JP2024510119A - ニューラルネットワークを介した疾患の診断結果を用いた予後予測方法及びそのシステム - Google Patents
ニューラルネットワークを介した疾患の診断結果を用いた予後予測方法及びそのシステム Download PDFInfo
- Publication number
- JP2024510119A JP2024510119A JP2023551760A JP2023551760A JP2024510119A JP 2024510119 A JP2024510119 A JP 2024510119A JP 2023551760 A JP2023551760 A JP 2023551760A JP 2023551760 A JP2023551760 A JP 2023551760A JP 2024510119 A JP2024510119 A JP 2024510119A
- Authority
- JP
- Japan
- Prior art keywords
- disease
- biological image
- diagnosis result
- onset area
- neural network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7271—Specific aspects of physiological measurement analysis
- A61B5/7275—Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/107—Measuring physical dimensions, e.g. size of the entire body or parts thereof
- A61B5/1079—Measuring physical dimensions, e.g. size of the entire body or parts thereof using optical or photographic means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/26—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/40—ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/50—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/70—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20021—Dividing image into blocks, subimages or windows
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30024—Cell structures in vitro; Tissue sections in vitro
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30081—Prostate
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/03—Recognition of patterns in medical or anatomical images
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Pathology (AREA)
- Theoretical Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Artificial Intelligence (AREA)
- Quality & Reliability (AREA)
- Multimedia (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Physiology (AREA)
- Psychiatry (AREA)
- Signal Processing (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (6)
- プロセッサ、及びニューラルネットワークを記憶する記憶装置を含むシステムによって実現される予後予測方法であって、
前記システムが生体画像を入力されるステップと、
前記システムが、入力された生体画像に対して、前記生体画像で疾患が発現した発症領域が判定された発症領域診断結果を生成するステップと、
前記システムが、前記生体画像上で全組織のサイズに対応する第1の情報、及び前記診断結果に基づいて前記生体画像上で発症領域のサイズに対応する第2の情報を判定し、判定結果に基づいた予後予測情報を生成するステップと、
を含み、
前記システムが、入力された生体画像に対して、前記生体画像で疾患が発現した発症領域が判定された発症領域診断結果を生成するステップは、
前記生体画像が所定のサイズに分割された所定のパッチのそれぞれに対して疾患が発現したか否かの判定結果に基づいて前記発症領域診断結果を生成するか、又は前記パッチのそれぞれに対して、パッチのうち疾患が発現した領域をセグメンテーションした結果に基づいて前記発症領域診断結果を生成する、ニューラルネットワークを介した疾患の診断結果を用いた予後予測方法。 - 前記システムが、入力された生体画像に対して、前記生体画像で疾患が発現した発症領域が判定された発症領域診断結果を生成するステップは、
前記疾患が発現したとき、発現した疾患の状態が複数のクラスに区分される場合、前記システムが各クラス毎に発症領域診断結果を生成するステップを含み、
前記システムが、前記生体画像上で全組織のサイズに対応する第1の情報、及び前記診断結果に基づいて前記生体画像上で発症領域のサイズに対応する第2の情報を判定し、判定結果に基づいた予後予測情報を生成するステップは、
前記システムが、前記発症領域診断結果に基づいて各クラス毎に前記生体画像上で発症領域のサイズに対応する第2の情報を判定することを特徴とする、請求項1に記載のニューラルネットワークを介した疾患の診断結果を用いた予後予測方法。 - 前記予後予測情報は、
前記全組織のサイズに対する前記発症領域のサイズに対応する発現割合に関する情報を含む、請求項1に記載のニューラルネットワークを介した疾患の診断結果を用いた予後予測方法。 - データ処理装置に設置され、請求項1ないし請求項3のいずれか一項に記載の方法を行うための媒体に記録されたコンピュータプログラム。
- プロセッサ、及びニューラルネットワークを記憶する記憶装置を含む予後予測のためのシステムであって、
プロセッサと、
前記プロセッサによって駆動されるプログラム及びニューラルネットワークを記憶するメモリと、
を含み、
前記プロセッサは、前記プログラムを駆動することによって、
生体画像を入力され、生体画像に対して、前記生体画像で疾患が発現した発症領域が判定された発症領域診断結果を生成し、前記生体画像上で全組織のサイズに対応する第1の情報、及び前記診断結果に基づいて前記生体画像上で発症領域のサイズに対応する第2の情報を判定し、判定結果に基づいた予後予測情報を生成し、
前記生体画像が所定のサイズに分割された所定のパッチのそれぞれに対して疾患が発現したか否かの判定結果に基づいて前記発症領域診断結果を生成するか、又は前記パッチのそれぞれに対して、パッチのうち疾患が発現した領域をセグメンテーションした結果に基づいて前記発症領域診断結果を生成する、ニューラルネットワークを介した疾患の診断結果を用いた予後予測のためのシステム。 - 前記プロセッサは、前記プログラムを駆動することによって、
前記疾患が発現したとき、発現した疾患の状態が複数のクラスに区分される場合、各クラス毎に発症領域診断結果を生成し、
前記発症領域診断結果に基づいて各クラス毎に前記生体画像上で発症領域のサイズに対応する第2の情報を判定することを特徴とする、請求項5に記載のニューラルネットワークを介した疾患の診断結果を用いた予後予測のためのシステム。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2021-0034257 | 2021-03-16 | ||
KR20210034257 | 2021-03-16 | ||
KR1020210141101A KR102723336B1 (ko) | 2021-03-16 | 2021-10-21 | 뉴럴 네트워크를 통한 질병의 진단결과를 이용한 예후예측방법 및 그 시스템 |
KR10-2021-0141101 | 2021-10-21 | ||
PCT/KR2022/003547 WO2022197045A1 (ko) | 2021-03-16 | 2022-03-14 | 뉴럴 네트워크를 통한 질병의 진단결과를 이용한 예후예측방법 및 그 시스템 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2024510119A true JP2024510119A (ja) | 2024-03-06 |
JP7628733B2 JP7628733B2 (ja) | 2025-02-12 |
Family
ID=83320773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023551760A Active JP7628733B2 (ja) | 2021-03-16 | 2022-03-14 | ニューラルネットワークを介した疾患の診断結果を用いた予後予測方法及びそのシステム |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240156416A1 (ja) |
EP (1) | EP4293685A4 (ja) |
JP (1) | JP7628733B2 (ja) |
WO (1) | WO2022197045A1 (ja) |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2017345812B2 (en) | 2016-10-21 | 2019-12-05 | Nantomics, Llc | Digital histopathology and microdissection |
KR102054350B1 (ko) | 2018-01-09 | 2019-12-10 | (주) 가나테크엠 | 무선조광기를 이용한 조명 제어 시스템 및 방법 |
WO2019231844A1 (en) | 2018-05-27 | 2019-12-05 | Elucid Bioimaging Inc. | Methods and systems for utilizing quantitative imaging |
KR102174379B1 (ko) | 2018-08-27 | 2020-11-04 | 주식회사 딥바이오 | 세그멘테이션을 수행하는 뉴럴 네트워크를 이용한 질병 진단 시스템 및 방법 |
KR102257904B1 (ko) * | 2018-11-22 | 2021-05-28 | 주식회사 셀바스에이아이 | 병변 예측 방법 및 이를 이용한 병변 진단용 디바이스 |
US10811135B2 (en) * | 2018-12-27 | 2020-10-20 | General Electric Company | Systems and methods to determine disease progression from artificial intelligence detection output |
KR102236948B1 (ko) * | 2019-01-25 | 2021-04-06 | 주식회사 딥바이오 | 준-지도학습을 이용하여 질병의 발병 영역에 대한 어노테이션을 수행하기 위한 방법 및 이를 수행하는 진단 시스템 |
WO2020261183A1 (en) | 2019-06-25 | 2020-12-30 | Owkin Inc. | Systems and methods for image preprocessing |
KR102329546B1 (ko) * | 2019-07-13 | 2021-11-23 | 주식회사 딥바이오 | 뉴럴 네트워크 및 비국소적 블록을 이용하여 세그멘테이션을 수행하는 질병 진단 시스템 및 방법 |
-
2022
- 2022-03-14 WO PCT/KR2022/003547 patent/WO2022197045A1/ko active Application Filing
- 2022-03-14 JP JP2023551760A patent/JP7628733B2/ja active Active
- 2022-03-14 US US18/282,202 patent/US20240156416A1/en active Pending
- 2022-03-14 EP EP22771711.3A patent/EP4293685A4/en active Pending
Also Published As
Publication number | Publication date |
---|---|
WO2022197045A1 (ko) | 2022-09-22 |
EP4293685A4 (en) | 2025-01-08 |
JP7628733B2 (ja) | 2025-02-12 |
EP4293685A1 (en) | 2023-12-20 |
US20240156416A1 (en) | 2024-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220237788A1 (en) | Multiple instance learner for tissue image classification | |
Goldenberg et al. | A new era: artificial intelligence and machine learning in prostate cancer | |
JP7146300B2 (ja) | ツーフェーズ疾病診断システム及び該方法 | |
JP7216447B2 (ja) | セグメンテーションを行うニューラルネットワークを用いた疾病診断システム及び方法 | |
CN115668284A (zh) | 基于空间特征分析的病理预测 | |
CN116157834A (zh) | 使用机器学习技术评定数字病理学图像中的特征的异质性 | |
CN114445670B (zh) | 图像处理模型的训练方法、装置、设备及存储介质 | |
US20240087122A1 (en) | Detecting tertiary lymphoid structures in digital pathology images | |
JP7299658B2 (ja) | ニューラルネットワーク及び非局所的ブロックを用いてセグメンテーションを行う疾病診断システム及び方法 | |
CN112740335A (zh) | 基于神经网络的疾病诊断系统和方法 | |
US20240086460A1 (en) | Whole slide image search | |
Wu et al. | Aro: a machine learning approach to identifying single molecules and estimating classification error in fluorescence microscopy images | |
EP3819910A2 (en) | Disease diagnosis system and method using multiple color models and neural network | |
CN117524483A (zh) | 基于病理组学标签预测sclc患者预后的方法及系统 | |
JP7109815B2 (ja) | デュアルクラスに対応できる疾病診断システム及び該方法 | |
CN117015800A (zh) | 针对全切片图像的基于注意力的多实例学习 | |
US20240104948A1 (en) | Tumor immunophenotyping based on spatial distribution analysis | |
JP2024510119A (ja) | ニューラルネットワークを介した疾患の診断結果を用いた予後予測方法及びそのシステム | |
Taguelmimt et al. | Uncertainty-aware deep learning classification for mri-based prostate cancer detection | |
CN120092302A (zh) | 用于对患者结果的多模态预测的系统和方法 | |
KR102723336B1 (ko) | 뉴럴 네트워크를 통한 질병의 진단결과를 이용한 예후예측방법 및 그 시스템 | |
Monabbati et al. | Automated analysis of computerized morphological features of cell clusters associated with malignancy on bile duct brushing whole slide images | |
Chen et al. | An interpretable Algorithm for uveal melanoma subtyping from whole slide cytology images | |
US20230298753A1 (en) | Method for annotating pathogenic site of disease by means of semi- supervised learning, and diagnosis system for performing same | |
JP2024521070A (ja) | 地図状萎縮進行予測および差分勾配活性化マップ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20231013 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240724 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240802 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20241029 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20250110 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20250123 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7628733 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |