JP2024500331A - ハンドヘルド電気機械外科用システム - Google Patents

ハンドヘルド電気機械外科用システム Download PDF

Info

Publication number
JP2024500331A
JP2024500331A JP2023534625A JP2023534625A JP2024500331A JP 2024500331 A JP2024500331 A JP 2024500331A JP 2023534625 A JP2023534625 A JP 2023534625A JP 2023534625 A JP2023534625 A JP 2023534625A JP 2024500331 A JP2024500331 A JP 2024500331A
Authority
JP
Japan
Prior art keywords
assembly
motor
controller
surgical device
reload
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023534625A
Other languages
English (en)
Inventor
デイビッド ジュニア バレンタイン,
チャールズ アール. コーラル,
アレクサンダー ジェイ. ハート,
ジェイムズ ピー. デルボ,
ヘイリー ストラスナー,
Original Assignee
コヴィディエン リミテッド パートナーシップ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コヴィディエン リミテッド パートナーシップ filed Critical コヴィディエン リミテッド パートナーシップ
Publication of JP2024500331A publication Critical patent/JP2024500331A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/11Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis
    • A61B17/115Staplers for performing anastomosis in a single operation
    • A61B17/1155Circular staplers comprising a plurality of staples
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00115Electrical control of surgical instruments with audible or visual output
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00115Electrical control of surgical instruments with audible or visual output
    • A61B2017/00119Electrical control of surgical instruments with audible or visual output alarm; indicating an abnormal situation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00367Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
    • A61B2017/00398Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like using powered actuators, e.g. stepper motors, solenoids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00681Aspects not otherwise provided for
    • A61B2017/00734Aspects not otherwise provided for battery operated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

外科用デバイスが、電源と、電源に結合されたモータと、モータを制御するように構成されたコントローラとを有するハンドル組立体を含む。デバイスはまた、ハンドル組立体に選択的に結合するように構成されたアダプタ組立体を含み、アダプタ組立体は、モータにより移動可能な縫合伝達組立体を含む。デバイスはまた、アダプタ組立体の先端部分に選択的に結合するように構成されたリロードを含み、リロードは、縫合伝達組立体によりリロードから取り出し可能な複数のステープルを含む。デバイスはまた、アダプタ組立体の先端部分に選択的に結合可能なアンビル組立体を含み、アンビル組立体は、リロードに対して移動可能であり、コントローラは、縫合伝達組立体の機械損失を補償しながら、ステープルを取り出すために、縫合伝達組立体を移動させるようにモータを制御するようにさらに構成され得る。

Description

関連出願の相互参照
この出願は、2020年12月8日に出願された米国仮特許出願第63/122,539号明細書の利益を主張し、その内容全体が参照により本明細書に組み込まれる。
本開示は外科用デバイスに関する。より具体的には、本開示は、外科的処置を行うためのハンドヘルド電気機械外科用システムに関する。
1つのタイプの外科用デバイスは、円形の締付、切断及び縫合デバイスである。円形ステープラが、予め横に切断された直腸部分を再び取り付けるための外科的処置又は同様の処置において使用される。従来の円形の締付、切断及び縫合器具は、ピストル又は線形把持様式構造であって、そこから延在する長尺状シャフトと長尺状シャフトの先端に支持されたステープルカートリッジとを有するピストル又は線形把持様式構造を含む。この例において、医師が、円形の縫合計器のアンビル組立体を患者の直腸に挿入し得るとともに、アンビル組立体を、横に切断された直腸部分に向かって患者の結腸管を上へ操作し得る。医師はまた、(カートリッジ組立体を含む)円形の縫合計器の残りの部分を切込みを通じて及び横に切断された直腸部分に向かって挿入し得る。アンビル及びカートリッジ組立体は互いに向かって近似され、ステープルは、端から端までの吻合に影響を及ぼすように組織におけるステープルを形成するために、カートリッジ組立体からアンビル組立体に向かって取り出され、環状ナイフが、締め付けられた組織部分の一部を取るために発射される。端から端までの吻合がもたらされた後で、円形の縫合装置は手術部位から除去される。
多くの外科用デバイス製造業者が、外科用デバイスを動作させる及び/又は操作するための独占所有権のある動力駆動システムを備えた製品ラインを開発してきた。多くの場合において、外科用デバイスは、再利用可能な動力ハンドル組立体及びアダプタ組立体、並びに、使用前にアダプタ組立体に選択的に接続された使い捨てのステープルカートリッジ組立体を含む。
アダプタ組立体は、動力ハンドルから使い捨てのステープルカートリッジへ作動を伝達するドライブシャフトなどの複数の伝達組立体を含む。作動中、伝達組立体は作動力を完全には伝達せず、このことはステープルカートリッジの不正確な作動をまねく。したがって、ステープルカートリッジの適切で正確な作動を確実にするためにそのような損失を補償するためのシステム及び方法が必要である。
本開示による動力円形ステープラは、外側シェルハウジング、パワーハンドル、アダプタ組立体、及び、ステープラリロードとアンビル組立体とを有するエンドエフェクタを含む。シェルハウジング及びエンドエフェクタは使い捨ての構成要素である。パワーハンドル及びアダプタ組立体は、処置間に再処理されるマルチプロセス構成要素である。
動力円形ステープラは、モータのエンコーダからの位置出力を決定するように構成される。しかしながら、このフィードバックは、リロードからステープラを取り出すために使用されるアダプタ組立体に配置された伝達組立体の動的損失を考慮しない。この動的損失を考慮するために、伝達組立体を含むアダプタ組立体は、ストローク損失特徴がアダプタ組立体の記憶デバイスに記憶された二次方程式及び所定係数でマッピングされる最終機能テストを通される。
動力円形ステープラが縫合及び切断し始めると、パワーハンドルのコントローラがアダプタ組立体に配置されたひずみゲージからの力を監視する。最終機能テスタによりアダプタ組立体の記憶デバイスに記憶された係数を使用して、コントローラはリアルタイムでストローク損失を計算する。コントローラは次いで、リロードに係合する伝達組立体の先端とパワーハンドルのモータに結合された伝達組立体の基端との間のストローク損失を補償するために、追加的なモータティック(すなわち回転)を加える。コントローラはリアルタイムでひずみゲージを監視するため、コントローラは、モータ出力を連続的に調整して伝達組立体の先端プッシャが標的ストロークを達成する。
本開示の一実施形態によると、外科用デバイスは、電源と、電源に結合されたモータと、モータを制御するように構成されたコントローラとを有するハンドル組立体を含む。デバイスはまた、ハンドル組立体に選択的に結合するように構成されたアダプタ組立体を含み、アダプタ組立体は、モータにより移動可能な縫合伝達組立体を含む。デバイスはまた、アダプタ組立体の先端部分に選択的に結合するように構成されたリロードを含み、リロードは、縫合伝達組立体によりリロードから取り出し可能な複数のステープルを含む。デバイスはまた、アダプタ組立体の先端部分に選択的に結合可能なアンビル組立体を含み、アンビル組立体は、リロードに対して移動可能であり、コントローラは、縫合伝達組立体の機械損失を補償しながら、ステープルを取り出すために、縫合伝達組立体を移動させるようにモータを制御するようにさらに構成され得る。
上記実施形態の実装形態は以下の特徴の1つ又は複数を含み得る。外科用デバイスであって、縫合伝達組立体が、機械損失をもたらす圧縮に応じて偏向する対向する可撓性バンドの対を含む外科用デバイス。ハンドル組立体は、モータに結合されたエンコーダをさらに含む。コントローラは、縫合伝達組立体が移動する距離を計算するようにさらに構成され得る。アダプタ組立体は、縫合伝達組立体又はアダプタ組立体の少なくとも1つにかけられた力を測定するように構成されたひずみゲージ組立体を含む。コントローラは、2つの測定値間の差を計算するとともに差と閾値デルタ力との比較を実施するようにさらに構成され得る。コントローラは、比較に基づき総損失ターンカウンタをインクリメントするようにさらに構成され得る。コントローラは、調整された損失ターン値を決定するために総損失ターンカウンタにリロードと関連する力係数をかけるようにさらに構成され得る。コントローラは、モータを調整された損失ターン値ずつインクリメントするようにさらに構成され得る。
本開示の別の実施形態によると外科用デバイスは、ハンドル組立体であって、電源と、電源に結合されたモータと、モータを制御するように構成されたコントローラとを有するハンドル組立体を含む。デバイスはまた、ハンドル組立体に選択的に結合するように構成されたアダプタ組立体を含み、アダプタ組立体は、モータにより移動可能な縫合伝達組立体を含む、縫合伝達組立体が対向する可撓性バンドの対を含む。デバイスはまた、アダプタ組立体の先端部分に選択的に結合するように構成されたリロードを含み、リロードは、縫合伝達組立体によりリロードから取り出し可能な複数のステープルを含む。デバイスはまた、アダプタ組立体の先端部分に選択的に結合可能なアンビル組立体を含み、アンビル組立体は、リロードに対して移動可能であり、コントローラは、ステープルを取り出すために、縫合伝達組立体を移動させるように、それに応じて対向する可撓性バンドの偏向を原因とする機械損失を補償しながら、モータを制御するようにさらに構成され得る。
上記実施形態の実装形態は以下の特徴の1つ又は複数を含み得る。外科用デバイスであって、ハンドル組立体が、モータに結合されたエンコーダをさらに含む外科用デバイス。コントローラは、縫合伝達組立体が移動する距離を計算するようにさらに構成され得る。アダプタ組立体は、縫合伝達組立体又はアダプタ組立体の少なくとも1つにかけられた力を測定するように構成されたひずみゲージ組立体を含む。コントローラは、2つの測定値間の差を計算するとともに差と閾値デルタ力との比較を実施するようにさらに構成され得る。コントローラは、比較に基づき総損失ターンカウンタをインクリメントするようにさらに構成され得る。リロードは、力係数及び複数の係数を記憶する記憶デバイスを含む。コントローラは、調整された損失ターン値を決定するために総損失ターンカウンタにリロードと関連する力係数をかけるようにさらに構成され得る。コントローラは、モータを調整された損失ターン値ずつインクリメントするようにさらに構成され得る。コントローラは、係数及び測定された力を含む二次方程式に基づき総損失ターンカウンタをインクリメントするようにさらに構成され得る。リロード及びアンビル組立体は円形である。
本開示の実施形態が添付図面を参照して本明細書において説明される。
本開示の実施形態による、ハンドル組立体と、アダプタ組立体と、エンドエフェクタとを含むハンドヘルド手術器具の斜視図である。 図1のハンドル組立体、アダプタ組立体、及びエンドエフェクタの概略図である。 アダプタ組立体及びエンドエフェクタ、本開示の実施形態による図1のアダプタ組立体に取り付けられた環状のリロード及びアンビル組立体の斜視側面図である。 部分的に想像線で示された、図1のアダプタ組立体内に配置された締付伝達組立体の斜視図である。 部分的に想像線で示された、図1のアダプタ組立体内に配置された縫合伝達組立体の斜視図である。 図1のエンドエフェクタのリロードの断面図である。 ひずみゲージ組立体を備えた、部分的に分解された状態で示されたアダプタ組立体の斜視図である。 本開示の実施形態による図1の手術器具により実施される縫合シーケンス中のステープルドライバの移動距離及び速度を示す概略図である。 本開示の実施形態による図1の手術器具により実施される縫合シーケンス中のモータの損失ターン及び力のプロットである。 本開示の実施形態による縫合シーケンス中に図1の手術器具を制御するための方法である。
本明細書において開示された外科用デバイス、及び外科用デバイスのためのアダプタ組立体及び/又はハンドル組立体の実施形態が図面を参照して詳細に説明され、図面において、同様の参照符号はいくつかの図の各々において同一の又は対応する要素を指す。本明細書で使用される場合、「先端」という用語は手術器具又はその構成要素の、ユーザから遠い方の部分を指す一方で、「基端」という用語は、手術器具又はその構成要素の、ユーザに近い方の部分を指す。
本開示は、ハンドル組立体と、ハンドル組立体に結合されたアダプタ組立体と、アダプタ組立体に結合されたエンドエフェクタとを有する動力円形ステープラ1を提供する。ステープラは、3つの機能、すなわち締付、縫合、及び切断の完全な、独立した制御を可能にする。これは、組織が理想的でない状況を呈する場合、ステープラの特定の部分を適応させることを可能にする。
図1は、アダプタ組立体200との選択的接続のために構成されたハンドル組立体100を含む、例えば、端々吻合(「EEA」)を形成するための動力円形ステープラ1などの外科用デバイスを示す。アダプタ組立体200は、リロード400とアンビル組立体500とを含む、エンドエフェクタ300との選択的接続のために構成される。エンドエフェクタ300は、エンドエフェクタ300内に把持された組織を締付、縫合、及び切断することにより、患者の組織に外科的効果を生じる、すなわち、構造(例えば腸、結腸など)の2つの部分を接続することにより吻合を形成するために構成される。
ハンドル組立体100は、パワーハンドル101と、パワーハンドル101を選択的に受ける及び包み込むように構成された外側シェルハウジング10とを含む。シェルハウジング10は、先端半部10aと、先端半部10aに枢動可能に接続された基端半部10bとを含む。接合されると、先端及び基端半部10a、10bは中にパワーハンドル101が配置されるシェル空洞を画定する。
シェルハウジング10の先端及び基端半部10a、10bは、アダプタ組立体200の長手方向軸「X」を横断する平面に沿って分割される。シェルハウジング10の先端半部10aは、アダプタ組立体200の対応する駆動結合組立体210(図3)を受け入れるように構成された接続部分20を画定する。シェルハウジング10の先端半部10aはトグル制御ボタン30を支持する。トグル制御ボタン30は、4つの方向(例えば左、右、上及び下)に作動され得る。
図1及び2を参照すると、パワーハンドル101は、主コントローラ回路基板142と、ハンドル組立体100の電気構成要素のいずれかに電力を供給するように構成された充電式バッテリ144と、バッテリ144に結合された複数のモータ152とを含む。パワーハンドル101はまたディスプレイ146を含む。実施形態において、モータ152は、電気エネルギーをモータ152に提供するように構成された任意の好適な電源、例えばAC/DC変圧器に結合され得る。モータ152の各々は、バッテリ144からモータ152への電気エネルギーのフローを含む、対応するモータ152の動作を制御するモータコントローラ143に結合される。パワーハンドル101を制御する主コントローラ147が提供される。主コントローラ147は、パワーハンドル101の動作を制御する締付、縫合、及び切断アルゴリズムなど本明細書において開示されたアルゴリズムを実現するソフトウェア命令を実行するように構成される。
モータコントローラ143は、モータ152及びバッテリ144の動作状態を測定するように構成された複数のセンサ408a…408nを含む。センサ408a~nは、ひずみゲージ408bを含み、また、電圧センサ、電流センサ、温度センサ、テレメトリセンサ、光学センサ、及びこれらの組合せを含み得る。センサ408a~408nは、バッテリ144により供給された電気エネルギーの電圧、電流、及び他の電気特性を測定し得る。センサ408a~408nはまた、モータ152の毎分回転数(RPM)としての角速度(例えば回転速度)、トルク、温度、電流引き込み、及び他の動作特性を測定し得る。センサ408aはまた、モータ152の回転又は他の指標をカウントするように構成されたエンコーダを含み、これは次いで、モータ152により移動可能な構成要素の線形移動を計算するために主コントローラ147により使用される。角速度は、モータ152又はモータ152に結合されモータ152により回転可能なドライブシャフト(図示せず)の回転を測定することにより決定され得る。様々な軸方向に移動可能なドライブシャフトの位置はまた、シャフトにおいて又はシャフトに近接して配置された様々な線形センサを使用することにより決定され得る、又は、RPM測定値から推定され得る。実施形態において、トルクは、一定のRPMでの、モータ152の調節された電流引き込みに基づき計算され得る。さらなる実施形態において、モータコントローラ143及び/又は主コントローラ147は、例えば測定された値の変化率を決定するために、時間を測定し得るとともに、上で説明された値を、積分及び/又は微分を含み、時間に応じて処理し得る。主コントローラ147はまた、モータ152の回転をカウントすることにより、アダプタ組立体200及び/又はエンドエフェクタ300の様々な構成要素の移動距離を決定するように構成される。
モータコントローラ143は主コントローラ147に結合され、主コントローラ147は、モータコントローラ143とインターフェイスを取るための複数の入力及び出力を含む。特に、主コントローラ147は、モータ152の動作状態に関する測定されたセンサ信号をモータコントローラ143から受信し、バッテリ144は、今度は、モータコントローラ143へ制御信号を出力し、センサ読み取り値及び特定のアルゴリズム命令に基づきモータ152の動作を制御する。主コントローラ147はまた、ユーザインターフェイス(例えば主コントローラ147に結合されたスイッチ、ボタン、タッチスクリーンなど)から複数のユーザ入力を受け入れるように構成される。
主コントローラ147はまたメモリ141に結合される。メモリ141は、パワーハンドル101を動作させるためのソフトウェア命令を含むデータを記憶するように構成された揮発性(例えばRAM)及び不揮発性記憶装置を含み得る。主コントローラ147はまた、有線又は無線接続を使用してアダプタ組立体200のひずみゲージ408bに結合されるとともに、パワーハンドル101の動作中に使用されるひずみゲージ408bからひずみ測定値を受信するように構成される。
パワーハンドル101は、複数のモータ152であって、各々、それらから延在するとともにそれぞれの伝達組立体を駆動するように構成されたそれぞれのモータシャフト(明確には図示せず)を含む複数のモータ152を含む。それぞれのモータによるモータシャフトの回転は、ハンドル組立体100の様々な操作を実施するためにアダプタ組立体200のシャフト及び/又は歯車構成要素を駆動するように機能する。特に、パワーハンドル101のモータ152は、アダプタ組立体200のトロカール組立体270のトロカール部材274(図4)を選択的に伸長させる/格納するためにアダプタ組立体200のシャフト及び/又は歯車構成要素を駆動するように構成される。トロカール部材274の伸長/格納は、(アンビル組立体500がトロカール組立体270のトロカール部材274に接続されると)エンドエフェクタ300を開き/閉じ、リロード400のステープル423の環状の配列を発射し、リロード400の環状ナイフ(明確には図示せず)を移動させる。
リロード400は、始動締付力、最大締付力、力係数などを含むリロード400の動作パラメータを記憶するように構成された記憶デバイス402を含む。各タイプのリロード400は、対応する始動締付力を有することができ、対応する始動締付力は、始動締付力値を記憶デバイス402から読み取ることにより主コントローラ147が自動的に取得することができ、及び/又は、リロード400のタイプ若しくは締付力のいずれかを直接選択することによりユーザにより手動で設定され得る。始動締付力は、約100ポンド~約200ポンドの任意の好適な閾値であってもよく、実施形態において、標的締付力は約150ポンドであり得る。実施形態において、33mmの大きさのリロード400は約150lbsの締付力を有し得る。
ここで図3及び4を見ると、アダプタ組立体200は、外側ノブハウジング202とノブハウジング202の先端から延在する外筒206とを含む。ノブハウジング202及び外筒206は、アダプタ組立体200の構成要素を収納するように構成及び寸法決めされる。ノブハウジング202は、電気接続部312とそれに結合された記憶デバイス310とを含む。記憶デバイス310は、アダプタ組立体200に関連する様々な動作パラメータを記憶するように構成される。アダプタ組立体200は、ハンドル組立体100の結合シャフト(明確には図示せず)の回転を、アダプタ組立体200のトロカール組立体270、アンビル組立体500、及び/又はリロード400のステープルドライバ430又はナイフ組立体(明確には図示せず)を動作させるために有用な軸方向並進運動へ変換するように構成される。
アダプタ組立体200は、外筒206の先端において取り外し可能に支持されたトロカール組立体270をさらに含む。トロカール組立体270は、トロカール部材274と、トロカール部材274を外筒206に対して軸方向に移動させるためのトロカール部材274内に動作可能に受け入れられた打ち込みねじ276を含む。トロカール部材274の先端274bは、トロカール部材274の軸方向移動が、打ち込みねじ276の回転を介して、アンビル組立体500の付随する軸方向移動をもたらすように、アンビル組立体500に選択的に係合するように構成される。
図4を参照すると、締付伝達組立体240は、モータ152のうちの1つに結合された第1回転可能基端ドライブシャフト212、第2回転可能基端ドライブシャフト281、回転可能先端ドライブシャフト282、及び結合部材286を含み、これらは各々アダプタ組立体200の外筒206内で支持される。締付伝達組立体240は、アダプタ組立体200のトロカール組立体270のトロカール部材274を伸長させる/格納するように、及び、アンビル組立体510がトロカール部材274に接続されるとアンビル組立体510を開く/閉じるように機能する。
図5を参照すると、アダプタ組立体200は、モータ152のうちの1つ及びリロード400の第2軸方向並進可能ドライバ部材を相互接続するための縫合伝達組立体250を含み、縫合伝達組立体250は、リロード400から及びアンビル組立体510に対してステープル423を発射させるために、モータ152のうちの1つの回転をアダプタ組立体200の外側可撓性バンド組立体255の軸方向並進へ、ひいては、リロード400のステープルドライバ430へ変換する及び伝達する。
アダプタ組立体200の縫合伝達組立体250は、ステープルドライバ結合器254に固定された外側可撓性バンド組立体255を含む。第2回転可能基端ドライブシャフト220はモータ152のうちの1つに結合されるとともに、当該ステープルドライバ結合器254を作動させるように構成され、これは回転移動を長手方向移動に変換する。外側可撓性バンド組立体255は、第1及び第2可撓性バンド255a、255bであって、横方向に間隔を空けて配置されるとともにその基端で支持リング255cに及びその先端で先端プッシャ255dの基端に接続された第1及び第2可撓性バンド255a、255bを含む。第1及び第2可撓性バンド255a、255bの各々は、支持リング255c及び先端プッシャ255dに取り付けられる。外側可撓性バンド組立体255は、支持リング255cから基端側に延在する第1及び第2接続延長部255e、255fをさらに含む。第1及び第2接続延長部255e、255fは、外側可撓性バンド組立体255を縫合伝達組立体250のステープルドライバ結合器254に動作可能に接続するように構成される。
図6を参照すると、リロード400のステープルドライバ430は、ドライバアダプタ432とドライバ434とを有するステープルカートリッジ420を含む。ドライバアダプタ432の基端432aは、アダプタ組立体200の縫合伝達組立体250の外側可撓性バンド組立体255の先端プッシャ255dとの選択的接触及び当接のために構成される。動作中、上述のとおり、外側可撓性バンド組立体255の先端側への前進中に、外側可撓性バンド組立体255の先端プッシャ255dは、ドライバアダプタ432の基端432aを接触させて、ドライバアダプタ432及びドライバ434を第1又は基端位置から第2又は先端位置へ前進させる。ドライバ434は、複数のドライバ部材436であって、ステープル423との接触のためのステープルカートリッジ420のステープルポケット421と整列させられた複数のドライバ部材436を含む。対応して、ステープルカートリッジ420に対するドライバ434の前進は、ステープルカートリッジ420からのステープル423の取り出しを引き起こす。
トロカール部材274の作動中の力、エンドエフェクタ300の閉鎖(例えばリロード400に対するアンビル組立体500の格納)、及びリロード400からのステープル423の取り出しは、様々なプロセス、例えば、リロード400からのステープル423の発射を監視及び制御する、ステープル423がリロード400から取り出されている際のステープル423の発射及び形成中の力を監視する、組織の異なる症状についてステープル423がリロード400から取り出されている際のステープル423の形成(例えばステープル波形高さ)を最適化する、並びにリロード400の環状ナイフの発射の監視及び制御するためにひずみゲージ408bにより測定され得る。
図7を参照すると、アダプタ組立体200のひずみゲージ408bはひずみゲージハウジング320内に配置される。ひずみゲージ408bは、トロカール部材274の格納並びにリロード400からのステープル423の取り出し及び形成を測定する及び監視する。エンドエフェクタ300の閉鎖中、アンビル組立体500が組織、障害物、リロード400の組織接触表面、ステープル取り出しなどに接すると、略先端方向の反力がアンビル組立体500にかけられる。この先端側に向けられる反力は、アンビル組立体500からひずみゲージ408bへ伝えられる。ひずみゲージ408bは次いで、信号をハンドル組立体100のパワーハンドル101の主コントローラ回路基板142へ伝える。グラフィック(図8)がこのとき、ハンドル組立体100のディスプレイ146に表示されて、ユーザにハンドル組立体100の発射のステータスに関連するリアルタイム情報を提供する。
トロカール組立体270は、アダプタ組立体200の外筒206内で軸方向に動かないように及び回転しないように固定される。図6を参照すると、アダプタ組立体200は、外筒206内に動かないように配置された支持ブロック292を含む。ひずみゲージハウジング320は、支持ブロック292とコネクタスリーブ290との間に配置される。リロード400は、コネクタスリーブ290に取り外し可能に結合される。
動作中、アダプタ組立体200のひずみゲージ408bは、ひずみゲージ408bを通過するトロカール部材274の格納を測定する及び監視する。第1及び第2可撓性バンド255a、255bもまたひずみゲージ408bを通過するため、アダプタ組立体200のひずみゲージ408bはまた、リロード400からのステープル423の取り出しを測定する及び監視する。締付、縫合及び切断中、反力がアンビル組立体500及びリロード400にかけられ、これは支持ブロック29に伝えられ、これは次いで、反力をひずみゲージ408bのひずみセンサに伝える。
ひずみゲージ408bのひずみセンサは、物体が変形すると、ひずみセンサの金属の箔もまた変形し、その電気抵抗を変化させ、この抵抗の変化が次いで、トロカール組立体270が受ける負荷を計算するのに使用されるように、それがくっついている物体(例えば支持ブロック292)のひずみ(大きさの無い量)を測定するように構成された任意のデバイスであり得る。ひずみゲージ408bは、第1、第2及び第3力/回転伝達/変換組立体により提示される発射/締付負荷へ閉鎖ループフィードバックを提供する。
ひずみゲージ408bのひずみセンサは次いで、信号を主コントローラ回路基板142に伝える。グラフィックはこのとき、ハンドル組立体100の電源函コア組立体106のディスプレイ146に表示されて、ユーザにハンドル組立体100の発射のステータスに関連するリアルタイム情報を提供する。ひずみゲージ408bはまた、基端及び先端ハーネス組立体314、316を介して電気接続部312(図3)に電気的に接続される。
円形ステープラ及びその構成要素の構成及び動作に関するさらなる詳細について、2019年7月3日に出願された国際公開第PCT/US2019/040440号パンフレットが参照されてもよく、その内容の全体は参照により本明細書に組み込まれる。
動作中、アンビル組立体500(外科医により既に位置付けられている)はトロカール部材274に取り付けられ、ユーザは、トグル制御ボタン30の底部を押すことにより、リロード400とアンビル組立体500との間に挿入された組織への締付プロセスを始める。締付中、アンビル組立体500は、予め設定された、完全に締め付けられた位置、すなわちアンビル組立体500の、組織がアンビル組立体500とリロード400との間で完全に締め付けられた位置に到達するまでリロード400に向かって格納される。予め設定された、完全に締め付けられた位置は、異なるタイプのリロードの各々について変化する(例えば距離は、25mmのリロードについて約29mmである)。締付中、ひずみゲージ408bは、トロカール部材274がアンビル組立体500をアンビル組立体500とリロード400との間の組織をクランプするように移動させる際に、トロカール部材274にかけられた力について、測定値を主コントローラ147に連続的に提供する。
ユーザは、トロカール部材274とアンビル組立体510とを含むアダプタ組立体200を直腸結腸又は上部消化管領域内に位置付けることにより外科的処置を開始する。ユーザはトグル制御ボタン30を押して、トロカール部材274をそれが組織を穿刺するまで伸長させる。トロカール部材274の伸長後、外科医により予め位置付けられたアンビル組立体510はトロカール部材274に取り付けられ、ユーザは、トグル制御ボタン30の底部を押下することにより、リロード400とアンビル組立体510との間に挿入された組織への締付プロセスを開始する。締付が成功裏に完了すると、ユーザは縫合シーケンスを開始する。
縫合シーケンスを開始するために、ユーザは、安全及びアームトグル制御ボタン30として機能するパワーハンドル101の安全ボタン36のうちの1つを押し、それが縫合を開示することを可能にする。安全ボタン36の作動時、回転検証校正チェックが実施される。ディスプレイ146は、円形の吻合、プログレスバー、及びステープルアイコンの動画を示す円を含む縫合シーケンスディスプレイに移行する。縫合シーケンススクリーンは、ユーザが縫合シーケンスを開始する、縫合シーケンスを終了する、又はクランプを外すまで表示される。
縫合シーケンスを開始するために、ユーザはトグル制御ボタン30を押下し、このことは、第2回転伝達組立体250を移動させて、回転を線形運動に変換し、円形のリロード400からステープルを取り出す及び形成する。特に、発射シーケンス中、第2モータ152は第2回転伝達組立体250を使用してドライバ434を前進させる。第2回転伝達組立体250にかけられた力はひずみゲージ408bにより監視される。プロセスは、第2回転伝達組立体250が力閾値に対応するハードストップに到達すると完了とみなされるとともにひずみゲージ408bにより検出される。これは、ステープルが成功裏に取り出され、アンビル組立体510に対して変形させられたことを示す。
図8を参照すると、これは、モータ152がリロード400内でドライバ434を前進させる際のモータ152の移動距離及び速度を模式的に示す。ステープルドライバは当初は、第1距離608から第2距離610(例えばベース位置)への第1セグメントについて第1速度で第1距離608(例えばハードストップ)から前進させられる。第2距離610からは、ステープルを取り出すために、ドライバ434は、第3距離612(例えば標的ステープル位置)に到達するまで第1速度未満である第2速度で前進させられる。
第2距離610に到達後、モータ152は、リロード400からステープルを取り出すために第2の、より低い速度で作動させられる。第2セグメント中、ステープルがリロード400からステープル組織へ取り出される際に、主コントローラ147は、ひずみゲージ408bにより測定されたひずみを連続的に監視するとともに、測定されたひずみに対応する力が最小縫合力と最大縫合力との間にあるかどうか決定する。縫合力範囲は、リロード400の記憶デバイス402に記憶され得るとともに、縫合シーケンス中に主コントローラ147により使用される。測定された力が最小縫合力より小さいかどうか決定することは、ステープルがリロード400に存在することを検証するために使用される。さらに、小さな力はまた、ひずみゲージ408bの故障を示し得る。測定された力が最小縫合力より小さい場合、主コントローラ147はモータ152にドライバ434を第2距離610へ格納するように信号を送る。主コントローラ147はまた、ディスプレイ146上にユーザに縫合シーケンスを終了してアンビル組立体510を格納するためのステップを指示するシーケンスを表示する。アンビル組立体510の除去後、ユーザは円形アダプタ組立体200及びリロード400を交換することができるとともに縫合プロセスを再開することができる。
測定された力が、約500lbs.であり得る最大縫合力より大きい場合、主コントローラ147はモータ152を停止させるとともに、ディスプレイ146にユーザに縫合シーケンスを終了させるためのステップを指示するシーケンスを表示する。しかしながら、ユーザは、トグル制御ボタン30を押すことにより、力の限度の検出無しに依然として縫合プロセスを続けることができる。
主コントローラ147は、モータ152が縫合された組織と関連する第3距離612に到達した場合に縫合プロセスが成功裏に完了したことを決定し、この移動中、測定されたひずみは最小及び最大縫合力の限界の中にあった。その後、モータ152は、組織への圧力を解放するためにドライバ434を第4距離614へと格納し、続いて切断シーケンスを開始する前に第2距離610へ格納する。
主コントローラ147はまた、主コントローラ147により決定されたモータ位置と円形アダプタ組立体200の構成要素の位置との間の非線形関係をもたらし得る縫合プロセス中の外側可撓性バンド組立体255のバンド圧縮を考慮するように構成される。主コントローラ147は、不一致をもたらす力変化の二次マッピングを使用して、計算されたモータ152の位置と円形アダプタ組立体200の構成要素の実際の位置との不一致を解決するように構成される。力変化はひずみゲージ408bからのひずみ測定値に基づく。特に、主コントローラ147は、モータ152による損失ターン、すなわち、円形アダプタ組立体200の構成要素にかけられた力に基づき、例えば第1及び第2可撓性バンド255a、255bの圧縮を原因とする円形アダプタ組立体200の構成要素の移動をもたらさないターンのカウントを維持する。主コントローラ147は、予め決められた量、例えば約5lbsだけかけられた力が変化するたびに総損失ターンを蓄積する。標的位置が達成されたかどうかを決定するために、モータ位置は次いで総蓄積損失ターン値により調整される。
主コントローラ147は、縫合プロセス中の第1及び第2可撓性バンド255a及び255bの圧縮を原因とした縫合伝達組立体250の機械損失を考慮及び補償するステープル可変バックラッシアルゴリズムを実行するように構成される。縫合伝達組立体250における機械損失は、モータ152の回転位置と縫合伝達組立体250の線形位置との間の非線形関係をもたらす。主コントローラ147は、エンコーダにより測定されるとおりのモータ152の回転又は他の指標をカウントすることにより縫合伝達組立体250が移動する距離を計算するように構成される。計算された線形位置を決定するために使用されるモータ152の回転位置と縫合伝達組立体250の実際の線形位置との間の不一致は、ひずみゲージ408bにより測定された力変化に基づく二次マッピングを使用して解決される。マッピングは式(I)により表され得る、すなわち、
(I)y=ax+bx+c
式(I)において、yは損失ターンの数であり、xはひずみゲージ408bにより測定された力である。本明細書で使用される場合、「損失ターン」という言葉は、縫合伝達組立体250の移動をもたらさないモータ152のターンを意味する。
式(I)は図9におけるプロット80として示される。a及びb係数はプロット80の形状を決定し、c係数は、第1距離608だけ外れる固定されたバックラッシを表す(例えばハードストップ)。係数a、b、及びcは、モータ152のターン数及をカウントしひずみゲージ408bを通じて力を測定しながらアダプタ組立体200で縫合処置を実施することを含む機能テストを実施することにより実施される。機能テストはアダプタ組立体200でその使用前の任意の時間に、例えば製造中に実施され得る。ターンをカウントすること及び力の測定は、アダプタ組立体200の記憶デバイス310に記憶された係数を導き出すために使用される。a、b、及びc係数は初期化中に記憶デバイス310から読みだされる。
ステープル可変バックラッシアルゴリズムを示す図9を参照すると、縫合中、モータ152が縫合伝達組立体250を前進させる際に、主コントローラ147は、ひずみゲージ408bにより測定された力を連続的に監視する。主コントローラ147は、約1ミリ秒であり得る各サンプリング期間の2つの力測定値間で測定された力の変化を閾値デルタ力と比較する。主コントローラ147は次いで、測定された力が閾値デルタ力よりも変化するたびにカウンタ、総損失ターンを蓄積する、すなわちインクリメントする。期間の始まり及び終わりでの力は損失ターン軸(プロット80の垂直軸)に記される。現在の力での損失ターンの数と以前の力での損失ターンの数との間の損失ターンの差には、次いで、力係数がかけられ、リロード400の記憶デバイス402から主コントローラ147により読み取られ、蓄積された損失ターンに追加されて調整された損失ターン値を得る。約1ミリ秒であり得る各調整期間で、モータ152の位置は調整された損失ターン値により調整され、主コントローラ147は標的位置が得られたかどうか決定する。
モータ152の調整後、主コントローラ147は、縫合伝達組立体250の実際の機械位置に対応する補正されたモータ位置が、許容距離標的モータ位置にある、を超える、又は内になるかどうかをチェックする。補正位置が標的モータ位置に対応する場合、ステープルストロークは完了したとみなされ、モータ移動は終了される。
ひずみゲージ408bの故障などひずみゲージエラーの場合には、力は機械的不一致を調整するために使用され得ない。主コントローラ147はデフォルトステープルストロークを用い、デフォルトステープルストロークは、ステープル標的位置を、リロード400の特定の力でのステープルバックラッシアルゴリズムからの補償と組み合わせることにより決定される。
標的ステープル位置(すなわち第3距離612)は、ベース位置(すなわち第2距離610)から決定される、これはひいてはリロード400の記憶デバイス402に記憶された校正位置及びオフセットから参照される。記憶デバイス402はまた、縫合距離に追加された回転補償又は可変締付補償値を含む他の値も記憶する。ベース位置は全てのリロード400についてデフォルト値、例えば約0.225インチに設定され得る。
回転補償値の追加は、縫合プロセスの始まりでのクランプ力に依存する。測定されたクランプ力が力閾値未満であり、主コントローラ147がモータ152が回転させられていないと決定した場合、標的ステープル位置、ステープル高速位置、及びステープルデフォルト位置は、アンビル組立体510の機械位置の変化を補償するように調整される。
可変締付補償値の追加は、動力外科用ステープラ1が縫合プロセスを開示するときのクランプ間隙標的位置に対するアンビル組立体510の位置に依存する。標的ステープル位置(すなわち第3距離612)及びベース位置(すなわち第2距離610)は、同じ距離を維持するためにクランプ位置とクランプ間隙標的位置との差により調整される。
動力円形ステープラが縫合及び切断を開始するとき、パワーハンドルのコントローラは、アダプタ組立体に配置されたひずみゲージからの力を監視する。最終機能テスタによりアダプタ組立体の記憶デバイスに記憶された係数を使用して、コントローラはリアルタイムでのストローク損失を計算する。コントローラは次いで、リロードに係合する伝達組立体の先端とパワーハンドルのモータに結合された伝達組立体の基端との間のストローク損失を補償するために追加的なモータティック(すなわち回転)を追加する。コントローラはリアルタイムでひずみゲージを監視するため、コントローラは、モータ出力を連続的に調整して伝達組立体の先端プッシャが標的ストロークを達成する。縫合シーケンスが完了した後で、ユーザはトグル制御ボタン30を押して切断シーケンスを開始し、縫合及び圧縮された組織を切断し吻合を形成する。
本開示によるステープル可変バックラッシアルゴリズムは、アダプタ、パワーハンドル及びリロードの組合せにかかわらず一貫性のある縫合結果を提供する。開示された動力円形ステープラ1は、全ての組織タイプ及び組織厚さにわたって適切に形成された縫合を確実にする。これは、患者及びユーザにとって最良の結果を与える意図されたデバイス性能を確実にする。
本明細書において開示されたアダプタ組立体の実施形態には様々な修正がなされ得ることが理解される。したがって、上記は限定としてではなく、実施形態の例示としてのみ解釈されるべきである。当業者は、本開示の範囲及び趣旨内で他の修正形態を想定し得る。
1つ又は複数の例において、説明された技術は、ハードウェア、ソフトウェア、ファームウェア、又はその任意の組合せにおいて実装され得る。ソフトウェアにおいて実装された場合、機能はコンピュータ可読媒体に1つ又は複数の命令又はコードとして記憶され得るとともにハードウェアベースの処理ユニットにより実行され得る。コンピュータ可読媒体は、非一時的コンピュータ可読媒体であって、有形の媒体、例えばデータ記憶媒体(例えばRAM、ROM、EEPROM、フラッシュメモリ、又は命令又はデータ構造の形で望ましいプログラムコードを記憶するために用いることができるとともにコンピュータによりアクセスされ得る他の任意の媒体)に対応する非一時的コンピュータ可読媒体を含み得る。
命令は、1つ又は複数のプロセッサ、例えば1つ又は複数のデジタル信号プロセッサ(DSP)、汎用マイクロプロセッサ、特定用途向け集積回路(ASIC)、フィールドプログラマブルロジックアレイ(FPGA)、又は他の同等の集積又は離散論理回路により実行され得る。対応して、「プロセッサ」という用語は、本明細書で使用される場合、前述の構造又は説明された技術の実装に好適な他の任意の物理的構造のいずれかを指し得る。また技術は、1つ又は複数の回路又は論理素子において完全に実装され得る。

Claims (20)

  1. 外科用デバイスであって、
    ハンドル組立体であって、
    電源と、
    前記電源に結合されたモータと、
    前記モータを制御するように構成されたコントローラと
    を含むハンドル組立体と、
    前記ハンドル組立体に選択的に結合するように構成されたアダプタ組立体であって、前記モータにより移動可能な縫合伝達組立体を含むアダプタ組立体と、
    前記アダプタ組立体の先端部分に選択的に結合するように構成されたリロードであって、前記リロードが、前記縫合伝達組立体により前記リロードから取り出し可能な複数のステープルを含むリロードと、
    前記アダプタ組立体の前記先端部分に選択的に結合可能なアンビル組立体であって、前記アンビル組立体が、前記リロードに対して移動可能であり、前記コントローラが、前記縫合伝達組立体の機械損失を補償しながら、前記ステープルを取り出すために、前記縫合伝達組立体を移動させるように前記モータを制御するようにさらに構成されるアンビル組立体と
    を含む外科用デバイス。
  2. 前記縫合伝達組立体が、前記機械損失をもたらす圧縮に応じて偏向する対向する可撓性バンドの対を含む、請求項1に記載の外科用デバイス。
  3. 前記ハンドル組立体が、前記モータに結合されたエンコーダをさらに含む、請求項1に記載の外科用デバイス。
  4. 前記コントローラが、前記縫合伝達組立体が移動する距離を計算するようにさらに構成される、請求項3に記載の外科用デバイス。
  5. アダプタ組立体が、前記縫合伝達組立体又は前記アダプタ組立体の少なくとも1つにかけられた力を測定するように構成されたひずみゲージ組立体を含む、請求項4に記載の外科用デバイス。
  6. 前記コントローラが、2つの測定値間の差を計算するとともに前記差と閾値デルタ力との比較を実施するようにさらに構成される、請求項5に記載の外科用デバイス。
  7. 前記コントローラが、前記比較に基づき総損失ターンカウンタをインクリメントするようにさらに構成される、請求項6に記載の外科用デバイス。
  8. 前記コントローラが、調整された損失ターン値を決定するために前記総損失ターンカウンタに前記リロードと関連する力係数をかけるようにさらに構成される、請求項7に記載の外科用デバイス。
  9. 前記コントローラが、前記モータを前記調整された損失ターン値ずつインクリメントするようにさらに構成される、請求項8に記載の外科用デバイス。
  10. 外科用デバイスであって、
    ハンドル組立体であって、
    電源と、
    前記電源に結合されたモータと、
    前記モータを制御するように構成されたコントローラと
    を含むハンドル組立体と、
    前記ハンドル組立体に選択的に結合するように構成されたアダプタ組立体であって、前記アダプタ組立体が前記モータにより移動可能な縫合伝達組立体を含み、前記縫合伝達組立体が対向する可撓性バンドの対を含む、アダプタ組立体と、
    前記アダプタ組立体の先端部分に選択的に結合するように構成されたリロードであって、前記リロードが、前記縫合伝達組立体により前記リロードから取り出し可能な複数のステープルを含むリロードと、
    前記アダプタ組立体の前記先端部分に選択的に結合可能なアンビル組立体であって、前記アンビル組立体が前記リロードに対して移動可能であり、前記コントローラが、前記ステープルを取り出すために、前記縫合伝達組立体を移動させるように、それに応じて前記対向する可撓性バンドの偏向を原因とする機械損失を補償しながら、前記モータを制御するようにさらに構成される、アンビル組立体と
    を含む、外科用デバイス。
  11. 前記ハンドル組立体が、前記モータに結合されたエンコーダをさらに含む、請求項10に記載の外科用デバイス。
  12. 前記コントローラが、前記縫合伝達組立体が移動する距離を計算するようにさらに構成される、請求項11に記載の外科用デバイス。
  13. アダプタ組立体が、前記縫合伝達組立体又は前記アダプタ組立体の少なくとも1つにかけられた力を測定するように構成されたひずみゲージ組立体を含む、請求項12に記載の外科用デバイス。
  14. 前記コントローラが、2つの測定値間の差を計算するとともに前記差と閾値デルタ力との比較を実施するようにさらに構成される、請求項13に記載の外科用デバイス。
  15. 前記コントローラが、前記比較に基づき総損失ターンカウンタをインクリメントするようにさらに構成される、請求項14に記載の外科用デバイス。
  16. 前記リロードが、力係数及び複数の係数を記憶する記憶デバイスを含む、請求項15に記載の外科用デバイス。
  17. 前記コントローラが、調整された損失ターン値を決定するために前記総損失ターンカウンタに前記リロードと関連する力係数をかけるようにさらに構成される、請求項16に記載の外科用デバイス。
  18. 前記コントローラが、前記モータを前記調整された損失ターン値ずつインクリメントするようにさらに構成される、請求項17に記載の外科用デバイス。
  19. 前記コントローラが、前記係数及び測定された力を含む二次方程式に基づき前記総損失ターンカウンタをインクリメントするようにさらに構成される、請求項16に記載の外科用デバイス。
  20. 前記リロード及び前記アンビル組立体が円形である、請求項10に記載の外科用デバイス。
JP2023534625A 2020-12-08 2021-12-03 ハンドヘルド電気機械外科用システム Pending JP2024500331A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202063122539P 2020-12-08 2020-12-08
US63/122,539 2020-12-08
PCT/US2021/061773 WO2022125390A1 (en) 2020-12-08 2021-12-03 Handheld electromechanical surgical system

Publications (1)

Publication Number Publication Date
JP2024500331A true JP2024500331A (ja) 2024-01-09

Family

ID=79021061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023534625A Pending JP2024500331A (ja) 2020-12-08 2021-12-03 ハンドヘルド電気機械外科用システム

Country Status (5)

Country Link
US (1) US20240032929A1 (ja)
EP (1) EP4259010A1 (ja)
JP (1) JP2024500331A (ja)
CN (1) CN116546930A (ja)
WO (1) WO2022125390A1 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11311295B2 (en) * 2017-05-15 2022-04-26 Covidien Lp Adaptive powered stapling algorithm with calibration factor
US11672605B2 (en) * 2017-12-28 2023-06-13 Cilag Gmbh International Sterile field interactive control displays
US11109866B2 (en) * 2017-12-28 2021-09-07 Cilag Gmbh International Method for circular stapler control algorithm adjustment based on situational awareness
JP2021530280A (ja) * 2018-07-09 2021-11-11 コヴィディエン リミテッド パートナーシップ ハンドヘルド電気機械式外科システム

Also Published As

Publication number Publication date
WO2022125390A1 (en) 2022-06-16
CN116546930A (zh) 2023-08-04
US20240032929A1 (en) 2024-02-01
EP4259010A1 (en) 2023-10-18

Similar Documents

Publication Publication Date Title
EP2586383B1 (en) System using simulation reload to optimize staple formation
US20240023967A1 (en) Handheld electromechanical surgical system
US11771432B2 (en) Stapling and cutting to default values in the event of strain gauge data integrity loss
US20230070137A1 (en) Slow speed staple and staple relaxation for stapling optimization
US11684362B2 (en) Handheld electromechanical surgical system
JP2024500331A (ja) ハンドヘルド電気機械外科用システム
US11744592B2 (en) Handheld electromechanical stapler with tissue thickness detection
EP3939521B1 (en) Handheld electromechanical surgical system
US11832823B2 (en) Determination of anvil release during anastomosis
WO2024026379A1 (en) Handheld electromechanical surgical system with low tissue compression indication
US20220346777A1 (en) Handheld electromechanical surgical system
US20230172609A1 (en) Determination of premature staple ejection
WO2023012659A1 (en) Handheld electromechanical surgical device with strain gauge drift detection
AU2015201050A1 (en) System and method of using simulation reload to optimize staple formation