JP2024081093A - Integrated circuit - Google Patents
Integrated circuit Download PDFInfo
- Publication number
- JP2024081093A JP2024081093A JP2022203739A JP2022203739A JP2024081093A JP 2024081093 A JP2024081093 A JP 2024081093A JP 2022203739 A JP2022203739 A JP 2022203739A JP 2022203739 A JP2022203739 A JP 2022203739A JP 2024081093 A JP2024081093 A JP 2024081093A
- Authority
- JP
- Japan
- Prior art keywords
- gaa
- stacked
- gate
- lateral
- integrated circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012212 insulator Substances 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000005530 etching Methods 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Design And Manufacture Of Integrated Circuits (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
ゲートオールアラウンド型トランジスタを用いた集積回路に関する。This relates to an integrated circuit using gate-all-around transistors.
LSIは過去ムーアの法則にしたがって平面型トランジスタの微細化が進み、大容量化、低コスト化、高速化、低消費電力化が着実に進められてきた。In the past, LSIs have progressed in accordance with Moore's Law as planar transistors have become increasingly miniaturized, and there has been steady progress in increasing capacity, reducing costs, increasing speed, and reducing power consumption.
その結果ロジックLSIの代表であるMPUでは10億個以上の平面型トランジスタを用いたGHz動作が実現され、メモリLSIの中で最も大容量化が進んだ平面型トランジスタを用いたNAND型フラッシュメモリでは64Gbitまで大容量化が進められている(文献1)。As a result, MPUs, which are representative of logic LSIs, have achieved GHz operation using more than 1 billion planar transistors, and NAND flash memory, which uses planar transistors and is the memory LSI with the highest capacity, has been increased to 64 Gbit (Reference 1).
しかしながらこの平面型トランジスタの微細化もショートチャネル効果等のため近年限界に近付いている。However, miniaturization of this planar transistor has been approaching its limit in recent years due to short channel effects and the like.
この問題を解決するため、ショートチャネル効果に強い3次元型トランジスタが開発された。その代表例がFinFETである。To solve this problem, three-dimensional transistors that are resistant to the short channel effect have been developed, a representative example of which is the FinFET.
FinFETは平面トランジスタの1側面ではなく、3側面をチャネルに使用できるため、ショートチャネル効果に強く微細化できる特徴が有る。近年FinFETよりも更にショートチャネル効果を制御できる4側面をチャネルに使用できるゲートアラウンド型トランジスタ(以後GAAと略す)や、GAAを縦方向に複数個積層してGAA以上に高速化に適したMBCFET(Multi Bridge Channel FET)などが提案されている。FinFETs have the advantage that they can be miniaturized and are resistant to short channel effects because three sides can be used for the channel, instead of one side of a planar transistor. In recent years, gate-around-type transistors (hereafter abbreviated as GAA) that can use four sides for the channel and can control the short channel effect even more than FinFETs, and MBCFETs (Multi Bridge Channel FETs) that are stacked vertically and are more suitable for high speed than GAA have been proposed.
これらの構造ではトランジスタはソース、チャネル、ドレインが横方向に配置されている(以後横型FETもしくは横型GAAと略す)ため、製造技術の最適化により同一平面上の同じ位置に同一導電型の横型FETを比較的容易に縦方向に複数積層することが出来る。これにより高速化だけでなく、平面部でのパターン面積の縮小により低コスト化できる特徴があった。In these structures, the source, channel, and drain of the transistor are arranged horizontally (hereafter abbreviated as lateral FET or lateral GAA), so that by optimizing the manufacturing technology, it is relatively easy to stack multiple lateral FETs of the same conductivity type vertically in the same position on the same plane. This has the advantage of not only increasing speed but also reducing costs by reducing the pattern area on the plane.
しかしながらそのゲート電極はチャネル部分の導電型が同じ場合(全てN型か全てP型)、積層された複数の横型FET間で共通なため、複数の異なる入力信号が必要になるNOR,NAND論理などの基本論理回路を同一平面上の同じ位置に縦方向に積層した複数の横型FETで実現する事が出来なかった。その結果、従来はそれによる高速化、低コスト化が実現できない問題が有った。However, when the conductivity type of the channel portion is the same (all N-type or all P-type), the gate electrode is common to the multiple stacked lateral FETs, so basic logic circuits such as NOR and NAND logic, which require multiple different input signals, could not be realized by multiple lateral FETs stacked vertically in the same position on the same plane.As a result, there was a problem in the past that it was not possible to achieve the high speed and low cost that would be achieved by doing so.
M.Sako et al,”A Low-Power 64Gb MLC NAND-Flash Memory in 15nm CMOS Technology”,ISSCC Dig.Tech.Papers,2015.M. Sako et al., "A Low-Power 64Gb MLC NAND-Flash Memory in 15nm CMOS Technology," ISSCC Dig. Tech. Papers, 2015.
複数の異なる入力信号が必要になるNOR,NAND論理などの基本論理回路を同一平面上の同じ位置に縦方向に積層したチャネル部分の導電型が同じ複数の横型FETで実現する手段は現時点では提案されていない。At present, there is no proposed means for implementing basic logic circuits such as NOR and NAND logic, which require multiple different input signals, using multiple lateral FETs with the same conductivity type in their channel portions stacked vertically in the same position on the same plane.
同一平面上の同じ位置に縦方向に積層したチャネル部分の導電型が同じ複数の横型FETにおいて、前記複数個の横型FETのゲート信号電極を絶縁膜を介して縦方向に積層して実現することにより実現した。This is achieved by stacking a plurality of lateral FETs having the same conductivity type of their channel portions vertically at the same position on the same plane, and vertically stacking the gate signal electrodes of the plurality of lateral FETs via an insulating film.
本発明により、複数の異なる入力信号が必要になるNOR,NAND論理などの基本論理回路を同一平面上の同じ位置に縦方向に積層したチャネル部分の導電型が同じ複数の横型FETで実現する事が初めて可能になった。その結果、従来方式と比較してパターン面積を縮小することにより、従来は実現できなかった縦方向に積層されたゲートオールアラウンド型トランジスタを用いた集積回路を高速化、低コスト化することが可能になる。This invention has made it possible for the first time to realize basic logic circuits such as NOR and NAND logic, which require multiple different input signals, using multiple lateral FETs with the same conductivity type in the channel portion stacked vertically at the same position on the same plane. As a result, by reducing the pattern area compared to the conventional method, it is possible to increase the speed and reduce the cost of integrated circuits using vertically stacked gate-all-around transistors, which was not possible to realize in the past.
以下、図面を参照して、本発明に係る集積回路の第1実施形態について説明する。
[第1実施形態]
(第1実施形態の構成)A first embodiment of an integrated circuit according to the present invention will now be described with reference to the drawings.
[First embodiment]
(Configuration of the First Embodiment)
以下本発明の第一の実施形態を説明する。
図1(右)は3個の前記横型GAA116、216、316を同一平面上の同じ位置に縦方向に積層した場合を示す。そのゲート信号119、219、319はお互いに絶縁膜により分離され独立の信号を入力できる。3個の前記横型GAAのソース電極117、217、317は製造方法により共通、独立いずれも実現可能である。図1ではその状況を細かい一点鎖線414で示す。同様に3個の前記横型GAAのドレイン電極118、218、318は製造方法により共通、独立いずれも実現可能である。図1ではその状況を細かい一点鎖線415で示す。 A first embodiment of the present invention will now be described.
Figure 1 (right) shows three horizontal GAA 116, 216, 316 stacked vertically at the same position on the same plane. The gate signals 119, 219, 319 are separated from each other by insulating films, and independent signals can be input. The source electrodes 117, 217, 317 of the three horizontal GAA can be either common or independent, depending on the manufacturing method. In Figure 1, this situation is shown by a fine dashed line 414. Similarly, the drain electrodes 118, 218, 318 of the three horizontal GAA can be either common or independent, depending on the manufacturing method. In Figure 1, this situation is shown by a fine dashed line 415.
図1(左)は3個の前記横型GAAを積層した本実施例の上面図(図2)において、ゲート部分16の断面図を示す。112、212、312はそれぞれ1層目、2層目、3層目のGAAのチャネル部分、111、211、311はそれぞれ1層目、2層目、3層目のGAAのゲート絶縁膜、101、201、301はそれぞれ1層目、2層目、3層目のGAAのゲート電極を示す。112、212、312の導電型は同じである。積層された前記電極間は絶縁膜213、313で絶縁されている。
前記3種類のゲート電極は前記横型GAAで側面からそれぞれ115、215、315と独立分離した形で横方向に引き出されている。お互いは絶縁膜214、314で分離されている。 Figure 1 (left) shows a cross-sectional view of the gate portion 16 in the top view (Figure 2) of this embodiment in which three horizontal GAA are stacked. 112, 212, 312 are the channel portions of the first, second, and third GAA layers, respectively, 111, 211, 311 are the gate insulating films of the first, second, and third GAA layers, respectively, and 101, 201, 301 are the gate electrodes of the first, second, and third GAA layers, respectively. 112, 212, and 312 have the same conductivity type. The stacked electrodes are insulated by insulating films 213 and 313.
The three types of gate electrodes are drawn out laterally from the side surfaces of the lateral GAA in an independent and separate form as 115, 215, and 315. They are separated from each other by insulating films 214 and 314.
図3(左)に前記縦方向に積層されたGAAのソース部分(図2の15部分)の断面図を、図3(右)に前記縦方向に積層されたGAAのドレイン部分(図2の14部分)の断面図を示す。積層されたGAAのソース部分120、220、320はお互いに絶縁膜221、321で分離されている。3 (left) shows a cross-sectional view of the source part (part 15 in FIG. 2) of the vertically stacked GAA, and FIG 3 (right) shows a cross-sectional view of the drain part (part 14 in FIG. 2) of the vertically stacked GAA. The source parts 120, 220, and 320 of the stacked GAA are separated from each other by insulating films 221 and 321.
縦方向に積層されたソース部分を接続する時には414に示すように縦方向の金属配線で縦方向に接続する部分の絶縁膜に穴を開ける。図3(左)では縦方向3層とも接続する場合を示す。同様に積層されたGAAのドレイン部分121、221、321はお互いに絶縁膜222、322で分離されている。縦方向に積層されたドレイン部分を接続する時には415に示すように縦方向の金属配線で縦方向に接続する部分の絶縁膜に穴を開ける。図3(左)では縦方向3層とも接続する場合を示す。When connecting source parts stacked vertically, holes are made in the insulating film at the part where vertical metal wiring is connected vertically, as shown at 414. Figure 3 (left) shows the case where all three layers are connected vertically. Similarly, drain parts 121, 221, 321 of stacked GAA are separated from each other by insulating films 222, 322. When connecting drain parts stacked vertically, holes are made in the insulating film at the part where vertical metal wiring is connected vertically, as shown at 415. Figure 3 (left) shows the case where all three layers are connected vertically.
図1(左)の断面を実現するには、初めに1層目に113絶縁膜、次に後でエッチングして除去される導電膜101、チャネルになる半導体部分112、後でエッチングして除去される導電膜101、を積層、その後同様に2層目、3層目を積層し、その後エッチングで導電膜101、201、301を除去する。その後チャネルになる半導体部分を酸化してゲート絶縁膜(1層目では111)を形成する。1 (left), first, the insulating film 113 is laminated as the first layer, then the conductive film 101 (to be removed by etching later), the semiconductor portion 112 that will become the channel, and the conductive film 101 (to be removed by etching later), then the second and third layers are laminated in the same manner, and then the conductive films 101, 201, and 301 are removed by etching.Then, the semiconductor portion that will become the channel is oxidized to form a gate insulating film (111 in the first layer).
次に横型GAAの横に1層目に対応する絶縁膜114を形成後ゲート電極115を形成する。ゲート電極には空洞部分での横縦方向への拡散が容易なポリシリコンを用いれば、115形成時に同時に横型GAAのゲート電極になる101も形成できる。次に2層目では絶縁膜214の形成、ゲート電極215(同時に201)の形成、最後に3層目では絶縁膜314の形成、ゲート電極315(同時に301)の形成を行う。以上述べた方法では1層目、2層目、3層目のゲート電極の形成を別工程で実現したが、製造工程の工夫により同一工程で図1(左)の右側面から1工程で実現できる可能性もある。Next, the insulating film 114 corresponding to the first layer is formed next to the horizontal GAA, and then the gate electrode 115 is formed. If polysilicon, which is easy to diffuse in the horizontal and vertical directions in the cavity, is used for the gate electrode, 101, which will become the gate electrode of the horizontal GAA, can be formed at the same time as forming 115. Next, in the second layer, the insulating film 214 is formed, the gate electrode 215 (and 201 at the same time), and finally, in the third layer, the insulating film 314 is formed, and the gate electrode 315 (and 301 at the same time) is formed. In the method described above, the gate electrodes of the first, second, and third layers are formed in separate processes, but it is possible that they can be formed in the same process from the right side of Figure 1 (left) by devising the manufacturing process.
図4には第一の実施例で最も特徴的な、縦方向に積層されたGAAのソース電極を全て縦方向に接続514し、ドレイン電極を全て縦方向に接続515した場合を示す。514,515の荒い一点鎖線は縦方向に接続されている部分を示す。これにより3個の横型GAAを並列接続したいわゆるNOR回路が実現できる。従来ゲート電極が縦方向に1種類しか実現できなかった時と比較して、3層積層したことによりパターン面積は1/3になり、製造コストも約1/3に縮小できる特徴が有る。Figure 4 shows the most characteristic case of the first embodiment, where all source electrodes of vertically stacked GAA are connected vertically 514 and all drain electrodes are connected vertically 515. The rough dashed lines 514 and 515 indicate the vertically connected parts. This allows the realization of a so-called NOR circuit in which three horizontal GAA are connected in parallel. Compared to the conventional case where only one type of gate electrode could be realized vertically, stacking three layers reduces the pattern area to one-third and the manufacturing cost to about one-third.
この低コスト化の効果は、縦方向に積層するGAA数が増加するほど大きくなる。例えば1000個程度のGAAが縦方向に積層された場合には、ゲート電極に不揮発情報を記憶できる強誘電体膜を使用したFeFETを用いることにより、パターン面積を従来の1/1000に低減した並列接続されたFeFETによるFeRAM(不揮発性強誘電体型メモリ)を実現できる。The effect of this cost reduction becomes greater as the number of GAA stacked vertically increases. For example, when about 1000 GAA are stacked vertically, by using an FeFET using a ferroelectric film capable of storing nonvolatile information in the gate electrode, an FeRAM (nonvolatile ferroelectric memory) using parallel-connected FeFETs with a pattern area reduced to 1/1000 of the conventional one can be realized.
または前記FeFETにアナログな値を記憶させ、そのゲートにアナログな値に制御されたゲート電圧を入力することによりAI用LSIで最も重要な構成要素である積和演算を従来の1/1000のパターン面積で実現できる可能性が有る。ゲート電圧はFeFETに記憶したアナログ値によって制御された値が入力される。例えばアナログ値(FeFETの抵抗値)が大きい場合には、ゲートへの入力信号を高くし、アナログ値が小さい場合にはゲートへの入力信号を低くし、記憶されたアナログ値が異なっているFeFET同士の積和演算が正確に行われるように制御する。Alternatively, by storing an analog value in the FeFET and inputting a gate voltage controlled by the analog value to the gate, it is possible to realize the multiplication and accumulation operation, which is the most important component of an AI LSI, with a pattern area 1/1000 of the conventional size. The gate voltage is input with a value controlled by the analog value stored in the FeFET. For example, when the analog value (resistance value of the FeFET) is large, the input signal to the gate is increased, and when the analog value is small, the input signal to the gate is decreased, so that the multiplication and accumulation operation between FeFETs with different stored analog values can be performed accurately.
図5に図4の変形例を示す。914によりドレイン電極側だけ914で共通となり、ソース側は918、928,938で独立した電極になる。前記FeFETにアナログな値を記憶させ、そのソースに電圧を入力することによりAI用LSIで最も重要な構成要素である積和演算を従来の1/1000のパターン面積で実現できる可能性が有る。図4の方式よりもソース電極面積は大きくなるが、ソース電圧の制御が簡単になる(FeFETの重みに依存しない)特徴が有る。Figure 5 shows a modification of Figure 4. Only the drain electrode side is common at 914, and the source side is an independent electrode at 918, 928, and 938. By storing analog values in the FeFET and inputting a voltage to the source, it is possible to realize product-sum calculations, the most important component of AI LSI, in a pattern area 1/1000 the size of the conventional one. The source electrode area is larger than that of the method in Figure 4, but it has the characteristic that the control of the source voltage is simplified (it does not depend on the weight of the FeFET).
図6に縦方向に積層したGAAを直列に接続した例を示す。縦方向配線714で1層目と2層目のソース電極間を接続し、715で2層目と3層目のドレイン電極間を接続することにより実現する。この方式はNAND回路やNAND型メモリを実現する際に有効である。6 shows an example of vertically stacked GAA connected in series. This is realized by connecting the source electrodes of the first and second layers with vertical wiring 714, and connecting the drain electrodes of the second and third layers with 715. This method is effective when realizing a NAND circuit or NAND type memory.
図7に縦方向に3層積層したGAAを2入力の並列接続回路に使用する場合を示す。集積回路上に入力信号数が異なる回路が存在する場合や電流駆動能力が高いトランジスタが必要な場合に方式は有効である。Figure 7 shows the case where three vertically stacked layers of GAA are used in a two-input parallel connection circuit. This method is effective when there are circuits with different numbers of input signals on an integrated circuit or when transistors with high current driving capacity are required.
本発明では複数の異なる入力信号が必要になるNOR,NAND論理などの基本論理回路を同一平面上の同じ位置に縦方向に積層したチャネル部分の導電型が同じ複数の横型FETで実現する事が初めて可能になった。その結果、従来方式と比較してパターン面積を縮小することにより、従来は実現できなかった縦方向に積層されたゲートオールアラウンド型トランジスタを用いた集積回路を高速化、低コスト化することが可能になる。パターン面積は縦方向に積層される横型FETの数に依存しない値(1層の値)に出来る。そのため積層数が多い程1個の横型FETのコストは安くなる(理想的な場合にはN層積層すると1/Nに低減可能)効果が有る。In the present invention, it has become possible for the first time to realize basic logic circuits such as NOR and NAND logic, which require multiple different input signals, using multiple lateral FETs with the same conductivity type of the channel part stacked vertically at the same position on the same plane. As a result, by reducing the pattern area compared to the conventional method, it becomes possible to increase the speed and reduce the cost of integrated circuits using vertically stacked gate-all-around type transistors, which was not possible to realize in the past. The pattern area can be set to a value (value for one layer) that is independent of the number of lateral FETs stacked vertically. Therefore, the more the number of layers, the cheaper the cost of one lateral FET becomes (in an ideal case, it can be reduced to 1/N by stacking N layers).
本発明はトランジスタの直列接続、並列接続だけに限定されない。同一平面上の別の位置に直列接続したN型、並列接続したP型を配置し、積層したゲート電極を両方で共有すれば容易にCMOS NAND回路が実現できる。逆の方式で接続すれば容易にCMOS NOR回路が実現できる。配線の工夫により更に複雑な複合ゲート回路も実現可能である。その結果システムLSI,ロジックLSI、FPGA等の現在商品化されている集積回路全てに適用可能である。The present invention is not limited to series and parallel connections of transistors. By arranging N-type transistors connected in series and P-type transistors connected in parallel at different positions on the same plane and sharing the stacked gate electrode between them, a CMOS NAND circuit can be easily realized. By connecting in the opposite manner, a CMOS NOR circuit can be easily realized. By ingeniously adjusting the wiring, even more complex composite gate circuits can be realized. As a result, the present invention can be applied to all currently commercialized integrated circuits such as system LSIs, logic LSIs, and FPGAs.
112、212、312はそれぞれ1層目、2層目、3層目のGAAのチャネル部分、111、211、311はそれぞれ1層目、2層目、3層目のGAAのゲート絶縁膜、101、201、301はそれぞれ1層目、2層目、3層目のGAAのゲート電極を示す。積層された前記電極間は絶縁膜213、313で絶縁されている。
111、211、311はそれぞれ1層目、2層目、3層目のGAAのゲート絶縁膜、101、201、301はそれぞれ1層目、2層目、3層目のGAAのゲート電極を示す。積層された前記電極間は絶縁膜213、313で絶縁されている。
ゲート電極は前記横型GAAで側面からそれぞれ115、215、315と独立分離した形で横方向に引き出されている。お互いは絶縁膜214、314で分離されている。
GAAのソース部分120、220、320はお互いに絶縁膜221、321で分離されている。
積層されたGAAのソース部分120、220、320はお互いに絶縁膜221、321で分離されている。積層されたGAAのドレイン部分121、221、321はお互いに絶縁膜222、322で分離されている。
414,415,514,515,714,715,814,815,914はソースドレイン部分の縦方向の接続配線。 Reference numerals 112, 212, and 312 denote channel portions of the first, second, and third GAA layers, 111, 211, and 311 denote gate insulating films of the first, second, and third GAA layers, and 101, 201, and 301 denote gate electrodes of the first, second, and third GAA layers. The stacked electrodes are insulated by insulating films 213 and 313.
Reference numerals 111, 211, and 311 denote gate insulating films of the first, second, and third GAA layers, respectively, and reference numerals 101, 201, and 301 denote gate electrodes of the first, second, and third GAA layers, respectively. The stacked electrodes are insulated from each other by insulating films 213 and 313.
The gate electrodes are drawn out laterally from the side surfaces of the lateral GAA in the form of independent and separate gate electrodes 115, 215, and 315. They are separated from each other by insulating films 214 and 314.
The GAA source portions 120, 220, 320 are separated from each other by insulating films 221, 321.
The source portions 120, 220, 320 of the stacked GAA are separated from each other by insulating films 221, 321. The drain portions 121, 221, 321 of the stacked GAA are separated from each other by insulating films 222, 322.
414, 415, 514, 515, 714, 715, 814, 815, and 914 are vertical connection wirings for the source-drain portions.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022203739A JP2024081093A (en) | 2022-12-05 | 2022-12-05 | Integrated circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022203739A JP2024081093A (en) | 2022-12-05 | 2022-12-05 | Integrated circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024081093A true JP2024081093A (en) | 2024-06-17 |
Family
ID=91483253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022203739A Pending JP2024081093A (en) | 2022-12-05 | 2022-12-05 | Integrated circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2024081093A (en) |
-
2022
- 2022-12-05 JP JP2022203739A patent/JP2024081093A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10224331B2 (en) | Semiconductor device | |
US11616053B2 (en) | Method to vertically route a logic cell incorporating stacked transistors in a three dimensional logic device | |
US10164121B2 (en) | Stacked independently contacted field effect transistor having electrically separated first and second gates | |
EP3343614A2 (en) | Standard cell for vertical transistors | |
US11600711B2 (en) | Semiconductor devices having gate structures with skirt regions | |
US20110186932A1 (en) | Semiconductor device | |
JP7315016B2 (en) | semiconductor equipment | |
US11450671B2 (en) | Semiconductor apparatus having stacked devices and method of manufacture thereof | |
KR20100007229A (en) | Non-volatile memory device and method of fabricating the same | |
JPWO2020065732A1 (en) | Semiconductor devices and their manufacturing methods | |
US20140197463A1 (en) | Metal-programmable integrated circuits | |
US7893483B2 (en) | Neuron device | |
US9368507B2 (en) | Semiconductor structure | |
US6724028B2 (en) | Matrix-addressable array of integrated transistor/memory structures | |
CN114762113A (en) | Semiconductor device with a plurality of semiconductor chips | |
US10355128B2 (en) | Double-gate vertical transistor semiconductor device | |
US9570388B2 (en) | FinFET power supply decoupling | |
US8040717B2 (en) | SRAM cell and SRAM device | |
JP2024081093A (en) | Integrated circuit | |
TWI790014B (en) | 3d monolithic stacking memory structure | |
JP2009532896A (en) | Single-electron flexible multi-function logic circuit and element using the same | |
CN114514604A (en) | Semiconductor device with a plurality of semiconductor chips | |
KR100556089B1 (en) | A matrix-addressable array of integrated transistor/memory structures | |
CN110970430B (en) | Semiconductor device with a semiconductor layer having a plurality of semiconductor layers | |
US20240145343A1 (en) | Cell architecture with center-line power rails for stacked field-effect transistors |