JP2024502219A - System and method for improving water quality in dehydration tower of high purity terephthalic acid equipment - Google Patents

System and method for improving water quality in dehydration tower of high purity terephthalic acid equipment Download PDF

Info

Publication number
JP2024502219A
JP2024502219A JP2022544421A JP2022544421A JP2024502219A JP 2024502219 A JP2024502219 A JP 2024502219A JP 2022544421 A JP2022544421 A JP 2022544421A JP 2022544421 A JP2022544421 A JP 2022544421A JP 2024502219 A JP2024502219 A JP 2024502219A
Authority
JP
Japan
Prior art keywords
exhaust gas
condensate
water
heat exchange
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022544421A
Other languages
Japanese (ja)
Inventor
シュ ザオウ
ヨンパエン タン
ヤエン ガウ
カイシュアン マ
イパエン ザアン
ユアンルイ ルー
シャンナン ザアイ
タウ ヂョー
シャウリン シェ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianhua Institute of Chemical Machinery and Automation Co Ltd
Original Assignee
Tianhua Institute of Chemical Machinery and Automation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianhua Institute of Chemical Machinery and Automation Co Ltd filed Critical Tianhua Institute of Chemical Machinery and Automation Co Ltd
Publication of JP2024502219A publication Critical patent/JP2024502219A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/26Multiple-effect evaporating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/048Purification of waste water by evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0033Other features
    • B01D5/0036Multiple-effect condensation; Fractional condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0033Other features
    • B01D5/0039Recuperation of heat, e.g. use of heat pump(s), compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0033Other features
    • B01D5/0054General arrangements, e.g. flow sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • B01D5/006Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with evaporation or distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1406Multiple stage absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/16Treatment of water, waste water, or sewage by heating by distillation or evaporation using waste heat from other processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/255Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting
    • C07C51/265Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting having alkyl side chains which are oxidised to carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B7/00Combinations of two or more condensers, e.g. provision of reserve condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/103Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7027Aromatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/65Employing advanced heat integration, e.g. Pinch technology
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/18Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/04Flow arrangements
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/10Energy recovery

Abstract

高純度テレフタル酸装置の脱水塔の水質を改良するためのシステム及びその方法であって、従来技術の問題を解決するために、本発明は高純度テレフタル酸装置の脱水塔の水質を改良するためのシステムを提供し、前記システムは、脱水洗浄装置と、前記脱水洗浄装置の頂部と連通する排気ガス凝縮装置と、前記排気ガス凝縮装置と連通する水分離装置とを含み、本発明の有益な効果は以下のとおりであり、1)エネルギー消費を削減し、経済的利益が大きくなり、2)排気ガス凝縮装置は、加熱媒体として第Nm段の凝縮器によって生成された約0.05Mpaの低圧蒸気を加熱媒体として使用し、3)水分離塔は塔式の多重効用蒸発式水分離塔であり、作動媒体は水と低圧蒸気であり、その過程において有機相が含まれておらず、反応が安定し、本質的に安全であり、4)水分離塔の水は精製水と濃縮水であり、精製水は脱水塔の頂部に戻り、濃縮水は母液と混合された後に脱水塔に入り、脱水塔の効率を向上させ、水質を改良する。A system and method for improving the water quality of a dehydration tower of a high-purity terephthalic acid equipment.In order to solve the problems of the prior art, the present invention provides a system and method for improving the water quality of a dehydration tower of a high-purity terephthalic acid equipment. a system comprising: a dehydration and cleaning device; an exhaust gas condensation device communicating with the top of the dehydration and cleaning device; and a water separation device communicating with the exhaust gas condensation device; The effects are as follows: 1) Reduce energy consumption and have greater economic benefits; 2) The exhaust gas condensation device uses a low pressure of about 0.05 Mpa generated by the Nm stage condenser as the heating medium. 3) The water separation column is a column-type multiple effect evaporation type water separation column, the working medium is water and low-pressure steam, and the process does not contain any organic phase, and the reaction 4) The water in the water separation tower is purified water and concentrated water, the purified water returns to the top of the dehydration tower, and the concentrated water enters the dehydration tower after being mixed with the mother liquor. , improve the efficiency of dehydration tower and improve water quality.

Description

本発明は、高純度テレフタル酸装置の脱水塔の水質を改良するための方法に関し、より具体的にはPTA工業生産過程における酸化排気ガス復水を精製及び利用するシステム並びにその方法に関する。 The present invention relates to a method for improving the water quality of a dehydration tower of a high-purity terephthalic acid plant, and more specifically to a system and method for purifying and utilizing oxidized exhaust gas condensate in a PTA industrial production process.

PTA(高純度テレフタル酸)の調製及び生産過程において、排気ガス復水を精製し、排気ガス復水の精製は現在、一般的に抽出方法を使用し、即ち、中圧蒸気でPTA精製ユニットの精製母液(復水)を加熱した後、抽出剤パラキシリレン(英語の略語がPX、以下PXと呼ばれる)と共に抽出塔に加えて抽出し、抽出剤PXによって元の溶剤中の溶質(酢酸、PT酸などの有機部)をPX中に抽出してPX抽出相を形成し、そのうち、PX抽出相は酸化反応器に戻って反応し続け、ラフィネート相(元の溶剤中の酢酸、PT酸などの有機部の分離が完了した後の精製母液)にとって、従来の脱水塔によって精留過程を完了させ、水と酢酸の交換を実現し、酢酸蒸気は酢酸の復水として凝縮し、脱水塔の底部から反応器に戻って反応し続け、水は気化して水蒸気になり、酸化排気ガスは脱水塔の頂部から凝縮器に排出されて熱回収され、水蒸気は、他の目的のために復水に凝縮される。しかし、上記方法はいくつかの問題があり、1.上記技術はPX抽出技術を用い、抽出フローが複雑で、システムが巨大で、コストが高く、2.精製母液は元の溶液として、抽出過程において、抽出塔を塞ぐことを防止するために、母液を加熱する必要があり、加熱は3.5~4.5MPa(G)の中圧蒸気が必要であり、蒸気の消費が非常に高く、且つこの中圧蒸気は外界から供給される必要があり、装置のエネルギー消費と動作コストは大幅に増加し、3.抽出過程は、PX有機相と水相の物質移動過程であり、有機相が存在するため、システムの安全要件は水相よりも高く、建設費が増加する。 In the preparation and production process of PTA (high purity terephthalic acid), the exhaust gas condensate is purified, and the purification of the exhaust gas condensate currently generally uses the extraction method, that is, the PTA purification unit with medium pressure steam. After heating the purified mother liquor (condensate), it is added to an extraction column together with the extractant paraxylylene (English abbreviation: PX, hereinafter referred to as PX) and extracted. The organic parts such as acetic acid in the original solvent are extracted into PX to form a PX extraction phase, of which the PX extraction phase returns to the oxidation reactor and continues to react, and the raffinate phase (organic parts such as acetic acid, PT acid, etc. in the original solvent) is extracted into PX. For the purified mother liquor (after the separation of parts is completed), the rectification process is completed by the traditional dehydration tower, and the exchange of water and acetic acid is realized, and the acetic acid vapor is condensed as acetic acid condensate, and the distillation process is completed from the bottom of the dehydration tower. Returning to the reactor, the reaction continues, the water is vaporized and becomes steam, the oxidized exhaust gas is discharged from the top of the dehydration tower to the condenser for heat recovery, and the steam is condensed into condensate for other purposes. be done. However, the above method has several problems: 1. The above technology uses PX extraction technology, the extraction flow is complicated, the system is huge, and the cost is high.2. The purified mother liquor is used as the original solution, and during the extraction process, it is necessary to heat the mother liquor to prevent it from clogging the extraction tower, and heating requires medium pressure steam of 3.5 to 4.5 MPa (G). 2. The steam consumption is very high, and this medium pressure steam needs to be supplied from the outside world, which greatly increases the energy consumption and operating cost of the equipment; 3. The extraction process is a mass transfer process between the PX organic phase and the aqueous phase, and due to the presence of the organic phase, the safety requirements of the system are higher than the aqueous phase, which increases the construction cost.

本発明の目的は、高純度テレフタル酸装置の脱水塔の水質を改良するためのシステム及びその方法を提供することであり、該システム及びその対応する方法により、精製又は富化効果を果たす。 The object of the present invention is to provide a system and a method thereof for improving the water quality of a dehydration tower of a high-purity terephthalic acid plant, by means of which the system and its corresponding method achieve a purification or enrichment effect.

高純度テレフタル酸装置の脱水塔の水質を改良するためのシステムは、脱水洗浄装置と、前記脱水洗浄装置の頂部と連通する排気ガス凝縮装置と、前記排気ガス凝縮装置と連通する水分離装置とを含み、 A system for improving water quality in a dehydration tower of a high-purity terephthalic acid plant includes a dehydration cleaning device, an exhaust gas condensing device communicating with the top of the dehydration cleaning device, and a water separation device communicating with the exhaust gas condensing device. including;

前記脱水洗浄装置は、装置の頂部に位置する第1段精製水洗浄ユニット、装置の中部に位置する第2段濃縮水洗浄ユニット、及び/又は装置の下部に位置する第3段精製母液洗浄ユニットを含み、 The dehydration cleaning device includes a first stage purified water cleaning unit located at the top of the device, a second stage concentrated water cleaning unit located in the middle of the device, and/or a third stage purified mother liquor cleaning unit located at the bottom of the device. including;

前記排気ガス凝縮装置に、該システム内の酸化排気ガス凝縮器が初めて熱交換した後に得られた第1復水を盛るための第1高温復水ドラムと、二回目に熱交換した後に得られた第2復水を盛るための第2復水ドラムと、蒸気を導出するための第2蒸気通路とが接続され、 The exhaust gas condenser includes a first high-temperature condensate drum for containing the first condensate obtained after the first heat exchange of the oxidized exhaust gas condenser in the system, and a first high temperature condensate drum for containing the first condensate obtained after the second heat exchange of the oxidized exhaust gas condenser in the system. A second condensate drum for storing second condensate and a second steam passage for deriving steam are connected,

具体的には、前記排気ガス凝縮装置は、順次連通した1段以上の酸化排気ガス凝縮器で構成された第1酸化排気ガス凝縮システムと、第1酸化排気ガス凝縮システムの次の工程に位置する、順次連通した1段以上の酸化排気ガス凝縮器で構成された第2酸化排気ガス凝縮システムとを含み、前記第1酸化排気ガス凝縮システム内の各段の酸化排気ガス凝縮器はいずれも該システム内の酸化排気ガス凝縮器が熱交換した後に得られた第1復水を盛るための第1高温復水ドラムと連通し、前記第2酸化排気ガス凝縮システムの各段の酸化排気ガス凝縮器はいずれも該システム内の酸化排気ガス凝縮器が熱交換した後に得られた第2復水を盛るための第2復水ドラム及び蒸気を導出するための第2蒸気通路と連通し、そのうち、テールに設けられた酸化排気ガス凝縮器に排気ガス排出口が設けられ、 Specifically, the exhaust gas condensing device includes a first oxidizing exhaust gas condensing system composed of one or more stages of oxidizing exhaust gas condensers connected in sequence, and a first oxidizing exhaust gas condensing system located at a step subsequent to the first oxidizing exhaust gas condensing system. a second oxidizing exhaust gas condenser system comprising one or more stages of oxidizing exhaust gas condensers in sequential communication, wherein each stage of the oxidizing exhaust gas condenser in the first oxidizing exhaust gas condensing system The oxidizing exhaust gas condenser in the system communicates with a first high temperature condensate drum for storing the first condensate obtained after heat exchange, and the oxidizing exhaust gas of each stage of the second oxidizing exhaust gas condensing system The condenser is in communication with a second condensate drum for storing a second condensate obtained after heat exchange by the oxidized exhaust gas condenser in the system and a second steam passage for discharging steam; Eventually, an exhaust gas outlet was installed in the oxidized exhaust gas condenser installed in the tail.

前記水分離装置は、前記第2復水を精製して分離させる多重効用蒸発ユニットと、分離して精製した後の精製水出口と、濃縮水出口とを含み、前記精製水出口は精製水管路を介して前記第1段精製水洗浄ユニットと連通し、前記第2復水ドラムは第2復水管路を介して一次効用蒸発ユニットの底部と連通して復水を分離させ、前記第2蒸気通路は第2蒸気管路を介して一次効用蒸発ユニット内に伸びて復水を分離させて熱交換用熱源を提供し、前記濃縮水出口は濃縮水管路を介して前記第2段濃縮水洗浄ユニットと連通し、前記精製水管路に精製水熱交換器が設けられ、前記第1高温復水ドラムは高温復水管路を介して前記精製水熱交換器を通して熱交換を行い、前記濃縮水管路に濃縮水熱交換器が設けられ、前記第1高温復水ドラムは第2高温復水管路を介して前記濃縮水熱交換器を通して熱交換を行う。 The water separation device includes a multi-effect evaporation unit that purifies and separates the second condensate, a purified water outlet after separation and purification, and a concentrated water outlet, and the purified water outlet is connected to a purified water pipe. The second condensate drum communicates with the bottom of the primary effect evaporation unit through a second condensate line to separate the condensate and the second steam A passageway extends into the primary effect evaporation unit via a second steam line to separate condensate and provide a heat source for heat exchange, and the retentate outlet connects to the second stage concentrate water wash via a concentrate water line. A purified water heat exchanger is provided in the purified water line in communication with the unit, and the first high temperature condensate drum exchanges heat through the purified water heat exchanger via the high temperature condensate line, and the concentrated water line is connected to the concentrated water line. is provided with a condensate water heat exchanger, and the first high temperature condensate drum exchanges heat through the condensate water heat exchanger via a second high temperature condensate pipe.

更に、前記脱水洗浄装置は脱水洗浄塔であり、前記脱水洗浄塔の底部はPTA酸化反応器と連通し、洗浄後の濃い反応液は酸化反応器に戻って反応し続け、そのうち、循環ポンプを用いることができる。 Furthermore, the dehydration and cleaning device is a dehydration and cleaning tower, the bottom of the dehydration and cleaning tower communicates with the PTA oxidation reactor, and the thick reaction liquid after cleaning returns to the oxidation reactor to continue reacting, and the circulation pump is Can be used.

更に、前記第1段精製水洗浄ユニット、第2段濃縮水洗浄ユニット及び第3段精製母液洗浄ユニットにノズルがそれぞれ設けられるため、スプレーの手段で排気ガスを洗浄する。 Furthermore, since the first-stage purified water cleaning unit, the second-stage concentrated water cleaning unit, and the third-stage purified mother liquor cleaning unit are each provided with a nozzle, the exhaust gas is cleaned by means of spraying.

更に、前記第1酸化排気ガス凝縮システムは、1~4段の酸化排気ガス凝縮器を含み、好ましくは3段である。 Further, the first oxidizing exhaust gas condensing system includes 1 to 4 stages of oxidizing exhaust gas condensers, preferably 3 stages.

更に、前記第2酸化排気ガス凝縮システムは、1~4段の酸化排気ガス凝縮器を含み、好ましくは3段である。 Further, the second oxidizing exhaust gas condensation system includes 1 to 4 stages of oxidizing exhaust gas condensers, preferably 3 stages.

更に、水分離装置は水分離塔であり、前記塔本体内に前記復水を精製するための蒸発ユニットが設けられ、前記蒸発ユニットの下方に最終効用凝縮ユニットが設けられ、前記最終効用凝縮ユニットの底部に真空ポンプが接続される。前記水分離塔は、降下膜蒸発の水分離塔であってもよく、上昇膜蒸発の水分離塔であってもよい。 Furthermore, the water separation device is a water separation tower, and an evaporation unit for purifying the condensate is provided in the tower body, a final effect condensation unit is provided below the evaporation unit, and the final effect condensation unit A vacuum pump is connected to the bottom of the The water separation tower may be a falling film evaporation water separation tower or a rising film evaporation water separation tower.

好ましくは、前記蒸発ユニットは、一次効用蒸発ユニットと二次効用蒸発ユニットとを含み、前記一次効用蒸発ユニットは第2復水入口と第1熱交換チャンバとを含み、前記第1熱交換チャンバの上方に、気相が次の効用蒸発ユニットに入るための第1蒸気通路及び液相が通過して次の効用蒸発ユニットに流れるための第1降液管が接続され、前記第1降液管の底部に第1ループ状装置が設けられ、前記二次効用蒸発ユニットは、第2熱交換チャンバを含み、前記第2熱交換チャンバの上方に、復水が熱交換した後に気相が通過するための第2蒸気通路及び液相が通過するための第2降液管が設けられ、前記第2降液管の底部に第2ループ状装置が設けられ、前記第2熱交換チャンバの下方に、熱交換した後に復水が次の効用部材に流れるための第1復水通路が設けられ、前記第1復水通路の底部に第1U字管が設けられ、前記第1ループ状装置は第2熱交換チャンバと第2ミスト除去器との間に位置する。 Preferably, the evaporation unit includes a first effect evaporation unit and a second effect evaporation unit, the first effect evaporation unit includes a second condensate inlet and a first heat exchange chamber, and the first effect evaporation unit includes a second condensate inlet and a first heat exchange chamber. A first vapor passage for the gas phase to enter the next effect evaporation unit and a first downcomer pipe for the liquid phase to pass through and flow to the next effect evaporation unit are connected upwardly, said first downcomer pipe a first loop-like device is provided at the bottom of the secondary effect evaporation unit, the secondary effect evaporation unit including a second heat exchange chamber, above the second heat exchange chamber, through which the gas phase passes after the condensate undergoes heat exchange; A second vapor passage for the passage of the liquid phase and a second downcomer for passing the liquid phase are provided, and a second loop-like device is provided at the bottom of the second downcomer and below the second heat exchange chamber. , a first condensate passage is provided for the condensate to flow to the next utility member after heat exchange, a first U-shaped pipe is provided at the bottom of the first condensate passage, and the first loop-shaped device is provided with a first U-shaped pipe. located between the second heat exchange chamber and the second mist remover.

高純度テレフタル酸装置の脱水塔の水質を改良するための方法は、 The method for improving the water quality in the dehydration tower of high purity terephthalic acid equipment is as follows:

1)反応排気ガスは酸化反応器の底部から排出された後、第3段精製母液洗浄ユニットの下方に入り、反応した排気ガスは、上昇過程において、まず、第3段精製母液洗浄ユニットを介して精製母液でスプレーして洗浄し、次に、第2段濃縮水洗浄ユニットを介して濃縮水でスプレーして洗浄し、最後に、第1段精製水洗浄ユニットを介して精製水でスプレーして洗浄するステップと、 1) After the reaction exhaust gas is discharged from the bottom of the oxidation reactor, it enters below the third-stage purified mother liquor washing unit, and in the ascending process, the reacted exhaust gas first passes through the third-stage purified mother liquor washing unit. then spray and wash with purified mother liquor through the second stage concentrated water washing unit, then spray and wash with concentrated water through the second stage concentrated water washing unit, and finally spray with purified water through the first stage purified water washing unit. a step of cleaning the

2)脱水塔で洗浄した反応排気ガスは、排気ガス凝縮装置の頂部から排出された後、まず、第1段酸化排気ガス凝縮器に入り、次に、後の他の酸化排気ガス凝縮器に順次入って熱交換して冷却し、一部の排気ガスは復水、第1復水に変わり、各段の酸化排気ガス凝縮器で生成された第1復水は管路を介して第1高温復水ドラムに流れ、第1酸化排気ガス凝縮システムで凝縮した後、反応排気ガスは、次に、第2酸化排気ガス凝縮システムに入って凝縮し続け、第1酸化排気ガス凝縮システムの凝縮処理によって第2復水を形成し、続いて、管路を介して第2復水ドラム中に入り、凝縮しない第2蒸気を上向きに排出するステップと、 2) After the reaction exhaust gas cleaned by the dehydration tower is discharged from the top of the exhaust gas condensing device, it first enters the first stage oxidation exhaust gas condenser, and then passes to the other oxidation exhaust gas condenser later. The exhaust gas enters sequentially and is cooled by heat exchange, and some of the exhaust gas turns into condensate and first condensate. After flowing to the high temperature condensate drum and condensing in the first oxidizing exhaust gas condensation system, the reaction exhaust gas then enters the second oxidizing exhaust gas condensing system to continue condensing and condensing in the first oxidizing exhaust gas condensing system. forming a second condensate by processing and subsequently entering a second condensate drum via a conduit and discharging the non-condensed second vapor upwardly;

3)第2復水は水分離塔内に入って持続的に分離させて精製するについて、底部に位置する真空ポンプを開け、第2復水は第2復水入口から第1熱交換チャンバに入り、蒸発に備え、第2蒸気は第2蒸気管路から第1熱交換チャンバ内の管路に入り、第1熱交換チャンバ内に、第2蒸気と第2復水は熱交換を行い、第2復水の一部は揮発して上向きにして第1蒸気通路に入り、第1蒸気通路を介して二次効用蒸発ユニット内の管路に入る蒸気は熱源として第1降液管から流れ出した復水と熱交換し、蒸気の熱量は復水へ流れ、最後に、蒸気が冷却して第1復水通路から流れ出し、その一部は第1U字管内に集まり、底部の精製水貯蔵領域に流れ、また、蒸発しない部分は第1降液管に入り、次の効用蒸発ユニットに入って蒸発し続け、又は第1ループ状装置に留まるステップと、 3) The second condensate enters the water separation column for continuous separation and purification. Open the vacuum pump located at the bottom, and the second condensate enters the first heat exchange chamber from the second condensate inlet. and in preparation for evaporation, the second steam enters the conduit in the first heat exchange chamber from the second steam conduit, and the second steam and the second condensate exchange heat in the first heat exchange chamber; A portion of the second condensate volatilizes upward and enters the first steam passage, and the steam that enters the pipeline in the secondary effect evaporation unit via the first steam passage flows out of the first downcomer as a heat source. The heat of the steam flows into the condensate, and finally, the steam is cooled and flows out of the first condensate passage, a part of which collects in the first U-shaped pipe and flows into the purified water storage area at the bottom. and the unevaporated portion enters the first downcomer and enters the next effect evaporation unit to continue evaporation or remains in the first loop device;

4)分離した後、精製水は精製水出口から管路を介して排出され、精製水熱交換器を通す場合、第1高温復水と熱交換し、精製水の温度が上昇し、その後、第1段精製水洗浄ユニットの洗浄液として反応排気ガスをスプレーし、濃縮水は濃縮水出口から管路を介して排出され、濃縮水熱交換器を通す場合、第1段濃縮水洗浄ユニットの洗浄液として反応排気ガスをスプレーして洗浄するステップとを含む。 4) After separation, the purified water is discharged from the purified water outlet through the pipe line, and when passing through the purified water heat exchanger, it exchanges heat with the first high temperature condensate, the temperature of the purified water increases, and then When the reaction exhaust gas is sprayed as a cleaning liquid for the first-stage purified water cleaning unit, and the concentrated water is discharged from the concentrated water outlet through a pipe and passes through a concentrated water heat exchanger, the cleaning liquid for the first-stage concentrated water cleaning unit is and cleaning by spraying reaction exhaust gas.

本発明の有益な効果は以下のとおりである。1)本発明は、水分離塔技術を用いて抽出技術に代え、抽出に必要な中圧蒸気を節約し、製品1トンあたりの外部蒸気消費を0.2トン以上削減し、エネルギー消費を大幅に削減し、経済的利益が大きくなり、2)排気ガス凝縮装置は、第N段の凝縮器(第Ni+1段~第N段の凝縮器の1段以上)で生成された約0.05Mpa(G)の低圧蒸気を加熱媒体として使用するだけで、エアコンプレッサシステムのタービンに入った低品位蒸気を大幅に低減させ、エアコンプレッサ(1台4役のプラント)の負荷を軽減させる。エアコンプレッサのプラントは、設計と製造の難しさが低下し、製造コストが大幅に低下し、1台4役のプラント中の冷却源損失が低下し、循環冷却水の使用量が低下し、3)水分離塔は塔式の多重効用蒸発式水分離塔であり、作動媒体は水と低圧蒸気であり、その過程において有機相が含まれておらず、反応が安定し、本質的に安全であり、4)水分離塔の水は精製水と濃縮水であり、精製水は脱水塔の頂部に戻り、濃縮水は母液と混合された後に脱水塔に入り、脱水塔の効率を大幅に向上させ、水質を改良し、5)システムを簡素化し、投資が低い。 The beneficial effects of the present invention are as follows. 1) The present invention uses water separation column technology to replace extraction technology, saves medium pressure steam required for extraction, reduces external steam consumption by more than 0.2 tons per ton of product, and significantly reduces energy consumption. 2) The exhaust gas condensing device reduces the amount of gas produced in the N mth stage condenser (N i+1 stage to one or more stages of the Nth stage condenser) to about 0. By simply using low-pressure steam of 0.5 MPa (G) as a heating medium, the amount of low-grade steam that enters the turbine of the air compressor system can be significantly reduced, reducing the load on the air compressor (a plant that performs four functions in one unit). Air compressor plants are less difficult to design and manufacture, significantly lower manufacturing costs, lower cooling source losses in a 4-in-1 plant, lower circulating cooling water usage, and 3. ) The water separation column is a column-type multi-effect evaporation water separation column, the working medium is water and low-pressure steam, and the process does not contain any organic phase, the reaction is stable, and it is essentially safe. Yes, 4) The water in the water separation tower is purified water and concentrated water, the purified water returns to the top of the dehydration tower, and the concentrated water enters the dehydration tower after being mixed with the mother liquor, greatly improving the efficiency of the dehydration tower. 5) Simplify the system and lower investment.

本発明のPTAショートフローの復水精製プロセスフローチャートである。1 is a flowchart of a PTA short flow condensate purification process of the present invention. 本発明のPTAショートフローの復水精製プロセスフローブロック図である。FIG. 2 is a flow block diagram of the PTA short flow condensate purification process of the present invention.

以下では、図面を参照しながら本発明を更に解釈及び説明する。 In the following, the invention will be further interpreted and explained with reference to the drawings.

図1に示すように、破線のボックスには、PTAを生産するための酸化反応器(01)があり、酢酸などを含む酸化反応器(01)にPTとエアを導入し、反応させて反応液を得て、反応溶液に対して、洗浄などの手順を行った後に反応物及び精製母液を得て、精製母液中には、酢酸、PT酸などの有機部が多く含まれるため、本発明によって提供された処理システムにおいて、精製母液を第3段精製母液洗浄ユニットのスプレー液として使用し、また、該反応は放熱反応であるため、反応過程において、大量の熱エネルギーを放出し、反応溶液の一部(反応排気ガス)は上向きにして管路から排出され、本発明の1つの目的は、反応排気ガスを富化した後に液体の形態に変更して改めて酸化反応器(01)中に戻すことである。 As shown in Figure 1, the dashed box contains an oxidation reactor (01) for producing PTA, and PT and air are introduced into the oxidation reactor (01) containing acetic acid, etc., and reacted. After obtaining the reaction solution and performing procedures such as washing, the reaction product and purified mother liquor are obtained.Since the purified mother liquor contains many organic moieties such as acetic acid and PT acid, the present invention In the treatment system provided by, the purified mother liquor is used as the spray liquid in the third stage purified mother liquor washing unit, and since the reaction is an exothermic reaction, a large amount of thermal energy is released during the reaction process, and the reaction solution A part of the reaction exhaust gas (reaction exhaust gas) is discharged upward from the pipe, and one object of the present invention is to enrich the reaction exhaust gas and then change it into a liquid form and re-inject it into the oxidation reactor (01). It is to bring it back.

高純度テレフタル酸装置の脱水塔の水質を改良するためのシステムは、脱水洗浄装置1と、前記脱水洗浄装置1の頂部と連通する排気ガス凝縮装置2と、前記排気ガス凝縮装置2と連通する水分離装置3とを含み、 A system for improving the water quality of a dehydration tower of a high-purity terephthalic acid plant includes a dehydration cleaning device 1, an exhaust gas condensing device 2 communicating with the top of the dehydration cleaning device 1, and an exhaust gas condensing device 2 communicating with the exhaust gas condensing device 2. a water separator 3;

前記脱水洗浄装置1は、装置の頂部に位置する第1段精製水洗浄ユニット11、装置の中部に位置する第2段濃縮水洗浄ユニット12、及び/又は装置の下部に位置する第3段精製母液洗浄ユニット13を含み、各ユニットはいずれもスプレーの手段で洗浄し、 The dehydration cleaning device 1 includes a first stage purified water cleaning unit 11 located at the top of the device, a second stage concentrated water cleaning unit 12 located in the middle of the device, and/or a third stage purified water cleaning unit 12 located at the bottom of the device. It includes a mother liquor cleaning unit 13, each unit is cleaned by means of spraying,

反応排気ガスは酸化反応器(01)の底部から排出された後、脱水洗浄装置1内に導入され、導入口は第3段精製母液洗浄ユニット13の下方に位置し、反応した排気ガスは、上昇過程において、まず、第3段精製母液洗浄ユニット13を介して精製母液でスプレーして洗浄し、次に、第2段濃縮水洗浄ユニット12を介して濃縮水でスプレーして洗浄し、最後に、第1段精製水洗浄ユニット11を介して精製水でスプレーして洗浄し、三回スプレーして洗浄した後、反応排気ガス中の大部分の酢酸、PT酸などの有機部が脱水洗浄装置1の底部に集まり、該部分の富化液体は循環ポンプ14の作用で改めて酸化反応器(01)に戻り、反応し続け、少量の酢酸、PT酸などの有機部を含む洗浄後の反応排気ガスは、脱水洗浄装置1の頂部から排出され、次の工程に入って他の処理を行う。 After the reaction exhaust gas is discharged from the bottom of the oxidation reactor (01), it is introduced into the dehydration cleaning device 1, the inlet is located below the third stage purification mother liquor cleaning unit 13, and the reacted exhaust gas is In the rising process, first, the purified mother liquor is sprayed and washed through the third stage purified mother liquor washing unit 13, then the concentrated water is sprayed and washed through the second stage concentrated water washing unit 12, and finally After spraying and cleaning with purified water through the first stage purified water cleaning unit 11, and after spraying and cleaning three times, most of the organic parts such as acetic acid and PT acid in the reaction exhaust gas are removed by dehydration and cleaning. The enriched liquid in this part collects at the bottom of the apparatus 1 and returns to the oxidation reactor (01) again by the action of the circulation pump 14, where it continues to react, and the reaction after washing contains a small amount of organic parts such as acetic acid and PT acid. The exhaust gas is discharged from the top of the dehydration cleaning device 1 and enters the next step for other processing.

好ましくは、前記脱水洗浄装置1は脱水洗浄塔であり、前記脱水洗浄塔の底部はPTA酸化反応器と連通し、洗浄後の濃い反応液(大量の酢酸、PT酸などの有機部を含有する)は酸化反応器に戻って反応し続け、そのうち、循環ポンプ14を用いることができる。 Preferably, the dehydration and cleaning device 1 is a dehydration and cleaning tower, and the bottom of the dehydration and cleaning tower is in communication with a PTA oxidation reactor, and the concentrated reaction liquid (containing a large amount of organic parts such as acetic acid and PT acid) after cleaning is preferably ) returns to the oxidation reactor and continues to react, of which the circulation pump 14 can be used.

前記排気ガス凝縮装置2は、順次連通した1段以上の酸化排気ガス凝縮器で構成された第1酸化排気ガス凝縮システム21と、第1酸化排気ガス凝縮システム21の次の工程に位置する、順次連通した1段以上の酸化排気ガス凝縮器で構成された第2酸化排気ガス凝縮システム22とを含み、前記第1酸化排気ガス凝縮システム21内の各段の酸化排気ガス凝縮器はいずれも該システム内の酸化排気ガス凝縮器が熱交換した後に得られた第1復水を盛るための第1高温復水ドラム4と連通し、前記第2酸化排気ガス凝縮システム22の各段の酸化排気ガス凝縮器はいずれも該システム内の酸化排気ガス凝縮器が熱交換した後に得られた第2復水を盛るための第2復水ドラム5及び蒸気を導出するための第2蒸気通路と連通し、そのうち、テールに設けられた酸化排気ガス凝縮器に排気ガス排出口が設けられ、 The exhaust gas condensing device 2 is located at the next step of the first oxidizing exhaust gas condensing system 21, which is composed of one or more stages of oxidizing exhaust gas condensers connected in sequence, and the first oxidizing exhaust gas condensing system 21. a second oxidizing exhaust gas condensing system 22 comprising one or more stages of oxidizing exhaust gas condensers connected in sequence, each stage of the oxidizing exhaust gas condenser in the first oxidizing exhaust gas condensing system 21 The oxidizing exhaust gas condenser in the system communicates with a first high temperature condensate drum 4 for storing the first condensate obtained after heat exchange, and the oxidizing exhaust gas condenser in each stage of the second oxidizing exhaust gas condensing system 22 Each of the exhaust gas condensers includes a second condensate drum 5 for storing the second condensate obtained after the oxidizing exhaust gas condenser in the system undergoes heat exchange, and a second steam passage for leading out steam. The exhaust gas outlet is connected to the oxidized exhaust gas condenser installed in the tail.

前記第1酸化排気ガス凝縮システム21は、1-N段の酸化排気ガス凝縮器を含み、好ましくは3段であり、図1は、2段の酸化排気ガス凝縮器を示し、各段の酸化排気ガス凝縮器に冷水入口211及び温水出口212が設けられる。 The first oxidizing exhaust gas condensing system 21 includes 1-N stages of oxidizing exhaust gas condensers, preferably three stages, and FIG. A cold water inlet 211 and a hot water outlet 212 are provided in the exhaust gas condenser.

図1では、脱水塔で洗浄した反応排気ガスは、排気ガス凝縮装置2の頂部から排出された後、まず、第1段酸化排気ガス凝縮器に入り、次に、後の他の酸化排気ガス凝縮器に順次入り、これらの酸化排気ガス凝縮器を流れる過程において、冷水入口211から流れ込んだ冷水と熱交換し、その後、冷水の温度が上昇するが、酸化排気ガス凝縮器内の反応排気ガスの温度が低下し、その一部が復水、第1復水に変わり、各段の酸化排気ガス凝縮器で生成された第1復水は管路を介して第1高温復水ドラム4に流れ、第1酸化排気ガス凝縮システム21で凝縮した後、反応排気ガスは、次に、第2酸化排気ガス凝縮システム22に入って凝縮し続け、第1酸化排気ガス凝縮システム21の凝縮処理により、その反応排気ガスの温度が低下し、圧力が低下する。 In Fig. 1, the reaction exhaust gas cleaned by the dehydration tower is discharged from the top of the exhaust gas condensing device 2, and then first enters the first stage oxidation exhaust gas condenser, and then the other oxidation exhaust gas after In the process of sequentially entering the condenser and flowing through these oxidizing exhaust gas condensers, it exchanges heat with the cold water that has flowed in from the cold water inlet 211, and then the temperature of the cold water increases, but the reaction exhaust gas in the oxidizing exhaust gas condenser temperature decreases, a part of which turns into condensate and first condensate, and the first condensate generated in the oxidizing exhaust gas condenser at each stage is sent to the first high-temperature condensate drum 4 via a pipe. After flowing and condensing in the first oxidizing exhaust gas condensation system 21 , the reaction exhaust gas then enters the second oxidizing exhaust gas condensing system 22 to continue condensing and is reduced by the condensation process of the first oxidizing exhaust gas condensing system 21 . , the temperature of the reaction exhaust gas decreases and the pressure decreases.

前記第2酸化排気ガス凝縮システム22は、1~4段の酸化排気ガス凝縮器を含み、好ましくは3段であり、図1は、3段の酸化排気ガス凝縮器を示し、第2酸化排気ガス凝縮システム22中の各酸化排気ガス凝縮器は冷水の熱交換を使用せず、正常に流れる過程において、反応排気ガスの一部は正常に第2復水に凝縮し、次に、管路を介して第2復水ドラム5中に入り、凝縮しない反応排気ガス(第2蒸気)は上向きに排出される。 The second oxidizing exhaust gas condensing system 22 includes 1 to 4 stages of oxidizing exhaust gas condensers, preferably 3 stages, and FIG. 1 shows a 3-stage oxidizing exhaust gas condenser; Each oxidized exhaust gas condenser in the gas condensation system 22 does not use cold water heat exchange, and in the normal flow process, a part of the reaction exhaust gas is normally condensed into the second condensate, and then the pipe The reaction exhaust gas (second steam) that does not condense is discharged upward.

前記水分離装置3は、前記第2復水を精製して分離させる多重効用蒸発ユニット(31、32、33…)と、分離して精製した後の精製水出口35と、濃縮水出口34とを含み、前記精製水出口35は精製水管路を介して前記第1段精製水洗浄ユニット11と連通し、前記第2復水ドラム5は第2復水管路を介して一次効用蒸発ユニットの底部と連通して復水を分離させ、前記第2蒸気通路は第2蒸気管路221を介して一次効用蒸発ユニット内に伸びて復水を分離させて熱交換用熱源を提供し、前記濃縮水出口34は濃縮水管路を介して前記第2段濃縮水洗浄ユニット12と連通し、前記精製水管路に精製水熱交換器352が設けられ、前記第1高温復水ドラム4は高温復水管路を介して前記精製水熱交換器352を通して熱交換を行い、前記濃縮水管路に濃縮水熱交換器351が設けられ、前記第1高温復水ドラム4は第2復水管路を介して前記濃縮水熱交換器351を通して熱交換を行う。 The water separation device 3 includes a multi-effect evaporation unit (31, 32, 33...) that purifies and separates the second condensate, a purified water outlet 35 after separation and purification, and a concentrated water outlet 34. , the purified water outlet 35 communicates with the first stage purified water washing unit 11 via a purified water line, and the second condensate drum 5 communicates with the bottom part of the primary effect evaporation unit via a second condensate line. the second steam passageway extends into the primary effect evaporation unit via a second steam line 221 to separate the condensate water and provide a heat source for heat exchange; The outlet 34 communicates with the second stage concentrated water cleaning unit 12 through a concentrated water pipe, the purified water pipe is provided with a purified water heat exchanger 352, and the first high temperature condensate drum 4 is connected to the high temperature condensate pipe. The concentrated water heat exchanger 351 is installed in the concentrated water pipe, and the first high temperature condensate drum 4 exchanges heat through the purified water heat exchanger 352 through the second condensate pipe. Heat exchange is performed through a water heat exchanger 351.

好ましくは、前記水分離装置は密閉水分離塔3であり、前記塔本体内に前記復水を精製するための蒸発ユニット(31、32、33…)が設けられ、前記蒸発ユニットの下方に最終効用凝縮ユニット34を有し、前記最終効用凝縮ユニット34の底部に真空ポンプが接続され、図1に示すように、前記蒸発ユニットは、一次効用蒸発ユニット31と二次効用蒸発ユニット32などとを含み、前記一次効用蒸発ユニット31は第2復水入口311と第1熱交換チャンバ312とを含み、第2復水入口311は一次効用蒸発ユニット31の底部に位置し、第2蒸気管路221を介して第2蒸気を第1熱交換チャンバ312に導入し、熱交換のために熱源を提供し、第2復水は第1熱交換チャンバ312内に第2蒸気と熱交換し、第2復水の一部は気化するため、水と他の有機物との分離を実現し、前記第1熱交換チャンバ312の上方に、気相が次の効用蒸発ユニットに入るための第1蒸気通路313及び液相が通過して次の効用蒸発ユニットに流れるための第1降液管314が接続され、前記第1降液管314の底部に第1ループ状装置315が設けられ、前記二次効用蒸発ユニット32は、第2熱交換チャンバ321を含み、前記熱交換チャンバ321の上方に、復水が熱交換した後に気相が通過するための第2蒸気通路323及び液相が通過するための第2降液管324が設けられ、前記第2降液管324の底部に第2ループ状装置325が設けられ、前記第2熱交換チャンバ32の下方に、熱交換した後に復水が次の効用部材に流れるための第1復水通路326が設けられ、前記第1復水通路326の底部に第1U字管327が設けられ、前記第1ループ状装置325は第2熱交換チャンバと第2ミスト除去器との間に位置する。水分離塔に入った蒸気は、好ましくは0.05MPa(G)の蒸気であり、また、任意の段の酸化排気ガス凝縮器によって生成された0.05~0.5MPa(G)の蒸気であってもよく、又は外界から導入された蒸気であってもよい。 Preferably, the water separation device is a closed water separation tower 3, and an evaporation unit (31, 32, 33...) for purifying the condensate is provided in the tower body, and a final water separation tower is provided below the evaporation unit. A vacuum pump is connected to the bottom of the final effect condensation unit 34, and as shown in FIG. The primary effect evaporation unit 31 includes a second condensate inlet 311 and a first heat exchange chamber 312, the second condensate inlet 311 is located at the bottom of the primary effect evaporation unit 31, and the second steam line 221 The second steam is introduced into the first heat exchange chamber 312 via the first heat exchange chamber 312 to provide a heat source for heat exchange, and the second condensate is introduced into the first heat exchange chamber 312 to exchange heat with the second steam, and the second A part of the condensate is vaporized to realize separation of water and other organic matter, and above the first heat exchange chamber 312 there is a first steam passage 313 for the gas phase to enter the next effect evaporation unit. A first downcomer 314 is connected through which the liquid phase passes and flows to the next effect evaporation unit, and a first loop device 315 is provided at the bottom of the first downcomer 314 to The evaporation unit 32 includes a second heat exchange chamber 321, and above the heat exchange chamber 321 there are a second steam passage 323 for the gas phase to pass through after the condensate has undergone heat exchange, and a second steam passage 323 for the liquid phase to pass through. A second downcomer pipe 324 is provided, and a second loop-shaped device 325 is provided at the bottom of the second downcomer pipe 324, and a second loop-shaped device 325 is provided below the second heat exchange chamber 32, so that the condensate can be transferred to the next after heat exchange. A first condensate passage 326 is provided for flowing to the utility member, a first U-tube 327 is provided at the bottom of the first condensate passage 326, and the first loop-shaped device 325 is connected to a second heat exchange chamber and a first U-tube 327. It is located between the two mist removers. The steam entering the water separation column is preferably 0.05 MPa (G) steam and also 0.05-0.5 MPa (G) steam produced by the oxidizing exhaust gas condenser of any stage. or it may be steam introduced from the outside world.

水分離塔内に、第2復水を持続的に分離させて精製する。底部に位置する真空ポンプ36を開け、第2復水は第2復水入口311から第1熱交換チャンバ312に入り、蒸発に備え、第2蒸気は第2蒸気管路221から第1熱交換チャンバ312内の管路に入り、第1熱交換チャンバ312内に、第2蒸気と第2復水は熱交換を行い、第2復水の一部は揮発して上向きにして第1蒸気通路313に入り、蒸発しない部分は第1降液管314に入り、次の効用蒸発ユニットに入って蒸発し続け、又は第1ループ状装置315に留まる。第1蒸気通路313を介して二次効用蒸発ユニット32内の管路に入った蒸気は熱源として第1降液管314から流れ出した復水と熱交換し、蒸気の熱料は復水へ流れ、最後に、蒸気が冷却して第1復水通路326から流れ出し、その一部は第1U字管327内に集まり、最後に、底部の精製水貯蔵領域に流れ、第1ループ状装置315と第1U字管327は各効用ユニットを仕切りし、このように、真空ポンプ36の作用で、上から下へ、圧力はますます低くなり、従って、第1ループ状装置315は、圧力差と熱交換の作用で、自己蒸発を行い、従って、水と他の物質との分離を実現する。分離した後、精製水は精製水出口35から管路を介して排出され、精製水熱交換器352を通す場合、第1高温復水と熱交換し、精製水の温度が上昇し、その後、第1段精製水洗浄ユニットの洗浄液として反応排気ガスをスプレーし、濃縮水は濃縮水出口34から管路を介して排出され、濃縮水熱交換器351を通す場合、第1段濃縮水洗浄ユニットの洗浄液として反応排気ガスをスプレーして洗浄する。新規な水分離塔で生成された濃縮水は脱水塔に入ることができ、更に、粗テレフタル酸(英語の略語がCTA、以下ではCTAと呼ばれる)溶剤として、プラントの洗浄液を交換することができる。 The second condensate is continuously separated and purified in the water separation column. The vacuum pump 36 located at the bottom is opened, and the second condensate enters the first heat exchange chamber 312 from the second condensate inlet 311 in preparation for evaporation, and the second steam enters the first heat exchange chamber from the second steam line 221. The second steam and the second condensate enter the pipe line in the chamber 312 and enter the first heat exchange chamber 312, and the second steam and the second condensate exchange heat, and a part of the second condensate evaporates and flows upward into the first steam passage. 313 and the unevaporated portion enters the first downcomer 314 and enters the next effect evaporation unit to continue evaporation, or remains in the first loop device 315. The steam entering the pipe line in the secondary effect evaporation unit 32 via the first steam passage 313 exchanges heat with the condensate flowing out from the first downcomer pipe 314 as a heat source, and the heating charge of the steam flows into the condensate. , Finally, the steam cools and flows out of the first condensate passage 326, a part of which collects in the first U-tube 327, and finally flows to the purified water storage area at the bottom and flows into the first loop device 315. The first U-tube 327 partitions each utility unit, and thus, under the action of the vacuum pump 36, the pressure becomes lower and lower from top to bottom, and therefore the first loop-shaped device 315 is able to handle the pressure difference and the heat Due to the action of exchange, self-evaporation occurs, thus realizing the separation of water and other substances. After separation, the purified water is discharged from the purified water outlet 35 through the pipe line, and when passing through the purified water heat exchanger 352, it exchanges heat with the first high temperature condensate, the temperature of the purified water increases, and then When the reaction exhaust gas is sprayed as a cleaning liquid for the first-stage purified water cleaning unit, and the concentrated water is discharged from the concentrated water outlet 34 through a pipe and passes through the concentrated water heat exchanger 351, the first-stage concentrated water cleaning unit The reaction exhaust gas is sprayed as a cleaning solution for cleaning. The concentrated water produced in the new water separation column can enter the dehydration column and can further replace the plant washing liquid as a crude terephthalic acid (English abbreviation is CTA, hereinafter referred to as CTA) solvent. .

システム全体において、図に示すように、実際のニーズに応じて、各種類のポンプ又は弁を合理的に取り付け、システムのスムーズ性を達成することができる。 In the whole system, according to the actual needs, various types of pumps or valves can be installed reasonably to achieve the smoothness of the system, as shown in the figure.

Claims (8)

高純度テレフタル酸装置の脱水塔の水質を改良するためのシステムであって、脱水洗浄装置と、前記脱水洗浄装置の頂部と連通する排気ガス凝縮装置と、前記排気ガス凝縮装置と連通する水分離装置とを含み、
前記脱水洗浄装置は、装置の頂部に位置する第1段精製水洗浄ユニット、装置の中部に位置する第2段濃縮水洗浄ユニット、及び/又は装置の下部に位置する第3段精製母液洗浄ユニットを含み、
前記排気ガス凝縮装置に、該システム内の酸化排気ガス凝縮器が初めて熱交換した後に得られた第1復水を盛るための第1高温復水ドラムと、二回目に熱交換した後に得られた第2復水を盛るための第2復水ドラムと、蒸気を導出するための第2蒸気通路とが接続され、
前記水分離装置は、前記第2復水を精製して分離させる多重効用蒸発ユニットと、分離して精製した後の精製水出口と、濃縮水出口とを含み、前記精製水出口は精製水管路を介して前記第1段精製水洗浄ユニットと連通し、前記第2復水ドラムは第2復水管路を介して一次効用蒸発ユニットの底部と連通して復水を分離させ、前記第2蒸気通路は第2蒸気管路を介して一次効用蒸発ユニット内に伸びて復水を分離させて熱交換用熱源を提供し、及び/又は前記濃縮水出口は濃縮水管路を介して前記第2段濃縮水洗浄ユニットと連通し、及び/又は前記精製水管路に精製水熱交換器が設けられ、前記第1高温復水ドラムは高温復水管路を介して前記精製水熱交換器を通して熱交換を行い、前記濃縮水管路に濃縮水熱交換器が設けられ、前記第1高温復水ドラムは第2高温復水管路を介して前記濃縮水熱交換器を通して熱交換を行うことを特徴とする、システム。
A system for improving water quality in a dehydration tower of a high-purity terephthalic acid plant, the system comprising: a dehydration cleaning device; an exhaust gas condensing device communicating with the top of the dehydration cleaning device; and a water separation device communicating with the exhaust gas condensing device. and a device;
The dehydration cleaning device includes a first stage purified water cleaning unit located at the top of the device, a second stage concentrated water cleaning unit located in the middle of the device, and/or a third stage purified mother liquor cleaning unit located at the bottom of the device. including;
The exhaust gas condenser includes a first high-temperature condensate drum for containing the first condensate obtained after the first heat exchange of the oxidized exhaust gas condenser in the system, and a first high temperature condensate drum for containing the first condensate obtained after the second heat exchange of the oxidized exhaust gas condenser in the system. A second condensate drum for storing second condensate and a second steam passage for deriving steam are connected,
The water separation device includes a multi-effect evaporation unit that purifies and separates the second condensate, a purified water outlet after separation and purification, and a concentrated water outlet, and the purified water outlet is connected to a purified water pipe. The second condensate drum communicates with the bottom of the primary effect evaporation unit through a second condensate line to separate the condensate and the second steam A passageway extends into the primary effect evaporation unit via a second steam line to separate condensate and provide a heat exchange source, and/or the retentate outlet connects to the second stage via a retentate line. A purified water heat exchanger is provided in communication with a concentrated water washing unit and/or in the purified water line, and the first high temperature condensate drum exchanges heat through the purified water heat exchanger via the high temperature condensate line. and a concentrated water heat exchanger is installed in the concentrated water pipe, and the first high-temperature condensate drum exchanges heat through the concentrated water heat exchanger via a second high-temperature condensate pipe. system.
前記排気ガス凝縮装置は、順次連通した1段以上の酸化排気ガス凝縮器で構成された第1酸化排気ガス凝縮システムと、第1酸化排気ガス凝縮システムの次の工程に位置する、順次連通した1段以上の酸化排気ガス凝縮器で構成された第2酸化排気ガス凝縮システムとを含み、前記第1酸化排気ガス凝縮システム内の各段の酸化排気ガス凝縮器はいずれも該システム内の酸化排気ガス凝縮器が熱交換した後に得られた第1復水を盛るための第1高温復水ドラムと連通し、前記第2酸化排気ガス凝縮システムの各段の酸化排気ガス凝縮器はいずれも該システム内の酸化排気ガス凝縮器が熱交換した後に得られた第2復水を盛るための第2復水ドラム及び蒸気を導出するための第2蒸気通路と連通することを特徴とする、請求項1に記載の高純度テレフタル酸装置の脱水塔の水質を改良するためのシステム。 The exhaust gas condensing device includes a first oxidizing exhaust gas condensing system configured with one or more stages of oxidizing exhaust gas condensers connected in sequence; a second oxidizing exhaust gas condenser system comprising one or more stages of oxidizing exhaust gas condensers, each stage of the oxidizing exhaust gas condenser in the first oxidizing exhaust gas condensing system The oxidizing exhaust gas condensers in each stage of the second oxidizing exhaust gas condensing system are in communication with a first high temperature condensate drum for storing the first condensate obtained after the exhaust gas condenser undergoes heat exchange. characterized in that the oxidized exhaust gas condenser in the system communicates with a second condensate drum for storing the second condensate obtained after heat exchange and a second steam passage for deriving steam, A system for improving water quality in a dehydration tower of a high purity terephthalic acid plant according to claim 1. 前記脱水洗浄装置は脱水洗浄塔であり、前記脱水洗浄塔の底部はPTA酸化反応器と連通し、洗浄後の濃い反応液は酸化反応器に戻って反応し続けることを特徴とする、請求項1に記載の高純度テレフタル酸装置の脱水塔の水質を改良するためのシステム。 The dehydration and cleaning device is a dehydration and cleaning tower, the bottom of the dehydration and cleaning tower communicates with a PTA oxidation reactor, and the thick reaction solution after cleaning returns to the oxidation reactor to continue reacting. A system for improving water quality in a dehydration tower of the high-purity terephthalic acid equipment according to item 1. 前記第1段精製水洗浄ユニット、第2段濃縮水洗浄ユニット及び第3段精製母液洗浄ユニットにノズルがそれぞれ設けられるため、スプレーの手段で排気ガスを洗浄することを特徴とする、請求項1に記載の高純度テレフタル酸装置の脱水塔の水質を改良するためのシステム。 Claim 1, wherein the first stage purified water cleaning unit, the second stage concentrated water cleaning unit, and the third stage purified mother liquor cleaning unit are each provided with a nozzle, so that the exhaust gas is cleaned by means of spraying. A system for improving water quality in a dehydration tower of a high-purity terephthalic acid equipment described in . 前記第1酸化排気ガス凝縮システムは、1~4段の酸化排気ガス凝縮器を含み、及び/又は前記第2酸化排気ガス凝縮システムは、1~4段の酸化排気ガス凝縮器を含むことを特徴とする、請求項1に記載の高純度テレフタル酸装置の脱水塔の水質を改良するためのシステム。 The first oxidizing exhaust gas condensation system includes 1 to 4 stages of oxidizing exhaust gas condensers, and/or the second oxidizing exhaust gas condensing system includes 1 to 4 stages of oxidizing exhaust gas condensers. A system for improving water quality in a dehydration tower of a high-purity terephthalic acid plant according to claim 1, characterized by: 水分離装置は水分離塔であり、前記塔本体内に前記復水を精製するための蒸発ユニットが設けられ、前記蒸発ユニットの下方に最終効用凝縮ユニットが設けられ、前記最終効用凝縮ユニットの底部に真空ポンプが接続されることを特徴とする、請求項1に記載の高純度テレフタル酸装置の脱水塔の水質を改良するためのシステム。 The water separation device is a water separation tower, and the tower body is provided with an evaporation unit for purifying the condensate, a final effect condensation unit is provided below the evaporation unit, and a bottom part of the final effect condensation unit is provided. The system for improving the water quality of a dehydration tower of a high-purity terephthalic acid equipment according to claim 1, characterized in that a vacuum pump is connected to the system. 前記蒸発ユニットは、一次効用蒸発ユニットと二次効用蒸発ユニットとを含み、前記一次効用蒸発ユニットは第2復水入口と第1熱交換チャンバとを含み、前記第1熱交換チャンバの上方に、気相が次の効用蒸発ユニットに入るための第1蒸気通路及び液相が通過して次の効用蒸発ユニットに流れるための第1降液管が接続され、前記第1降液管の底部に第1ループ状装置が設けられ、前記二次効用蒸発ユニットは、第2熱交換チャンバを含み、前記第2熱交換チャンバの上方に、復水が熱交換した後に気相が通過するための第2蒸気通路及び液相が通過するための第2降液管が設けられ、前記第2降液管の底部に第2ループ状装置が設けられ、前記第2熱交換チャンバの下方に、熱交換した後に復水が次の効用装置に流れるための第1復水通路が設けられ、前記第1復水通路の底部に第1U字管が設けられ、前記第1ループ状装置は第2熱交換チャンバと第2ミスト除去器との間に位置することを特徴とする、請求項6に記載の高純度テレフタル酸装置の脱水塔の水質を改良するためのシステム。 The evaporation unit includes a first effect evaporation unit and a second effect evaporation unit, the first effect evaporation unit includes a second condensate inlet and a first heat exchange chamber, and above the first heat exchange chamber, A first vapor passage for the gas phase to enter the next effect evaporation unit and a first downcomer for the liquid phase to pass through and flow to the next effect evaporation unit are connected, at the bottom of the first downcomer. A first loop-shaped device is provided, wherein the secondary effect evaporation unit includes a second heat exchange chamber, and above the second heat exchange chamber, a first loop-like device is provided, and the second effect evaporation unit includes a second heat exchange chamber, and a second loop-like device is provided above the second heat exchange chamber, through which the gas phase passes after the condensate has been heat exchanged. A second downcomer is provided for passage of two vapor passages and a liquid phase, a second loop-like device is provided at the bottom of the second downcomer, and below the second heat exchange chamber, a second downcomer is provided, and a second downcomer is provided below the second heat exchange chamber. A first condensate passage is provided for the condensate to flow to the next utility device after the condensate is heated, a first U-shaped pipe is provided at the bottom of the first condensate passage, and the first loop-shaped device is connected to a second heat exchanger. The system for improving the water quality of a dehydration tower of a high-purity terephthalic acid plant according to claim 6, characterized in that it is located between the chamber and the second mist remover. 1)反応排気ガスは酸化反応器の底部から排出された後、第3段精製母液洗浄ユニットの下方に入り、反応した排気ガスは、上昇過程において、まず、第3段精製母液洗浄ユニットを介して精製母液でスプレーして洗浄し、次に、第2段濃縮水洗浄ユニットを介して濃縮水でスプレーして洗浄し、最後に、第1段精製水洗浄ユニットを介して精製水でスプレーして洗浄するステップと、
2)脱水塔で洗浄した反応排気ガスは、排気ガス凝縮装置の頂部から排出された後、まず、第1段酸化排気ガス凝縮器に入り、次に、後の他の酸化排気ガス凝縮器に順次入って熱交換して冷却し、一部の排気ガスは復水、第1復水に変わり、各段の酸化排気ガス凝縮器で生成された第1復水は管路を介して第1高温復水ドラムに流れ、第1酸化排気ガス凝縮システムで凝縮した後、反応排気ガスは、次に、第2酸化排気ガス凝縮システムに入って凝縮し続け、第2酸化排気ガス凝縮システムの凝縮処理によって第2復水を形成し、続いて、管路を介して第2復水ドラム中に入り、凝縮しない第2蒸気を上向きに排出するステップと、
3)第2復水は水分離塔内に入って持続的に分離させて精製するについて、底部に位置する真空ポンプを開け、第2復水は第2復水入口から第1熱交換チャンバに入り、蒸発に備え、第2蒸気は第2蒸気管路から第1熱交換チャンバ内の管路に入り、第1熱交換チャンバ内に、第2蒸気と第2復水は熱交換を行い、第2復水の一部は揮発して上向きにして第1蒸気通路に入り、第1蒸気通路を介して二次効用蒸発ユニット内の管路に入る蒸気は熱源として第1降液管から流れ出した復水と熱交換し、蒸気の熱量は復水へ流れ、最後に、蒸気が冷却して第1復水通路から流れ出し、その一部は第1U字管内に集まり、底部の精製水貯蔵領域に流れ、また、蒸発しない部分は第1降液管に入り、次の効用蒸発ユニットに入って蒸発し続け、又は第1ループ状装置に留まるステップと、
4)分離した後、精製水は精製水出口から管路を介して排出され、精製水熱交換器を通す場合、第1高温復水と熱交換し、精製水の温度が上昇し、その後、第1段精製水洗浄ユニットの洗浄液として反応排気ガスをスプレーし、濃縮水は濃縮水出口から管路を介して排出され、濃縮水熱交換器を通す場合、第1段濃縮水洗浄ユニットの洗浄液として反応排気ガスをスプレーして洗浄するステップとを含むことを特徴とする、請求項1に記載の高純度テレフタル酸装置の脱水塔の水質を改良するための方法。
1) After the reaction exhaust gas is discharged from the bottom of the oxidation reactor, it enters below the third-stage purified mother liquor washing unit, and in the ascending process, the reacted exhaust gas first passes through the third-stage purified mother liquor washing unit. then spray and wash with purified mother liquor through the second stage concentrated water washing unit, then spray and wash with concentrated water through the second stage concentrated water washing unit, and finally spray with purified water through the first stage purified water washing unit. a step of cleaning the
2) After the reaction exhaust gas cleaned by the dehydration tower is discharged from the top of the exhaust gas condensing device, it first enters the first stage oxidation exhaust gas condenser, and then passes to the other oxidation exhaust gas condenser later. The exhaust gas enters sequentially and is cooled by heat exchange, and some of the exhaust gas turns into condensate and first condensate. After flowing to the high temperature condensate drum and condensing in the first oxidizing exhaust gas condensation system, the reaction exhaust gas then enters the second oxidizing exhaust gas condensing system to continue condensing and condensing in the second oxidizing exhaust gas condensing system. forming a second condensate by processing and subsequently entering a second condensate drum via a conduit and discharging the non-condensed second vapor upwardly;
3) The second condensate enters the water separation column for continuous separation and purification. Open the vacuum pump located at the bottom, and the second condensate enters the first heat exchange chamber from the second condensate inlet. and in preparation for evaporation, the second steam enters the conduit in the first heat exchange chamber from the second steam conduit, and the second steam and the second condensate exchange heat in the first heat exchange chamber; A portion of the second condensate volatilizes upward and enters the first steam passage, and the steam that enters the pipeline in the secondary effect evaporation unit via the first steam passage flows out of the first downcomer as a heat source. The heat of the steam flows into the condensate, and finally, the steam is cooled and flows out of the first condensate passage, a part of which collects in the first U-shaped pipe and flows into the purified water storage area at the bottom. and the unevaporated portion enters the first downcomer and enters the next effect evaporation unit to continue evaporation or remains in the first loop device;
4) After separation, the purified water is discharged from the purified water outlet through the pipe line, and when passing through the purified water heat exchanger, it exchanges heat with the first high temperature condensate, the temperature of the purified water increases, and then When the reaction exhaust gas is sprayed as a cleaning liquid for the first-stage purified water cleaning unit, and the concentrated water is discharged from the concentrated water outlet through a pipe and passes through a concentrated water heat exchanger, the cleaning liquid for the first-stage concentrated water cleaning unit is The method for improving the water quality of a dehydration tower of a high-purity terephthalic acid plant according to claim 1, characterized in that the method comprises the step of spraying and cleaning the reaction exhaust gas as a dehydrator.
JP2022544421A 2021-12-07 2022-05-16 System and method for improving water quality in dehydration tower of high purity terephthalic acid equipment Pending JP2024502219A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202111483557.1 2021-12-07
CN202111483557.1A CN114057252B (en) 2021-12-07 2021-12-07 System and method for improving water quality of dehydration tower of purified terephthalic acid device
PCT/CN2022/092909 WO2023103283A1 (en) 2021-12-07 2022-05-16 System and method for improving water quality of dehydrating tower of purified terephthalic acid apparatus

Publications (1)

Publication Number Publication Date
JP2024502219A true JP2024502219A (en) 2024-01-18

Family

ID=80228755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022544421A Pending JP2024502219A (en) 2021-12-07 2022-05-16 System and method for improving water quality in dehydration tower of high purity terephthalic acid equipment

Country Status (6)

Country Link
US (1) US20240050873A1 (en)
EP (1) EP4219407A4 (en)
JP (1) JP2024502219A (en)
CN (1) CN114057252B (en)
TW (1) TWI815463B (en)
WO (1) WO2023103283A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114057252B (en) * 2021-12-07 2024-05-03 天华化工机械及自动化研究设计院有限公司 System and method for improving water quality of dehydration tower of purified terephthalic acid device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR754118A (en) * 1932-04-23 1933-10-31
JP3864561B2 (en) * 1998-06-05 2007-01-10 三井化学株式会社 Method for producing aromatic carboxylic acid
FI20030735A (en) * 2003-05-16 2004-11-17 Steris Europe Inc Method and apparatus for treating water
KR100744754B1 (en) * 2005-12-13 2007-08-01 삼성석유화학(주) Preparation method of aromatic carboxylic acid
KR100794317B1 (en) * 2006-02-20 2008-01-11 (주)에이엠티퍼시픽 Reducing method of water from reactor outlet gas in the oxidation process of aromatic compound
CN1951900A (en) * 2006-11-10 2007-04-25 浙江大学 Low-energy consumption preparation method of terephthalic acid
CN101537299B (en) * 2009-03-19 2011-12-28 绍兴远东石化有限公司 Method for recycling organic matters in tail gas from production of terephthalic acid
US9428436B2 (en) * 2013-12-18 2016-08-30 Bp Corporation North America Inc. Process and apparatus for manufacturing aromatic carboxylic acids
CN105001073B (en) * 2015-07-02 2017-06-20 中国石油天然气集团公司 Low energy consumption material consumption, the PTA production methods and system of few waste discharge
CN106115825A (en) * 2016-08-19 2016-11-16 北京今大禹环境技术股份有限公司 A kind of low temperature multiple-effect distillation seawater desalination system
CN110078284B (en) * 2019-04-25 2021-08-24 杭州多向流化学科技有限公司 Water-rich solvent grading utilization emission reduction system for preparing terephthalic acid
CN112807722A (en) * 2021-01-04 2021-05-18 中石化上海工程有限公司 Continuous cascade thin film evaporator system
CN114057252B (en) * 2021-12-07 2024-05-03 天华化工机械及自动化研究设计院有限公司 System and method for improving water quality of dehydration tower of purified terephthalic acid device
CN216808188U (en) * 2021-12-07 2022-06-24 天华化工机械及自动化研究设计院有限公司 System for improving water quality of dewatering tower of purified terephthalic acid device

Also Published As

Publication number Publication date
TWI815463B (en) 2023-09-11
EP4219407A4 (en) 2023-08-23
EP4219407A1 (en) 2023-08-02
TW202322881A (en) 2023-06-16
US20240050873A1 (en) 2024-02-15
CN114057252A (en) 2022-02-18
CN114057252B (en) 2024-05-03
WO2023103283A1 (en) 2023-06-15

Similar Documents

Publication Publication Date Title
RU2396242C2 (en) Method of methanol recuperation
RU2468002C2 (en) Improved urea synthesis method
KR100407370B1 (en) METHOD AND APPARATUS FOR RECOVERING INTEGRATED VAPOR CONDENSATE FROM URGENT VACUUM EVAPORATOR
CN111437619A (en) Multi-tower differential pressure energy-saving anhydrous alcohol distillation system and anhydrous alcohol energy-saving production method
JP2024502219A (en) System and method for improving water quality in dehydration tower of high purity terephthalic acid equipment
CN111807981A (en) Method for recovering DMF (dimethyl formamide) from trichloroethane
CN216808188U (en) System for improving water quality of dewatering tower of purified terephthalic acid device
TW201925151A (en) Processes for the production of ethylene oxide and ethylene glycol
JP2024502218A (en) Separation tower and method for treating condensate
CN216808187U (en) Separation tower for treating condensed water
CN116751613A (en) Energy-saving negative pressure debenzolization process and system
CN212818177U (en) Multi-tower differential pressure energy-saving anhydrous alcohol distillation system
CN113694556A (en) Energy-saving device and method for separating cyclohexanol in hydration method
CN105008327B (en) Urea equipment remodeling method
CN218046532U (en) Differential pressure thermal coupling rectification system for coal-to-ethylene glycol byproduct
CN217312008U (en) Acrylic acid purification device capable of recycling energy
RU2797945C1 (en) Method for producing methanol from natural gas and installation for its implementation
CN114057541B (en) Refining recovery method for dehydrating waste dichloromethane through supergravity coupling membrane
CN219709430U (en) Energy-saving negative pressure benzene removal system
CN104629818B (en) Vacuum carbonate desulphurization rich solution economic benefits and social benefits desorption technique and system
CN218166519U (en) Purification and quality improvement system for residual ammonia water and ammonia distillation strong ammonia water
CN219743939U (en) Energy-saving tetrahydrofuran aqueous solution rectifying system
CN114681942B (en) Complete pressure swing coupling rectification device and rectification method for tertiary butanol recovery
CN116675184B (en) Process and equipment for circularly producing sulfur trioxide
CN109999618B (en) System and method for separating carbon dioxide from medium-high pressure gas source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240429