JP2024084205A - Hydroprocessing method for hydrocarbon oil - Google Patents

Hydroprocessing method for hydrocarbon oil Download PDF

Info

Publication number
JP2024084205A
JP2024084205A JP2022198348A JP2022198348A JP2024084205A JP 2024084205 A JP2024084205 A JP 2024084205A JP 2022198348 A JP2022198348 A JP 2022198348A JP 2022198348 A JP2022198348 A JP 2022198348A JP 2024084205 A JP2024084205 A JP 2024084205A
Authority
JP
Japan
Prior art keywords
descaling
reactor
temperature region
porous particles
inorganic porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022198348A
Other languages
Japanese (ja)
Inventor
秀知 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ketjen Co Ltd
Original Assignee
Nippon Ketjen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ketjen Co Ltd filed Critical Nippon Ketjen Co Ltd
Priority to JP2022198348A priority Critical patent/JP2024084205A/en
Publication of JP2024084205A publication Critical patent/JP2024084205A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

【課題】炭化水素の水素化処理において、脱スケール処理が向上された方法を提供する。【解決手段】反応器の低温領域と高温領域とに、表面積が1m2/g以下でかつ細孔直径10μm以上の細孔容積が0.1ml/g以上の無機多孔質粒子を用いて脱スケール処理を行う。【選択図】 なしThe present invention provides a method for improving descaling in the hydrotreating of hydrocarbons. The descaling process is carried out in the low-temperature and high-temperature regions of a reactor using inorganic porous particles with a surface area of 1 m2/g or less, a pore diameter of 10 μm or more, and a pore volume of 0.1 ml/g or more. [Selected Figures] None

Description

本発明は、炭化水素油の水素化処理における脱スケール処理方法に関する。 The present invention relates to a descaling method in the hydroprocessing of hydrocarbon oils.

金属分、硫黄分、窒素分等の不純物を含む重質炭化水素を処理するにあたっては、水素雰囲気下、水素化活性を有する金属成分を含む水素化処理触媒を用いて不純物の除去を行うのが一般的である。該触媒を用いる装置の連続運転時間は、装置の反応器内に充填されている該触媒の寿命またはその反応器の圧力損失によって決定されることが多い。 When treating heavy hydrocarbons containing impurities such as metals, sulfur, and nitrogen, the impurities are generally removed using a hydrotreating catalyst containing a metal component with hydrogenation activity under a hydrogen atmosphere. The continuous operating time of a device using such a catalyst is often determined by the life of the catalyst packed in the reactor of the device or the pressure loss of the reactor.

この圧力損失の主な原因として、原料油中の懸濁物が充填粒子(触媒)間に堆積・閉塞することが挙げられる。また、他の原因として、水素化反応によって原料油中に溶存していた金属分やコークが充填粒子(触媒)間に析出・堆積することも挙げられる。 The main cause of this pressure loss is the accumulation and blockage of suspended solids in the feed oil between the packing particles (catalyst). Another cause is the precipitation and accumulation of metals and coke dissolved in the feed oil between the packing particles (catalyst) due to the hydrogenation reaction.

このような圧力損失を引き起こす原因に対する対策として種々の方法がとられてきた。一例として、特許文献1には脱スケール材を反応器入口側に充填してこれらの懸濁物を除去する技術が開示されている。しかし、単に脱スケール材を充填するだけでは一部の溶存金属が除去しきれず、当該脱スケール材使用条件の最適化の課題が存在する。 Various methods have been used to address the causes of such pressure loss. As one example, Patent Document 1 discloses a technique for filling the inlet side of the reactor with a descaling material to remove these suspended solids. However, simply filling the reactor with the descaling material is not enough to remove all of the dissolved metals, and there is a problem of optimizing the conditions for using the descaling material.

特許文献2では網状組成物により懸濁物を除去する方法が開示されている。しかし、当該文献に記載の網状要素は空隙率が高く、懸濁物の除去が不十分となり、コークの析出・堆積を防ぎきれない問題点がある。 Patent Document 2 discloses a method for removing suspended solids using a reticulated composition. However, the reticulated elements described in the document have a high porosity, which results in insufficient removal of suspended solids and makes it difficult to completely prevent the precipitation and deposition of coke.

また、充填粒子間の閉塞の原因となる物質のひとつであるアスファルテンを除去することで、後段の水素化脱硫触媒を保護する方法が知られており、特許文献3では単一または複数の固定床反応器を使用するプロセスにおいて脱アスファルテン触媒を併用する方法が、特許文献4では直列に接続された複数の反応器にてアスファルテン凝集緩和剤を使用する方法が開示されている。しかしながら、これらの手法においてもアスファルテンやその他スケールを完全には除去しきれず、水素化脱硫反応領域における触媒表面上への堆積を防ぎきれないという問題がある。 In addition, a method is known for protecting the downstream hydrodesulfurization catalyst by removing asphaltene, which is one of the substances that cause blockages between packed particles. Patent Document 3 discloses a method of using a deasphaltene catalyst in a process that uses a single or multiple fixed-bed reactors, and Patent Document 4 discloses a method of using an asphaltene aggregation mitigating agent in multiple reactors connected in series. However, even with these methods, there is a problem in that asphaltene and other scale cannot be completely removed, and deposition on the catalyst surface in the hydrodesulfurization reaction region cannot be completely prevented.

一方で、特許文献5には鉄化合物を担持した触媒を用い、反応前段においてコークを先に析出させて後段の触媒を保護する方法が開示されている。しかしながら、ここで析出したコークによる閉塞・圧力損失を招きうるという問題がある。 On the other hand, Patent Document 5 discloses a method in which a catalyst carrying an iron compound is used to deposit coke in the early stages of the reaction to protect the catalyst in the later stages. However, there is a problem in that the deposited coke can cause clogging and pressure loss.

また、特許文献6では、コークの原因となる芳香族化合物を事前に吸着除去する方法が開示されている。しかしながら、この方法では本来不要ではない炭化水素成分を除去することになり、収率の面で不利となる問題がある。
さらに、特許文献7には、重質油の水素化処理に際し、脱金属触媒あるいは脱硫・脱窒素触媒の最下流側に特定の脱スケール触媒を充填した反応器を用いる技術が開示されている。
Patent Document 6 discloses a method for removing aromatic compounds that cause coke in advance by adsorption, but this method removes hydrocarbon components that are not actually unnecessary, which is disadvantageous in terms of yield.
Furthermore, Patent Document 7 discloses a technique for using a reactor packed with a specific descaling catalyst on the most downstream side of a demetallization catalyst or a desulfurization/denitrogenation catalyst in hydrotreating heavy oil.

これまで挙げてきたように、従来の技術では懸濁物の堆積・閉塞、圧力損失の発生を十分に抑制できない課題が存在する。 As mentioned above, conventional technology has the problem of being unable to adequately prevent the accumulation and clogging of suspended solids and the occurrence of pressure loss.

特許2730696号Patent No. 2730696 特表2006-523139号公報JP 2006-523139 A 特開2004-10857号公報JP 2004-10857 A 特開2013-147597号公報JP 2013-147597 A 特開2000-262900号公報JP 2000-262900 A 特開2000-178566号公報JP 2000-178566 A 特開平11-302664号公報Japanese Patent Application Laid-Open No. 11-302664

この課題につき発明者は鋭意検討の結果、水素化脱硫ゾーンの触媒における懸濁物の堆積・閉塞、それによる圧力損失を従来より飛躍的に抑制でき、以て長期にわたって活性が維持し装置全体の運転期間を延長できる方法として本発明を見出した。
本発明では、2以上の断熱型反応器を用いる炭化水素の水素化処理方法において、1以上の反応器の低温領域と1以上の反応器の高温領域とで、特定の無機多孔質粒子を用いた脱スケール処理を行う。
As a result of extensive research into this problem, the inventors have discovered the present invention as a method that can dramatically reduce the accumulation and blockage of suspended solids in the catalyst in the hydrodesulfurization zone and the resulting pressure loss, thereby maintaining activity over a long period of time and extending the operating period of the entire system.
In the present invention, in a method for hydrotreating hydrocarbons using two or more adiabatic reactors, a descaling treatment is carried out using specific inorganic porous particles in a low temperature region of one or more reactors and a high temperature region of one or more reactors.

脱スケール処理に使用する無機多孔質粒子は表面積が1m2/g以下でかつ細孔直径10μ以上の細孔容積が0.1ml/g以上のものである。表面積は0.01~0.7m2/gで、かつ細孔直径10μm以上の細孔容積が0.15ml/g以上であるものがより好ましい。そのような無機多孔質粒子の一例としては、アルミナ対シリカの重量比が4対1から9対1の範囲にあるアルミナ及びシリカの混合物を主原料とし、さらに有機系もしくは無機系の気孔剤と混合し、造粒成形後1100℃以上、好ましくは1300℃以上の温度で焼成することにより製造されるものであって良い。 The inorganic porous particles used in the descaling treatment have a surface area of 1 m2/g or less and a pore volume of 0.1 ml/g or more with a pore diameter of 10 μm or more. More preferably, the surface area is 0.01 to 0.7 m2 /g and the pore volume of 0.15 ml/g or more with a pore diameter of 10 μm or more. One example of such inorganic porous particles may be produced by using a mixture of alumina and silica, in which the weight ratio of alumina to silica is in the range of 4:1 to 9:1, as the main raw material, mixing it with an organic or inorganic pore agent, granulating it, and then firing it at a temperature of 1100°C or more, preferably 1300°C or more.

低温領域での脱スケール処理と高温領域での脱スケール処理は、同一の反応器内、あるいは異なる反応器で行うことができる。そして、異なる反応器で行う際には、最初に、低温領域での脱スケール処理を行い、次いで、高温領域での脱スケール処理を行う。 The descaling process in the low temperature region and the descaling process in the high temperature region can be carried out in the same reactor or in different reactors. When carried out in different reactors, the descaling process in the low temperature region is carried out first, followed by the descaling process in the high temperature region.

また、前記無機多孔質粒子には触媒金属化合物を担持していてもよく、その触媒金属化合物は周期表第6族金属から選ばれる少なくとも1種の化合物および/または周期表第8~10族金属から選ばれる少なくとも1種の化合物からなってよい。この化合物はMo、Cr、W、Fe、Co、Niから選ばれる少なくとも一種の金属の酸化物もしくは硫化物であってよい。担持する活性金属の量としては酸化物の総量としたときの重量比として、0.1から5%の範囲が適切である。担体となる脱スケール材の表面積が小さいため5%以上の金属担持は事実上困難である。 The inorganic porous particles may also support a catalytic metal compound, which may consist of at least one compound selected from Group 6 metals of the periodic table and/or at least one compound selected from Groups 8 to 10 metals of the periodic table. This compound may be an oxide or sulfide of at least one metal selected from Mo, Cr, W, Fe, Co, and Ni. The amount of active metal supported is appropriately in the range of 0.1 to 5% by weight relative to the total amount of oxides. Because the surface area of the descaling material that serves as the support is small, it is practically difficult to support more than 5% of the metal.

また、前記無機多孔質粒子は、比表面積が小さくマクロ細孔性であって良い。前記特徴を持つ粒子は、表面積が小さく細孔が巨大であるため、スケールや析出した金属が細孔の内部に取り込まれ、粒子外表面への金属成分の堆積が少なくなる。それにより粒子相互の癒着が起こりづらく、そうでない粒子より圧力損失を抑制する効果が高い。
なお、低温領域での脱スケール処理に使用する無機多孔質粒子は、高温領域での脱スケール処理に使用する無機多孔質粒子と、同一であってもよいし、異なっていてもよい。また、担持される触媒金属も、同一であってもよいし、異なっていてもよい。
The inorganic porous particles may have a small specific surface area and be macroporous. Since the particles with the above characteristics have a small surface area and large pores, scale and precipitated metals are taken into the pores, and the deposition of metal components on the outer surface of the particles is reduced. As a result, adhesion between particles is less likely to occur, and the effect of suppressing pressure loss is greater than that of particles that do not.
The inorganic porous particles used in the descaling treatment in the low temperature region may be the same as or different from the inorganic porous particles used in the descaling treatment in the high temperature region, and the supported catalytic metal may be the same as or different from the inorganic porous particles used in the descaling treatment in the high temperature region.

以下、上記発明について詳説する。
(1)水素化処理
本発明の水素化処理は、石油精製で一般的に用いられる断熱型反応器を2以上用いて行われる。反応器は反応温度制御のため水素をクエンチライン等で供給する手段を有していることが好ましい。
The above invention will now be described in detail.
(1) Hydrotreatment The hydrotreatment of the present invention is carried out using two or more adiabatic reactors that are generally used in oil refining. The reactors preferably have a means for supplying hydrogen through a quench line or the like to control the reaction temperature.

水素化処理の一般的な手順を以下に示す。まず触媒を断熱型反応器に充填し予備硫化を行う。予備硫化にはライトガスオイル(LGO)や真空ガスオイル(VGO)、またはそれらにジメチルジスルフィド(DMDS)等の含硫黄化合物を添加したものを用いても良い。予備硫化は通常150~350℃の温度領域で行われる。 The general procedure for hydrotreating is as follows. First, the catalyst is loaded into an adiabatic reactor and presulfurized. For presulfurization, light gas oil (LGO) or vacuum gas oil (VGO) may be used, or these may be mixed with sulfur-containing compounds such as dimethyl disulfide (DMDS). Presulfurization is usually carried out in the temperature range of 150 to 350°C.

予備硫化終了後に原料油に切り替え、生成油中の硫黄分含量が0.5重量%以下、好ましくは0.3重量%以下となるように適宜反応温度を昇温(概ね、340~390℃程度)する。また、特に限定はされないが、水素化処理条件としては、水素分圧2~22MPa(より好ましくは10~20MPa)、水素/原料油比300~1500Nl/L(より好ましくは600~1000Nl/L)、液空間速度(LHSV)0.1~10h-1(より好ましくは0.2~2.0h-1)が適用されるのが一般的である。 After the preliminary sulfurization is completed, the feed oil is switched to, and the reaction temperature is appropriately raised (generally about 340 to 390°C) so that the sulfur content in the product oil is 0.5 wt% or less, preferably 0.3 wt% or less. Although not particularly limited, the following conditions are generally applied for hydrotreating: hydrogen partial pressure 2 to 22 MPa (more preferably 10 to 20 MPa), hydrogen/feed oil ratio 300 to 1500 Nl/L (more preferably 600 to 1000 Nl/L), and liquid hourly space velocity (LHSV) 0.1 to 10 h -1 (more preferably 0.2 to 2.0 h -1 ).

(2)原料油
本発明の処理方法の対象とされる原料油には、様々な炭化水素油を使用することができる。例としては、減圧軽油、コーカー軽油、石油系残渣油、溶剤脱瀝油、石炭液化油、頁岩油、タールサンド油等であるが、原油精製によって生じる常圧残渣油、減圧残渣油に加え、バイオマスや合成高分子廃棄物由来の炭化水素油との混合油であっても良い。また、本発明方法は、従来の水素化処理方法では支障が生じるような残留炭素分に富んだ重質炭化水素油であっても処理の対象とすることができる。
(2) Feedstock Various hydrocarbon oils can be used as the feedstock oil to be treated by the treatment method of the present invention. Examples include vacuum gas oil, coker gas oil, petroleum residual oil, solvent deasphalted oil, coal liquefaction oil, shale oil, tar sand oil, etc., but in addition to atmospheric residual oil and vacuum residual oil generated by crude oil refining, mixed oils with hydrocarbon oils derived from biomass or synthetic polymer wastes may also be used. Furthermore, the method of the present invention can treat heavy hydrocarbon oils rich in residual carbon that would cause problems in conventional hydrotreating methods.

(3)脱スケール処理
本発明における脱スケール処理は、一般によく知られるプロセスで行われ、多孔質の脱スケール材により原料油中の無機金属成分を物理的に捕集、除去する。このとき、原料油中には懸濁固形物、特に金属性懸濁物の他に溶存金属が含まれているので、脱スケール材は触媒活性成分を担持させて脱金属触媒の形で用いることができ、またより好ましい。特に不飽和成分の多い原料油を処理した際には、生成するガム質やカーボンが金属成分とともに細孔内に取り込まれ、より好適である。
(3) Descaling The descaling treatment in the present invention is carried out by a generally well-known process, in which inorganic metal components in the raw oil are physically collected and removed by a porous descaling material. Since the raw oil contains dissolved metals in addition to suspended solids, particularly metallic suspended matter, the descaling material can be used in the form of a demetalization catalyst by supporting catalytically active components, which is more preferable. In particular, when treating raw oil containing a large amount of unsaturated components, the resulting gums and carbon are taken up into the pores together with the metal components, which is more preferable.

(4)反応器における高温領域、低温領域
本発明において、断熱反応器の入口温度をRIT(Reactor inlet temperature)、出口温度をROT(Reactor outlet temperature)としたとき、(ROT-RIT)×(2/3)+RITで定義される平均温度に等しい温度を境として、それより高い温度である領域をその反応器における高温領域、低い温度である領域をその反応器における低温領域と定義する。
(4) High-temperature region and low-temperature region in the reactor In the present invention, when the inlet temperature of an adiabatic reactor is RIT (reactor inlet temperature) and the outlet temperature is ROT (reactor outlet temperature), a region having a higher temperature than the average temperature defined by (ROT-RIT) x (2/3) + RIT is defined as the high-temperature region in the reactor, and a region having a lower temperature than the average temperature defined by (ROT-RIT) x (2/3) + RIT is defined as the low-temperature region in the reactor.

本発明における水素化処理において最初に行われる脱スケール処理・水素化脱金属処理は、第一の反応器内の上流側の低温領域で行われる。次に行われる水素化脱硫処理は前記水素化脱金属処理よりも高温度の条件でなされ、水素化脱硫反応は発熱反応であるため、一般には流れに従って温度が上昇してリアクター内に中~高温度領域が生じる。反応器下流端へ到達した流れは配管により第二の反応およびそれ以降の低温領域へ輸送され、同様に水素化脱硫処理が行われる。最後に、最も下流側にある反応器の高温領域において脱スケール処理が行われる。 In the present invention, the first descaling and hydrodemetallizing processes in the hydrotreatment process are carried out in a low-temperature region upstream of the first reactor. The next hydrodesulfurization process is carried out under higher temperature conditions than the hydrodesulfurization process. Since the hydrodesulfurization reaction is an exothermic reaction, the temperature generally rises with the flow, creating a medium to high temperature region within the reactor. The flow that reaches the downstream end of the reactor is transported by piping to the second reaction and subsequent low-temperature regions, where hydrodesulfurization is similarly carried out. Finally, descaling is carried out in the high-temperature region of the reactor furthest downstream.

本発明は、この一連のプロセス中において、低温領域で行われる脱スケール処理・水素化脱金属処理に加え、ひとつまたはそれ以上の反応器の高温領域においても脱スケール材を充填し脱スケール処理を行うことを特徴とする。 The present invention is characterized in that in this series of processes, in addition to the descaling and hydrodemetallization treatments carried out in the low-temperature region, a descaling material is also filled into the high-temperature region of one or more reactors to carry out the descaling treatment.

原料油中に含まれる金属、特に鉄は堆積するとコークの発生を触媒して閉塞・差圧発生を誘発するものとして知られているが、有機鉄などの形態で溶解して低温領域で行われる
脱スケール処理・水素化脱金属処理において除去されなかったものをこの高温度領域の脱スケール処理において除去することができる。
Metals contained in raw oil, especially iron, are known to catalyze the generation of coke when they accumulate, leading to blockages and pressure differences. However, this high-temperature descaling process can remove metals that are not removed during the descaling and hydrodemetallization processes carried out at low temperatures by dissolving them in the form of organic iron, etc.

高温領域における脱スケール材充填量は充填される反応器の容積に対して1%以上5%未満が好ましい。1%未満では充填量が少なすぎるために十分な脱スケール処理が行えない。一方、脱スケール材の水素化脱硫性能は低いため5%以上充填すると装置全体の水素化脱硫性能は却って低下してしまう。 The amount of descaling material filled in the high temperature region is preferably 1% or more and less than 5% of the volume of the reactor to which it is filled. If it is less than 1%, the amount is too small to perform sufficient descaling. On the other hand, the hydrodesulfurization performance of the descaling material is low, so if it is filled at 5% or more, the hydrodesulfurization performance of the entire equipment will actually decrease.

以下に実施例を示して本発明を具体的に説明する。
[実施例]
不二見研磨材(株)の直径5mmビードAL-S73、1kgに三酸化モリブデン(MoO3)1.0wt%、酸化ニッケル(NiO)0.5wt%を担持させるため、三酸化モリブデン10.2g、硝酸ニッケル20.0gを25%アンモニア水31mlで溶解し、担体の吸水量に見合う液量に水で液量調節した。この含浸液を担体1kgに含浸し、30分放置後、120℃で3時間乾燥した。更にこの乾燥物を500℃で2時間ロータリーキルンにて焼成し脱スケール材Aを得た。なお、この脱スケール材Aは上記の特許文献1に記載の脱スケール材と同様のものであり、表面積は0.39m2/g、細孔直径10μ以上の細孔容積は0.21ml/gであった。また、実体顕微鏡による外表面の観察では、この触媒の最大孔はおよそ400~500μmであった。
The present invention will be specifically described below with reference to examples.
[Example]
In order to support 1.0 wt% of molybdenum trioxide (MoO 3 ) and 0.5 wt% of nickel oxide (NiO) on 1 kg of 5 mm diameter bead AL-S73 manufactured by Fujimi Kenmazai Co., Ltd., 10.2 g of molybdenum trioxide and 20.0 g of nickel nitrate were dissolved in 31 ml of 25% ammonia water, and the amount of the liquid was adjusted with water to match the amount of water absorbed by the carrier. This impregnation liquid was impregnated into 1 kg of carrier, and after leaving it for 30 minutes, it was dried at 120°C for 3 hours. The dried product was further fired in a rotary kiln at 500°C for 2 hours to obtain descaling material A. This descaling material A was the same as the descaling material described in the above Patent Document 1, and had a surface area of 0.39 m 2 /g and a pore volume of pores with a diameter of 10μ or more of 0.21 ml/g. Moreover, when the outer surface was observed with a stereomicroscope, the maximum pore size of this catalyst was about 400 to 500 μm.

直列に接続された5つの反応管X1,X2、X3、X4、X5(実施例)、および、それと独立して同様に直列に接続された5つの反応管Y1、Y2、Y3、Y4、Y5(比較例)に、表1に示すとおりの触媒を充填した。実施例の、反応管X1から同X5の系では、同X2および同X3の高温領域である反応管底部に実施例の脱スケール材Aを充填した。一方、比較例となる反応管Y1から同Y5の系では、対応する同Y2および同Y3の底部に細孔を有しない直径5mmの市販のアルミナボールを同量充填した。 Five reaction tubes X1, X2, X3, X4, and X5 (Examples) connected in series, and five reaction tubes Y1, Y2, Y3, Y4, and Y5 (Comparative Examples) connected in series independently were filled with the catalysts shown in Table 1. In the system of reaction tubes X1 to X5 of the Example, the bottom of the reaction tubes X2 and X3, which are the high temperature regions, was filled with descaling material A of the Example. On the other hand, in the system of reaction tubes Y1 to Y5 of the Comparative Examples, the bottom of the corresponding reaction tubes Y2 and Y3 was filled with the same amount of commercially available alumina balls with a diameter of 5 mm that do not have pores.

Figure 2024084205000001
Figure 2024084205000001

2.5wt%のDMDSを添加したLGOで水素/油供給比1000NL/l、LHSV=1.0h-1、水素圧力=17MPaの条件下、250℃から320℃まで14時間かけて昇温しながら予備硫化した後原料油に切り替えた。原料油の性状は以下の通りであっ
た。

Figure 2024084205000002
The LGO containing 2.5 wt% DMDS was presulfurized under the conditions of a hydrogen/oil supply ratio of 1000 NL/l, LHSV = 1.0 h -1 , and hydrogen pressure = 17 MPa while increasing the temperature from 250°C to 320°C over 14 hours, and then switched to the feed oil. The properties of the feed oil were as follows:
Figure 2024084205000002

原料ガスとしては純水素を用い、反応条件は以下の通りであった。
圧力: 163 kg/cm2
LHSV: 0.3h-1
水素/油供給比: 530Nl/L
Pure hydrogen was used as the raw material gas, and the reaction conditions were as follows:
Pressure: 163 kg/ cm2G
LHSV: 0.3h -1
Hydrogen/oil supply ratio: 530 Nl/L

処理油に含有される硫黄と鉄の濃度は蛍光X線法により測定した。 The concentrations of sulfur and iron in the treated oil were measured using X-ray fluorescence.

Figure 2024084205000003
Figure 2024084205000003

第二反応器(X2およびY2)における圧力損失、第三反応器(X3およびY3)における圧力損失に着目すると、通油30日目、60日目、90日目いずれにおいても実施例の圧力損失が比較例のそれより小さい結果となった。 Focusing on the pressure loss in the second reactor (X2 and Y2) and the third reactor (X3 and Y3), the pressure loss in the example was smaller than that in the comparative example on the 30th, 60th, and 90th days of oil flow.

また、第二反応器(X2およびY2)における脱スケール材充填層温度、第三反応器(X3およびY3)におけるアルミナボール充填層温度に着目すると、通油30日目、60日目、90日目いずれにおいても実施例が比較例よりも低温である結果となった。 In addition, when looking at the temperature of the descaling material packed bed in the second reactor (X2 and Y2) and the temperature of the alumina ball packed bed in the third reactor (X3 and Y3), the results showed that the temperature in the Example was lower than that in the Comparative Example on the 30th, 60th, and 90th days of oil passage.

脱鉄率に着目すると、通油30日目、60日目、90日目いずれにおいても実施例の脱鉄率が比較例のそれより高い結果となった。鉄はスケールの主要成分であり、それが脱スケール材に捕捉されたことにより圧力損失が軽減されたと考えられる。 Focusing on the iron removal rate, the iron removal rate of the Example was higher than that of the Comparative Example on the 30th, 60th, and 90th days of oil passage. Iron is the main component of scale, and it is believed that pressure loss was reduced by the iron being captured by the descaling material.

運転終了後に各反応器から廃触媒をとりだしたところ、実施例における脱金属触媒、脱硫触媒(反応器X3~X5)には固化が見られなかったが、対応する比較例の脱金属触媒
、脱硫触媒(反応器Y3~Y5)にはわずかに固化が見られた。これは炭素の析出を触媒する鉄が脱スケール材によりトラップされ、それにより脱金属触媒、脱硫触媒への炭素の析出が抑制され、以て触媒の固化・圧力損失の発生が抑制されたことを示唆している。
When the spent catalyst was removed from each reactor after the operation was completed, no solidification was observed in the demetallization catalyst and desulfurization catalyst of the Examples (reactors X3 to X5), but slight solidification was observed in the corresponding demetallization catalyst and desulfurization catalyst of the Comparative Examples (reactors Y3 to Y5). This suggests that iron, which catalyzes carbon deposition, was trapped by the descaling material, thereby suppressing carbon deposition on the demetallization catalyst and desulfurization catalyst, thereby suppressing catalyst solidification and pressure loss.

Claims (6)

2以上の断熱型反応器を用いる炭化水素の水素化処理方法において、1以上の反応器の低温領域と1以上の反応器の高温領域とに、表面積が1m2/g以下でかつ細孔直径10μm以上の細孔容積が0.1ml/g以上の無機多孔質粒子を用いて脱スケール処理を行うことを特徴とする、炭化水素の水素化処理方法。 A method for hydrotreating hydrocarbons using two or more adiabatic reactors, characterized in that a descaling treatment is carried out in a low-temperature region of one or more reactors and a high-temperature region of one or more reactors using inorganic porous particles having a surface area of 1 m2 /g or less, a pore diameter of 10 μm or more, and a pore volume of 0.1 ml/g or more. 前記無機多孔質粒子がアルミナ及びシリカを主原料とし気孔剤を含む原料を焼成することにより製造される、請求項1に記載の水素化処理方法。 The hydrotreating method according to claim 1, wherein the inorganic porous particles are produced by firing a raw material containing alumina and silica as main raw materials and a porosity agent. 低温領域で無機多孔質粒子が用いられる反応器と高温領域で無機多孔質粒子が用いられる反応器とが同一ではない、請求項1または2に記載の水素化処理方法。 The hydrotreating method according to claim 1 or 2, wherein the reactor in which inorganic porous particles are used in the low temperature region and the reactor in which inorganic porous particles are used in the high temperature region are not the same. 前記無機多孔質粒子が、周期表第6族の金属から選ばれる少なくとも1種の化合物および/または周期表第8~10族金属から選ばれる少なくとも1種の化合物を担持させたものである、請求項1または2に記載の水素化処理方法。 The hydrotreating method according to claim 1 or 2, wherein the inorganic porous particles support at least one compound selected from metals in Group 6 of the periodic table and/or at least one compound selected from metals in Groups 8 to 10 of the periodic table. 前記無機多孔質粒子が表面積0.01~0.7m2/gで、かつ、細孔直径10μm以上の細孔容積が0.15ml/g以上である、請求項1に記載の水素化処理方法。 2. The hydrotreating method according to claim 1, wherein the inorganic porous particles have a surface area of 0.01 to 0.7 m 2 /g and a pore volume of pores having a diameter of 10 μm or more of 0.15 ml/g or more. 高温領域における脱スケール材充填量は、充填される反応器の容積に対して1%以上5%未満である、請求項1に記載の水素化処理方法。 The hydrotreating method according to claim 1, wherein the amount of descaling material filled in the high temperature region is 1% or more and less than 5% of the volume of the reactor to which it is filled.
JP2022198348A 2022-12-13 2022-12-13 Hydroprocessing method for hydrocarbon oil Pending JP2024084205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022198348A JP2024084205A (en) 2022-12-13 2022-12-13 Hydroprocessing method for hydrocarbon oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022198348A JP2024084205A (en) 2022-12-13 2022-12-13 Hydroprocessing method for hydrocarbon oil

Publications (1)

Publication Number Publication Date
JP2024084205A true JP2024084205A (en) 2024-06-25

Family

ID=91590661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022198348A Pending JP2024084205A (en) 2022-12-13 2022-12-13 Hydroprocessing method for hydrocarbon oil

Country Status (1)

Country Link
JP (1) JP2024084205A (en)

Similar Documents

Publication Publication Date Title
JP5993872B2 (en) Method for hydrotreating heavy hydrocarbon feedstock using a switchable reactor comprising at least one step of bypassing the catalyst bed
US6398950B1 (en) Hydrogenation catalyst and method of hydrogenating heavy oil
JPH04224891A (en) Method for hydrogenating petroleum residue or heavy oil to purify them and convert them into lighter fraction
JP5919299B2 (en) Process for hydrotreating heavy hydrocarbon feedstock with a switchable reactor comprising at least one step of gradual switching
JPH0753967A (en) Hydrotreatment of heavy oil
JPS6326157B2 (en)
JP2010159416A (en) Hydrocracking method including switchable reactor with feedstock containing asphaltene of 200 ppm to 2% by weight
CN107875979B (en) Grading filling method and application of fixed bed hydrogenation catalyst
CA2017181C (en) Hydrotreatment process
JP3110525B2 (en) Method for regenerating hydrocarbon oil hydrotreating catalyst
WO2006022419A1 (en) Process for hydrorefining heavy hydrocarbon oil
KR100600189B1 (en) Method of hydrogenating heavy oil
TWI652114B (en) Recycling method for heavy oil desulfurization catalyst
CA2412363C (en) Method for presulfiding and preconditioning of residuum hydroconversion catalyst
JP2024084205A (en) Hydroprocessing method for hydrocarbon oil
JP2004148139A (en) Regenerated catalyst for hydrogenating heavy oil and method for hydrotreating heavy oil by using the same
JP3708381B2 (en) Regeneration method of heavy oil hydrotreating catalyst and regenerated hydrotreating catalyst
CN107875978B (en) Grading filling method and application of hydrogenation catalyst
JP3516383B2 (en) Hydroprocessing of heavy oil
JP3527635B2 (en) Hydrodesulfurization method for heavy oil
CN111676058B (en) Residual oil hydrogenation reactor with alternately changed material flow directions, residual oil hydrogenation system comprising reactor and residual oil hydrogenation process
CN113122316B (en) Method for prolonging operation period of heavy oil hydrogenation device
CN112210401B (en) Tandem and alternative residual oil hydrotreating-catalytic cracking combined process method and system
CN1609176A (en) Inferior heavy oil and residual oil modifying method
JP2000178566A (en) Method for hydrotreatment of hydrocarbon oil