JP2024511094A - Pressure reducing valve system and pressure reducing method - Google Patents

Pressure reducing valve system and pressure reducing method Download PDF

Info

Publication number
JP2024511094A
JP2024511094A JP2023558261A JP2023558261A JP2024511094A JP 2024511094 A JP2024511094 A JP 2024511094A JP 2023558261 A JP2023558261 A JP 2023558261A JP 2023558261 A JP2023558261 A JP 2023558261A JP 2024511094 A JP2024511094 A JP 2024511094A
Authority
JP
Japan
Prior art keywords
valve
trigger
water outlet
water inlet
threshold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2023558261A
Other languages
Japanese (ja)
Other versions
JP7504309B2 (en
Inventor
展 ▲劉▼
克美 曹
波 ▲楊▼
▲寧▼ 郭
廷造 付
▲こん▼ ▲張▼
Original Assignee
上▲海▼核工程研究▲設▼▲計▼院股▲ふん▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上▲海▼核工程研究▲設▼▲計▼院股▲ふん▼有限公司 filed Critical 上▲海▼核工程研究▲設▼▲計▼院股▲ふん▼有限公司
Publication of JP2024511094A publication Critical patent/JP2024511094A/en
Application granted granted Critical
Publication of JP7504309B2 publication Critical patent/JP7504309B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/02Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side
    • F16K17/04Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded
    • F16K17/10Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded with auxiliary valve for fluid operation of the main valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/02Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side
    • F16K17/04Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded
    • F16K17/048Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded combined with other safety valves, or with pressure control devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C13/00Pressure vessels; Containment vessels; Containment in general
    • G21C13/02Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Safety Valves (AREA)
  • Fluid-Driven Valves (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

本発明に係る減圧バルブシステムおよび減圧方法は、主液圧弁(1)と、トリガユニット(4)とを備え、トリガユニット(4)によって主液圧弁(1)の開閉を制御し、高圧容器(2)の液体を低圧容器(3)に流入させる。該減圧バルブシステムおよび減圧方法は、電源による駆動を必要とせず、液圧により、初期の閉鎖状態にあり、信号トリガを受信すると、受動的に開き、設計を簡素化し、原子炉の安全性と経済性を大幅に向上させ、高圧容器を迅速に減圧させることができ、長期間の緊急炉心冷却機能を満たすことができる。【選択図】図1A pressure reducing valve system and a pressure reducing method according to the present invention include a main hydraulic valve (1) and a trigger unit (4), the trigger unit (4) controls opening and closing of the main hydraulic valve (1), and a high pressure vessel ( 2) is allowed to flow into the low pressure container (3). The pressure reducing valve system and pressure reducing method do not require power drive, are hydraulically in the initial closed state, and open passively when receiving a signal trigger, simplifying the design and improving the safety of the reactor. It can significantly improve economic efficiency, quickly depressurize the high-pressure vessel, and fulfill the long-term emergency core cooling function. [Selection diagram] Figure 1

Description

本出願は、2021年3月22日に出願された、発明の名称が「安全減圧バルブシステム」で
ある、中国特許出願202110302346.7、の優先権を主張し、当該出願の全ての内容が引用によって本願に組み込まれる。
This application claims priority to Chinese Patent Application No. 202110302346.7, filed on March 22, 2021, the title of the invention is "Safety Reducing Valve System", and all contents of the application are incorporated herein by reference. be incorporated into.

本発明は、原子炉の技術分野に関わり、特に減圧バルブシステムおよび減圧方法に関する。 The present invention relates to the technical field of nuclear reactors, and in particular to a pressure reducing valve system and a pressure reducing method.

様々な応用場面のニーズを満足する小型原子炉(以下、「小型炉」という)の開発は、国内外で大きな注目を集めており、小型炉の設計には信頼性の高い事故低減対策が必要である。 The development of small nuclear reactors (hereinafter referred to as "small reactors") that meet the needs of a variety of application situations is attracting a lot of attention both domestically and internationally, and the design of small reactors requires highly reliable accident mitigation measures. It is.

小型炉に関して、設計基準事故を緩和するために、通常、緊急炉心冷却システムが設けられている。原子炉圧力容器の内外の圧力差が大きいため、まず原子炉圧力容器を自動的に減圧する必要があり、これにより、長期間の炉心冷却が可能となり、炉心の露出燃焼の発生を避けることができる。通常、減圧設計は安全性の高い電源で駆動される核級バルブを用いる。しかし、このようなシステムは安全性の高い電源を必要とし、と共に、安全性の高いプラントは必要であり、あるいは、安全性の高いプラントの容量を増やす必要があり、その結果、経済性が悪く、信頼性が低下する。したがって、電源による駆動を必要としない安全性の高いバルブが特に重要である。 For small reactors, emergency core cooling systems are typically provided to mitigate design basis accidents. Due to the large pressure difference between the inside and outside of the reactor pressure vessel, it is first necessary to automatically depressurize the reactor pressure vessel, which enables long-term core cooling and avoids the occurrence of exposed core combustion. can. Decompression designs typically use nuclear-grade valves powered by a highly safe power source. However, such a system requires a highly safe power source and also requires a highly safe plant or increases the capacity of a highly safe plant, resulting in poor economics. , reliability decreases. Therefore, highly safe valves that do not require power-driven operation are particularly important.

本発明は、上記課題を解決するため、先進的な受動的設計概念に基づき、電源による駆動を必要とせず、特定の条件での原子炉の減圧機能を発揮する安全性の高いバルブを提供する。 In order to solve the above-mentioned problems, the present invention provides a highly safe valve that is based on an advanced passive design concept and that performs a nuclear reactor depressurization function under specific conditions without needing to be driven by a power source. .

本発明は減圧バルブシステムを提供する。減圧バルブシステムは主液圧弁と、トリガユニットとを備える。主液圧弁は、第1の弁本体と、第1の水入口と、第1の水出口とを備え
、第1の水入口が高圧容器に接続され、第1の水出口が低圧容器に接続され、第1の弁本体
に主ストッパが設けられ、主ストッパは第1の水入口と第1の水出口を閉鎖し、第1の弁本
体と共に密閉された第1の液圧室を形成する。トリガユニットは、信号ドライバとトリガ
アクチュエータとを含み、トリガアクチュエータが第1の液圧室に接続されている。トリ
ガアクチュエータは、信号ドライバがトリガ信号を受信するとき、第1の液圧室を減圧し
、主ストッパに第1の水入口と第1の水出口の閉鎖を解除させることができ、第1の水入口
と第1の水出口との間に液体貫通流路を形成し、高圧容器の液体が低圧容器に流入させる
The present invention provides a pressure reducing valve system. The pressure reducing valve system includes a main hydraulic valve and a trigger unit. The main hydraulic valve includes a first valve body, a first water inlet, and a first water outlet, the first water inlet being connected to the high pressure vessel and the first water outlet being connected to the low pressure vessel. and a main stopper is provided on the first valve body, the main stopper closing the first water inlet and the first water outlet and forming a sealed first hydraulic chamber with the first valve body. . The trigger unit includes a signal driver and a trigger actuator, and the trigger actuator is connected to the first hydraulic chamber. The trigger actuator can depressurize the first hydraulic chamber and cause the main stopper to release the closure of the first water inlet and the first water outlet when the signal driver receives the trigger signal; A liquid through flow path is formed between the water inlet and the first water outlet, allowing liquid in the high pressure container to flow into the low pressure container.

好ましくは、トリガアクチュエータは信号ドライバに接続されたトリガバルブを含み、トリガバルブは第2の水入口と第2の水出口とを有し、第2の水入口は第1の液圧室に連通し、第2の水出口は低圧容器に連通し、トリガバルブは、信号ドライバがトリガ信号を受信
するときに開くことができ、第2の水入口と第2の水出口との間に液体の貫通流路が形成され、第1の液圧室内の液体がトリガバルブを通って低圧容器に流入する。
Preferably, the trigger actuator includes a trigger valve connected to the signal driver, the trigger valve having a second water inlet and a second water outlet, the second water inlet communicating with the first hydraulic chamber. and the second water outlet communicates with the low pressure container, and the trigger valve can be opened when the signal driver receives the trigger signal, and the liquid A through channel is formed, and the liquid in the first hydraulic chamber flows through the trigger valve into the low pressure container.

好ましくは、トリガアクチュエータは閾値バルブと前記信号ドライバに接続されたトリガバルブとを含み、トリガバルブは第2の水入口と第2の水出口とを含み、第2の水出口は
低圧容器に接続され、閾値バルブは、第2の弁本体、第3の水入口と第3の水出口を含み、
第3の水入口は第1の液圧室に接続し、第3の水出口は第2の水入口に接続され、第2の弁本
体内に閾値ストッパが設けられており、閾値ストッパは、第3の水入口と第3の水出口を閉鎖し、第2の弁本体と共に密封された第2の液圧室を形成し、第2の液圧室は高圧容器に接
続される。
Preferably, the trigger actuator includes a threshold valve and a trigger valve connected to the signal driver, the trigger valve including a second water inlet and a second water outlet, the second water outlet being connected to a low pressure vessel. and the threshold valve includes a second valve body, a third water inlet and a third water outlet;
The third water inlet is connected to the first hydraulic chamber, the third water outlet is connected to the second water inlet, and a threshold stop is provided within the second valve body, the threshold stop being configured to The third water inlet and the third water outlet are closed to form a sealed second hydraulic chamber together with the second valve body, and the second hydraulic chamber is connected to the high pressure vessel.

好ましくは、閾値バルブは、第3の弾力性部材をさらに含み、第3の弾力性部材は閾値ストッパに第3の正方向の力を加え、第3の正方向の力は、第2の液圧室によって閾値ストッ
パに加えられた第3の負方向の力とは反対方向であり、第3の弾力性部材は、高圧容器の圧力が所定の閾値まで低下したときに、閾値ストッパを押して移動させることができ、閾値ストッパに第3の水入口と第3の水出口の閉鎖を解除させ、第3の水入口と第3の水出口の間に液体の貫通流路を形成し、第1の液圧室の液体を、閾値バルブとトリガバルブを通過さ
せた後に低圧容器に流入させる。
Preferably, the threshold valve further includes a third resilient member, the third resilient member applying a third positive force on the threshold stopper, the third positive force applying a third positive force to the threshold stopper. a third negative force applied by the pressure chamber to the threshold stop, the third resilient member moving against the threshold stop when the pressure in the high pressure vessel decreases to a predetermined threshold; and causing the threshold stopper to unblock the third water inlet and the third water outlet, forming a liquid through flow path between the third water inlet and the third water outlet, and The liquid in the hydraulic pressure chamber is caused to flow into the low pressure container after passing through a threshold valve and a trigger valve.

好ましくは、主液圧弁は、第1の弾力性部材をさらに含み、第1の弾力性部材は、主ストッパに第1の正方向の力を加え、第1の正方向の力は、第1の液圧室が主ストッパにかけた
第1の負方向の力とは反対方向である。
Preferably, the main hydraulic valve further includes a first resilient member, the first resilient member applying a first positive force to the main stop, and the first positive force applying a first positive force to the main stop. in the opposite direction to the first negative force exerted by the hydraulic chamber on the main stop.

好ましくは、トリガバルブ内にトリガストッパが設けられ、トリガストッパは第2の水
入口と第2の水出口を閉鎖し、信号ドライバは、電磁装置と、第2の弾力性部材とを含み、第2の弾力性部材はトリガストッパに第2の負方向の力を加え、電磁装置は、トリガストッパに第2の負方向の力の反対方向に第2の正方向の力を加え、電磁装置は、信号受信端でトリガ信号を受信したときに第2の正方向の力を解除することができ、第2の弾力性部材は、電磁装置が第2の正方向の力を解除するときに、トリガストッパを押して移動させ、トリ
ガストッパに第2の水入口と第2の水出口の閉鎖を解除させる。
Preferably, a trigger stop is provided in the trigger valve, the trigger stop closes the second water inlet and the second water outlet, and the signal driver includes an electromagnetic device and a second resilient member; The second resilient member applies a second negative force to the trigger stopper, the electromagnetic device applies a second positive force to the trigger stopper in a direction opposite to the second negative force, and the electromagnetic device applies a second positive force to the trigger stopper. , the second positive direction force can be released when the signal receiving end receives the trigger signal, and the second elastic member is configured to release the second positive direction force when the electromagnetic device releases the second positive direction force; Press and move the trigger stopper to cause the trigger stopper to unblock the second water inlet and the second water outlet.

好ましくは、第1の液圧室は、第5の接続ラインによって高圧容器に接続され、第5の接
続ラインにバッファ装置が設けられる。
Preferably, the first hydraulic chamber is connected to the high pressure vessel by a fifth connection line, and the fifth connection line is provided with a buffer device.

好ましくは、バッファ装置は、ベンチュリー管またはオリフィスプレートである。 Preferably, the buffer device is a venturi tube or orifice plate.

そのほかに、本発明は減圧方法を提供する。該減圧方法は以下のステップを含む。 In addition, the present invention provides a method of reducing pressure. The pressure reduction method includes the following steps.

ステップS1:高圧容器と低圧容器の間に第1の弁本体を有する主液圧弁を設け、高圧容器を主液圧弁の第1の水入口に接続し、低圧容器を主液圧弁の第1の水出口に接続する。 Step S1: Provide a main hydraulic valve with a first valve body between the high pressure vessel and the low pressure vessel, connect the high pressure vessel to the first water inlet of the main hydraulic valve, and connect the low pressure vessel to the first water inlet of the main hydraulic valve. Connect to water outlet.

ステップS2:第1の弁本体に主ストッパを設け、主ストッパが第1の水入口と第1の水出口を閉鎖し、第1の弁本体と共に密閉された第1の液圧室を形成する。 Step S2: A main stopper is provided on the first valve body, and the main stopper closes the first water inlet and the first water outlet, forming a sealed first hydraulic chamber together with the first valve body. .

ステップS3:減圧トリガ信号を受信し、第1の液圧室を減圧し、主ストッパは第1の水
入口と第1の水出口に対する閉鎖を解除し、第1の水入口と第1の水出口の間に液体の貫通
流路を形成し、高圧容器からの液体が低圧容器に流入させる。
Step S3: Receive the depressurization trigger signal, depressurize the first hydraulic chamber, and the main stopper releases the closure for the first water inlet and the first water outlet, and the first water inlet and the first water A liquid through-flow path is formed between the outlets, allowing liquid from the high-pressure container to flow into the low-pressure container.

好ましくは、ステップS3は以下のステップを含む。 Preferably, step S3 includes the following steps.

ステップS31:トリガバルブを設け、低圧容器をトリガバルブの第2の水出口に接続し、第1の液圧室をトリガバルブの第2の水入口に接続させる。 Step S31: Provide a trigger valve, connect the low pressure container to the second water outlet of the trigger valve, and connect the first hydraulic chamber to the second water inlet of the trigger valve.

ステップS32:減圧のトリガ信号を受信し、トリガバルブを開き、第2の水入口と第2
の水出口の間に液体の貫通流路を形成し、第1の液圧室の液体をトリガバルブを通過した
後に、低圧容器に流入させる。
Step S32: Receive the pressure reduction trigger signal, open the trigger valve, and connect the second water inlet and the second
A liquid through-flow path is formed between the water outlets of the first liquid pressure chamber, and the liquid in the first liquid pressure chamber flows into the low pressure container after passing through the trigger valve.

好ましくは、ステップS3は以下のステップを含む。 Preferably, step S3 includes the following steps.

ステップS33:トリガバルブを設け、低圧容器をトリガバルブの第2の水出口に接続する。 Step S33: Provide a trigger valve and connect a low pressure container to the second water outlet of the trigger valve.

ステップS34:トリガバルブと第1の液圧室との間に、第2の弁本体を有する閾値バル
ブを設け、第1の液圧室を閾値バルブの第3の水入口に接続し、トリガバルブの第2の水入
口を閾値バルブの第3の水出口に接続させる。
Step S34: A threshold valve having a second valve body is provided between the trigger valve and the first hydraulic chamber, the first hydraulic chamber is connected to the third water inlet of the threshold valve, and the trigger valve is connected to the third water inlet of the threshold valve. Connect the second water inlet of the threshold valve to the third water outlet of the threshold valve.

ステップS35:第2の弁本体に閾値ストッパを設け、閾値ストッパは、第3の水入口と
第3の水出口を閉鎖し、第2の弁本体と共に密封された第2の液圧室を形成し、第2の液圧室は高圧容器に接続される。
Step S35: A threshold stopper is provided on the second valve body, and the threshold stopper closes the third water inlet and the third water outlet, forming a sealed second hydraulic chamber together with the second valve body. However, the second hydraulic chamber is connected to the high pressure vessel.

ステップS36:減圧のトリガ信号を受信し、トリガバルブを開き、第2の水入口と第2
の水出口の間に液体の貫通流路を形成する。
Step S36: Receive the pressure reduction trigger signal, open the trigger valve, and connect the second water inlet and the second
forming a through-flow path for liquid between the water outlets of the

ステップS37:高圧容器の圧力が所定の閾値まで低下したときに、閾値ストッパが第3の水入口と第3の水出口の閉鎖を解除し、第3の水入口と第3の水出口の間に液体の貫通流
路を形成し、第1の液圧室の液体を、閾値バルブとトリガバルブを通過し低圧容器に流入
させる。
Step S37: When the pressure in the high-pressure container decreases to a predetermined threshold, the threshold stopper releases the third water inlet and the third water outlet, and the threshold stopper releases the third water inlet and the third water outlet between the third water inlet and the third water outlet. A liquid passage is formed in the first hydraulic pressure chamber, and the liquid in the first hydraulic pressure chamber passes through the threshold valve and the trigger valve and flows into the low pressure container.

本発明に係る減圧バルブシステムおよび減圧方法は、電源による駆動を必要とせず、液圧により、初期の閉鎖状態にあり、信号トリガを受信すると、受動的に開き、設計を簡素化し、原子炉の安全性と経済性を大幅に向上させ、高圧容器を迅速に減圧させることができ、長期間の緊急炉心冷却機能を満たすことができる。 The pressure reducing valve system and pressure reducing method according to the present invention does not require power drive, is hydraulically in the initial closed state, and opens passively when receiving a signal trigger, simplifying the design and reducing the pressure in the reactor. It greatly improves safety and economy, allows the high-pressure vessel to be depressurized quickly, and can fulfill the long-term emergency core cooling function.

なお、上記記載と下記の詳細的な説明は、例示的なものであり、本発明を限定するものではない。 Note that the above description and the detailed explanation below are illustrative and do not limit the present invention.

本願発明をより明確に説明するため、以下、本願の実施形態で用いられる図面を簡単に説明する。以下に説明する図面は本願の一の実施形態に過ぎず、当業者は、以下の図面に基づき、創造的な労働を経ずに他の実施例を得ることができる。
図1は本発明の具体的な実施例の減圧バルブシステムの概略図である。 図2は本発明の他の具体的な実施例の減圧バルブシステムの概略図である。 図3は本発明の具体的な実施例の減圧方法のフローチャートである。
In order to explain the present invention more clearly, the drawings used in the embodiments of the present application will be briefly described below. The drawings described below are only one embodiment of the present application, and those skilled in the art can obtain other embodiments based on the following drawings without creative effort.
FIG. 1 is a schematic diagram of a pressure reducing valve system according to a specific embodiment of the present invention. FIG. 2 is a schematic diagram of a pressure reducing valve system according to another specific embodiment of the present invention. FIG. 3 is a flowchart of a pressure reduction method according to a specific embodiment of the present invention.

100 減圧バルブシステム
1 主液圧弁
11 第1の弁本体
12 第1の水入口
13 第1の水出口
14 主ストッパ
15 第1の液圧室
16 第1の弾力性部材
4 トリガユニット
41 信号ドライバ
411 電磁装置
412 第2の弾力性部材
42 トリガアクチュエータ
421 トリガバルブ
422 第2の水入口
423 第2の水出口
424 トリガストッパ
43 閾値バルブ
431 第2の弁本体
432 第3の水入口
433 第3の水入口
434 閾値ストッパ
435 第2の液圧室
436 第3の弾力性部材
51 第1の接続ライン
52 第2の接続ライン
53 第3の接続ライン
54 第4の接続ライン
55 第5の接続ライン
56 バッファ装置
100 Pressure reducing valve system 1 Main hydraulic valve 11 First valve body 12 First water inlet 13 First water outlet 14 Main stopper 15 First hydraulic chamber 16 First elastic member 4 Trigger unit 41 Signal driver 411 Electromagnetic device 412 Second elastic member 42 Trigger actuator 421 Trigger valve 422 Second water inlet 423 Second water outlet 424 Trigger stopper 43 Threshold valve 431 Second valve body 432 Third water inlet 433 Third water Inlet 434 Threshold stopper 435 Second hydraulic chamber 436 Third elastic member 51 First connection line 52 Second connection line 53 Third connection line 54 Fourth connection line 55 Fifth connection line 56 Buffer Device

添付の図面は、明細書に組み込まれ、本明細書の一部を構成し、本願の実施例を示し、明細書と共に本願発明を説明する。 The accompanying drawings are incorporated in and constitute a part of the specification, illustrate examples of the invention, and together with the specification serve to explain the invention.

以下、図面を参照しながら、本発明の実施形態を詳細に説明する。なお、以下実施例の詳細な記載と図面は、本発明を例示するものであり、本発明は以下の実施例に限られるものではない。なお、説明の便宜上、図面に本発明に関連する構造の一部のみ示されている。 Embodiments of the present invention will be described in detail below with reference to the drawings. It should be noted that the detailed description and drawings of the following examples are intended to illustrate the present invention, and the present invention is not limited to the following examples. Note that for convenience of explanation, only a part of the structure related to the present invention is shown in the drawings.

また、以下の記載に、明確な説明がある場合を除き、「繋がる」、「接続」、「固定」という用語は広く理解すべき、例えば、固定接続、脱着式接続、又は一体的な接続でもよく、また、機械的な接続、または電気的な接続でもよく、直接接続、又は媒体を介した間接接続でもよく、更に、二つの部品内部の連通、または二つの部品の相互作用関係でもよい。当業者は、具体的な状況に応じて本発明で上記用語の意味を特定すれば宜しい。 In addition, unless clearly explained below, the terms "connected," "connected," and "fixed" should be understood broadly, e.g., to mean fixed connections, removable connections, or integral connections. It may also be a mechanical connection or an electrical connection, a direct connection or an indirect connection via a medium, or communication between two parts or an interaction between two parts. Those skilled in the art may specify the meanings of the above terms in the present invention depending on the specific situation.

本発明の記載において、特別な説明がある場合を除き、第二の部材に対する第一の部材の「上」または「下」は、第一の部材と第二の部材の直接接続でもよく、又は直接接続ではなく、他の部材を介した第一の部材と第二の部材の接続でもよい。また、第一の部材が第二の部材の「上に」、「上方に」、「上面に」あることは、第一の部材が第二の部材の真上と斜め上にあること、あるいは単に第一の部材が第二の部材より水平高さに高いことを意味する。第一の部材が第二の部材の「下に」、「下方に」、「下面に」あることは、第一の部材が第二の部材の真下と斜め下にあること、あるいは単に第一の部材が第二の部材より水平高さに低いことを意味する。 In the description of the present invention, unless otherwise specified, "above" or "below" a first member relative to a second member may be a direct connection between the first member and the second member, or The first member and the second member may be connected through another member instead of being directly connected. Also, the first member being “on top”, “above”, or “on top” of the second member means that the first member is directly above or diagonally above the second member, or It simply means that the first member is higher in horizontal height than the second member. The first member being “below,” “below,” or “on the underside” of the second member means that the first member is directly below and diagonally below the second member, or simply that the first member is means that the member is lower in horizontal height than the second member.

本発明実施例の記載において、「上」、「下」、「左」、「右」等の用語で示された向きや位置関係は、図面に基づいて示した向きや位置関係であり、説明の便宜上用いたものであり、装置や部材は特定の向きを有し、特定の向きで構成され又は動作することを意味せず、本願を限定するものではない。また、「第1」および「第2」という用語は、説明のためだけに用いられており、特別な意味はない。 In the description of the embodiments of the present invention, the directions and positional relationships indicated by terms such as "top", "bottom", "left", "right", etc. are the directions and positional relationships shown based on the drawings. It is used as a matter of convenience and is not intended to imply that the devices or components have a particular orientation, be constructed or operate in a particular orientation, and is not intended to limit the present application. Also, the terms "first" and "second" are used for explanation only and have no special meaning.

本発明は、先進的な受動的設計概念を用いて、電源による駆動を必要とせず、特定の条件で原子炉の減圧機能を満たす、安全性の高いバルブ設計を提供する。 The present invention uses advanced passive design concepts to provide a highly safe valve design that does not require power drive and satisfies the depressurization function of a nuclear reactor under certain conditions.

図1は本発明の具体的な実施例の減圧バルブシステムの概略図である。 FIG. 1 is a schematic diagram of a pressure reducing valve system according to a specific embodiment of the present invention.

図1に示すように、減圧バルブシステム100は主液圧弁1とトリガユニット4とを備
える。
As shown in FIG. 1, the pressure reducing valve system 100 includes a main hydraulic valve 1 and a trigger unit 4.

主液圧弁1は、第1の弁本体11と、第1の弁本体11に設けられた第1の水入口12と
第1の水出口13とを備え、第1の水入口12が高圧容器2に接続され、第1の水出口13
が低圧容器3に接続される。第1の弁本体11に主ストッパ14が設けられ、主ストッパ
14は第1の弁本体11内を移動可能であり,主ストッパ14は第1の水入口12と第1の
水出口13を閉鎖し、第1の弁本体11と共に密閉された第1の液圧室15を形成する。
The main hydraulic valve 1 includes a first valve body 11, a first water inlet 12 and a first water outlet 13 provided in the first valve body 11, and the first water inlet 12 is connected to a high pressure container. 2, the first water outlet 13
is connected to the low pressure vessel 3. The first valve body 11 is provided with a main stopper 14, the main stopper 14 is movable within the first valve body 11, and the main stopper 14 closes the first water inlet 12 and the first water outlet 13. Together with the first valve body 11, a sealed first hydraulic pressure chamber 15 is formed.

トリガユニット4は、信号ドライバ41とトリガアクチュエータ42とを備える。トリガアクチュエータ42が第1の液圧室15に接続され、トリガアクチュエータ42は、信
号ドライバ41がトリガ信号を受信するときに、第1の液圧室15を減圧し、主ストッパ
14に第1の水入口12と第1の水出口13の閉鎖を解除させることができ、第1の水入口
12と第1の水出口13との間に液体の貫通流路が形成され、高圧容器2からの液体が低
圧容器3に流入する。
The trigger unit 4 includes a signal driver 41 and a trigger actuator 42. A trigger actuator 42 is connected to the first hydraulic chamber 15, and the trigger actuator 42 reduces the pressure in the first hydraulic chamber 15 when the signal driver 41 receives the trigger signal, and causes the main stopper 14 to enter the first hydraulic pressure chamber 15. The water inlet 12 and the first water outlet 13 can be unblocked, and a liquid through-flow path is formed between the first water inlet 12 and the first water outlet 13, and the flow from the high-pressure container 2 Liquid flows into the low pressure vessel 3.

本実施例において、主液圧弁1の第1の液圧室15がトリガアクチュエータ42に接続
し、信号ドライバ41は、主液圧弁1を開弁するトリガ信号を受信し、開弁信号が満たされるとき、信号ドライバ41がトリガアクチュエータ42を駆動して開弁させ、第1の液
圧室15内の液体をトリガアクチュエータ42に流入させ、第1の液圧室15内の液圧を
低下させ、主ストッパ14を第1の液圧室15の方向に移動させる。
In this embodiment, the first hydraulic chamber 15 of the main hydraulic valve 1 is connected to the trigger actuator 42, the signal driver 41 receives the trigger signal to open the main hydraulic valve 1, and the valve opening signal is satisfied. When the signal driver 41 drives the trigger actuator 42 to open the valve, the liquid in the first hydraulic pressure chamber 15 flows into the trigger actuator 42, and the hydraulic pressure in the first hydraulic pressure chamber 15 is reduced. The main stopper 14 is moved in the direction of the first hydraulic chamber 15.

図1において、各パイプラインに付けた矢印の方向は流体の流れ方向を示し、第1の弁
本体11内の実線は、主ストッパ14が第1の水入口12と第1の水出口13を閉鎖している状態を示す。第1の液圧室15内の液圧が低下し、主ストッパ14が第1の液圧室15の方向に十分な距離を移動すると、主ストッパ14は第1の水入口12と第1の水出口13の閉鎖を解除する。図1に第1の弁本体11内の点線は、主ストッパ14が移動し、第1の水入口12と第1の水出口13の閉鎖状態を解除し、主液圧弁1を開弁し、第1の水入口12と第1の水出口13との間に液体の貫通流路が形成され、高圧容器2からの液体が低圧容
器3に流入させ、高圧容器2から低圧容器3への減圧が実現される。
In FIG. 1, the direction of the arrow attached to each pipeline indicates the fluid flow direction, and the solid line inside the first valve body 11 indicates that the main stopper 14 connects the first water inlet 12 and the first water outlet 13. Indicates a closed state. When the hydraulic pressure in the first hydraulic chamber 15 decreases and the main stopper 14 moves a sufficient distance in the direction of the first hydraulic chamber 15, the main stopper 14 connects the first water inlet 12 and the first The water outlet 13 is unblocked. In FIG. 1, the dotted line inside the first valve body 11 indicates that the main stopper 14 moves, releases the closed state of the first water inlet 12 and the first water outlet 13, and opens the main hydraulic valve 1. A liquid through-flow path is formed between the first water inlet 12 and the first water outlet 13, allowing the liquid from the high-pressure container 2 to flow into the low-pressure container 3, and reducing the pressure from the high-pressure container 2 to the low-pressure container 3. is realized.

本実施例の減圧バルブシステム100は、電源による駆動を必要とせず、液圧により初期状態として閉鎖状態になり、トリガ信号を受信すると、受動的でバルブが開き、設計が簡素化され、原子炉の安全性と経済性を大幅に向上させ、高圧容器2を迅速に減圧させることができ、長期間に亘る緊急炉心冷却が可能である。 The pressure reducing valve system 100 of this embodiment does not require driving by a power source, is initially closed by hydraulic pressure, and opens the valve passively when a trigger signal is received, simplifying the design and The safety and economical efficiency of the system can be greatly improved, the high pressure vessel 2 can be depressurized quickly, and emergency core cooling can be performed for a long period of time.

引き続き図1を参照されたい。一実施例として、トリガアクチュエータ42は信号ドライバ41に接続されたトリガバルブ421を備え、トリガバルブ421は第2の水入口4
22と第2の水出口423とを備え、第2の水入口422は第1の液圧室15に接続され、
第2の水出口423は低圧容器3に接続され、トリガバルブ421は、信号ドライバ41
がトリガ信号を受信したときに開くことができ、第2の水入口422と第2の水出口423との間に液体の貫通流路を形成し、第1の液圧室15内の液体がトリガバルブ421を通
って低圧容器3に流入する。
Please continue to refer to FIG. In one embodiment, the trigger actuator 42 comprises a trigger valve 421 connected to the signal driver 41, the trigger valve 421 being connected to the second water inlet 4.
22 and a second water outlet 423, the second water inlet 422 is connected to the first hydraulic pressure chamber 15,
The second water outlet 423 is connected to the low pressure container 3, and the trigger valve 421 is connected to the signal driver 41.
can open when receiving a trigger signal, forming a liquid through flow path between the second water inlet 422 and the second water outlet 423, so that the liquid in the first hydraulic chamber 15 It flows into the low pressure vessel 3 through the trigger valve 421.

本実施例において、主液圧弁1の第1の液圧室15は、第1の接続ライン51を介してト
リガバルブ421の第2の水入口422に接続されている。信号ドライバ41は、主液圧
弁1を開弁させるトリガ信号を受信し、開弁信号が満たされるとき、信号ドライバ41はトリガバルブ421を駆動して開弁し、これにより、第1の液圧室15内の液体を、第1の接続ライン51を介して流入し、第2の水入口422からトリガバルブ421に流入し、
第2の水出口423から低圧容器3に流入し、これにより、第1の液圧室15内の液圧を低下させ、主ストッパ14を第1の液圧室15の方向に移動させる。
In this embodiment, the first hydraulic chamber 15 of the main hydraulic valve 1 is connected to the second water inlet 422 of the trigger valve 421 via a first connecting line 51 . The signal driver 41 receives a trigger signal that opens the main hydraulic valve 1, and when the valve opening signal is satisfied, the signal driver 41 drives the trigger valve 421 to open the valve, thereby increasing the first hydraulic pressure. the liquid in the chamber 15 flows through the first connection line 51 and into the trigger valve 421 through the second water inlet 422;
Water flows into the low pressure container 3 through the second water outlet 423, thereby reducing the hydraulic pressure in the first hydraulic chamber 15 and moving the main stopper 14 in the direction of the first hydraulic chamber 15.

一実施例として、主液圧弁1は、第1の弾力性部材16をさらに備え、第1の弾力性部材16は主ストッパ14に第1の正方向の力F1を加え、第1の液圧室15内の液圧は主スト
ッパ14に第1の負方向の力F2を加え、第1の正方向の力F1は、第1の液圧室15が主ストッパ14にかけた第1の負方向の力F2とは反対方向である。一実施例として、第1の正方
向の力F1は垂直に主ストッパ14の端面に加えられ、主ストッパ14は、主液圧弁1の
第1の弁本体11内に、第1の液圧室15の方向へ移動することができる。
In one embodiment, the main hydraulic valve 1 further comprises a first resilient member 16, which applies a first positive force F1 to the main stop 14 and increases the first hydraulic pressure. The hydraulic pressure in the chamber 15 applies a first negative force F2 to the main stop 14, and the first positive force F1 is the first negative force F1 applied by the first hydraulic chamber 15 to the main stop 14. The force F2 is in the opposite direction. As an example, the first positive force F1 is applied vertically to the end face of the main stop 14, and the main stop 14 has a first hydraulic chamber in the first valve body 11 of the main hydraulic valve 1. It can move in 15 directions.

初期状態として、第1の負方向の力F2は第1の正方向の力F1以上である。これにより、主ストッパ14は第1の水入口12と第1の水出口13に対して閉鎖状態に維持され、即ち、主ストッパ14は切断位置にあり、主液圧弁1の第1の水入口12と第1の水出口13との間の液体の流れを止める。 In the initial state, the first negative force F2 is greater than or equal to the first positive force F1. Thereby, the main stop 14 is kept closed with respect to the first water inlet 12 and the first water outlet 13, i.e. the main stop 14 is in the disconnected position and the first water inlet of the main hydraulic valve 1 12 and the first water outlet 13 is stopped.

開弁信号が満たされるとき、信号ドライバ41がトリガバルブ421を駆動して開弁させ、第1の液圧室15内の液体が第1の接続ライン51を通って第2の水入口422からト
リガバルブ421へ流れ、そして、第2の水出口423から低圧容器3へ流れ、第1の液圧室15内の液圧を低下させ、第1の負方向の力F2が減少する。第1の負方向の力F2が第1
の正方向の力F1より小さくなるとき、主ストッパ14は、第1の弾力性部材16による第1の正方向の力F1に作用され、第1の液圧室15の方向へ移動し、即ち、主ストッパ14
は切断位置から離れ、主液圧弁1の第1の水入口12と第1の水出口13との間の液体の流れが貫通し、主液圧弁1は受動的に自動的に開弁し、高圧容器2からの液体を低圧容器3に流入する。
When the valve opening signal is satisfied, the signal driver 41 drives the trigger valve 421 to open the valve, and the liquid in the first hydraulic chamber 15 flows through the first connection line 51 and from the second water inlet 422. It flows to the trigger valve 421 and then from the second water outlet 423 to the low pressure container 3, reducing the hydraulic pressure in the first hydraulic chamber 15 and reducing the first negative force F2. The first negative force F2 is the first
, the main stopper 14 is acted upon by the first positive force F1 by the first elastic member 16 and moves in the direction of the first hydraulic chamber 15, i.e. , main stopper 14
leaves the cutting position, the liquid flow between the first water inlet 12 and the first water outlet 13 of the main hydraulic valve 1 penetrates, the main hydraulic valve 1 opens passively and automatically; Liquid from high pressure vessel 2 flows into low pressure vessel 3.

一実施例として、トリガバルブ421内にトリガストッパ424が設けられ、トリガストッパ424は第2の水入口422と第2の水出口423を閉鎖する。信号ドライバ41は信号受信端(図示せず)と、電磁装置411と、第2の弾力性部材412とを含み、第2の弾力性部材412はトリガストッパ424に第2の負方向の力F3を加え、電磁装置411は、トリガストッパ424に第2の負方向の力F3と反対する方向に、第2の正方向の力F4を加え、電磁装置411は、信号受信端でトリガ信号を受信したときに、第2の正方向の
力F4を解除することができ、第2の弾力性部材412は、電磁装置411が第2の正方向
の力F4を解除するときに、トリガストッパ424を押して移動させ、トリガストッパ4
24に第2の水入口422と第2の水出口423の閉鎖を解除させることができる。
In one embodiment, a trigger stopper 424 is provided within the trigger valve 421, and the trigger stopper 424 closes the second water inlet 422 and the second water outlet 423. The signal driver 41 includes a signal receiving end (not shown), an electromagnetic device 411, and a second elastic member 412, and the second elastic member 412 applies a second negative force F3 to the trigger stopper 424. , the electromagnetic device 411 applies a second positive force F4 to the trigger stopper 424 in a direction opposite to the second negative force F3, and the electromagnetic device 411 receives the trigger signal at the signal receiving end. When the electromagnetic device 411 releases the second positive force F4, the second resilient member 412 releases the trigger stopper 424 when the electromagnetic device 411 releases the second positive force F4. Push and move the trigger stopper 4
24 to unblock the second water inlet 422 and the second water outlet 423.

初期状態として、第2の正方向の力F4が第2の負方向の力F3以上であり、トリガストッパ424の初期位置はトリガバルブ421の第2の水入口422と第2の水出口423との間にあり、第2の水入口422と第2の水出口423に対して閉鎖状態を維持し、即ち、トリガストッパ424は切断位置にあるとき、トリガバルブ421の第2の水入口422と
第2の水出口423との間の液体の流れを止める。
In the initial state, the second positive force F4 is greater than or equal to the second negative force F3, and the initial position of the trigger stopper 424 is between the second water inlet 422 and the second water outlet 423 of the trigger valve 421. between the second water inlet 422 and the second water outlet 423, that is, when the trigger stopper 424 is in the cut position, the second water inlet 422 and the second water outlet 423 of the trigger valve 421 remain closed. The flow of liquid to and from the second water outlet 423 is stopped.

信号受信端はトリガ信号を受信し、開弁信号が満たされるとき、信号受信端は電磁装置411に電源オフ信号を送り、電磁装置411のコイルの電源をオフにし、第2の正方向
の力F4がなくなり、トリガストッパ424は第2の負方向の力F3に作用され、初期位置
から離れ、トリガバルブ421の第2の水入口422と第2の水出口423との間の液体の流れを貫通させる。
The signal receiving end receives the trigger signal, and when the valve opening signal is met, the signal receiving end sends a power off signal to the electromagnetic device 411, turns off the power of the coil of the electromagnetic device 411, and generates a second positive direction force. F4 is removed, the trigger stopper 424 is acted upon by a second negative force F3, moves away from its initial position, and stops the flow of liquid between the second water inlet 422 and the second water outlet 423 of the trigger valve 421. Penetrate.

図2は本発明の他の実施例の減圧バルブシステムの概略図である。 FIG. 2 is a schematic diagram of a pressure reducing valve system according to another embodiment of the present invention.

図2に示すように、他の実施例として、トリガアクチュエータ42は閾値バルブ43と、信号ドライバ41に接続されたトリガバルブ421とを備え、トリガバルブ421は、第2の水入口422と第2の水出口423とを備え、第2の水出口423は低圧容器3に接
続される。閾値バルブ43は、第2の弁本体431と、第3の水入口432と、第3の水出
口433とを含み、第3の水入口432は第1の液圧室15に接続し、第3の水出口433
は前記第2の水入口422に接続され、第2の弁本体431内に、閾値ストッパ434が設けられている。閾値ストッパ434は第2の弁本体431内を移動可能であり、閾値スト
ッパ434は、第3の水入口432と第3の水出口433を閉鎖し、第2の弁本体431と
共に密封された第2の液圧室435を形成し、第2の液圧室435は高圧容器2に接続される。
As shown in FIG. 2, in another embodiment, the trigger actuator 42 comprises a threshold valve 43 and a trigger valve 421 connected to the signal driver 41, the trigger valve 421 having a second water inlet 422 and a second water inlet 422. and a second water outlet 423, the second water outlet 423 being connected to the low pressure vessel 3. The threshold valve 43 includes a second valve body 431, a third water inlet 432, and a third water outlet 433, the third water inlet 432 is connected to the first hydraulic chamber 15, and the third water inlet 432 is connected to the first hydraulic pressure chamber 15. 3 water outlet 433
is connected to the second water inlet 422, and a threshold stopper 434 is provided within the second valve body 431. A threshold stopper 434 is movable within the second valve body 431 , and the threshold stopper 434 closes the third water inlet 432 and the third water outlet 433 and provides a sealed third water outlet with the second valve body 431 . 2 hydraulic pressure chambers 435 are formed, and the second hydraulic pressure chamber 435 is connected to the high pressure container 2 .

引き続き図2を参照されたい。主液圧弁1の第1の液圧室15は、第2の接続ライン52を介して閾値バルブ43の第3の水入口432に接続されている。閾値バルブ43の第3の水出口433は、第3の接続ライン53を介してトリガバルブ421の第2の水入口422に接続されている。信号ドライバ41は、主液圧弁1を開弁させるトリガ信号を受信し、開弁信号が満たされるとき、信号受信端は電磁装置411に電源オフ信号を送り、電磁装置411のコイルの電源をオフにし、第2の正方向の力F4がなくなり、トリガストッパ424は第2の負方向の力F3の作用で初期位置から離れ、トリガバルブ421の第2の水入
口422と第2の水出口423との間の液体の流れを貫通させる。第2の液圧室435は、第4の接続ライン54を介して高圧容器2に接続されており、第2の液圧室435は高圧容器2と同じ圧力になるようにさせる。高圧容器2の圧力が設定された閾値まで下がったときに、閾値ストッパ434が第2の液圧室435の方向に移動し、閾値ストッパ434に
第3の水入口432と第3の水出口433の閉鎖を解除させ、これにより、閾値バルブ43の開弁が実現され、第3の水入口432と第3の水出口433の間に貫通する液体流路が形成され、第1の液圧室15の液体は、第2の接続ライン52を介して第3の水入口432に
流れて、閾値バルブ43に入り、第3の水出口433を通って第3の接続ライン53を介して既に開かれたトリガバルブ421に流れ込んだ後、トリガバルブ421を介して低圧容器3に流入する。
Please continue to refer to FIG. 2. The first hydraulic chamber 15 of the main hydraulic valve 1 is connected to the third water inlet 432 of the threshold valve 43 via a second connecting line 52 . The third water outlet 433 of the threshold valve 43 is connected to the second water inlet 422 of the trigger valve 421 via a third connection line 53. The signal driver 41 receives a trigger signal to open the main hydraulic valve 1, and when the valve opening signal is satisfied, the signal receiving end sends a power off signal to the electromagnetic device 411 to turn off the power of the coil of the electromagnetic device 411. , the second positive force F4 disappears, the trigger stopper 424 moves away from the initial position under the action of the second negative force F3, and the second water inlet 422 and second water outlet 423 of the trigger valve 421 Permeate the flow of liquid between. The second hydraulic chamber 435 is connected to the high pressure vessel 2 via the fourth connection line 54, so that the second hydraulic chamber 435 has the same pressure as the high pressure vessel 2. When the pressure in the high-pressure container 2 drops to the set threshold, the threshold stopper 434 moves toward the second hydraulic pressure chamber 435, and the threshold stopper 434 has a third water inlet 432 and a third water outlet 433. The closure of the threshold valve 43 is thereby realized, and a penetrating liquid flow path is formed between the third water inlet 432 and the third water outlet 433, and the first liquid pressure chamber is opened. 15 liquid flows via the second connection line 52 to the third water inlet 432, enters the threshold valve 43 and passes through the third water outlet 433 via the third connection line 53 to the already opened liquid. After flowing into the opened trigger valve 421, it flows into the low pressure container 3 via the trigger valve 421.

本実施例において、閾値バルブ43が高圧容器2に接続し、信号ドライバ41がトリガ信号を受信したとき、トリガバルブ421が開く。トリガバルブ421が開いた後に、高圧容器2の圧力が設定された閾値まで低下したときに、閾値バルブ43が開き、主液圧弁1の第1の液圧室15の減圧が完了し、高圧容器2と低圧容器3との接続が可能となり、
高圧容器の減圧が実現される。
In this embodiment, the threshold valve 43 is connected to the high pressure vessel 2, and when the signal driver 41 receives a trigger signal, the trigger valve 421 opens. After the trigger valve 421 opens, when the pressure in the high-pressure vessel 2 drops to the set threshold, the threshold valve 43 opens, the pressure reduction in the first hydraulic chamber 15 of the main hydraulic valve 1 is completed, and the high-pressure vessel 2 and low pressure vessel 3 can be connected,
Depressurization of the high pressure vessel is achieved.

本実施例の減圧バルブシステム100は、トリガバルブ421が誤って開いてしまった場合に、誤動作を防止することができ、主液圧弁1をすぐに開くことをせず、高圧容器2内の圧力値も開弁条件を満たす場合にのみ、主液圧弁1は開弁し、これにより、高圧容器2の圧力境界の完全性を維持し、予定外の原子炉停止回数と、一次的事象の発生確率を低減させることができる。 The pressure reducing valve system 100 of this embodiment can prevent a malfunction even if the trigger valve 421 opens by mistake, and prevents the main hydraulic valve 1 from opening immediately and reduces the pressure inside the high pressure vessel 2. The main hydraulic valve 1 opens only when the value also satisfies the opening condition, thereby maintaining the integrity of the pressure boundary of the high-pressure vessel 2 and reducing the number of unscheduled reactor shutdowns and the occurrence of primary events. The probability can be reduced.

一実施例として、閾値バルブ43は第3の弾力性部材436をさらに備え、第3の弾力性部材436は閾値ストッパ434に第3の正方向の力F5を加え、第3の正方向の力F5は、第2の液圧室435が閾値ストッパ434に加えた第3の負方向の力F6とは反対方向であ
り、第3の弾力性部材436は、高圧容器2の圧力が設定された閾値まで低下したときに
、閾値ストッパ434を押して移動させることができ、これにより、閾値ストッパ434が第3の水入口432と第3の水出口433の閉鎖を解除し、第3の水入口432と第3の水
出口433の間に液体の貫通流路を形成し、第1の液圧室15の液体を、閾値バルブ43
とトリガバルブ421を通って低圧容器3に流入させる。
In one embodiment, the threshold valve 43 further includes a third resilient member 436, which applies a third positive force F5 to the threshold stop 434, and the third resilient member 436 applies a third positive force F5 to the threshold stop 434. F5 is in the opposite direction to the third negative force F6 applied by the second hydraulic pressure chamber 435 to the threshold stopper 434, and the third elastic member 436 is When the threshold value has been lowered, the threshold stopper 434 can be pushed and moved, which causes the threshold stopper 434 to unblock the third water inlet 432 and the third water outlet 433 and close the third water inlet 432. A liquid through-flow path is formed between the third water outlet 433 and the third water outlet 433, and the liquid in the first hydraulic pressure chamber 15 is transferred to the threshold valve 43.
and flows into the low pressure container 3 through the trigger valve 421.

初期状態として、第3の負方向の力F6は第3の正方向の力F5以上であり、これにより、閾値ストッパ434が第3の水入口432と第3の水出口433に対して閉鎖状態を維持し、即ち、閾値ストッパ434は切断位置にあり、閾値バルブ43の第3の水入口432と
第3の水出口433との間の液体の流れを止める。
In the initial state, the third negative force F6 is greater than or equal to the third positive force F5, so that the threshold stopper 434 is closed to the third water inlet 432 and the third water outlet 433. , that is, the threshold stopper 434 is in the disconnected position, stopping the flow of liquid between the third water inlet 432 and the third water outlet 433 of the threshold valve 43 .

高圧容器2の圧力が設定された閾値まで低下したときに、第3の負方向の力F6が第3の
正方向の力F5より小さくなり、閾値ストッパ434は、第3の正方向の力F5の作用を受
けて、第2の液圧室435の方向へ移動し、即ち、閾値ストッパ434は切断位置から離
れ、閾値バルブ43の第3の水入口432と第3の水出口433との間の液体が流れ通し、第1の液圧室15内の液体を閾値バルブ43に流入する。
When the pressure in the high-pressure container 2 decreases to the set threshold, the third negative force F6 becomes smaller than the third positive force F5, and the threshold stopper 434 stops the third positive force F5. is moved in the direction of the second hydraulic chamber 435, i.e. the threshold stopper 434 leaves the cutting position and moves between the third water inlet 432 and the third water outlet 433 of the threshold valve 43. The liquid flows through the first hydraulic pressure chamber 15 and causes the liquid in the first hydraulic pressure chamber 15 to flow into the threshold valve 43 .

一実施例として、第1の液圧室15は第5の接続ライン55を介して高圧容器2に接続されている。高圧容器2は第1の液圧室15に圧力を掛け、これにより、第1の負方向の力F
2が主ストッパ14を初期の閉鎖状態に維持する。第5の接続ライン55にバッファ装置
56が設けられ、バッファ装置56は、高圧容器2と第1の液圧室15との間の液流の噴
出による質量、エネルギーの放出を緩衝し、低圧容器3の完全性を維持することができる。
In one embodiment, the first hydraulic chamber 15 is connected to the high-pressure vessel 2 via a fifth connection line 55. The high-pressure vessel 2 applies pressure to the first hydraulic chamber 15, thereby causing a first negative force F
2 maintains the main stop 14 in its initial closed condition. A buffer device 56 is provided in the fifth connection line 55, and the buffer device 56 buffers the release of mass and energy due to the ejection of liquid flow between the high pressure container 2 and the first hydraulic chamber 15, and 3 integrity can be maintained.

一実施例として、バッファ装置56は、ベンチュリー管または孔プレートである。ベンチュリー管または孔プレートは、第5の接続ライン55のラインサイズを小さくすること
ができ、その結果、液流の噴出による質量、エネルギーの放出を減少し、低圧容器3の完全性を維持することができる。
In one example, buffer device 56 is a Venturi tube or a hole plate. The venturi tube or hole plate can reduce the line size of the fifth connection line 55, thus reducing the mass, energy release due to jetting of liquid flow and maintaining the integrity of the low pressure vessel 3. Can be done.

図3は本発明の一実施例の減圧方法のフローチャートである。 FIG. 3 is a flowchart of a pressure reduction method according to an embodiment of the present invention.

図3に示すように、本願の減圧方法は以下のステップを含む。 As shown in FIG. 3, the pressure reduction method of the present application includes the following steps.

ステップS1:高圧容器3と低圧容器2の間に、第1の弁本体11を有する主液圧弁1を設け、高圧容器2を主液圧弁1の第1の水入口12に接続し、低圧容器3を主液圧弁1の
第1の水出口13に接続する。
Step S1: Provide a main hydraulic valve 1 having a first valve body 11 between the high pressure vessel 3 and the low pressure vessel 2, connect the high pressure vessel 2 to the first water inlet 12 of the main hydraulic valve 1, and connect the high pressure vessel 2 to the first water inlet 12 of the main hydraulic valve 1. 3 to the first water outlet 13 of the main hydraulic valve 1.

ステップS2:第1の弁本体11に主ストッパ14を設け、主ストッパ14が第1の水入
口12と第1の水出口13を閉鎖し、第1の弁本体11と共に密閉された第1の液圧室15
を形成する。
Step S2: A main stopper 14 is provided on the first valve body 11, the main stopper 14 closes the first water inlet 12 and the first water outlet 13, and the first valve body 11 is sealed together with the first water outlet 13. Hydraulic pressure chamber 15
form.

ステップS3:減圧トリガ信号を受信し、第1の液圧室15を減圧し、主ストッパ14が第1の水入口12と第1の水出口13に対する閉鎖を解除し、第1の水入口12と第1の水出口13の間に貫通する液体流路を形成し、高圧容器2からの液体が低圧容器3に流入する。 Step S3: Receive the pressure reduction trigger signal, reduce the pressure in the first hydraulic chamber 15, and release the main stopper 14 from blocking the first water inlet 12 and the first water outlet 13, and the first water inlet 12 A penetrating liquid flow path is formed between the first water outlet 13 and the first water outlet 13, and the liquid from the high pressure vessel 2 flows into the low pressure vessel 3.

一実施例として、ステップS3は以下のステップを含む。 As an example, step S3 includes the following steps.

ステップS31:トリガバルブ421を設け、低圧容器3をトリガバルブ421の第2の水出口423に接続し、第1の液圧室15をトリガバルブ421の第2の水入口422に接続させる。 Step S31: Provide a trigger valve 421, connect the low pressure container 3 to the second water outlet 423 of the trigger valve 421, and connect the first hydraulic chamber 15 to the second water inlet 422 of the trigger valve 421.

ステップS32:減圧トリガ信号を受信し、トリガバルブ421を開き、第2の水入口4
22と第2の水出口423の間に貫通する液体流路を形成し、第1の液圧室15の液体をトリガバルブ421を通して低圧容器3に流入する。
Step S32: Receive the pressure reduction trigger signal, open the trigger valve 421, and open the second water inlet 4.
22 and the second water outlet 423 , a penetrating liquid flow path is formed, and the liquid in the first hydraulic pressure chamber 15 flows into the low pressure container 3 through the trigger valve 421 .

一実施例として、ステップS3は以下のステップを含む。 As an example, step S3 includes the following steps.

ステップS33:トリガバルブ421を設け、低圧容器3をトリガバルブ421の第2の水出口423に接続する。 Step S33: Provide the trigger valve 421 and connect the low pressure container 3 to the second water outlet 423 of the trigger valve 421.

ステップS34:トリガバルブ421と第1の液圧室15との間に、第2の弁本体435
を有する閾値バルブ43を設け、第1の液圧室15を閾値バルブ43の第3の水入口432に接続し、トリガバルブ421の第2の水入口422を閾値バルブ43の第3の水出口433に接続する。
Step S34: A second valve body 435 is inserted between the trigger valve 421 and the first hydraulic chamber 15.
A threshold valve 43 is provided, which connects the first hydraulic chamber 15 to the third water inlet 432 of the threshold valve 43 and connects the second water inlet 422 of the trigger valve 421 to the third water outlet of the threshold valve 43. Connect to 433.

ステップS35:第2の弁本体431に閾値ストッパ434を設け、閾値ストッパ434は、第3の水入口432と第3の水出口433を閉鎖し、第2の弁本体431と共に密封さ
れた第2の液圧室435を形成し、第2の液圧室435を高圧容器2に接続する。
Step S35: A threshold stopper 434 is provided on the second valve body 431, and the threshold stopper 434 closes the third water inlet 432 and the third water outlet 433, and the second valve body 431 and the second valve body 431 are sealed together. A second hydraulic pressure chamber 435 is formed, and a second hydraulic pressure chamber 435 is connected to the high pressure vessel 2.

ステップS36:減圧トリガ信号を受信し、トリガバルブ421を開き、第2の水入口422と第2の水出口423の間に液体の貫通流路を形成する。 Step S36: Receive the pressure reduction trigger signal, open the trigger valve 421, and form a liquid through flow path between the second water inlet 422 and the second water outlet 423.

ステップS37:高圧容器2の圧力が設定された閾値まで低下したときに、閾値ストッ
パ434は第3の水入口432と第3の水出口433に対する閉鎖を解除し、第3の水入口
432と第3の水出口433の間に液体の貫通流路を形成し、第1の液圧室15の液体を、閾値バルブ43とトリガバルブ421を通して低圧容器3に流入する。
Step S37: When the pressure of the high-pressure container 2 decreases to the set threshold, the threshold stopper 434 releases the third water inlet 432 and the third water outlet 433, and the third water inlet 432 and the third water outlet 433 are closed. A liquid passage is formed between the three water outlets 433, and the liquid in the first hydraulic pressure chamber 15 flows into the low pressure container 3 through the threshold valve 43 and the trigger valve 421.

本発明に係る減圧バルブシステムおよび減圧方法は、安全性の高い電源による駆動を必要とせず、信号設定値に達すると、自動的に開弁し、高圧容器と低圧容器の内部圧力と外部圧力のバランスを実現し、自動的に減圧するニーズに満し、原子炉専用システム注入に然るべく条件を提供する。また、誤動作を防ぐために、信号判定+閾値判定を行い、従来技術と比べて、本発明は、初期状態として、液圧により閉鎖状態となり、信号トリガが満たされるとき、バネで受動的に開き、電源を必要とせず、安全性が非常に高い。誤操作を防止するため、減圧弁に閾値機能を設け、高圧容器の境界の完全性を保護する。 The pressure reducing valve system and pressure reducing method according to the present invention do not require driving by a highly safe power source, and when a signal setting value is reached, the valve automatically opens, and the internal pressure and external pressure of the high-pressure container and the low-pressure container are reduced. Achieving balance, meeting the needs of automatic depressurization, and providing appropriate conditions for nuclear reactor-specific system injection. In addition, in order to prevent malfunction, signal judgment + threshold value judgment is performed.Compared to the conventional technology, the present invention is in a closed state due to hydraulic pressure as an initial state, and when a signal trigger is met, it is passively opened by a spring. It does not require a power source and is extremely safe. To prevent erroneous operation, the pressure reducing valve is equipped with a threshold function to protect the integrity of the high pressure vessel boundary.

以上、本発明の好ましい実施例を説明したが、本発明はこれらの実施例に限定されるものではない。本発明の技術的思想に属する様々な実施形態は本発明の保護範囲に属する。当業者は、本発明の技術的思想から逸脱しない範囲で、以上の実施例に対して行った変更または修正は、本発明の保護範囲に属する。 Although preferred embodiments of the present invention have been described above, the present invention is not limited to these embodiments. Various embodiments that fall within the technical idea of the present invention fall within the protection scope of the present invention. Those skilled in the art will appreciate that changes or modifications made to the above embodiments without departing from the technical idea of the present invention fall within the protection scope of the present invention.

Claims (11)

第1の弁本体と、第1の水入口と、第1の水出口とを含む主液圧弁であって、前記第1の水入口が高圧容器に接続され、前記第1の水出口が低圧容器に接続され、前記第1の弁本体に主ストッパが設けられ、前記主ストッパは前記第1の水入口と前記第1の水出口を閉鎖し、前記第1の弁本体と共に密閉された第1の液圧室を形成する主液圧弁と、
信号ドライバとトリガアクチュエータとを含み、前記トリガアクチュエータが前記第1
の液圧室に接続されているトリガユニットと、
を備え、
前記トリガアクチュエータは、前記信号ドライバがトリガ信号を受信するとき、前記第1の液圧室を減圧し、前記主ストッパに前記第1の水入口と前記第1の水出口の閉鎖を解除
させることができ、前記第1の水入口と前記第1の水出口との間に液体貫通流路を形成し、前記高圧容器の液体が前記低圧容器に流入させる
ことを特徴とする減圧バルブシステム。
A main hydraulic valve including a first valve body, a first water inlet, and a first water outlet, the first water inlet being connected to a high pressure vessel and the first water outlet being connected to a low pressure vessel. a main stopper connected to the container and provided on the first valve body, the main stopper closing the first water inlet and the first water outlet, and a first valve body sealed together with the first valve body; a main hydraulic valve forming a hydraulic chamber of 1;
a signal driver and a trigger actuator, the trigger actuator being the first
a trigger unit connected to the hydraulic pressure chamber of the
Equipped with
The trigger actuator is configured to reduce pressure in the first hydraulic chamber and cause the main stopper to unblock the first water inlet and the first water outlet when the signal driver receives a trigger signal. A pressure reducing valve system, wherein a liquid passage is formed between the first water inlet and the first water outlet, and the liquid in the high pressure container flows into the low pressure container.
前記トリガアクチュエータは前記信号ドライバに接続されたトリガバルブを含み、前記トリガバルブは第2の水入口と第2の水出口とを有し、前記第2の水入口は前記第1の液圧室に連通し、前記第2の水出口は前記低圧容器に連通し、前記トリガバルブは、前記信号ド
ライバがトリガ信号を受信するときに開くことができ、前記第2の水入口と前記第2の水出口との間に液体の貫通流路が形成され、前記第1の液圧室内の液体が前記トリガバルブを
通って前記低圧容器に流入することを特徴とする請求項1に記載の減圧バルブシステム。
The trigger actuator includes a trigger valve connected to the signal driver, the trigger valve having a second water inlet and a second water outlet, the second water inlet being connected to the first hydraulic chamber. the second water outlet communicates with the low pressure vessel, the trigger valve is operable to open when the signal driver receives a trigger signal, and the second water inlet and the second water outlet communicate with the low pressure vessel; The pressure reducing valve according to claim 1, wherein a liquid through flow path is formed between the water outlet and the first liquid pressure chamber, and the liquid in the first liquid pressure chamber flows into the low pressure container through the trigger valve. system.
前記トリガアクチュエータは閾値バルブと前記信号ドライバに接続されたトリガバルブとを含み、
前記トリガバルブは第2の水入口と第2の水出口とを含み、前記第2の水出口は前記低圧
容器に接続され、
前記閾値バルブは、第2の弁本体、第3の水入口と第3の水出口を含み、前記第3の水入口は前記第1の液圧室に接続し、前記第3の水出口は前記第2の水入口に接続され、前記第2の弁本体内に閾値ストッパが設けられており、前記閾値ストッパは、前記第3の水入口と前
記第3の水出口を閉鎖し、前記第2の弁本体と共に密封された第2の液圧室を形成し、前記
第2の液圧室は前記高圧容器に接続される
ことを特徴とする請求項1に記載の減圧バルブシステム。
the trigger actuator includes a threshold valve and a trigger valve connected to the signal driver;
the trigger valve includes a second water inlet and a second water outlet, the second water outlet being connected to the low pressure container;
The threshold valve includes a second valve body, a third water inlet and a third water outlet, the third water inlet is connected to the first hydraulic chamber, and the third water outlet is connected to the first hydraulic pressure chamber. A threshold stop is provided in the second valve body connected to the second water inlet, the threshold stop closing the third water inlet and the third water outlet, and closing the third water inlet and the third water outlet. 2. The pressure reducing valve system according to claim 1, wherein a sealed second hydraulic chamber is formed with two valve bodies, and the second hydraulic chamber is connected to the high pressure vessel.
前記閾値バルブは、第3の弾力性部材をさらに含み、前記第3の弾力性部材は前記閾値ストッパに第3の正方向の力を加え、前記第3の正方向の力は、前記第2の液圧室によって前
記閾値ストッパに加えられた第3の負方向の力とは反対方向であり、前記第3の弾力性部材は、前記高圧容器の圧力が所定の閾値まで低下したときに、前記閾値ストッパを押して移動させることができ、前記閾値ストッパに前記第3の水入口と前記第3の水出口の閉鎖を解除させ、前記第3の水入口と前記第3の水出口の間に液体の貫通流路を形成し、前記第1の
液圧室の液体を、前記閾値バルブと前記トリガバルブを通過させた後に前記低圧容器に流入させる
ことを特徴とする請求項3に記載の減圧バルブシステム。
The threshold valve further includes a third resilient member, the third resilient member applying a third positive force to the threshold stop, and the third positive force applying a third positive force to the threshold stop. in a direction opposite to a third negative force applied to the threshold stopper by a hydraulic chamber of the third resilient member, the third resilient member is configured to: The threshold stop can be pushed and moved, causing the threshold stop to unblock the third water inlet and the third water outlet, and between the third water inlet and the third water outlet. 4. The reduced pressure according to claim 3, wherein a liquid through-flow path is formed, and the liquid in the first liquid pressure chamber is caused to flow into the low pressure container after passing through the threshold value valve and the trigger valve. valve system.
前記主液圧弁は、第1の弾力性部材をさらに含み、前記第1の弾力性部材は、前記主ストッパに第1の正方向の力を加え、前記第1の正方向の力は、前記第1の液圧室が前記主スト
ッパにかけた第1の負方向の力とは反対方向である
ことを特徴とする請求項1~4のいずれかに記載の減圧バルブシステム。
The main hydraulic valve further includes a first resilient member, the first resilient member applying a first positive force to the main stopper, and the first positive force applying a first positive force to the main stopper. A pressure reducing valve system according to any one of claims 1 to 4, characterized in that the first hydraulic chamber is in a direction opposite to the first negative force applied to the main stop.
前記トリガバルブ内にトリガストッパが設けられ、前記トリガストッパは前記第2の水
入口と前記第2の水出口を閉鎖し、前記信号ドライバは、信号受信端と、電磁装置と、第2
の弾力性部材とを含み、前記第2の弾力性部材は前記トリガストッパに第2の負方向の力を加え、前記電磁装置は、前記トリガストッパに前記第2の負方向の力の反対方向に第2の正方向の力を加え、前記電磁装置は、前記信号受信端でトリガ信号を受信したときに前記第2の正方向の力を解除することができ、前記第2の弾力性部材は、前記電磁装置が前記第2
の正方向の力を解除するときに、前記トリガストッパを押して移動させ、前記トリガストッパに前記第2の水入口と前記第2の水出口の閉鎖を解除させる
ことができることを特徴とする請求項2~4のいずれかに記載の減圧バルブシステム。
A trigger stopper is provided in the trigger valve, the trigger stopper closes the second water inlet and the second water outlet, and the signal driver includes a signal receiving end, an electromagnetic device, and a second water outlet.
a resilient member, the second resilient member applying a second negative force to the trigger stop, and the electromagnetic device applying a second negative force to the trigger stop in a direction opposite to the second negative force. applying a second positive force to the second elastic member, the electromagnetic device being able to release the second positive force when receiving a trigger signal at the signal receiving end; , the electromagnetic device is connected to the second
3. When releasing the positive force, the trigger stopper can be pushed and moved to cause the trigger stopper to release the closure of the second water inlet and the second water outlet. 5. The pressure reducing valve system according to any one of 2 to 4.
前記第1の液圧室は、第5の接続ラインによって前記高圧容器に接続され、前記第5の接
続ラインにバッファ装置が設けられる
ことを特徴とする請求項1~4のいずれかに記載の減圧バルブシステム。
The first hydraulic pressure chamber is connected to the high pressure container by a fifth connection line, and the fifth connection line is provided with a buffer device. Pressure reducing valve system.
前記バッファ装置は、ベンチュリー管またはオリフィスプレートである
ことを特徴とする請求項7に記載の減圧バルブシステム。
The pressure reducing valve system according to claim 7, wherein the buffer device is a venturi tube or an orifice plate.
高圧容器と低圧容器の間に第1の弁本体を有する主液圧弁を設け、前記高圧容器を前記
主液圧弁の第1の水入口に接続し、前記低圧容器を前記主液圧弁の第1の水出口に接続するステップS1と、
前記第1の弁本体に主ストッパを設け、前記主ストッパが前記第1の水入口と前記第1の
水出口を閉鎖し、前記第1の弁本体と共に密閉された第1の液圧室を形成するステップS2
と、
減圧トリガ信号を受信し、前記第1の液圧室を減圧し、前記主ストッパは前記第1の水入口と前記第1の水出口に対する閉鎖を解除し、前記第1の水入口と前記第1の水出口の間に
液体の貫通流路を形成し、前記高圧容器からの液体が前記低圧容器に流入させるステップS3と、
を含む
ことを特徴とする減圧方法。
A main hydraulic valve having a first valve body is provided between a high pressure vessel and a low pressure vessel, the high pressure vessel is connected to a first water inlet of the main hydraulic valve, and the low pressure vessel is connected to the first water inlet of the main hydraulic valve. Step S1 of connecting to the water outlet of the
A main stopper is provided on the first valve body, and the main stopper closes the first water inlet and the first water outlet, and defines a first hydraulic chamber sealed together with the first valve body. Forming step S2
and,
receiving a depressurization trigger signal and depressurizing the first hydraulic chamber; the main stopper releases the closure for the first water inlet and the first water outlet; Step S3: forming a liquid through-flow path between the water outlets of the first water outlet and causing the liquid from the high-pressure container to flow into the low-pressure container;
A decompression method characterized by comprising:
前記ステップS3は
トリガバルブを設け、前記低圧容器を前記トリガバルブの第2の水出口に接続し、前記
第1の液圧室を前記トリガバルブの第2の水入口に接続させるステップS31と、
減圧のトリガ信号を受信し、前記トリガバルブを開き、前記第2の水入口と前記第2の水出口の間に液体の貫通流路を形成し、前記第1の液圧室の液体を前記トリガバルブを通過
した後に、前記低圧容器に流入させるステップS32と、
を含む
ことを特徴とする請求項9に記載の減圧方法。
Step S3 includes providing a trigger valve, connecting the low pressure container to a second water outlet of the trigger valve, and connecting the first hydraulic chamber to a second water inlet of the trigger valve;
receiving a pressure reduction trigger signal and opening the trigger valve, forming a liquid through flow path between the second water inlet and the second water outlet, and causing the liquid in the first hydraulic pressure chamber to step S32 of flowing into the low pressure container after passing through the trigger valve;
The pressure reduction method according to claim 9, comprising:
前記ステップS3は
トリガバルブを設け、前記低圧容器を前記トリガバルブの第2の水出口に接続するステ
ップS33と、
前記トリガバルブと前記第1の液圧室との間に、第2の弁本体を有する閾値バルブを設け、前記第1の液圧室を前記閾値バルブの第3の水入口に接続し、前記トリガバルブの第2の
水入口を前記閾値バルブの第3の水出口に接続させるステップS34と、
前記第2の弁本体に閾値ストッパを設け、前記閾値ストッパは、前記第3の水入口と前記第3の水出口を閉鎖し、前記第2の弁本体と共に密封された第2の液圧室を形成し、前記第2の液圧室は前記高圧容器に接続されるステップS35と、
減圧のトリガ信号を受信し、前記トリガバルブを開き、前記第2の水入口と前記第2の水出口の間に液体の貫通流路を形成するステップS36と、
前記高圧容器の圧力が所定の閾値まで低下したときに、前記閾値ストッパが前記第3の
水入口と前記第3の水出口の閉鎖を解除し、前記第3の水入口と前記第3の水出口の間に液
体の貫通流路を形成し、前記第1の液圧室の液体を、前記閾値バルブと前記トリガバルブ
を通過し前記低圧容器に流入させるステップS37と、を含む
ことを特徴とする請求項9に記載の減圧方法。
The step S3 includes step S33 of providing a trigger valve and connecting the low pressure container to a second water outlet of the trigger valve;
a threshold valve having a second valve body is provided between the trigger valve and the first hydraulic chamber, connecting the first hydraulic chamber to a third water inlet of the threshold valve; connecting a second water inlet of the trigger valve to a third water outlet of the threshold valve;
A threshold stopper is provided on the second valve body, the threshold stopper closing the third water inlet and the third water outlet, and forming a second hydraulic chamber sealed together with the second valve body. forming a step S35, and the second hydraulic chamber is connected to the high pressure container;
step S36 of receiving a pressure reduction trigger signal and opening the trigger valve to form a liquid through flow path between the second water inlet and the second water outlet;
When the pressure in the high-pressure container decreases to a predetermined threshold, the threshold stopper releases the third water inlet and the third water outlet, and the third water inlet and the third water outlet are closed. A step S37 of forming a liquid through-flow path between the outlets and causing the liquid in the first hydraulic pressure chamber to flow into the low-pressure container through the threshold valve and the trigger valve. The pressure reduction method according to claim 9.
JP2023558261A 2021-03-22 2022-03-21 Pressure reducing valve system and pressure reducing method Active JP7504309B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202110302346.7 2021-03-22
CN202110302346.7A CN112923109B (en) 2021-03-22 2021-03-22 Safety pressure relief valve system
PCT/CN2022/081950 WO2022199513A1 (en) 2021-03-22 2022-03-21 Pressure relief valve system and pressure relief method

Publications (2)

Publication Number Publication Date
JP2024511094A true JP2024511094A (en) 2024-03-12
JP7504309B2 JP7504309B2 (en) 2024-06-21

Family

ID=76175355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023558261A Active JP7504309B2 (en) 2021-03-22 2022-03-21 Pressure reducing valve system and pressure reducing method

Country Status (3)

Country Link
JP (1) JP7504309B2 (en)
CN (1) CN112923109B (en)
WO (1) WO2022199513A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112923109B (en) * 2021-03-22 2024-04-09 上海核工程研究设计院股份有限公司 Safety pressure relief valve system
CN113571211B (en) * 2021-07-06 2023-12-19 中国核电工程有限公司 Nuclear power system and method and primary loop system thereof as well as reactor overpressure protection system and method

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9900971C1 (en) * 1999-03-08 2001-01-16 Alexandre Giuliani Coupling set for liquefied petroleum gas container with quick fixing, automatic uncoupling and check and relief valves
JP2001004788A (en) 1999-06-21 2001-01-12 Toshiba Corp Automatic pressure reducing valve system of reactor
CN2454598Y (en) * 2000-09-04 2001-10-17 湖南泵阀制造有限公司 By-pace hydraulic ontrolled water-hammer decompression valve
JP2004061192A (en) 2002-07-25 2004-02-26 Toshiba Corp Nuclear power generation facilities
CN102620037B (en) * 2012-03-30 2013-06-05 烟台卡伦特机械制造有限公司 Integrated pressure regulating switching valve
CN203070785U (en) * 2013-01-14 2013-07-17 上海核工程研究设计院 Integrated reactor with double-layer structure on top
US9982785B2 (en) * 2013-02-05 2018-05-29 Shimadzu Corporation Pressure control valve and control valve
JP6199571B2 (en) 2013-02-12 2017-09-20 株式会社東芝 Reactor pressure vessel decompression equipment and main steam relief safety valve drive
DE102013210458A1 (en) * 2013-02-20 2014-08-21 Robert Bosch Gmbh Valve device i.e. main stream valve, for use in hydraulic hybrid power train i.e. hydraulic machine, of motor car, has main valve provided with pilot valve and limited by valve lift of pilot valve
DE102013205525A1 (en) 2013-03-27 2014-10-02 Areva Gmbh Venting system for the containment of a nuclear facility
CN105719706A (en) * 2014-12-01 2016-06-29 上海核工程研究设计院 Small reactor passive core cooling system
CN204922130U (en) * 2015-08-17 2015-12-30 成都国光电子仪表有限责任公司 Do benefit to decompression than natural gas relief pressure valve of adjusting
CN206958266U (en) * 2017-05-02 2018-02-02 华北电力大学 A kind of passive valve
GB201820330D0 (en) 2018-12-13 2019-01-30 Rolls Royce Plc Depressurisation valve
TR201904397A2 (en) * 2019-03-25 2020-10-21 İslam Pural İsmai̇l Double security safety valve.
CN112923109B (en) * 2021-03-22 2024-04-09 上海核工程研究设计院股份有限公司 Safety pressure relief valve system
CN214889122U (en) * 2021-03-22 2021-11-26 上海核工程研究设计院有限公司 Safety relief valve door system

Also Published As

Publication number Publication date
WO2022199513A1 (en) 2022-09-29
JP7504309B2 (en) 2024-06-21
CN112923109A (en) 2021-06-08
CN112923109B (en) 2024-04-09

Similar Documents

Publication Publication Date Title
JP2024511094A (en) Pressure reducing valve system and pressure reducing method
JP7162126B2 (en) Valve device for gaseous medium and tank device for storing gaseous medium
CN102147028B (en) Low-pressure pilot operated safety valve
CN101275685B (en) Emulsifiable solution medium large flow safety valve
WO2022268228A1 (en) Gas-liquid linkage actuating mechanism for main-steam isolation valve of nuclear power plant
CN214889122U (en) Safety relief valve door system
JP4084644B2 (en) High pressure solenoid valve
CN108488454B (en) Pipeline pressure relief system
US6945272B2 (en) Passively actuated valve
CN108980444A (en) Rotating solenoid valve
EP3786501B1 (en) Solenoid valve
CN210800162U (en) Pilot operated safety valve
CN2037419U (en) Leader type safe vlave
CN207064957U (en) A kind of gravity reduction formula pipeline emergency set
CN106286968B (en) Ultrahigh pressure equipment, valve device and valve device control method
TR2023011278T2 (en) Pressure Relief Valve System and Pressure Relief Method
CN201818856U (en) Pressure release valve for water attack protection
US20200271080A1 (en) Device for controlling an injector
CN107339540A (en) A kind of gravity reduction formula pipeline emergency set
CN220668427U (en) Gate valve with pressure protection valve
CN216306896U (en) Pilot operated safety valve
CN213211728U (en) Passive automatic runner opening device
CN219327817U (en) Main valve of pressure relief valve
CN209294460U (en) A kind of external bypass valve pressure relief of fixing ball valve
CN118202143A (en) Fuel injector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240611

R150 Certificate of patent or registration of utility model

Ref document number: 7504309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150