to improve engine efficiency and meet power demands.
[Selection diagram] Figure 1

Description

本発明は車両の技術分野に関し、特に、車両に用いられる燃焼システム及び車両に関する。 The present invention relates to the technical field of vehicles, and more particularly to a combustion system used in a vehicle and a vehicle.

燃費・排出ガス規制の厳罰化及びハイブリッド技術の普及に伴って、より低い燃費、より低い排出及びより良い運転性を実現するために、多くのメーカーはハイブリッド専用ガソリンエンジンを開発し始まったが、これらの性能の達成には効率がより高い燃焼システムのサポートが必要である。 With the tightening of fuel efficiency and exhaust gas regulations and the spread of hybrid technology, many manufacturers have begun to develop gasoline engines exclusively for hybrids in order to achieve lower fuel consumption, lower emissions, and better drivability. Achieving these performances requires the support of more efficient combustion systems.

従来の小さなシリンダー径(シリンダー径が70~75mmである)のエンジンに採用される燃焼システムは、その吸気バルブ、排気バルブ、吸気通路及び燃焼室の構造により、ガスは燃焼システムの吸気通路を介して燃焼室に入った後、ガスの流量係数の低減程度は比較的大きく、それにより燃焼室内の燃焼効率は比較的低くなる。 The combustion system used in conventional engines with small cylinder diameters (cylinder diameters of 70 to 75 mm) has a structure of intake valves, exhaust valves, intake passages, and combustion chambers that allows gas to flow through the intake passage of the combustion system. After entering the combustion chamber, the degree of reduction in the flow coefficient of the gas is relatively large, which results in a relatively low combustion efficiency within the combustion chamber.

上記問題に鑑み、本発明は提案され、上記問題を解消し又は上記問題を少なくとも部分的に解決する車両に用いられる燃焼システム及び車両を提供する。 In view of the above problems, the present invention is proposed and provides a combustion system for use in a vehicle and a vehicle which eliminates the above problems or at least partially solves the above problems.

本発明の1つの目的は、従来技術における燃焼システムがシリンダー内の高いタンブル流性能を同時に満足できない問題を解決する燃焼システムを提供することである。 One object of the present invention is to provide a combustion system that solves the problem that combustion systems in the prior art cannot simultaneously satisfy high tumble flow performance in the cylinder.

本発明の更なる目的は、従来技術におけるエンジンの燃焼効率が比較的低い問題を解決することである。 A further object of the invention is to solve the problem of relatively low combustion efficiency of engines in the prior art.

本発明の他の目的は、上記燃焼システムを備える車両を提供することである。 Another object of the invention is to provide a vehicle equipped with the above combustion system.

特に、本発明の実施例の一態様では車両に用いられる燃焼システムを提供し、
吸気通路、排気通路、吸気バルブ及び排気バルブを備え、前記吸気バルブの一端は前記吸気通路の一端を通過して前記吸気通路を開放又は閉鎖し、前記排気バルブの一端は前記排気通路を通過して前記排気通路の一端を開放又は閉鎖し、
前記吸気バルブの軸線と前記排気バルブの軸線との夾角は予め設定された角度であり、且つ、
前記吸気バルブが前記吸気通路を閉鎖すると同時に前記排気バルブが前記排気通路を閉鎖する場合、前記吸気バルブの中心位置は前記排気バルブの中心位置より高い。
In particular, one aspect of embodiments of the present invention provides a combustion system for use in a vehicle,
An intake passage, an exhaust passage, an intake valve, and an exhaust valve, one end of the intake valve passing through one end of the intake passage to open or close the intake passage, and one end of the exhaust valve passing through the exhaust passage. to open or close one end of the exhaust passage;
The angle between the axis of the intake valve and the axis of the exhaust valve is a preset angle, and
When the intake valve closes the intake passage and the exhaust valve closes the exhaust passage at the same time, the center position of the intake valve is higher than the center position of the exhaust valve.

選択肢として、前記吸気バルブの中心位置と前記排気バルブの中心位置との高さの差は0.5~1mmである。 As an option, the height difference between the center position of the intake valve and the center position of the exhaust valve is 0.5-1 mm.

選択肢として、前記予め設定された角度は35°~50°である。 Optionally, the preset angle is between 35° and 50°.

選択肢として、燃焼室を更に備え、前記吸気通路と前記排気通路はいずれも前記燃焼室に連通され、
前記吸気バルブの端部は前記吸気通路の出口を通過して前記燃焼室内に延在し、且つ前記燃焼室の内壁は前記吸気通路の出口に近い位置において、前記吸気バルブの端部を部分的に囲む遮断構造に構成される。
As an option, further comprising a combustion chamber, the intake passage and the exhaust passage both communicating with the combustion chamber,
An end of the intake valve extends into the combustion chamber through an outlet of the intake passage, and an inner wall of the combustion chamber partially extends from the end of the intake valve at a position close to the outlet of the intake passage. It is constructed with an isolation structure surrounded by.

選択肢として、前記遮断構造は前記吸気バルブの前記排気バルブから離れる側に位置する。 Optionally, the blocking structure is located on a side of the intake valve remote from the exhaust valve.

選択肢として、前記遮断構造はガスガイド壁と当接台を含み、前記吸気バルブの軸線の位置する平面に沿って切断する断面において階段状構造であり、前記ガスガイド壁は前記吸気バルブの軸線に平行するように構成され、且つ、
前記当接台は前記吸気バルブの端部の輪郭に適応する構造に構成され、そして前記吸気バルブが前記吸気通路を閉鎖する場合、前記吸気バルブは前記当接台に当接する。
As an option, the blocking structure includes a gas guide wall and an abutment base, and has a stepped structure in a cross section cut along a plane in which the axis of the intake valve is located, and the gas guide wall is arranged along the axis of the intake valve. configured to be parallel, and
The abutment base is configured to adapt to the contour of the end of the intake valve, and when the intake valve closes the intake passage, the intake valve abuts the abutment base.

選択肢として、前記遮断構造は、前記吸気バルブの軸線に垂直する平面に沿って切断してなる断面において、前記吸気バルブの端部の構造に適応する円弧形であり、前記円弧形に対応する中心角は110°~180°である。 As an option, the blocking structure has an arcuate shape adapted to the structure of the end of the intake valve in a cross section taken along a plane perpendicular to the axis of the intake valve, and corresponds to the arcuate shape. The central angle is between 110° and 180°.

選択肢として、前記遮断構造は更に、前記吸気バルブが前記吸気通路を閉鎖する場合、前記吸気バルブと前記ガスガイド壁との最小距離が0.6~1mmであるように構成される。 Optionally, the blocking structure is further configured such that when the intake valve closes the intake passage, a minimum distance between the intake valve and the gas guide wall is 0.6 to 1 mm.

選択肢として、前記遮断構造の前記ガスガイド壁の、前記吸気バルブの軸線方向に沿う高さは3~5mmである。 As an option, the height of the gas guide wall of the blocking structure along the axial direction of the intake valve is 3 to 5 mm.

選択肢として、前記吸気通路の中軸線と水平面との夾角は15°~20°である。 As an option, the included angle between the center axis of the intake passage and the horizontal plane is 15° to 20°.

選択肢として、ピストンを更に備え、前記ピストンの頂部中央位置には窪みが設置され、前記窪みの底端と頂端との垂直距離は0.5~1mmである。 Optionally, the method further includes a piston, and a recess is installed at the center of the top of the piston, and the vertical distance between the bottom end and the top end of the recess is 0.5 to 1 mm.

選択肢として、前記ピストンの頂端には退避溝が設置され、前記退避溝の位置は前記吸気バルブと前記排気バルブの位置にマッチングする。 As an option, a retraction groove is installed at the top end of the piston, and the position of the retraction groove matches the positions of the intake valve and the exhaust valve.

選択肢として、前記吸気バルブの数は2つであり、1つの前記吸気通路を共用し、
前記排気バルブの数は2つであり、1つの前記排気通路を共用し、
前記退避溝の数は前記吸気バルブと前記排気バルブの数の総和である。
As an option, the number of the intake valves is two, sharing one intake passage,
The number of the exhaust valves is two, and they share one exhaust passage,
The number of the retraction grooves is the total number of the intake valves and the number of exhaust valves.

選択肢として、前記燃焼室にはスキッシュ構造が設置され、
前記ピストンの頂部の前記窪みの外周にはスキッシュ面が設置され、
前記スキッシュ構造と前記スキッシュ面は互いにマッチングする。
Optionally, the combustion chamber is provided with a squish structure;
A squish surface is installed on the outer periphery of the recess at the top of the piston,
The squish structure and the squish surface match each other.

選択肢として、スパークプラグと油ノズルを更に備え、前記スパークプラグと前記油ノズルはいずれも前記吸気バルブと前記排気バルブとの間に設置される。 Optionally, the vehicle further includes a spark plug and an oil nozzle, both of which are installed between the intake valve and the exhaust valve.

選択肢として、2つの前記吸気バルブと2つの前記排気バルブとの頂端中心の連結線は長方形を構成し、
前記スパークプラグと前記油ノズルは前記長方形の中心線のうちの一方に並んで設置され、且つ前記スパークプラグと前記油ノズルは前記長方形の中心線のうちの他方の両側に位置する。
Optionally, a connecting line at the center of the top of the two intake valves and the two exhaust valves forms a rectangle;
The spark plug and the oil nozzle are installed side by side on one of the center lines of the rectangle, and the spark plug and the oil nozzle are located on both sides of the other center line of the rectangle.

特に、本発明は、上記の車両に用いられる燃焼システムを備える車両を更に提供する。 In particular, the invention further provides a vehicle comprising a combustion system for use in the vehicle described above.

本発明の燃焼システムは吸気バルブの軸線と排気バルブの軸線との間の夾角を固定し、更に吸気バルブの中心位置の高さを排気バルブの中心位置の高さより高いように設計することにより、吸気バルブの上部気流は燃焼室の内部の壁面と排気バルブの壁面に沿って燃焼室内に入り、排気バルブ付近の流速デッドゾーンを減少し、ガスの燃焼室内における高いタンブル流の状況を実現し、エンジンの燃焼システム内のガスの燃焼速度を高め、エンジンの効率を向上させるとともに、エンジンの動力的需要を満足する。 The combustion system of the present invention fixes the included angle between the axis of the intake valve and the axis of the exhaust valve, and furthermore, by designing the height of the center position of the intake valve to be higher than the height of the center position of the exhaust valve, The upper airflow of the intake valve enters the combustion chamber along the internal wall of the combustion chamber and the wall of the exhaust valve, reducing the flow velocity dead zone near the exhaust valve and realizing a high tumble flow situation in the combustion chamber of the gas. Increase the combustion rate of gas in the combustion system of the engine, improve the efficiency of the engine, and satisfy the power demands of the engine.

更に、本発明の燃焼システムは吸気バルブの下部に遮断構造を設計することにより、吸気バルブの下部気流を減少し、特に低いリフト(リフトが3~5mmより低い)の場合の吸気バルブの下部気流を減少することができ、流れの分離を促進し、大部分の気流を吸気バルブの上部から燃焼室に入らせ、低リフトタンブル流比を大幅に向上させ、ガソリン・ガスの混合を速め、混合ガスの分布均一程度を高め、燃焼速度を増加する。同時に、本実施例における燃焼システムは吸気バルブの下部に遮断構造を設計することにより、吸気バルブの下部気流を減少し、気流を排気側に流れるようにガイドし、吸気ストローク初期の逆タンブル流を減少することができ、燃焼室内での大スケールの正タンブル流の形成に寄与する。 Furthermore, the combustion system of the present invention reduces the lower airflow of the intake valve by designing a blocking structure at the lower part of the intake valve, especially in the case of low lift (lift lower than 3-5 mm). It can reduce the flow separation, allow most of the airflow to enter the combustion chamber from the top of the intake valve, greatly improve the low-lift tumble flow ratio, speed up the mixing of gasoline and gas, and improve the mixing Improve the uniformity of gas distribution and increase the combustion rate. At the same time, the combustion system in this embodiment reduces the airflow at the bottom of the intake valve by designing a blocking structure at the bottom of the intake valve, guides the airflow to the exhaust side, and prevents the reverse tumble flow at the beginning of the intake stroke. This contributes to the formation of a large-scale positive tumble flow within the combustion chamber.

更に、本発明の吸気通路の設定角度により、本発明の吸気通路の入口は比較的低くなる。高タンブル流の通路内部における大部分の気流は吸気バルブの上部を経由して燃焼室に入るため、吸気通路の入口を低くすると、吸気通路は大部分の気流を吸気バルブの上部に流れるようにガイドし、高タンブル流の吸気通路の流量係数を効果的に高めることができる。 Furthermore, due to the angle of the intake passage of the invention, the entrance of the intake passage of the invention is relatively low. Because most of the airflow inside the high tumble passages enters the combustion chamber through the top of the intake valve, lowering the intake passage entrance allows the intake passage to direct most of the airflow to the top of the intake valve. It is possible to effectively increase the flow coefficient of the intake passage with high tumble flow.

更に、本発明のピストンの4つの退避溝及び中心の大きな窪みの設計により、ガスは吸気通路の吸気バルブの端部の右上方から燃焼室に入った後、燃焼室の内壁に沿ってタンブル流を形成し、ピストン上部の浅い窪みの設計によれば、該タンブル流のガスがピストンに流れる時に浅い窪みに沿って流れることを確保でき、吸気ストロークタンブル流の維持を容易にし、ピストンが圧縮上死点に到達する時に比較的強い気流はクラッシュし、比較的強い乱流運動エネルギーを産生し、火炎初期伝播の時のピストンの頂面との接触によるクエンチングを回避し、燃焼効率を改善する。 Furthermore, due to the design of the four retraction grooves and the large depression in the center of the piston of the present invention, gas enters the combustion chamber from the upper right side of the end of the intake valve in the intake passage, and then tumbles along the inner wall of the combustion chamber. , and the design of the shallow depression on the top of the piston can ensure that the tumble flow gas flows along the shallow depression when flowing into the piston, making it easy to maintain the intake stroke tumble flow, and the piston is able to improve compression. The relatively strong airflow crashes when reaching the dead center, producing relatively strong turbulent kinetic energy, avoiding quenching due to contact with the top surface of the piston during initial flame propagation, and improving combustion efficiency. .

本発明の油ノズルは中間に配置されることにより、燃焼制御ポリシーはより柔軟になる。実際の使用過程において、複数回の油噴射ポリシーは採用され得ており、スパークプラグの中心に比較的濃い混合ガスを形成し、燃焼安定性を向上させる。同時に、発火条件下で、三元触媒の発火を加速できる。同時に、油ノズルとスパークプラグとの適当な距離を維持することによって、スプレーとスパークプラグの電極との接触によりスパークプラグの電極に油膜を産生することによるスパークプラグにおけるカーボンデポジット等の問題を防止することができる。 The intermediate location of the oil nozzle of the present invention makes the combustion control policy more flexible. In the course of actual use, a multiple oil injection policy can be adopted to form a relatively rich gas mixture in the center of the spark plug and improve combustion stability. At the same time, under ignition conditions, the ignition of the three-way catalyst can be accelerated. At the same time, maintaining a suitable distance between the oil nozzle and the spark plug prevents problems such as carbon deposits in the spark plug due to the production of oil film on the spark plug electrode due to contact between the spray and the spark plug electrode. be able to.

更に、本発明において、燃焼室内のスキッシュ構造はガスの流れをシリンダーの中心に押し、ピストンが上死点に到達する場合、スキッシュ構造とスキッシュ面との協働により、ガスのタンブル流をクラッシュさせ、燃焼室の中央位置に比較的強い乱流強度を形成し、火炎伝播速度を高め、ノッキング傾向を低減する。また、ピストン周囲のスキッシュ面と燃焼室のスキッシュ構造とのマッチング設計により、シリンダー内のタンブル流の維持に寄与し、比較的高い乱流強度を形成するとともに、火炎初期伝播の時のピストンの頂面との接触によるクエンチングを回避し、燃焼効率を改善する。 Furthermore, in the present invention, the squish structure in the combustion chamber pushes the gas flow to the center of the cylinder, and when the piston reaches the top dead center, the squish structure and the squish surface cooperate to crash the tumble flow of gas. , forming a relatively strong turbulence intensity in the central position of the combustion chamber, increasing the flame propagation speed and reducing the knocking tendency. In addition, the matching design of the squish surface around the piston and the squish structure of the combustion chamber contributes to maintaining the tumble flow inside the cylinder, creating a relatively high turbulence strength, and the top of the piston at the time of initial flame propagation. Avoid quenching due to contact with surfaces and improve combustion efficiency.

また、本発明の燃焼システムの油ノズルは油噴射の時、本実施例の燃焼システムの構造により、スプレーはピストンの頂部に空気層を形成し、スプレーとピストンの頂部との接触を減少し、炭素ガス排出リスクを低減する。燃焼効率を向上させる。最終的に、本発明の燃焼システムによれば、燃焼システムの最高熱効率は2%~3%向上することができる。 In addition, when the oil nozzle of the combustion system of the present invention injects oil, due to the structure of the combustion system of this embodiment, the spray forms an air layer on the top of the piston, reducing the contact between the spray and the top of the piston. Reduce carbon gas emissions risk. Improve combustion efficiency. Finally, with the combustion system of the present invention, the maximum thermal efficiency of the combustion system can be increased by 2% to 3%.

上記の説明は本発明の技術案の概要に過ぎず、本発明の技術手段をより明確に理解して、明細書の内容に従って実施し、そして、本発明の上記及び他の目的、特徴、利点をより明確にするために、以下では本発明の具体的な実施形態を説明する。 The above description is only a summary of the technical solution of the present invention, and can help you more clearly understand the technical means of the present invention, implement it according to the content of the specification, and achieve the above and other objects, features and advantages of the present invention. In order to make the details more clear, specific embodiments of the present invention will be described below.

下記の説明及び図面を参照しながら本発明の具体的な実施例を詳細に説明すれば、当業者は本発明の上記及び他の目的、利点、特徴を明確に理解することができる。 Those skilled in the art will be able to clearly understand these and other objects, advantages, and features of the present invention from the detailed description of specific embodiments of the present invention with reference to the following description and drawings.

以下では図面を参照しながら、制限ではない例示的な形態で本発明の幾つかの具体的な実施例を詳細に説明する。図面における同一の符号は同一又は類似の部品又は部分を示す。当業者が理解できるように、これらの図面は必ずしも比例で作成されたものとは限らない。図面において、
本発明の1つの実施例による燃焼システムの断面模式図。 本発明の1つの実施例による燃焼システムの上面模式図。 本発明の1つの実施例による燃焼システムの遮断構造の拡大模式図。 本発明の1つの実施例による燃焼システムのピストンの上面模式図。 本発明の1つの実施例による燃焼システムの断面簡素化模式図。 図2におけるA-A切断線に沿って切断された断面模式図。 図2におけるB-B切断線に沿って切断された断面模式図。
BRIEF DESCRIPTION OF THE DRAWINGS In the following, some specific embodiments of the invention will be explained in detail in non-limiting exemplary form with reference to the drawings, in which: FIG. The same reference numerals in the drawings indicate the same or similar parts or parts. As those skilled in the art will appreciate, the drawings are not necessarily drawn to scale. In the drawing,
1 is a cross-sectional schematic diagram of a combustion system according to one embodiment of the invention; FIG. 1 is a top schematic diagram of a combustion system according to one embodiment of the present invention; FIG. FIG. 1 is an enlarged schematic diagram of a shutoff structure of a combustion system according to one embodiment of the present invention. 1 is a schematic top view of a piston of a combustion system according to one embodiment of the invention; FIG. 1 is a simplified cross-sectional schematic diagram of a combustion system according to one embodiment of the invention; FIG. FIG. 3 is a schematic cross-sectional view cut along the AA cutting line in FIG. 2. FIG. FIG. 3 is a schematic cross-sectional view cut along the BB cutting line in FIG. 2.

以下では図面を参照しながら本開示の例示的な実施例を詳細に説明する。図面には本開示の例示的な実施例を示したが、理解されるように、本開示は各種の形式で実現でき、ここで説明される実施例に制限されない。逆に、これらの実施例の提供は、本開示をより明確に理解して、本開示の範囲を完全に当業者に伝達できるようにするためのものである。 Exemplary embodiments of the present disclosure will be described in detail below with reference to the drawings. Although the drawings depict illustrative embodiments of the disclosure, it will be appreciated that the disclosure may be implemented in a variety of forms and is not limited to the embodiments described herein. Rather, these embodiments are provided so that the disclosure will be understood more clearly, and will fully convey the scope of the disclosure to those skilled in the art.

本発明の1つの具体的な実施例として、図1と図2に示すように、本実施例の燃焼システム100は吸気通路10、排気通路20、吸気バルブ30、排気バルブ40、燃焼室50、油ノズル60、スパークプラグ70、及びピストン80を備え得る。吸気通路10は吸気バルブ30の側辺に位置する。具体的に、図1に示すように、吸気通路10は吸気バルブ30の左側辺に位置し得る。排気通路20は排気バルブ40の側辺に位置し、そして吸気バルブ30の1つの端部は吸気通路10の出口11を通過して、吸気通路10を開放又は閉鎖する。具体的に、排気通路20は排気バルブ40の右側辺に位置し、そして排気バルブ40の1つの端部は排気通路20の入口21を通過して、排気通路20を開放又は閉鎖する。具体的に、本実施例における吸気バルブ30と排気バルブ40はいずれも2つを含み得る。吸気通路10と排気通路20はいずれも燃焼室50に連通され、ガスは吸気通路10の入口12から吸気通路10に入り、更に吸気通路10の出口11から燃焼室50内に入って燃焼し、燃焼後のガスは排気通路20の入口21から排気通路20に入り、排気通路20の出口22から排出し、吸気バルブ30と排気バルブ40は対応の吸気通路10と排気通路20の開放と閉鎖に用いられる。具体的に、本実施例の燃焼システム100は小さなシリンダー径(シリンダー径が70~75mmである)のエンジンにより適用される。 As a specific embodiment of the present invention, as shown in FIGS. 1 and 2, a combustion system 100 according to the present embodiment includes an intake passage 10, an exhaust passage 20, an intake valve 30, an exhaust valve 40, a combustion chamber 50, It may include an oil nozzle 60, a spark plug 70, and a piston 80. The intake passage 10 is located on the side of the intake valve 30. Specifically, as shown in FIG. 1, the intake passage 10 may be located on the left side of the intake valve 30. The exhaust passage 20 is located on the side of the exhaust valve 40, and one end of the intake valve 30 passes through the outlet 11 of the intake passage 10 to open or close the intake passage 10. Specifically, the exhaust passage 20 is located on the right side of the exhaust valve 40, and one end of the exhaust valve 40 passes through the inlet 21 of the exhaust passage 20 to open or close the exhaust passage 20. Specifically, each of the intake valves 30 and the exhaust valves 40 in this embodiment may include two. Both the intake passage 10 and the exhaust passage 20 communicate with a combustion chamber 50, and gas enters the intake passage 10 from the inlet 12 of the intake passage 10, further enters the combustion chamber 50 from the outlet 11 of the intake passage 10, and is combusted. The gas after combustion enters the exhaust passage 20 from the inlet 21 of the exhaust passage 20 and is exhausted from the outlet 22 of the exhaust passage 20, and the intake valve 30 and exhaust valve 40 open and close the corresponding intake passage 10 and exhaust passage 20. used. Specifically, the combustion system 100 of this embodiment is applied to an engine with a small cylinder diameter (the cylinder diameter is 70 to 75 mm).

具体的に、図1に示すように、吸気バルブ30の軸線と排気バルブ40の軸線との夾角はガスが燃焼室50内に入るタンブル流の強さに影響を与えるため、本実施例の燃焼システム100の吸気バルブ30の軸線と排気バルブ40の軸線との夾角は予め設定された夾角θとされ、且つ、吸気バルブ30が吸気通路10を閉鎖する(又は塞ぐ)と同時に排気バルブ40が排気通路20を閉鎖する(又は塞ぐ)場合、吸気バルブ30の中心位置は排気バルブ40の中心位置より高い。本実施例では、吸気バルブ30の中心位置とは吸気バルブ30の幾何学的中心位置を指してもよい。同様に、排気バルブ40の中心位置とは排気バルブ40の幾何学的中心位置を指してもよい。当然ながら、吸気バルブ30と排気バルブ40はそれぞれ吸気通路10と排気通路20を塞ぐ場合、吸気バルブ30と排気バルブ40の幾何学的中心位置の高さの差は、吸気バルブ30と排気バルブ40の最も低い点位置の高さの差と同じである。該高さの差を実際に設計する時、吸気通路10の出口11の位置と排気通路20の入口21の位置との高さの差を設計してもよい。それにより、吸気バルブ30が吸気通路10を閉鎖すると同時に排気バルブ40が排気通路20を閉鎖する場合、吸気バルブ30の中心位置は排気バルブ40の中心位置より高い。 Specifically, as shown in FIG. 1, the angle between the axis of the intake valve 30 and the axis of the exhaust valve 40 affects the strength of the tumble flow of gas entering the combustion chamber 50, so the combustion in this embodiment is The angle between the axis of the intake valve 30 and the axis of the exhaust valve 40 of the system 100 is a preset angle θ, and at the same time the intake valve 30 closes (or blocks) the intake passage 10, the exhaust valve 40 exhausts the air. When closing (or blocking) the passage 20, the center position of the intake valve 30 is higher than the center position of the exhaust valve 40. In this embodiment, the center position of the intake valve 30 may refer to the geometric center position of the intake valve 30. Similarly, the center position of the exhaust valve 40 may refer to the geometric center position of the exhaust valve 40. Naturally, when the intake valve 30 and the exhaust valve 40 block the intake passage 10 and the exhaust passage 20, respectively, the difference in height between the geometric center positions of the intake valve 30 and the exhaust valve 40 is It is the same as the difference in height between the lowest point positions. When actually designing the height difference, the height difference between the position of the outlet 11 of the intake passage 10 and the position of the inlet 21 of the exhaust passage 20 may be designed. Therefore, when the intake valve 30 closes the intake passage 10 and the exhaust valve 40 closes the exhaust passage 20 at the same time, the center position of the intake valve 30 is higher than the center position of the exhaust valve 40.

本実施例において、吸気バルブ30の軸線と排気バルブ40の軸線との間の夾角を固定し、更に吸気バルブ30の中心位置の高さを排気バルブ40の中心位置の高さより高いように設計することにより、吸気バルブ30の上部気流は燃焼室50の内部の壁面と排気バルブ40の壁面に沿って燃焼室内に入り、排気バルブ40付近の流速デッドゾーンを減少し、ガスの燃焼室50内における高いタンブル流の状況を実現し、エンジンの燃焼システム内のガスの燃焼速度を高め、エンジンの効率を向上させるとともに、エンジンの動力的需要を満足する。 In this embodiment, the included angle between the axis of the intake valve 30 and the axis of the exhaust valve 40 is fixed, and the height of the center position of the intake valve 30 is designed to be higher than the height of the center position of the exhaust valve 40. As a result, the upper airflow of the intake valve 30 enters the combustion chamber along the internal wall surface of the combustion chamber 50 and the wall surface of the exhaust valve 40, reducing the flow velocity dead zone near the exhaust valve 40, and reducing the flow of gas within the combustion chamber 50. Achieving a high tumble flow situation, increasing the combustion rate of gas in the combustion system of the engine, improving the efficiency of the engine, and satisfying the power demand of the engine.

具体的に、本実施例における予め設定された角度θは35°~50°であってもよい。例えば、θは35°、40°又は50°であってもよい。本実施例では、吸気バルブ30の中心位置と排気バルブ40の中心位置との高さの差aは0.5~1mmである。例えば、aは0.5mm、0.8mm又は1mmであってもよい。本実施例において、吸気バルブ30の軸線と排気バルブ40の軸線との該夾角の設計と、吸気バルブ30の中心位置と排気バルブ40の中心位置との該高さの差との組合せにより、ガスの吸気バルブ30の上部気流が燃焼室50の内部の壁面と排気バルブ40の壁面に沿って燃焼室内に入る時、排気バルブ40付近の流速デッドゾーンを減少し、ガスの燃焼室50内における高いタンブル流の状況を実現するように確保することができる。 Specifically, the preset angle θ in this embodiment may be 35° to 50°. For example, θ may be 35°, 40° or 50°. In this embodiment, the height difference a between the center position of the intake valve 30 and the center position of the exhaust valve 40 is 0.5 to 1 mm. For example, a may be 0.5 mm, 0.8 mm or 1 mm. In this embodiment, the combination of the design of the included angle between the axis of the intake valve 30 and the axis of the exhaust valve 40 and the difference in height between the center position of the intake valve 30 and the center position of the exhaust valve 40 makes it possible to When the upper airflow of the intake valve 30 enters the combustion chamber along the inner wall of the combustion chamber 50 and the wall of the exhaust valve 40, the flow velocity dead zone near the exhaust valve 40 is reduced, and the high gas flow inside the combustion chamber 50 is reduced. It can be ensured that a tumble flow situation is achieved.

1つの実施例として、図1と図3に示すように、本実施例において、吸気バルブ30の端部は吸気通路10の出口11を通過して燃焼室50内に延在し、且つ燃焼室50の内壁は吸気通路10の出口に近い位置において、吸気バルブ30の端部を部分的に囲む遮断構造90に構成される。 As an example, as shown in FIGS. 1 and 3, in this example, the end of the intake valve 30 passes through the outlet 11 of the intake passage 10 and extends into the combustion chamber 50, and The inner wall of 50 is configured into a blocking structure 90 that partially surrounds the end of intake valve 30 at a position close to the outlet of intake passage 10 .

具体的に、本実施例の遮断構造90は吸気バルブ30の端部の排気バルブ40から離れる側に沿う燃焼室50の内壁のみに設置される。具体的に、図1と図3に示すように、本実施例の遮断構造90は吸気バルブ30の左下部の位置に位置する。吸気バルブ30の端部の右上部の位置には遮断構造が含まない。遮断構造90の存在により、吸気通路10から燃焼室50に流れるガスの大部分は、吸気バルブ40の端部の右上部の位置から燃焼室50に流れる。また、吸気バルブ30の中心位置の高さは排気バルブ40の中心位置の高さより高いため、吸気バルブ30の右上方から燃焼室50内に入るガスは燃焼室50の内壁に沿って流れ、乱流をより容易に形成する。 Specifically, the blocking structure 90 of this embodiment is installed only on the inner wall of the combustion chamber 50 along the end of the intake valve 30 on the side away from the exhaust valve 40. Specifically, as shown in FIGS. 1 and 3, the blocking structure 90 of this embodiment is located at the lower left of the intake valve 30. The upper right position of the end of the intake valve 30 does not include a blocking structure. Due to the presence of the blocking structure 90, most of the gas flowing from the intake passage 10 to the combustion chamber 50 flows into the combustion chamber 50 from the upper right position of the end of the intake valve 40. Further, since the height of the center position of the intake valve 30 is higher than the height of the center position of the exhaust valve 40, gas entering the combustion chamber 50 from the upper right side of the intake valve 30 flows along the inner wall of the combustion chamber 50 and is turbulent. Form the flow more easily.

具体的に、本実施例の遮断構造90はガスガイド壁91と当接台92を含み得ており、そして吸気バルブ30の軸線の位置する平面に沿って切断する断面において階段状構造である。ガスガイド壁91は基本的に吸気バルブ30の中軸線に平行するように構成され、当接台92は吸気バルブ30の端部の吸気通路10に近い側の輪郭構造に適応するように構成され、そして吸気バルブ30が吸気通路10を塞ぐ場合、吸気バルブ30は当接台92に当接する。 Specifically, the blocking structure 90 of this embodiment may include a gas guide wall 91 and an abutting table 92, and has a stepped structure in a cross section cut along the plane where the axis of the intake valve 30 is located. The gas guide wall 91 is basically configured to be parallel to the center axis of the intake valve 30, and the abutment base 92 is configured to adapt to the contour structure of the end of the intake valve 30 on the side closer to the intake passage 10. , and when the intake valve 30 closes the intake passage 10, the intake valve 30 comes into contact with the abutting base 92.

具体的に、遮断構造90は、吸気バルブ30の軸線に垂直する平面に沿って切断してなる断面において、吸気バルブ30の端部の構造に適応する円弧形であり(図2に示す)、該円弧に対応する中心角(即ち、円弧形の中心と円弧形からなる扇形の角度)βは110°~180°である。例えば、βは110°、120°、150°又は180°であってもよい。 Specifically, the blocking structure 90 has an arcuate shape adapted to the structure of the end of the intake valve 30 in a cross section taken along a plane perpendicular to the axis of the intake valve 30 (as shown in FIG. 2). , the central angle β corresponding to the circular arc (that is, the angle between the center of the circular arc and the sector formed by the circular arc) is 110° to 180°. For example, β may be 110°, 120°, 150° or 180°.

より具体的に、本実施例の遮断構造90は、吸気バルブ30が吸気通路10を塞ぐ場合、吸気バルブ30とガスガイド壁91との最小距離がbとされるように構成され、bは0.6~1mmであってもよい。例えば、bは0.6mm、0.8mm又は1mmであってもよい。また、遮断構造90のガスガイド壁91の、吸気バルブ30の軸線方向に沿う高さcは3~5mmであってもよい。例えば、cは3mm、4mm又は5mmであってもよい。 More specifically, the blocking structure 90 of this embodiment is configured such that when the intake valve 30 closes the intake passage 10, the minimum distance between the intake valve 30 and the gas guide wall 91 is b, where b is 0. It may be .6 to 1 mm. For example, b may be 0.6 mm, 0.8 mm or 1 mm. Further, the height c of the gas guide wall 91 of the blocking structure 90 along the axial direction of the intake valve 30 may be 3 to 5 mm. For example, c may be 3 mm, 4 mm or 5 mm.

本実施例の燃焼システム100は吸気バルブ30の下部に遮断構造90を設計することにより、吸気バルブ30の下部気流を減少し、特に低いリフト(リフトが3~5mmより低い)の場合の吸気バルブ30の下部気流を減少することができ、流れの分離を促進し、大部分の気流を吸気バルブ30の右上部から燃焼室50に入らせ、低リフトタンブル流比を大幅に向上させ、ガソリン・ガスの混合を速め、混合ガスの分布均一程度を高め、燃焼速度を増加する。同時に、本実施例における燃焼システム100は吸気バルブ30の左下部に遮断構造90を設計することにより、吸気バルブ30の下部気流を減少し、気流を排気側に流れるようにガイドし、吸気ストローク初期の逆タンブル流を減少することができ、燃焼室50内での大スケールの正タンブル流の形成に寄与する。 The combustion system 100 of this embodiment designs a blocking structure 90 at the bottom of the intake valve 30 to reduce the air flow at the bottom of the intake valve 30, especially when the intake valve has a low lift (lift is lower than 3-5 mm). 30 lower airflow can be reduced, promoting flow separation, allowing most of the airflow to enter the combustion chamber 50 from the upper right part of the intake valve 30, greatly improving the low-lift tumble flow ratio, and reducing the gasoline It speeds up gas mixing, improves the uniformity of the mixed gas distribution, and increases the combustion rate. At the same time, the combustion system 100 in this embodiment designs a blocking structure 90 at the lower left of the intake valve 30 to reduce the airflow below the intake valve 30, guide the airflow to the exhaust side, and This contributes to the formation of a large-scale positive tumble flow within the combustion chamber 50.

1つの具体的な実施例として、吸気通路10の中軸線と水平面との夾角αは15°~20°である(図1に示す)。例えば、αは15°、16°又は20°であってもよい。本実施例の吸気通路10の設定角度により、本実施例の吸気通路10の入口12は比較的低くなる。高タンブル流の通路内部における大部分の気流は吸気バルブ30の右上部を経由して燃焼室50に入るため、吸気通路10の入口12を低くすると、吸気通路10はより大部分の気流を吸気バルブ30の右上部に流れるようにガイドし、高タンブル流の吸気通路10の流量係数を効果的に高めることができる。 As one specific example, the included angle α between the central axis of the intake passage 10 and the horizontal plane is 15° to 20° (as shown in FIG. 1). For example, α may be 15°, 16° or 20°. Due to the set angle of the intake passage 10 in this embodiment, the inlet 12 of the intake passage 10 in this embodiment is relatively low. Most of the airflow inside the high tumble flow passage enters the combustion chamber 50 via the upper right part of the intake valve 30, so if the entrance 12 of the intake passage 10 is lowered, the intake passage 10 will absorb more of the airflow. By guiding the flow to the upper right side of the valve 30, it is possible to effectively increase the flow coefficient of the high tumble flow of the intake passage 10.

本実施例では吸気バルブ30の中心高さを排気バルブ40の中心高さより高くすること、及び吸気通路10の入口12を比較的低く設計することにより、本実施例の燃焼システム100はガスが燃焼室50内に入る時にガスが高タンブル流と高い流量係数の状態にあるように確保する。 In this embodiment, by making the center height of the intake valve 30 higher than the center height of the exhaust valve 40 and by designing the inlet 12 of the intake passage 10 to be relatively low, the combustion system 100 of the present embodiment has a structure in which gas is combusted. Ensure that the gas is in a state of high tumble flow and high flow coefficient as it enters chamber 50.

1つの実施例として、図4と図5に示すように、燃焼システム100はピストン80を更に備え得る。ピストン80はエンジンのシリンダー内を往復し、ピストン80の頂面は燃焼室50の底面を構成する。ピストン80のエンジンのシリンダー内での往復により、燃焼室50の容積は対応的に変化する。 In one example, the combustion system 100 may further include a piston 80, as shown in FIGS. 4 and 5. The piston 80 reciprocates within the cylinder of the engine, and the top surface of the piston 80 forms the bottom surface of the combustion chamber 50. As the piston 80 reciprocates within the cylinder of the engine, the volume of the combustion chamber 50 changes correspondingly.

1つの実施例として、本実施例のピストン80の頂部中央位置には窪み82が更に設置され、該窪み82はピストン80の側壁に近い位置を起点として内に向かって窪み、1つの大きな浅い窪みを形成する。具体的に、窪み82の底部の高さは他の位置の高さより低い。窪み82の底端と頂端との垂直距離dは0.5~1mmであってもよい。例えば、dは0.5mm、0.8mm又は1mmであってもよい。 As one embodiment, a recess 82 is further installed at the center of the top of the piston 80 of this embodiment, and the recess 82 is recessed inward from a position close to the side wall of the piston 80 to form one large shallow recess. form. Specifically, the height of the bottom of the depression 82 is lower than the height of other positions. The vertical distance d between the bottom end and the top end of the depression 82 may be 0.5 to 1 mm. For example, d may be 0.5 mm, 0.8 mm or 1 mm.

1つの具体的な実施例として、ピストン80の頂端には退避溝81が設置され、退避溝81の位置は吸気バルブ30と排気バルブ40の位置にマッチングする。具体的に、本実施例では1つの吸気通路10、2つの吸気バルブ30、1つの排気通路20、及び2つの排気バルブ40を含む。2つの吸気バルブ30は1つの吸気通路10を共用し、2つの排気バルブ40は1つの排気通路20を共用する。退避溝81の数は吸気バルブ30と排気バルブ40の数の総和と同じである。具体的に、本実施例では、ピストン80の頂部の退避溝81は4つ設計され、そして4つの退避溝81のサイズと位置はそれぞれ対応の吸気バルブ30と排気バルブ40に適応する。 In one specific embodiment, a retraction groove 81 is installed at the top end of the piston 80, and the position of the retraction groove 81 matches the positions of the intake valve 30 and the exhaust valve 40. Specifically, this embodiment includes one intake passage 10, two intake valves 30, one exhaust passage 20, and two exhaust valves 40. The two intake valves 30 share one intake passage 10, and the two exhaust valves 40 share one exhaust passage 20. The number of escape grooves 81 is the same as the total number of intake valves 30 and exhaust valves 40. Specifically, in this embodiment, four retraction grooves 81 are designed at the top of the piston 80, and the sizes and positions of the four retraction grooves 81 are adapted to the corresponding intake valve 30 and exhaust valve 40, respectively.

本実施例のピストン80の4つの退避溝81及び中心の大きな窪み82の設計により、ガスは吸気通路10の吸気バルブ30の端部の右上方から燃焼室50に入った後、燃焼室50の内壁に沿ってタンブル流を形成し、ピストン80上部の浅い窪み82の設計によれば、該タンブル流のガスがピストン80に流れる時に浅い窪み82に沿って流れることを確保でき、吸気ストロークタンブル流の維持を容易にする。ピストン80が圧縮上死点に到達する時に燃焼室内の比較的強い気流はクラッシュし、比較的強い乱流運動エネルギーを産生し、火炎初期伝播の時のピストン80の頂面との接触によるクエンチングを回避し、燃焼効率を改善する。 Due to the design of the four retraction grooves 81 and the large depression 82 in the center of the piston 80 of this embodiment, gas enters the combustion chamber 50 from the upper right side of the end of the intake valve 30 of the intake passage 10, and then enters the combustion chamber 50. A tumble flow is formed along the inner wall, and the design of the shallow recess 82 at the top of the piston 80 ensures that the gas in the tumble flow flows along the shallow recess 82 when flowing into the piston 80, thereby improving the intake stroke tumble flow. make maintenance easier. The relatively strong airflow within the combustion chamber crashes when the piston 80 reaches compression top dead center, producing relatively strong turbulent kinetic energy and quenching due to contact with the top surface of the piston 80 during initial flame propagation. avoid this and improve combustion efficiency.

1つの実施例として、図2、図6及び図7に示すように、燃焼室50内にはスキッシュ構造51が設置される(図2に示す)。ピストン80の頂部の窪み82の外周にはスキッシュ面83が設置され、スキッシュ構造51とスキッシュ面83は互いにマッチングする。具体的に、燃焼室50内のスキッシュ構造51は燃焼室上部の側壁の位置に位置する。該スキッシュ構造51は階段状スキッシュ構造、又は内に向かって収まる斜面スキッシュ構造に設置される。例えば、図6において、左は階段状スキッシュ構造511であり、右は斜面スキッシュ構造512である。即ち、燃焼室50の左側には階段状スキッシュ構造511が設置され、右側には斜面スキッシュ構造512が設置される。図7において、両側はいずれも階段状スキッシュ構造511である。即ち、燃焼室50の前側と後側にはいずれも階段状スキッシュ構造511が設置される。ピストン80上部の浅い窪み82の外周のスキッシュ面83は平面である。該平面と階段状スキッシュ構造511は互いに平行する。本実施例において、燃焼室50内のスキッシュ構造51はガスの流れをシリンダーの中心に押し、ピストン80が上死点に到達する場合、スキッシュ構造51とスキッシュ面83との協働により、ガスのタンブル流をクラッシュさせ、燃焼室50の中央位置に比較的強い乱流強度を形成し、火炎伝播速度を高め、ノッキング傾向を低減する。また、ピストン80周囲のスキッシュ面83と燃焼室50のスキッシュ構造51とのマッチング設計により、シリンダー内のタンブル流の維持に寄与し、比較的高い乱流強度を形成するとともに、火炎初期伝播の時のピストン80の頂面との接触によるクエンチングを回避し、燃焼効率を改善する。 In one embodiment, as shown in FIGS. 2, 6 and 7, a squish structure 51 is installed within the combustion chamber 50 (as shown in FIG. 2). A squish surface 83 is installed on the outer periphery of the recess 82 at the top of the piston 80, and the squish structure 51 and the squish surface 83 match each other. Specifically, the squish structure 51 within the combustion chamber 50 is located at the upper side wall of the combustion chamber. The squish structure 51 is installed in a stepped squish structure or an inwardly sloping squish structure. For example, in FIG. 6, the left side is a stepped squish structure 511, and the right side is a sloped squish structure 512. That is, a stepped squish structure 511 is installed on the left side of the combustion chamber 50, and an inclined squish structure 512 is installed on the right side. In FIG. 7, both sides have stepped squish structures 511. That is, the stepped squish structure 511 is installed on both the front side and the rear side of the combustion chamber 50. A squish surface 83 on the outer periphery of the shallow recess 82 at the top of the piston 80 is a flat surface. The plane and the stepped squish structure 511 are parallel to each other. In this embodiment, the squish structure 51 in the combustion chamber 50 forces the gas flow to the center of the cylinder, and when the piston 80 reaches top dead center, the squish structure 51 and the squish surface 83 cooperate to push the gas flow toward the center of the cylinder. It crashes the tumble flow and creates a relatively strong turbulence intensity in the central position of the combustion chamber 50, increasing the flame propagation velocity and reducing the knocking tendency. In addition, the matching design of the squish surface 83 around the piston 80 and the squish structure 51 of the combustion chamber 50 contributes to maintaining the tumble flow within the cylinder, forming a relatively high turbulent flow strength, and at the time of initial flame propagation. quenching due to contact with the top surface of the piston 80 is avoided, improving combustion efficiency.

1つの具体的な実施例として、本実施例の燃焼システム100のスパークプラグ70と油ノズル60はいずれも吸気バルブ30と排気バルブ40との間に設置される(図2に示す)。具体的に、2つの吸気バルブ30と2つの排気バルブ40との頂端中心の連結線は長方形を構成する。スパークプラグ70と油ノズル60は長方形の中心線のうちの一方に並んで設置され、且つスパークプラグ70と油ノズル60は長方形の中心線のうちの他方の両側に位置する。 As one specific example, both the spark plug 70 and the oil nozzle 60 of the combustion system 100 of this example are installed between the intake valve 30 and the exhaust valve 40 (as shown in FIG. 2). Specifically, the connection line between the two intake valves 30 and the two exhaust valves 40 at the center of the top forms a rectangle. The spark plug 70 and the oil nozzle 60 are installed side by side on one of the center lines of the rectangle, and the spark plug 70 and the oil nozzle 60 are located on both sides of the other center line of the rectangle.

本実施例の油ノズル60は中間に配置されることにより、燃焼制御ポリシーはより柔軟になる。実際の使用過程において、複数回の油噴射ポリシーは採用され得ており、スパークプラグ70の中心に比較的濃い混合ガスを形成し、燃焼安定性を向上させる。同時に、発火条件下で、三元触媒の発火を加速する。同時に、油ノズル60とスパークプラグ70との適当な距離を維持することによって、スプレーとスパークプラグ70の電極との接触によりスパークプラグ70の電極に油膜を産生することによるスパークプラグ70におけるカーボンデポジット等の問題を防止することができる。 By disposing the oil nozzle 60 in this embodiment in the middle, the combustion control policy becomes more flexible. In the course of actual use, a multiple oil injection policy can be adopted to form a relatively rich gas mixture in the center of the spark plug 70 and improve combustion stability. At the same time, under ignition conditions, it accelerates the ignition of the three-way catalyst. At the same time, by maintaining an appropriate distance between the oil nozzle 60 and the spark plug 70, carbon deposits on the spark plug 70 due to the production of an oil film on the electrode of the spark plug 70 due to contact between the spray and the electrode of the spark plug 70. problems can be prevented.

また、スキッシュ構造51とスキッシュ面83との協働により、ガスのタンブル流をクラッシュさせ、燃焼室50の中央位置即ちスパークプラグ70の周囲に比較的強い乱流強度を形成するため、火炎伝播速度を高め、ノッキング傾向を低減することができる。 In addition, due to the cooperation between the squish structure 51 and the squish surface 83, the tumble flow of gas is crushed and a relatively strong turbulent flow strength is formed at the central position of the combustion chamber 50, that is, around the spark plug 70, so that the flame propagation speed can be improved and the knocking tendency can be reduced.

また、本実施例の燃焼システム100の油ノズルは油噴射の時、本実施例の燃焼システム100の構造により、スプレーはピストン80の頂部に空気層を形成し、スプレーとピストンの頂部との接触を減少し、炭素ガス排出リスクを低減し、燃焼効率を向上させる。最終的に、本実施例の燃焼システムによれば、燃焼システムの最高熱効率は2%~3%向上することができる。 Furthermore, when the oil nozzle of the combustion system 100 of this embodiment injects oil, due to the structure of the combustion system 100 of this embodiment, the spray forms an air layer at the top of the piston 80, and the spray and the top of the piston come into contact with each other. reduce carbon gas emissions risk and improve combustion efficiency. Finally, according to the combustion system of this embodiment, the maximum thermal efficiency of the combustion system can be improved by 2% to 3%.

1つの具体的な実施例として、本実施例では上記の燃焼システム100を備える車両を更に提供する。 As one specific embodiment, this embodiment further provides a vehicle including the above-described combustion system 100.

これまで、当業者が理解するように、本文は本発明の例示的な実施例を詳細に説明したが、本発明の精神と範囲を逸脱せずに、本発明の開示に基づいて本発明の原理に符合する多くの他の変形又は修正を直接に決定又は推断することができる。従って、本発明の範囲はこれらのすべての変形又は修正を含むと認められる。 Foregoing, as will be understood by those skilled in the art, while the present text has described in detail exemplary embodiments of the invention, it is possible to use the present invention based on this disclosure without departing from the spirit and scope of the invention. Many other variations or modifications consistent with the principles can be directly determined or deduced. It is therefore recognized that the scope of the invention includes all such variations or modifications.

選択肢として、前記燃焼システムはピストンを更に備え、前記ピストンの頂部中央位置には窪みが設置され、前記窪みの底端と頂端との垂直距離は0.5~1mmである。
Optionally, the combustion system further comprises a piston, and a recess is installed at the top center position of the piston, and the vertical distance between the bottom end and the top end of the recess is 0.5-1 mm.

選択肢として、前記燃焼システムはスパークプラグと油ノズルを更に備え、前記スパークプラグと前記油ノズルはいずれも前記吸気バルブと前記排気バルブとの間に設置される。
Optionally, the combustion system further comprises a spark plug and an oil nozzle, both of which are located between the intake valve and the exhaust valve.

更に、本発明の吸気通路の設定角度により、本発明の吸気通路の入口は比較的低くなる。高タンブル流の吸気通路内部における大部分の気流は吸気バルブの上部を経由して燃焼室に入るため、吸気通路の入口を低くすると、吸気通路は大部分の気流を吸気バルブの上部に流れるようにガイドし、高タンブル流の吸気通路の流量係数を効果的に高めることができる。
Furthermore, due to the angle of the intake passage of the invention, the entrance of the intake passage of the invention is relatively low. Because most of the airflow inside the high-tumble intake passage enters the combustion chamber through the top of the intake valve, lowering the intake passage entrance allows the intake passage to direct most of the airflow to the top of the intake valve. It is possible to effectively increase the flow coefficient of the intake passage with high tumble flow.

具体的に、本実施例の遮断構造90は吸気バルブ30の端部の排気バルブ40から離れる側に沿う燃焼室50の内壁のみに設置される。具体的に、図1と図3に示すように、本実施例の遮断構造90は吸気バルブ30の左下部の位置に位置する。吸気バルブ30の端部の右上部の位置には遮断構造が含まない。遮断構造90の存在により、吸気通路10から燃焼室50に流れるガスの大部分は、吸気バルブ30の端部の右上部の位置から燃焼室50に流れる。また、吸気バルブ30の中心位置の高さは排気バルブ40の中心位置の高さより高いため、吸気バルブ30の右上方から燃焼室50内に入るガスは燃焼室50の内壁に沿って流れ、乱流をより容易に形成する。 Specifically, the blocking structure 90 of this embodiment is installed only on the inner wall of the combustion chamber 50 along the end of the intake valve 30 on the side away from the exhaust valve 40. Specifically, as shown in FIGS. 1 and 3, the blocking structure 90 of this embodiment is located at the lower left of the intake valve 30. The upper right position of the end of the intake valve 30 does not include a blocking structure. Due to the presence of the blocking structure 90, most of the gas flowing from the intake passage 10 into the combustion chamber 50 flows into the combustion chamber 50 from the upper right position of the end of the intake valve 30 . In addition, since the height of the center position of the intake valve 30 is higher than the height of the center position of the exhaust valve 40, gas entering the combustion chamber 50 from the upper right side of the intake valve 30 flows along the inner wall of the combustion chamber 50 and becomes turbulent. Form the flow more easily.

Claims (17)

車両に用いられる燃焼システムであって、
吸気通路、排気通路、吸気バルブ及び排気バルブを備え、前記吸気バルブの一端は前記吸気通路の一端を通過して前記吸気通路を開放又は閉鎖し、前記排気バルブの一端は前記排気通路を通過して前記排気通路の一端を開放又は閉鎖し、
前記吸気バルブの軸線と前記排気バルブの軸線との夾角は予め設定された角度であり、且つ、
前記吸気バルブが前記吸気通路を閉鎖すると同時に前記排気バルブが前記排気通路を閉鎖する場合、前記吸気バルブの中心位置は前記排気バルブの中心位置より高い、車両に用いられる燃焼システム。
A combustion system used in a vehicle, the combustion system comprising:
An intake passage, an exhaust passage, an intake valve, and an exhaust valve, one end of the intake valve passing through one end of the intake passage to open or close the intake passage, and one end of the exhaust valve passing through the exhaust passage. to open or close one end of the exhaust passage;
The angle between the axis of the intake valve and the axis of the exhaust valve is a preset angle, and
A combustion system used in a vehicle, wherein when the intake valve closes the intake passage and the exhaust valve closes the exhaust passage, the center position of the intake valve is higher than the center position of the exhaust valve.
前記吸気バルブの中心位置と前記排気バルブの中心位置との高さの差は0.5~1mmである、請求項1に記載の車両に用いられる燃焼システム。 The combustion system for use in a vehicle according to claim 1, wherein a height difference between the center position of the intake valve and the center position of the exhaust valve is 0.5 to 1 mm. 前記予め設定された角度は35°~50°である、請求項1に記載の車両に用いられる燃焼システム。 The combustion system for use in a vehicle according to claim 1, wherein the preset angle is between 35° and 50°. 燃焼室を更に備え、
前記吸気通路と前記排気通路はいずれも前記燃焼室に連通され、
前記吸気バルブの端部は前記吸気通路の出口を通過して前記燃焼室内に延在し、且つ前記燃焼室の内壁は前記吸気通路の出口に近い位置において、前記吸気バルブの端部を部分的に囲む遮断構造に構成される、請求項1に記載の車両に用いられる燃焼システム。
Further equipped with a combustion chamber,
Both the intake passage and the exhaust passage communicate with the combustion chamber,
An end of the intake valve extends into the combustion chamber through an outlet of the intake passage, and an inner wall of the combustion chamber partially extends from the end of the intake valve at a position close to the outlet of the intake passage. The combustion system for use in a vehicle according to claim 1, wherein the combustion system is configured to have an isolation structure surrounding.
前記遮断構造は前記吸気バルブの前記排気バルブから離れる側に位置する、請求項4に記載の車両に用いられる燃焼システム。 5. The combustion system for use in a vehicle according to claim 4, wherein the blocking structure is located on a side of the intake valve remote from the exhaust valve. 前記遮断構造はガスガイド壁と当接台を含み、前記吸気バルブの軸線の位置する平面に沿って切断する断面において階段状構造であり、
前記ガスガイド壁は前記吸気バルブの軸線に平行するように構成され、且つ、
前記当接台は前記吸気バルブの端部の前記吸気通路に近い側の輪郭構造に適応するように構成され、そして前記吸気バルブが前記吸気通路を閉鎖する場合、前記吸気バルブは前記当接台に当接する、請求項4に記載の車両に用いられる燃焼システム。
The blocking structure includes a gas guide wall and an abutment base, and has a stepped structure in a cross section taken along a plane in which the axis of the intake valve is located;
The gas guide wall is configured to be parallel to the axis of the intake valve, and
The abutment base is configured to adapt to the contour structure of the end of the intake valve on the side closer to the intake passage, and when the intake valve closes the intake passage, the intake valve A combustion system for use in a vehicle according to claim 4, wherein the combustion system abuts on the vehicle.
前記遮断構造は、前記吸気バルブの軸線に垂直する平面に沿って切断してなる断面において、前記吸気バルブの端部の構造に適応する円弧形であり、前記円弧形に対する中心角は110°~180°である、請求項4に記載の車両に用いられる燃焼システム。 The blocking structure has an arcuate shape adapted to the structure of the end of the intake valve in a cross section taken along a plane perpendicular to the axis of the intake valve, and the central angle with respect to the arcuate shape is 110. The combustion system for use in a vehicle according to claim 4, wherein the combustion system is between 180° and 180°. 前記遮断構造は更に、前記吸気バルブが前記吸気通路を閉鎖する場合、前記吸気バルブと前記ガスガイド壁との最小距離が0.6~1mmであるように構成される、請求項6に記載の車両に用いられる燃焼システム。 7. The blocking structure is further configured such that when the intake valve closes the intake passage, a minimum distance between the intake valve and the gas guide wall is 0.6 to 1 mm. Combustion systems used in vehicles. 前記遮断構造の前記ガスガイド壁の、前記吸気バルブの軸線方向に沿う高さは3~5mmである、請求項6に記載の車両に用いられる燃焼システム。 The combustion system for use in a vehicle according to claim 6, wherein the height of the gas guide wall of the blocking structure along the axial direction of the intake valve is 3 to 5 mm. 前記吸気通路の中軸線と水平面との夾角は15°~20°である、請求項1~9のいずれか1項に記載の車両に用いられる燃焼システム。 The combustion system for use in a vehicle according to any one of claims 1 to 9, wherein the included angle between the center axis of the intake passage and a horizontal plane is 15° to 20°. ピストンを更に備え、前記ピストンの頂部中央位置には窪みが設置され、前記窪みの底端と頂端との垂直距離は0.5~1mmである、請求項4に記載の車両に用いられる燃焼システム。 The combustion system for use in a vehicle according to claim 4, further comprising a piston, wherein a recess is installed at the center of the top of the piston, and a vertical distance between a bottom end and a top end of the recess is 0.5 to 1 mm. . 前記ピストンの頂端には退避溝が設置され、前記退避溝の位置は前記吸気バルブと前記排気バルブの位置にマッチングする、請求項11に記載の車両に用いられる燃焼システム。 12. The combustion system for use in a vehicle as claimed in claim 11, wherein a retraction groove is installed at the top end of the piston, and the position of the retraction groove matches the positions of the intake valve and the exhaust valve. 前記吸気バルブの数は2つであり、1つの前記吸気通路を共用し、
前記排気バルブの数は2つであり、1つの前記排気通路を共用し、
前記退避溝の数は前記吸気バルブと前記排気バルブの数の総和である、請求項12に記載の車両に用いられる燃焼システム。
The number of intake valves is two, sharing one intake passage,
The number of the exhaust valves is two, and they share one exhaust passage,
13. The combustion system for use in a vehicle according to claim 12, wherein the number of escape grooves is the total number of the intake valves and the number of exhaust valves.
前記燃焼室にはスキッシュ構造が設置され、
前記ピストンの頂部の前記窪みの外周にはスキッシュ面が設置され、
前記スキッシュ構造と前記スキッシュ面は互いにマッチングする、請求項11に記載の車両に用いられる燃焼システム。
A squish structure is installed in the combustion chamber,
A squish surface is installed on the outer periphery of the recess at the top of the piston,
12. The combustion system for use in a vehicle as claimed in claim 11, wherein the squish structure and the squish surface match each other.
スパークプラグと油ノズルを更に備え、
前記スパークプラグと前記油ノズルはいずれも前記吸気バルブと前記排気バルブとの間に設置される、請求項13に記載の車両に用いられる燃焼システム。
Also equipped with a spark plug and oil nozzle,
14. The combustion system for use in a vehicle according to claim 13, wherein both the spark plug and the oil nozzle are installed between the intake valve and the exhaust valve.
2つの前記吸気バルブと2つの前記排気バルブとの頂端中心の連結線は長方形を構成し、
前記スパークプラグと前記油ノズルは前記長方形の中心線のうちの一方に並んで設置され、且つ前記スパークプラグと前記油ノズルは前記長方形の中心線のうちの他方の両側に位置する、請求項15に記載の車両に用いられる燃焼システム。
A connecting line at the center of the top of the two intake valves and the two exhaust valves forms a rectangle;
15. The spark plug and the oil nozzle are arranged side by side on one of the center lines of the rectangle, and the spark plug and the oil nozzle are located on opposite sides of the other center line of the rectangle. A combustion system used in the vehicle described in .
請求項1~16のいずれか1項に記載の車両に用いられる燃焼システムを備える車両。 A vehicle comprising a combustion system for use in the vehicle according to any one of claims 1 to 16.
JP2023559699A 2021-05-08 2021-05-08 Combustion systems used in vehicles and vehicles Pending JP2024511210A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/092307 WO2022236457A1 (en) 2021-05-08 2021-05-08 Combustion system for vehicle and vehicle

Publications (1)

Publication Number Publication Date
JP2024511210A true JP2024511210A (en) 2024-03-12

Family

ID=84027838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023559699A Pending JP2024511210A (en) 2021-05-08 2021-05-08 Combustion systems used in vehicles and vehicles

Country Status (5)

Country Link
EP (1) EP4293209A4 (en)
JP (1) JP2024511210A (en)
KR (1) KR20230158582A (en)
CN (1) CN116964305A (en)
WO (1) WO2022236457A1 (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04228850A (en) * 1990-12-27 1992-08-18 Toyota Motor Corp In-cylinder injection type internal combustion engine
JPH0526047A (en) * 1991-07-19 1993-02-02 Toyota Motor Corp Cylinder fuel injection type two-cycle internal combustion engine
JP3158443B2 (en) * 1995-03-28 2001-04-23 三菱自動車工業株式会社 In-cylinder injection internal combustion engine
US5806482A (en) * 1995-03-28 1998-09-15 Mitsubishi Jidosha Kogyo Kabushiki Kaisha In-cylinder injection internal combustion engine
JP4280925B2 (en) * 2004-12-27 2009-06-17 三菱自動車エンジニアリング株式会社 Combustion chamber structure of internal combustion engine
JP2009228614A (en) * 2008-03-25 2009-10-08 Nissan Motor Co Ltd Two stroke type internal combustion engine
CN201916044U (en) * 2010-12-27 2011-08-03 东风汽车公司 Structure for improving air-inflowing rolling effect of petrol engine
CN103615334B (en) * 2013-12-09 2016-03-02 安徽江淮汽车股份有限公司 A kind of cylinder cap with barrier shield structure, preparation method and motor
JP6365382B2 (en) * 2015-04-07 2018-08-01 トヨタ自動車株式会社 Internal combustion engine
JP2017214914A (en) * 2016-06-02 2017-12-07 スズキ株式会社 Engine combustion chamber structure
CN108869006A (en) * 2018-06-20 2018-11-23 奇瑞汽车股份有限公司 Small-displacement gasoline engine combustion system
CN108757152A (en) * 2018-08-07 2018-11-06 奇瑞汽车股份有限公司 A kind of in-cylinder direct-jet supercharging gasoline engine combustion system
CN109488478A (en) * 2018-11-26 2019-03-19 中国第汽车股份有限公司 A kind of gasoline engine burner

Also Published As

Publication number Publication date
CN116964305A (en) 2023-10-27
EP4293209A1 (en) 2023-12-20
WO2022236457A1 (en) 2022-11-17
KR20230158582A (en) 2023-11-20
EP4293209A4 (en) 2024-04-24

Similar Documents

Publication Publication Date Title
CN214403744U (en) Engine combustion system and hybrid vehicle
CN111486019B (en) Combustion chamber and gas engine
CN109899174A (en) A kind of combustion system for using gasoline ignition engine instead on the basis of diesel engine
CN112031948B (en) Spark compression ignition type piston, combustion system, power assembly system and control method
CN107355297B (en) Engine combustion chamber suitable for gasoline fuel combustion instead of diesel engine
CN206830321U (en) A kind of direct-injection gasoline engine piston
CN209855911U (en) Combustion system for igniting engine by using gasoline on the basis of diesel engine
CN204344331U (en) Car engine air admittance combustion system, motor car engine and automobile
CN217107241U (en) Engine cylinder cover, engine and automobile
JP2024511210A (en) Combustion systems used in vehicles and vehicles
CN114856799A (en) Combustion chamber and gas engine
CN212563446U (en) Medium-heavy ignition engine combustion chamber
CN101153568B (en) Cylinder cover with double sparking plugs
CN210264972U (en) Combustion system of direct-injection supercharged gasoline engine in middle-placed cylinder
CN107339150A (en) A kind of engine chamber for using Fuel Petroleum instead on the basis of diesel engine
CN115111049A (en) High-turbulence kinetic energy combustion system and engine
CN209800133U (en) engine air inlet channel, engine cylinder head and engine
CN111878221A (en) Medium-heavy ignition engine combustion chamber
CN115405409B (en) Combustion chamber and gas engine
CN209781028U (en) Engine combustion chamber, engine and vehicle
CN102003304A (en) Combustion chamber structure on general petrol engine cylinder head
CN111022210B (en) High-turbulence piston combustion chamber for diesel oil and natural gas dual fuel
CN114991985B (en) Piston and engine
CN217681966U (en) Combustion chamber and gas engine
CN220791376U (en) Cylinder assembly, engine and vehicle

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20231115

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230926

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230926

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20231114