JP2024079609A - Polymers for power storage devices - Google Patents

Polymers for power storage devices Download PDF

Info

Publication number
JP2024079609A
JP2024079609A JP2023194655A JP2023194655A JP2024079609A JP 2024079609 A JP2024079609 A JP 2024079609A JP 2023194655 A JP2023194655 A JP 2023194655A JP 2023194655 A JP2023194655 A JP 2023194655A JP 2024079609 A JP2024079609 A JP 2024079609A
Authority
JP
Japan
Prior art keywords
negative electrode
storage device
mass
electricity storage
present disclosure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023194655A
Other languages
Japanese (ja)
Inventor
裕志 川向
一雄 隠岐
茂久 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to PCT/JP2023/041318 priority Critical patent/WO2024116881A1/en
Publication of JP2024079609A publication Critical patent/JP2024079609A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】一態様において、シリコン系負極活物質を用いた負極を備える蓄電デバイスの充放電サイクル特性および高速放電容量維持率を向上できる蓄電デバイス用重合体の提供。【解決手段】本開示は、一態様において、下記式(I)で表される構成単位を含み、下記式(I)で表される構成単位の含有量が95質量%超の、蓄電デバイス用重合体に関する。下記式(I)中、R1は、水素原子又はメチル基であり、R2は、水素原子、炭素数1以上4以下の炭化水素基、又は、1個以上3個以下の水酸基を有する直鎖もしくは分岐鎖の炭素数1以上4以下の炭化水素基であり、R3は、1個以上3個以下の水酸基を有する直鎖又は分岐鎖の炭素数1以上4以下の炭化水素基である。【化1】TIFF2024079609000008.tif33170【選択図】なし[Problem] In one aspect, a polymer for an electricity storage device is provided that can improve the charge/discharge cycle characteristics and high-rate discharge capacity retention rate of an electricity storage device equipped with a negative electrode using a silicon-based negative electrode active material. [Solution] In one aspect, the present disclosure relates to a polymer for an electricity storage device that includes a structural unit represented by the following formula (I), and the content of the structural unit represented by the following formula (I) exceeds 95 mass %. In the following formula (I), R1 is a hydrogen atom or a methyl group, R2 is a hydrogen atom, a hydrocarbon group having 1 to 4 carbon atoms, or a linear or branched hydrocarbon group having 1 to 4 carbon atoms and having 1 to 3 hydroxyl groups, and R3 is a linear or branched hydrocarbon group having 1 to 4 carbon atoms and having 1 to 3 hydroxyl groups. [Chemical 1]TIFF2024079609000008.tif33170[Selected Figures]None

Description

本開示は、蓄電デバイス用重合体、バインダー組成物、蓄電デバイス負極用ペースト、蓄電デバイス用負極、及び蓄電デバイスに関する。 This disclosure relates to a polymer for an electricity storage device, a binder composition, a paste for an electricity storage device negative electrode, an electricity storage device negative electrode, and an electricity storage device.

近年のスマートフォンの普及や自動車市場でのゼロエミッション規制、さらには自然エネルギー活用の拡大等により、蓄電デバイスの需要は大きくなってきている。そのため、蓄電デバイスには、小型、軽量、大容量化が望まれ、自動車等においてはさらに高出力、高エネルギー密度を求める声が大きくなっている。このような要求において、リチウムイオン二次電池やアルカリイオン二次電池、電気二重層キャパシタやリチウムイオンキャパシタ等の蓄電デバイスの開発が進められている。 The demand for energy storage devices is growing in recent years due to the widespread use of smartphones, zero-emission regulations in the automobile market, and the expanded use of natural energy. For this reason, energy storage devices are required to be small, lightweight, and have large capacity, and there is a growing demand for higher output and higher energy density in automobiles and other applications. In response to these demands, the development of energy storage devices such as lithium-ion secondary batteries, alkaline-ion secondary batteries, electric double-layer capacitors, and lithium-ion capacitors is progressing.

このような蓄電デバイスは、一般的に金属箔上に活物質等を含む合材層が塗布された電極を備えており、合材層の剥落を防止するために蓄電デバイス電極用バインダーが合材層に添加されている。
蓄電デバイス負極用バインダーとしてもっとも広く使用されているのは、スチレン/ブタジエンラバー(SBR)であるが、近年、蓄電デバイスの更なる性能向上を目的として、合材層の形成に用いられるバインダーの開発が進められている。
例えば、特許文献1には、ヒドロキシル基含有ビニル単量体単位を所定の割合で含有し、かつ重量平均分子量が所定の範囲内である幹重合体に対して水可溶性単量体単位を含む枝重合体が結合した構造を有するグラフト共重合体を含むバインダー組成物が提案されている。
特許文献2には、(メタ)アクリルアミド単量体単位を含有する水溶性重合体およびアミン化合物を含むバインダー組成物が提案されている。
Such an electricity storage device generally has an electrode in which a composite layer containing an active material and the like is applied onto a metal foil, and a binder for electricity storage device electrodes is added to the composite layer to prevent peeling off of the composite layer.
Styrene/butadiene rubber (SBR) is the most widely used binder for the negative electrode of an electricity storage device. However, in recent years, development of binders to be used in forming a composite layer has been progressing with the aim of further improving the performance of electricity storage devices.
For example, Patent Document 1 proposes a binder composition containing a graft copolymer having a structure in which a branch polymer containing a water-soluble monomer unit is bonded to a trunk polymer containing a predetermined ratio of hydroxyl group-containing vinyl monomer units and having a weight average molecular weight within a predetermined range.
Patent Document 2 proposes a binder composition containing a water-soluble polymer containing a (meth)acrylamide monomer unit and an amine compound.

国際公開第2019/159706号International Publication No. 2019/159706 国際公開第2017/130910号International Publication No. 2017/130910

蓄電デバイスの負極活物質には黒鉛系負極活物質が広く用いられているが、高容量化の点からシリコン系負極活物質が着目されている。
しかし、シリコン系負極活物質は充放電に伴う膨張及び収縮の体積変化が著しく大きく、従来のバインダー組成物を用いた電極(負極)では、蓄電デバイスの充放電サイクル特性を十分に高めることができないという問題が認識されている。
また、シリコン系負極活物質と従来のバインダー組成物とを用いて作製された電極(負極)では、蓄電デバイスの大電流での充電や放電時の放電容量(高速放電容量)や高速放電容量維持率(低速放電時と高速放電時の放電容量比)を十分に高めることができないという問題も認識されている。高速放電容量維持率とは、低速放電時と高速放電時の放電容量比であり、高い高速放電容量維持率は、大電流での充電や放電が必要な蓄電デバイスに求められる特性である。
すなわち、従来のバインダー組成物には、シリコン系負極活物質を用いた負極を備える蓄電デバイスに優れた充放電サイクル特性および高い高速放電容量維持率を発揮させるという点において、未だ改善の余地があった。
Graphite-based negative electrode active materials are widely used as the negative electrode active materials for power storage devices, but silicon-based negative electrode active materials have been attracting attention from the viewpoint of increasing capacity.
However, silicon-based negative electrode active materials undergo significant volumetric changes due to expansion and contraction during charging and discharging, and it has been recognized that electrodes (negative electrodes) using conventional binder compositions cannot sufficiently improve the charge-discharge cycle characteristics of electricity storage devices.
It has also been recognized that an electrode (negative electrode) made using a silicon-based negative electrode active material and a conventional binder composition cannot sufficiently increase the discharge capacity (high-rate discharge capacity) or high-rate discharge capacity retention rate (ratio of discharge capacity during low-rate discharge and high-rate discharge) during charging or discharging at a large current of an electricity storage device. The high-rate discharge capacity retention rate is the ratio of discharge capacity during low-rate discharge and high-rate discharge, and a high high-rate discharge capacity retention rate is a characteristic required for an electricity storage device that requires charging or discharging at a large current.
That is, there is still room for improvement in conventional binder compositions in terms of enabling an electricity storage device having a negative electrode using a silicon-based negative electrode active material to exhibit excellent charge-discharge cycle characteristics and a high rate discharge capacity retention rate.

そこで、本開示は、シリコン系負極活物質を用いた負極を備える蓄電デバイスの充放電サイクル特性および高速放電容量維持率を向上できる蓄電デバイス用重合体、並びにこれを用いた蓄電デバイス用バインダー組成物、蓄電デバイス負極用スラリー組成物、蓄電デバイス用負極及び蓄電デバイスを提供する。 The present disclosure provides a polymer for an electricity storage device that can improve the charge/discharge cycle characteristics and high-rate discharge capacity retention rate of an electricity storage device having a negative electrode that uses a silicon-based negative electrode active material, as well as a binder composition for an electricity storage device, a slurry composition for a negative electrode of an electricity storage device, a negative electrode for an electricity storage device, and an electricity storage device that use the polymer.

本開示は、一態様において、下記式(I)で表される構成単位を含み、下記式(I)で表される構成単位の含有量が95質量%超の、蓄電デバイス用重合体に関する。

Figure 2024079609000001
前記式(I)中、R1は、水素原子又はメチル基であり、R2は、水素原子、炭素数1以上4以下の炭化水素基、又は、1個以上3個以下の水酸基を有する直鎖もしくは分岐鎖の炭素数1以上4以下の炭化水素基であり、R3は、1個以上3個以下の水酸基を有する直鎖又は分岐鎖の炭素数1以上4以下の炭化水素基である。 In one aspect, the present disclosure relates to a polymer for an electricity storage device, which contains a structural unit represented by the following formula (I), and the content of the structural unit represented by the following formula (I) is more than 95 mass %.
Figure 2024079609000001
In the formula (I), R 1 is a hydrogen atom or a methyl group, R 2 is a hydrogen atom, a hydrocarbon group having from 1 to 4 carbon atoms, or a linear or branched hydrocarbon group having from 1 to 4 carbon atoms and having from 1 to 3 hydroxyl groups, and R 3 is a linear or branched hydrocarbon group having from 1 to 4 carbon atoms and having from 1 to 3 hydroxyl groups.

本開示は、一態様において、本開示の蓄電デバイス用重合体を含む、蓄電デバイス用バインダー組成物に関する。 In one aspect, the present disclosure relates to a binder composition for an electricity storage device, comprising the polymer for an electricity storage device of the present disclosure.

本開示は、一態様において、シリコン系負極活物質、及び、本開示の蓄電デバイス用重合体、を含む、蓄電デバイス負極用ペーストに関する。 In one aspect, the present disclosure relates to a paste for a negative electrode of an electricity storage device, comprising a silicon-based negative electrode active material and a polymer for an electricity storage device of the present disclosure.

本開示は、一態様において、集電体、及び前記集電体上に形成された合材層を含む蓄電デバイス用負極であって、前記合材層が、シリコン系負極活物質、及び、本開示の蓄電デバイス用重合体、を含む、蓄電デバイス用負極に関する。 In one aspect, the present disclosure relates to a negative electrode for an electricity storage device, comprising a current collector and a composite layer formed on the current collector, the composite layer comprising a silicon-based negative electrode active material and the polymer for an electricity storage device of the present disclosure.

本開示は、本開示の蓄電デバイス用負極を備える、蓄電デバイスに関する。 This disclosure relates to an electricity storage device that includes the electricity storage device negative electrode of this disclosure.

本開示によれば、一態様において、シリコン系負極活物質を用いた負極を備える蓄電デバイスの充放電サイクル特性および高速放電容量維持率を向上できる蓄電デバイス用重合体を提供できる。 According to one aspect of the present disclosure, it is possible to provide a polymer for an electricity storage device that can improve the charge/discharge cycle characteristics and high-rate discharge capacity retention rate of an electricity storage device having a negative electrode using a silicon-based negative electrode active material.

[蓄電デバイス用重合体]
本開示は、特定の重合体を、一又は複数の実施形態において、蓄電デバイス用バインダーとして使用すれば、シリコン系負極活物質を用いた負極を備える蓄電デバイスの充放電の繰り返しに伴う負極の膨れを抑制して、蓄電デバイスの電池特性を向上できるという知見に基づく。
すなわち、本開示は、一態様において、上記式(I)で表される構成単位(以下、「構成単位I」ともいう)を含み、上記式(I)で表される構成単位の含有量が95質量%超の、蓄電デバイス用重合体(以下、「本開示の重合体」ともいう)に関する。本開示の重合体は、一又は複数の実施形態において、構成単位Iを含み構成単位Iの含有量が95質量%超の重合体を含む蓄電デバイス用重合体組成物である。
本開示の重合体によれば、一又は複数の実施形態において、シリコン系負極活物質を用いた負極を備える蓄電デバイスの充放電サイクル特性を向上できる。
[Polymers for Electric Storage Devices]
The present disclosure is based on the finding that, in one or more embodiments, the use of a specific polymer as a binder for an electricity storage device can suppress swelling of the negative electrode that occurs during repeated charging and discharging of an electricity storage device that includes a negative electrode that uses a silicon-based negative electrode active material, thereby improving the battery characteristics of the electricity storage device.
That is, in one aspect, the present disclosure relates to a polymer for an electricity storage device (hereinafter also referred to as the "polymer of the present disclosure") that contains a structural unit represented by formula (I) (hereinafter also referred to as "structural unit I") and has a content of the structural unit represented by formula (I) of more than 95 mass%. In one or more embodiments, the polymer of the present disclosure is a polymer composition for an electricity storage device that contains a polymer that contains structural unit I and has a content of structural unit I of more than 95 mass%.
According to the polymer of the present disclosure, in one or a plurality of embodiments, it is possible to improve the charge/discharge cycle characteristics of an electricity storage device including a negative electrode using a silicon-based negative electrode active material.

本開示の効果発現のメカニズムについては明らかではないが、以下のように推定される。
シリコン系負極活物質は、充放電にともなって膨張・収縮し、体積変化の理論値は300%を超える。この体積変化によって、シリコン系負極活物質の亀裂・粉砕、及びシリコン系負極活物質表面に形成される被膜(SEI)の脱落をもたらすと考えられる。
本開示の重合体は、上記式(I)で表される構成単位Iを含有することで、シリコン系負極活物質への高い吸着性を発揮し、充放電にともなうシリコン系負極活物質の亀裂・粉砕、及びSEIの脱落を抑制できると考えられる。
また、本開示の重合体は、負極層(合材層)と集電体との密着性、及び、シリコン系負極活物質同士の密着性を向上させ、電極(シリコン系負極)の強度を向上できると考えられる。
さらに、本開示の重合体の全構成単位中の構成単位Iの含有量が所定量(95質量%)を超えることで、上述した密着性が十分に確保され、充放電サイクル試験結果も良好なものとなると考えられる。これは、構成単位Iが水酸基及びアミド結合を有することで、シリコン系負極活物質との親和性が高くなり、負極層(合材層)と集電体の密着性、及び、シリコン系負極活物質同士の密着性に優れることによるものであると推定される。
また、本開示の重合体を用いた蓄電デバイスでは、高速で充放電するサイクル試験においても放電容量は良好であるので高速放電容量維持率が高く、本開示の重合体は、例えば、電気自動車の急加速を可能とし、パワーツール等への適用が期待できる。これは、上記親和性の向上および密着性の向上に加え、炭化水素基や水酸基が同一分子内に存在する状態で形成されるアミド基の相互ネットワークがLi+の移動を促進して内部抵抗の低下に寄与すること、によるものと推察される。
ただし、これらのメカニズムに限定して解釈されなくてもよい。
The mechanism by which the effects of the present disclosure are manifested is not clear, but is presumed to be as follows.
The silicon-based negative electrode active material expands and contracts during charging and discharging, with the theoretical volume change exceeding 300%. This volume change is believed to cause cracking and crushing of the silicon-based negative electrode active material and the detachment of the coating (SEI) formed on the surface of the silicon-based negative electrode active material.
It is believed that the polymer of the present disclosure, containing the constitutional unit I represented by the above formula (I), exhibits high adsorption properties to the silicon-based negative electrode active material, and can suppress cracking and crushing of the silicon-based negative electrode active material and falling off of the SEI that accompanies charge and discharge.
In addition, the polymer of the present disclosure is believed to improve the adhesion between the negative electrode layer (mixture layer) and the current collector, and between silicon-based negative electrode active materials, thereby improving the strength of the electrode (silicon-based negative electrode).
Furthermore, when the content of the structural unit I in all the structural units of the polymer of the present disclosure exceeds a predetermined amount (95% by mass), the above-mentioned adhesion is sufficiently ensured, and it is considered that the result of the charge-discharge cycle test is also good. This is presumably because the structural unit I has a hydroxyl group and an amide bond, which increases the affinity with the silicon-based negative electrode active material, resulting in excellent adhesion between the negative electrode layer (mixture layer) and the current collector, and between the silicon-based negative electrode active materials themselves.
Furthermore, in an electricity storage device using the polymer of the present disclosure, the discharge capacity is good even in a cycle test in which charging and discharging is performed at high speed, and therefore the high-speed discharge capacity retention rate is high, and the polymer of the present disclosure is expected to enable, for example, rapid acceleration of an electric vehicle and to be applied to power tools, etc. This is presumably due to the above-mentioned improvement in affinity and adhesion, as well as the fact that the mutual network of amide groups formed in a state in which a hydrocarbon group and a hydroxyl group exist in the same molecule promotes the movement of Li + and contributes to a decrease in internal resistance.
However, it is not necessary to interpret the present invention as being limited to these mechanisms.

<式(I)で表される構成単位(構成単位I)>
本開示の重合体は、下記式(I)で表される構成単位(構成単位I)を含む。構成単位Iは、1種でもよいし、2種以上の組合せでもよい。

Figure 2024079609000002
<Structural unit represented by formula (I) (structural unit I)>
The polymer of the present disclosure contains a structural unit (structural unit I) represented by the following formula (I): The structural unit I may be one type, or a combination of two or more types.
Figure 2024079609000002

前記式(I)中、R1は、水素原子又はメチル基であり、シリコン系負極活物質を用いた負極を備える蓄電デバイスの充放電サイクル特性の向上の観点から、水素原子が好ましい。
2は、水素原子、炭素数1以上4以下の炭化水素基、又は、1個以上3個以下の水酸基を有する直鎖もしくは分岐鎖の炭素数1以上4以下の炭化水素基であり、シリコン系負極活物質を用いた負極を備える蓄電デバイスの充放電サイクル特性の向上の観点から、水素原子が好ましい。
3は、1個以上3個以下の水酸基を有する直鎖又は分岐鎖の炭素数1以上4以下の炭化水素基であり、シリコン系負極活物質を用いた負極を備える蓄電デバイスの充放電サイクル特性の向上の観点から、1個の水酸基を有する直鎖又は分岐鎖の炭素数2以上3以下の炭化水素基が好ましく、1個の水酸基を有する直鎖の炭素数2の炭化水素基がより好ましい。
In the formula (I), R 1 is a hydrogen atom or a methyl group, and is preferably a hydrogen atom from the viewpoint of improving the charge-discharge cycle characteristics of an electricity storage device having a negative electrode using a silicon-based negative electrode active material.
R2 is a hydrogen atom, a hydrocarbon group having from 1 to 4 carbon atoms, or a linear or branched hydrocarbon group having from 1 to 4 carbon atoms and having from 1 to 3 hydroxyl groups. From the viewpoint of improving the charge-discharge cycle characteristics of an electricity storage device including a negative electrode using a silicon-based negative electrode active material, a hydrogen atom is preferred.
R3 is a linear or branched hydrocarbon group having 1 to 4 carbon atoms and having 1 to 3 hydroxyl groups. From the viewpoint of improving the charge-discharge cycle characteristics of an electricity storage device including a negative electrode using a silicon-based negative electrode active material, R3 is preferably a linear or branched hydrocarbon group having 2 to 3 carbon atoms and one hydroxyl group, and more preferably a linear hydrocarbon group having 2 carbon atoms and one hydroxyl group.

本開示の重合体の全構成単位中の構成単位Iの含有量は、シリコン系負極活物質を用いた負極を備える蓄電デバイスの充放電サイクル特性の向上の観点から、95質量%を超え、98質量%以上が好ましく、99質量%以上がより好ましく、100質量%が更に好ましい。 The content of structural unit I in all structural units of the polymer of the present disclosure is more than 95% by mass, preferably 98% by mass or more, more preferably 99% by mass or more, and even more preferably 100% by mass, from the viewpoint of improving the charge-discharge cycle characteristics of an electricity storage device having a negative electrode using a silicon-based negative electrode active material.

構成単位Iを形成するモノマーとしては、例えば、N-ヒドロキシメチルアクリルアミド、N-ヒドロキシエチルアクリルアミド、N-(2-ヒドロキシプロピル)アクリルアミド、N-ヒドロキシメチルメタクリルアミド、N-ヒドロキシエチルメタクリルアミド、N-(2-ヒドロキシプロピル)メタクリルアミド、及びN-[トリス(ヒドロキシメチル)メチル]アクリルアミドから選ばれる少なくとも1種が挙げられ、シリコン系負極活物質を用いた負極を備える蓄電デバイスの充放電サイクル特性の向上の観点から、N-ヒドロキシエチルアクリルアミド及びN-(2-ヒドロキシプロピル)アクリルアミドから選ばれる少なくとも1種が好ましく、N-ヒドロキシエチルアクリルアミドがより好ましい。 Examples of monomers forming structural unit I include at least one selected from N-hydroxymethylacrylamide, N-hydroxyethylacrylamide, N-(2-hydroxypropyl)acrylamide, N-hydroxymethylmethacrylamide, N-hydroxyethylmethacrylamide, N-(2-hydroxypropyl)methacrylamide, and N-[tris(hydroxymethyl)methyl]acrylamide. From the viewpoint of improving the charge-discharge cycle characteristics of an electricity storage device having a negative electrode using a silicon-based negative electrode active material, at least one selected from N-hydroxyethylacrylamide and N-(2-hydroxypropyl)acrylamide is preferred, with N-hydroxyethylacrylamide being more preferred.

<他の構成単位(構成単位II)>
本開示の重合体は、構成単位I以外の他の構成単位(以下、「構成単位II」ともいう)をさらに含んでもよい。本開示の重合体の全構成単位中の構成単位IIの含有量は、シリコン系負極活物質を用いた負極を備える蓄電デバイスの充放電サイクル特性の向上の観点から、5質量%を下回り、好ましくは2質量%以下、より好ましくは1質量%以下、更に好ましくは0質量%である。
構成単位IIを形成するモノマーとしては、(メタ)アクリル酸などの酸モノマー、(メタ)アクリル酸エステルのモノマー、構成単位Iを形成するモノマー以外の(メタ)アクリルアミドモノマー等が挙げられる。(メタ)アクリル酸エステルのモノマーとしては、例えばポリエチレングリコール(メタ)アクリレート、炭素数12以下のアルキル(メタ)アクリレート等が挙げられる。構成単位Iを形成するモノマー以外の(メタ)アクリルアミドモノマーとしては、例えばジメチルアクリルアミド、ジアセトンアクリルアミド、tert-ブチルアクリルアミド等が挙げられる。
<Other structural units (structural unit II)>
The polymer of the present disclosure may further include a structural unit (hereinafter also referred to as "structural unit II") other than the structural unit I. The content of the structural unit II in all structural units of the polymer of the present disclosure is less than 5 mass%, preferably 2 mass% or less, more preferably 1 mass% or less, and even more preferably 0 mass%, from the viewpoint of improving the charge-discharge cycle characteristics of an electricity storage device including a negative electrode using a silicon-based negative electrode active material.
Examples of monomers that form the structural unit II include acid monomers such as (meth)acrylic acid, (meth)acrylic acid ester monomers, and (meth)acrylamide monomers other than the monomers that form the structural unit I. Examples of (meth)acrylic acid ester monomers include polyethylene glycol (meth)acrylate and alkyl (meth)acrylates having 12 or less carbon atoms. Examples of (meth)acrylamide monomers other than the monomers that form the structural unit I include dimethylacrylamide, diacetoneacrylamide, and tert-butylacrylamide.

本開示の重合体としては、例えば、ヒドロキシエチルアクリルアミド重合体、ヒドロキシエチルアクリルアミド/ポリエチレングリコール(メタ)アクリレート共重合体、及び、ヒドロキシエチルアクリルアミド/アクリル酸共重合体から選ばれる少なくとも1種が挙げられる。 The polymer of the present disclosure may be, for example, at least one selected from hydroxyethylacrylamide polymer, hydroxyethylacrylamide/polyethylene glycol (meth)acrylate copolymer, and hydroxyethylacrylamide/acrylic acid copolymer.

本開示の重合体は、例えば、構成単位Iを形成するモノマー及び必要に応じて構成単位IIを形成するモノマーを重合させることによって製造できる。重合法としては、例えば、乳化重合法、溶液重合法、懸濁重合法、塊状重合法等の公知の重合法が挙げられる。 The polymer of the present disclosure can be produced, for example, by polymerizing a monomer that forms structural unit I and, if necessary, a monomer that forms structural unit II. Examples of the polymerization method include known polymerization methods such as emulsion polymerization, solution polymerization, suspension polymerization, and bulk polymerization.

本開示の重合体の重量平均分子量は、シリコン系負極活物質と集電体との密着性の観点から、好ましくは5万以上、より好ましくは10万以上、更に好ましくは30万以上、更に好ましくは50万以上であり、そして、負極ペーストのハンドリング性の観点から、好ましくは300万以下、より好ましく200万以下、更に好ましくは100万以下である。本開示において、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定した値であり、測定条件の詳細は実施例に示すとおりである。 The weight average molecular weight of the polymer of the present disclosure is preferably 50,000 or more, more preferably 100,000 or more, even more preferably 300,000 or more, and even more preferably 500,000 or more, from the viewpoint of adhesion between the silicon-based negative electrode active material and the current collector, and is preferably 3 million or less, more preferably 2 million or less, and even more preferably 1 million or less, from the viewpoint of handleability of the negative electrode paste. In the present disclosure, the weight average molecular weight is a value measured by gel permeation chromatography (GPC), and the details of the measurement conditions are as shown in the examples.

本開示の重合体は、一又は複数の実施形態において、蓄電デバイスの負極用バインダーとして使用することができる。すなわち、本開示は、一態様において、本開示の重合体の、蓄電デバイス負極用バインダーとしての使用に関する。 In one or more embodiments, the polymer of the present disclosure can be used as a binder for the negative electrode of an electricity storage device. That is, in one aspect, the present disclosure relates to the use of the polymer of the present disclosure as a binder for the negative electrode of an electricity storage device.

[蓄電デバイス用バインダー組成物]
本開示は、一態様において、本開示の重合体を含む、蓄電デバイス用バインダー組成物(以下、「本開示のバインダー組成物」ともいう)に関する。本開示のバインダー組成物によれば、一又は複数の実施形態において、シリコン系負極活物質を用いた負極を備える蓄電デバイスの充放電サイクル特性を向上できる。
[Binder composition for power storage device]
In one aspect, the present disclosure relates to a binder composition for an electricity storage device (hereinafter also referred to as the "binder composition of the present disclosure") that contains the polymer of the present disclosure. In one or more embodiments, the binder composition of the present disclosure can improve the charge-discharge cycle characteristics of an electricity storage device that includes a negative electrode using a silicon-based negative electrode active material.

<重合体>
本開示のバインダー組成物に含まれる本開示の重合体は、1種でもよいし、2種以上の組合せでもよい。
本開示のバインダー組成物中の本開示の重合体の含有量は、電極作成時の配合性の観点から、1質量%以上が好ましく、3質量%以上がより好ましく、5質量%以上が更に好ましく、そして、粘度が増加してハンドリング性が低下するのを抑制する観点から、50質量%以下が好ましく、45質量以下がより好ましく、40質量%以下が更に好ましい。本開示の重合体が2種以上の組合せである場合、本開示の重合体の含有量はそれらの合計含有量である。
<Polymer>
The polymer of the present disclosure contained in the binder composition of the present disclosure may be one type or a combination of two or more types.
The content of the polymer of the present disclosure in the binder composition of the present disclosure is preferably 1% by mass or more, more preferably 3% by mass or more, and even more preferably 5% by mass or more from the viewpoint of blendability during electrode production, and is preferably 50% by mass or less, more preferably 45% by mass or less, and even more preferably 40% by mass or less from the viewpoint of suppressing a decrease in handleability due to an increase in viscosity. When the polymer of the present disclosure is a combination of two or more types, the content of the polymer of the present disclosure is the total content thereof.

<溶媒>
本開示のバインダー組成物は、一又は複数の実施形態において、本開示の重合体を含む溶液であり、溶媒を含有する。溶媒としては、水が挙げられる。
<Solvent>
In one or more embodiments, the binder composition of the present disclosure is a solution containing the polymer of the present disclosure and contains a solvent. The solvent may be water.

<その他の成分>
本開示のバインダー組成物は、本開示の効果を損なわない範囲で、本開示の重合体及び溶媒以外にその他の成分を含有してもよい。その他の成分としては、例えば、界面活性剤、増粘剤、消泡剤、分散剤、防腐剤、及び中和剤から選ばれる少なくとも1種が挙げられる。
<Other ingredients>
The binder composition of the present disclosure may contain other components in addition to the polymer and solvent of the present disclosure, as long as the effects of the present disclosure are not impaired. Examples of other components include at least one selected from a surfactant, a thickener, a defoamer, a dispersant, a preservative, and a neutralizer.

本開示のバインダー組成物は、例えば、溶媒中で、本開示の重合体及び必要に応じて上述したその他の成分を、公知の方法で混合することにより調製することができる。混合方法としては、例えば、ボールミル、ビーズミル、超音波分散機等が挙げられる。 The binder composition of the present disclosure can be prepared, for example, by mixing the polymer of the present disclosure and, if necessary, the other components described above in a solvent by a known method. Examples of mixing methods include a ball mill, a bead mill, an ultrasonic disperser, etc.

[蓄電デバイス負極用ペースト]
本開示の重合体及び本開示のバインダー組成物は、蓄電デバイス負極用ペーストの調製に用いることができる。すなわち、本開示は、一態様において、シリコン系負極活物質、及び、本開示の重合体を含む、蓄電デバイス負極用ペースト(以下、「本開示の負極ペースト」ともいう)に関する。本開示の負極ペーストは、一又は複数の実施形態において、シリコン系負極活物質、及び、本開示のバインダー組成物を含むものである。本開示の負極ペーストは、一又は複数の実施形態において、蓄電池用シリコン系負極ペースト(シリコン系負極ペースト)である。本開示の負極ペーストによれば、シリコン系負極活物質を用いた負極を備える蓄電デバイスの充放電サイクル特性を向上できる。
[Paste for negative electrodes of electricity storage devices]
The polymer of the present disclosure and the binder composition of the present disclosure can be used to prepare a paste for a negative electrode of an electric storage device. That is, in one aspect, the present disclosure relates to a paste for a negative electrode of an electric storage device (hereinafter also referred to as the "negative electrode paste of the present disclosure") that contains a silicon-based negative electrode active material and a polymer of the present disclosure. In one or more embodiments, the negative electrode paste of the present disclosure contains a silicon-based negative electrode active material and a binder composition of the present disclosure. In one or more embodiments, the negative electrode paste of the present disclosure is a silicon-based negative electrode paste for a storage battery (silicon-based negative electrode paste). According to the negative electrode paste of the present disclosure, the charge and discharge cycle characteristics of an electric storage device including a negative electrode using a silicon-based negative electrode active material can be improved.

<シリコン系負極活物質>
シリコン系負極活物質としては、一又は複数の実施形態において、ケイ素(Si)、ケイ素を含む合金、SiO、SiOx、あるいは、Si含有材料を導電性カーボンで被覆または複合化されたSi含有材料等が挙げられる。シリコン系負極活物質は、1種でもよいし、2種以上の組合せでもよい。
シリコン系負極活物質の平均粒径は、蓄電デバイスの充放電サイクル特性向上の観点から、0.01μm以上が好ましく、0.15μm以上がより好ましく、0.5μm以上が更に好ましく、そして、蓄電デバイスの充放電サイクル特性向上の観点から、20μm以下が好ましく、10μm以下がより好ましく、5μm以下が更に好ましい。シリコン系負極活物質の平均粒径は、レーザー回折散乱法によって測定される体積平均粒径(D50)であり、体積基準で求めた粒度分布の全体積を100%とした累積体積分布曲線において、小粒径側からの累積体積が50%となる点の粒子径を意味する。体積平均粒径(D50)は、レーザー回折/散乱式粒子径分布測定装置を用いて測定でき、具体的には実施例に記載の方法で測定できる。
本開示の負極ペースト中のシリコン系負極活物質の含有量は、蓄電デバイスの高容量化の観点から、0.5質量%以上が好ましく、1.5質量%以上がより好ましく、2質量%以上が更に好ましく、そして、蓄電デバイスの充放電サイクル特性向上の観点から、70質量%以下が好ましく、40質量%以下がより好ましく、20質量%以下が更に好ましい。本開示のシリコン系負極活物質が2種以上の組合せである場合、本開示の負極ペースト中のシリコン系負極活物質の含有量はそれらの合計含有量である。
<Silicon-based negative electrode active material>
In one or more embodiments, the silicon-based negative electrode active material may be silicon (Si), an alloy containing silicon, SiO, SiO x , or a Si-containing material coated or composited with conductive carbon. The silicon-based negative electrode active material may be one type or a combination of two or more types.
The average particle size of the silicon-based negative electrode active material is preferably 0.01 μm or more, more preferably 0.15 μm or more, and even more preferably 0.5 μm or more from the viewpoint of improving the charge/discharge cycle characteristics of the power storage device, and is preferably 20 μm or less, more preferably 10 μm or less, and even more preferably 5 μm or less from the viewpoint of improving the charge/discharge cycle characteristics of the power storage device. The average particle size of the silicon-based negative electrode active material is the volume average particle size (D 50 ) measured by a laser diffraction scattering method, and means the particle size at the point where the cumulative volume from the small particle size side is 50% in the cumulative volume distribution curve where the total volume of the particle size distribution obtained on a volume basis is 100%. The volume average particle size (D 50 ) can be measured using a laser diffraction/scattering type particle size distribution measuring device, and specifically, can be measured by the method described in the examples.
The content of the silicon-based negative electrode active material in the negative electrode paste of the present disclosure is preferably 0.5 mass% or more, more preferably 1.5 mass% or more, and even more preferably 2 mass% or more from the viewpoint of increasing the capacity of the power storage device, and is preferably 70 mass% or less, more preferably 40 mass% or less, and even more preferably 20 mass% or less from the viewpoint of improving the charge/discharge cycle characteristics of the power storage device. When the silicon-based negative electrode active material of the present disclosure is a combination of two or more types, the content of the silicon-based negative electrode active material in the negative electrode paste of the present disclosure is the total content thereof.

<重合体>
本開示の負極ペーストに含まれる本開示の重合体は、1種でもよいし、2種以上の組合せでもよい。
本開示の負極ペースト中の本開示の重合体の含有量は、重合体と集電体との密着性の観点から、0.1質量%以上が好ましく、0.3質量%以上がより好ましく、0.5質量%以上が更に好ましく、そして、蓄電デバイスの高容量化の観点から、10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下が更に好ましい。本開示の重合体が2種以上の組合せである場合、本開示の負極ペースト中の本開示の重合体の含有量はそれらの合計含有量である。
本開示の負極ペースト中における、シリコン系負極活物質と本開示の重合体との含有比としては、本開示の重合体の含有量が、シリコン系負極活物質100質量部に対して、シリコン系負極活物質と集電体との密着性の観点から、0.1質量部以上が好ましく、1質量部以上がより好ましく、5質量部以上が更に好ましく、そして、蓄電デバイスの高容量化の観点から、200質量部以下が好ましく、100質量部以下がより好ましく、50質量部以下が更に好ましい。
<Polymer>
The polymer of the present disclosure contained in the negative electrode paste of the present disclosure may be one type or a combination of two or more types.
The content of the polymer of the present disclosure in the negative electrode paste of the present disclosure is preferably 0.1 mass% or more, more preferably 0.3 mass% or more, and even more preferably 0.5 mass% or more from the viewpoint of adhesion between the polymer and the current collector, and is preferably 10 mass% or less, more preferably 5 mass% or less, and even more preferably 3 mass% or less from the viewpoint of increasing the capacity of the electricity storage device. When the polymer of the present disclosure is a combination of two or more types, the content of the polymer of the present disclosure in the negative electrode paste of the present disclosure is the total content thereof.
The content ratio of the silicon-based negative electrode active material to the polymer of the present disclosure in the negative electrode paste of the present disclosure is, from the viewpoint of adhesion between the silicon-based negative electrode active material and the current collector, preferably 0.1 parts by mass or more, more preferably 1 part by mass or more, and even more preferably 5 parts by mass or more, relative to 100 parts by mass of the silicon-based negative electrode active material, and from the viewpoint of increasing the capacity of the electricity storage device, preferably 200 parts by mass or less, more preferably 100 parts by mass or less, and even more preferably 50 parts by mass or less.

<分散媒>
本開示の負極ペーストは、一又は複数の実施形態において、分散媒を含む。分散媒としては、例えば、水が挙げられる。
<Dispersion medium>
In one or more embodiments, the negative electrode paste of the present disclosure includes a dispersion medium. Examples of the dispersion medium include water.

<その他の成分>
本開示の負極ペーストは、上述した成分以外のその他の成分を含有してもよい。その他の成分としては、一又は複数の実施形態において、シリコン系負極活物質以外の負極活物質、導電材、増粘剤等が挙げられる。
シリコン系負極活物質以外の負極活物質としては、グラファイト等の黒鉛系負極活物質が挙げられる。本開示の負極ペーストが黒鉛系負極活物質を含む場合、本開示の負極ペースト中の黒鉛系負極活物質の含有量は、蓄電デバイスの充放電サイクル特性向上の観点から、0.5質量%以上が好ましく、5質量%以上がより好ましく、10質量%以上が更に好ましく、そして、蓄電デバイスの高容量化の観点から、70質量%以下が好ましく、60質量%以下がより好ましく、50質量%以下が更に好ましい。黒鉛系負極活物質が2種以上の組合せである場合、本開示の負極ペースト中の黒鉛系負極活物質の含有量はそれらの合計含有量である。
導電材としては、蓄電デバイスに使用可能な公知の導電材であればよく、例えば、アセチレンブラック、ケッチェンブラック、黒鉛、カーボンナノチューブ等の炭素材料が挙げられる。本開示の負極ペーストが導電材を含む場合、本開示の負極ペースト中の導電材の含有量は、蓄電デバイスの抵抗性の観点から、0.01質量%以上が好ましく、0.1質量%以上がより好ましく、0.2質量%以上が更に好ましく、そして、蓄電デバイスの高容量化の観点から、2質量%以下が好ましく、1.5質量%以下がより好ましく、1質量%以下が更に好ましい。導電材が2種以上の組合せである場合、本開示の負極ペースト中の導電材の含有量はそれらの合計含有量である。
増粘剤としては、例えば、カルボキシメチルセルロース(CMC)等が挙げられる。本開示の負極ペーストが増粘剤を含む場合、本開示の負極ペースト中の増粘剤の含有量は、負極ペーストの塗工性の観点から、0.1質量%以上が好ましく、0.2質量%以上がより好ましく、0.5質量%以上が更に好ましく、そして、蓄電デバイスの高容量化の観点から、2質量%以下が好ましく、1.5質量%以下がより好ましく、1質量%以下が更に好ましい。増粘剤が2種以上の組合せである場合、本開示の負極ペースト中の増粘剤の含有量はそれらの合計含有量である。
<Other ingredients>
The negative electrode paste of the present disclosure may contain other components in addition to the above-mentioned components. In one or more embodiments, the other components may include a negative electrode active material other than a silicon-based negative electrode active material, a conductive material, a thickener, and the like.
Examples of the negative electrode active material other than the silicon-based negative electrode active material include graphite-based negative electrode active materials such as graphite. When the negative electrode paste of the present disclosure contains a graphite-based negative electrode active material, the content of the graphite-based negative electrode active material in the negative electrode paste of the present disclosure is preferably 0.5 mass% or more, more preferably 5 mass% or more, and even more preferably 10 mass% or more from the viewpoint of improving the charge-discharge cycle characteristics of the power storage device, and is preferably 70 mass% or less, more preferably 60 mass% or less, and even more preferably 50 mass% or less from the viewpoint of increasing the capacity of the power storage device. When the graphite-based negative electrode active material is a combination of two or more types, the content of the graphite-based negative electrode active material in the negative electrode paste of the present disclosure is the total content thereof.
The conductive material may be any known conductive material that can be used in an electricity storage device, such as acetylene black, ketjen black, graphite, carbon materials such as carbon nanotubes, etc. When the negative electrode paste of the present disclosure contains a conductive material, the content of the conductive material in the negative electrode paste of the present disclosure is preferably 0.01 mass% or more, more preferably 0.1 mass% or more, and even more preferably 0.2 mass% or more from the viewpoint of the resistance of the electricity storage device, and is preferably 2 mass% or less, more preferably 1.5 mass% or less, and even more preferably 1 mass% or less from the viewpoint of increasing the capacity of the electricity storage device. When the conductive material is a combination of two or more types, the content of the conductive material in the negative electrode paste of the present disclosure is the total content thereof.
Examples of thickeners include carboxymethyl cellulose (CMC). When the negative electrode paste of the present disclosure contains a thickener, the content of the thickener in the negative electrode paste of the present disclosure is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and even more preferably 0.5% by mass or more from the viewpoint of the coatability of the negative electrode paste, and is preferably 2% by mass or less, more preferably 1.5% by mass or less, and even more preferably 1% by mass or less from the viewpoint of increasing the capacity of the power storage device. When the thickener is a combination of two or more types, the content of the thickener in the negative electrode paste of the present disclosure is the total content thereof.

本開示の負極ペースト中の固形分濃度は、蓄電デバイスの生産性の観点から、20質量%以上が好ましく、30質量%以上がより好ましく、35質量%以上が更に好ましく、そして、負極ペーストのハンドリング性の観点から、80質量%以下が好ましく、70質量%以下がより好ましく、60質量%以下が更に好ましい。 From the viewpoint of productivity of the electric storage device, the solids concentration in the negative electrode paste of the present disclosure is preferably 20% by mass or more, more preferably 30% by mass or more, and even more preferably 35% by mass or more, and from the viewpoint of the handleability of the negative electrode paste, it is preferably 80% by mass or less, more preferably 70% by mass or less, and even more preferably 60% by mass or less.

<本開示の負極ペーストの調製方法>
本開示の負極ペーストは、シリコン系負極活物質、本開示の重合体、分散媒、及び必要に応じてその他の成分を混合することにより調製できる。混合方法としては、例えば、ボールミル、ビーズミル、超音波分散機等を用いる方法が挙げられる。
<Method of preparing negative electrode paste according to the present disclosure>
The negative electrode paste of the present disclosure can be prepared by mixing a silicon-based negative electrode active material, a polymer of the present disclosure, a dispersion medium, and other components as necessary. Examples of the mixing method include a method using a ball mill, a bead mill, an ultrasonic disperser, etc.

[蓄電デバイス用負極]
本開示の重合体、本開示のバインダー組成物、及び本開示の負極ペーストは、蓄電デバイス用電極(負極)の合材層の作製に使用することができる。
すなわち、本開示は、一態様において、集電体、及び前記集電体上に形成された合材層を含む蓄電デバイス用負極であって、前記合材層が、シリコン系負極活物質及び本開示の重合体を含む、蓄電デバイス用負極(以下、「本開示の負極」ともいう)に関する。本開示の負極における前記合材層は、一又は複数の実施形態において、シリコン系負極活物質及び本開示のバインダー組成物を含むものである。本開示の負極によれば、シリコン系負極活物質を用いた負極を備える蓄電デバイスの充放電サイクル特性を向上できる。
[Negative electrode for electricity storage device]
The polymer of the present disclosure, the binder composition of the present disclosure, and the negative electrode paste of the present disclosure can be used to produce a composite layer of an electrode (negative electrode) for an electricity storage device.
That is, in one aspect, the present disclosure relates to a negative electrode for an electricity storage device (hereinafter also referred to as the "negative electrode of the present disclosure") that includes a current collector and a composite layer formed on the current collector, the composite layer including a silicon-based negative electrode active material and a polymer of the present disclosure. In one or more embodiments, the composite layer in the negative electrode of the present disclosure includes a silicon-based negative electrode active material and a binder composition of the present disclosure. The negative electrode of the present disclosure can improve the charge and discharge cycle characteristics of an electricity storage device that includes a negative electrode using a silicon-based negative electrode active material.

<集電体>
前記集電体としては、導電性を有する材料から選ぶことができ、例えば、銅箔、ニッケル箔、アルミニウム箔、ステンレス箔等の金属箔が挙げられる。
<Current collector>
The current collector can be selected from materials having electrical conductivity, and examples thereof include metal foils such as copper foil, nickel foil, aluminum foil, and stainless steel foil.

<合材層>
前記合材層は、例えば、シリコン系負極活物質及び本開示の重合体を含む本開示の負極ペーストを集電体上に塗布し、前記負極ペースト中の溶媒を乾燥除去することにより得ることができる。
負極ペースト(スラリー)を集電体に塗布する方法としては、公知の塗布方法を用いることができ、例えば、グラビア法、リバースロール法、ダイレクトロール法、ドクターブレード法等が挙げられる。
負極ペーストは集電体の片面だけに塗布してもよいし、両面に塗布してもよい。塗膜の厚みは、乾燥後に得られる合材層の厚みに応じて適宜設定できる。
負極ペーストを乾燥する方法としては、公知の乾燥方法を用いることができ、例えば、温風等による乾燥法、真空乾燥法、赤外線照射等による乾燥法が挙げられる。
前記合材層は、一又は複数の実施形態において、シリコン系負極活物質、本開示の重合体、必要に応じてその他の成分を含む。その他の成分としては、上述した本開示の負極ペーストのその他の成分と同じものが挙げられる。
(シリコン系負極活物質)
前記合材層中のシリコン系負極活物質の含有量は、電池エネルギー密度の確保の観点から、1質量%以上が好ましく、3質量%以上がより好ましく、5質量%以上が更に好ましく、そして、シリコン系負極活物質の膨張収縮による負極の劣化抑制の観点から、99.8質量%以下が好ましく、80質量%以下がより好ましく、50質量%以下が更に好ましく、30質量%以下が更に好ましい。シリコン系負極活物質が2種以上の組合せである場合、合材層中のシリコン系負極活物質の含有量はそれらの合計含有量である。
(重合体)
前記合材層中の本開示の重合体の含有量は、シリコン系負極活物質と集電体との密着性の観点から、0.2質量%以上が好ましく、0.5質量%以上がより好ましく、1質量%以上が更に好ましく、そして、蓄電デバイスの高容量化の観点から、20質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下が更に好ましい。本開示の重合体が2種以上の組合せである場合、合材層中の本開示の重合体の含有量はそれらの合計含有量である。
前記合材層中におけるシリコン系負極活物質と本開示の重合体の含有比としては、本開示の重合体の含有量が、シリコン系負極活物質100質量部に対して、シリコン系負極活物質同士の密着性の観点から、好ましくは0.1質量部以上、より好ましくは1質量部以上、更に好ましくは10質量部以上、そして、蓄電デバイスの高容量化の観点から、好ましくは200質量部以下、より好ましくは100質量部以下、更に好ましくは50質量部以下である。
(その他の成分)
本開示の合材層が黒鉛系負極活物質を含む場合、前記合材層中の黒鉛系負極活物質の含有量は、蓄電デバイスの充放電サイクル特性向上の観点から、1質量%以上が好ましく、10質量%以上がより好ましく、20質量%以上が更に好ましく、そして、蓄電デバイスの高容量化の観点から、98.8質量%以下が好ましく、97質量%以下がより好ましく、95質量%以下が更に好ましい。本開示の黒鉛系負極活物質が2種以上の組合せである場合、合材層中の黒鉛系負極活物質の含有量はそれらの合計含有量である。
本開示の合材層が導電材を含む場合、前記合材層中の導電材の含有量は、蓄電デバイスの抵抗性の観点から、0.02質量%以上が好ましく、0.2質量%以上がより好ましく、0.5質量%以上が更に好ましく、そして、蓄電デバイスの高容量化の観点から、3質量%以下が好ましく、2.5質量%以下がより好ましく、2質量%以下が更に好ましい。本開示の黒鉛系負極活物質が2種以上の組合せである場合、合材層中の導電材の含有量はそれらの合計含有量である。
本開示の合材層が増粘剤を含む場合、前記合材層中の増粘剤の含有量は、負極ペーストの塗工性の観点から、0.2質量%以上が好ましく、0.5質量%以上がより好ましく、1質量%以上が更に好ましく、そして、蓄電デバイスの高容量化の観点から、5質量%以下が好ましく、3質量%以下がより好ましく、2質量%以下が更に好ましい。本開示の増粘剤が2種以上の組合せである場合、合材層中の増粘剤の含有量はそれらの合計含有量である。
<Composite layer>
The mixture layer can be obtained, for example, by applying the negative electrode paste of the present disclosure containing a silicon-based negative electrode active material and the polymer of the present disclosure onto a current collector, and then drying and removing the solvent in the negative electrode paste.
The method for applying the negative electrode paste (slurry) to the current collector can be a known application method, such as a gravure method, a reverse roll method, a direct roll method, or a doctor blade method.
The negative electrode paste may be applied to only one side of the current collector or to both sides of the current collector. The thickness of the coating film can be appropriately set depending on the thickness of the mixture layer obtained after drying.
The negative electrode paste can be dried by a known drying method, for example, drying using hot air or the like, vacuum drying, drying using infrared radiation or the like.
In one or more embodiments, the composite layer contains a silicon-based negative electrode active material, a polymer according to the present disclosure, and other components as necessary. Examples of the other components include the same components as those of the negative electrode paste according to the present disclosure described above.
(Silicon-based negative electrode active material)
The content of the silicon-based negative electrode active material in the composite layer is preferably 1% by mass or more, more preferably 3% by mass or more, and even more preferably 5% by mass or more from the viewpoint of ensuring the battery energy density, and is preferably 99.8% by mass or less, more preferably 80% by mass or less, even more preferably 50% by mass or less, and even more preferably 30% by mass or less from the viewpoint of suppressing deterioration of the negative electrode due to expansion and contraction of the silicon-based negative electrode active material. When the silicon-based negative electrode active material is a combination of two or more types, the content of the silicon-based negative electrode active material in the composite layer is the total content thereof.
(Polymer)
The content of the polymer of the present disclosure in the mixture layer is preferably 0.2% by mass or more, more preferably 0.5% by mass or more, and even more preferably 1% by mass or more from the viewpoint of adhesion between the silicon-based negative electrode active material and the current collector, and is preferably 20% by mass or less, more preferably 10% by mass or less, and even more preferably 5% by mass or less from the viewpoint of increasing the capacity of the power storage device. When the polymer of the present disclosure is a combination of two or more types, the content of the polymer of the present disclosure in the mixture layer is the total content thereof.
Regarding the content ratio of the silicon-based negative electrode active material and the polymer of the present disclosure in the composite layer, the content of the polymer of the present disclosure is preferably 0.1 parts by mass or more, more preferably 1 part by mass or more, and even more preferably 10 parts by mass or more, relative to 100 parts by mass of the silicon-based negative electrode active material, from the viewpoint of adhesion between silicon-based negative electrode active materials, and is preferably 200 parts by mass or less, more preferably 100 parts by mass or less, and even more preferably 50 parts by mass or less, from the viewpoint of increasing the capacity of the electricity storage device.
(Other ingredients)
When the composite layer of the present disclosure contains a graphite-based negative electrode active material, the content of the graphite-based negative electrode active material in the composite layer is preferably 1 mass% or more, more preferably 10 mass% or more, and even more preferably 20 mass% or more from the viewpoint of improving the charge/discharge cycle characteristics of the power storage device, and is preferably 98.8 mass% or less, more preferably 97 mass% or less, and even more preferably 95 mass% or less from the viewpoint of increasing the capacity of the power storage device. When the graphite-based negative electrode active material of the present disclosure is a combination of two or more types, the content of the graphite-based negative electrode active material in the composite layer is the total content thereof.
When the composite layer of the present disclosure contains a conductive material, the content of the conductive material in the composite layer is preferably 0.02 mass% or more, more preferably 0.2 mass% or more, and even more preferably 0.5 mass% or more from the viewpoint of the resistance of the power storage device, and is preferably 3 mass% or less, more preferably 2.5 mass% or less, and even more preferably 2 mass% or less from the viewpoint of increasing the capacity of the power storage device. When the graphite-based negative electrode active material of the present disclosure is a combination of two or more types, the content of the conductive material in the composite layer is the total content thereof.
When the mixture layer of the present disclosure contains a thickener, the content of the thickener in the mixture layer is preferably 0.2 mass% or more, more preferably 0.5 mass% or more, and even more preferably 1 mass% or more from the viewpoint of coatability of the negative electrode paste, and is preferably 5 mass% or less, more preferably 3 mass% or less, and even more preferably 2 mass% or less from the viewpoint of increasing the capacity of the power storage device. When the thickener of the present disclosure is a combination of two or more types, the content of the thickener in the mixture layer is the total content thereof.

[蓄電デバイス]
本開示は、一態様において、本開示の負極を備える蓄電デバイス(以下、「本開示の蓄電デバイス」ともいう)に関する。本開示によれば、優れた充放電サイクル特性を有する蓄電デバイスを提供できる。
本開示の蓄電デバイスとしては、一又は複数の実施形態において、リチウムイオン二次電池、リチウム空気二次電池、リチウム-硫黄二次電池、ナトリウムイオン二次電池、ナトリウム-硫黄二次電池、ナトリウム-塩化ニッケル二次電池、有機ラジカル電池、亜鉛-空気二次電池、全固体電池等が挙げられる。
[Electricity storage device]
According to one aspect, the present disclosure relates to an electricity storage device including a negative electrode of the present disclosure (hereinafter also referred to as an "electricity storage device of the present disclosure"). According to the present disclosure, it is possible to provide an electricity storage device having excellent charge-discharge cycle characteristics.
In one or a plurality of embodiments, the power storage device of the present disclosure may include a lithium ion secondary battery, a lithium-air secondary battery, a lithium-sulfur secondary battery, a sodium ion secondary battery, a sodium-sulfur secondary battery, a sodium-nickel chloride secondary battery, an organic radical battery, a zinc-air secondary battery, and an all-solid-state battery.

本開示の蓄電デバイスは、一又は複数の実施形態は、本開示の負極、及び、電解液を含む蓄電デバイスである。電解液としては、溶媒と電解質を含むものが挙げられ、溶媒として、例えば、水、イオン液体、あるいは、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)等のカーボネート類が挙げられ、電解質としては、金属塩が挙げられ、例えば、LiPF6などのリチウム塩が挙げられる。
本開示の蓄電デバイスは、例えば、公知の蓄電デバイス製造方法により製造できる。蓄電デバイスの製造方法としては、例えば、2つの電極(正極及び負極)を、セパレータを介して重ね合わせ、電池形状に捲回あるいは積層させて、電池容器あるいはラミネート容器に入れ、容器に電解液を注入して封口する方法が挙げられる。
One or more embodiments of the power storage device of the present disclosure are power storage devices including the negative electrode of the present disclosure and an electrolyte solution. The electrolyte solution may include a solvent and an electrolyte, and examples of the solvent include water, an ionic liquid, or carbonates such as ethylene carbonate (EC) and diethyl carbonate (DEC), and examples of the electrolyte include metal salts, such as lithium salts such as LiPF6 .
The electricity storage device of the present disclosure can be manufactured by, for example, a known method for manufacturing an electricity storage device, for example, a method in which two electrodes (a positive electrode and a negative electrode) are stacked with a separator interposed therebetween, wound or laminated into a battery shape, placed in a battery container or a laminate container, and an electrolyte is poured into the container and sealed.

本願は、さらに以下の蓄電デバイス用重合体、蓄電デバイス用バインダー組成物、および蓄電デバイス負極用ペースト等を開示する。 This application further discloses the following polymers for electricity storage devices, binder compositions for electricity storage devices, and pastes for negative electrodes of electricity storage devices.

[1] 下記式(I)で表される構成単位を含み、
下記式(I)で表される構成単位の含有量が95質量%超の、蓄電デバイス用重合体。

Figure 2024079609000003
前記式(I)中、R1は、水素原子又はメチル基であり、R2は、水素原子、炭素数1以上4以下の炭化水素基、又は、1個以上3個以下の水酸基を有する直鎖もしくは分岐鎖の炭素数1以上4以下の炭化水素基であり、R3は、1個以上3個以下の水酸基を有する直鎖又は分岐鎖の炭素数1以上4以下の炭化水素基である。
[2] R1が、水素原子である、前記[1]に記載の蓄電デバイス用重合体。
[3] R2が、水素原子である、前記[1]又は[2]に記載の蓄電デバイス用重合体。
[4] R3が、1個の水酸基を有する直鎖の炭素数2の炭化水素基である、前記[1]から[3]のいずれかに記載の蓄電デバイス用重合体。
[5] 重量平均分子量が、5万以上300万以上である、前記[1]から[4]のいずれかに記載の蓄電デバイス用重合体。
[6] 前記(I)で表される構成単位の含有量が100質量%である、前記[1]から[5]のいずれかに記載の蓄電デバイス用重合体。
[7] 前記[1]から[6]のいずれかに記載の蓄電デバイス用重合体と溶媒とを含む、蓄電デバイス用バインダー組成物。
[8] シリコン系負極活物質と、前記[1]から[6]のいずれかに記載の蓄電デバイス用重合体とを含む、蓄電デバイス負極用ペースト。
[9] 集電体と、前記集電体上に形成された合材層とを含む蓄電デバイス用負極であって、
前記合材層が、シリコン系負極活物質、及び、前記[1]から[6]のいずれかに記載の蓄電デバイス用重合体を含む、蓄電デバイス用負極。
[10] 前記[9]に記載の蓄電デバイス用負極を備える、蓄電デバイス。
[11] 蓄電デバイス用バインダー組成物の製造のための前記[1]から[6]のいずれか1つに記載の蓄電デバイス用重合体の使用。
[12] 蓄電デバイス負極用ペーストの製造のための前記[1]から[6]のいずれか1つに記載の蓄電デバイス用重合体の使用。
[13] 蓄電デバイス用負極の製造のための前記[1]から[6]のいずれか1つに記載の蓄電デバイス用重合体の使用。 [1] Contains a structural unit represented by the following formula (I):
A polymer for an electricity storage device, comprising a structural unit represented by the following formula (I) in an amount of more than 95 mass %:
Figure 2024079609000003
In the formula (I), R 1 is a hydrogen atom or a methyl group, R 2 is a hydrogen atom, a hydrocarbon group having from 1 to 4 carbon atoms, or a linear or branched hydrocarbon group having from 1 to 4 carbon atoms and having from 1 to 3 hydroxyl groups, and R 3 is a linear or branched hydrocarbon group having from 1 to 4 carbon atoms and having from 1 to 3 hydroxyl groups.
[2] The polymer for an electricity storage device according to the above [1], wherein R 1 is a hydrogen atom.
[3] The polymer for an electricity storage device according to the above [1] or [2], wherein R 2 is a hydrogen atom.
[4] The polymer for an electricity storage device according to any one of the above [1] to [3], wherein R 3 is a linear hydrocarbon group having 2 carbon atoms and one hydroxyl group.
[5] The polymer for an electricity storage device according to any one of [1] to [4] above, having a weight average molecular weight of 50,000 or more and 3,000,000 or more.
[6] The polymer for an electricity storage device according to any one of [1] to [5] above, wherein the content of the structural unit represented by (I) is 100 mass %.
[7] A binder composition for an electricity storage device, comprising the polymer for an electricity storage device according to any one of [1] to [6] above and a solvent.
[8] A paste for a negative electrode of an electricity storage device, comprising a silicon-based negative electrode active material and the polymer for a electricity storage device according to any one of [1] to [6] above.
[9] A negative electrode for an electricity storage device, comprising: a current collector; and a mixture layer formed on the current collector,
The negative electrode for an electricity storage device, wherein the mixture layer contains a silicon-based negative electrode active material and the polymer for an electricity storage device according to any one of [1] to [6].
[10] An electricity storage device comprising the electricity storage device negative electrode according to [9].
[11] Use of the polymer for an electrical storage device according to any one of the above [1] to [6] for producing a binder composition for an electrical storage device.
[12] Use of the polymer for an electricity storage device according to any one of the above [1] to [6] for producing a paste for a negative electrode of an electricity storage device.
[13] Use of the polymer for an electricity storage device according to any one of the above [1] to [6] for producing a negative electrode for an electricity storage device.

以下に、実施例により本開示を具体的に説明するが、本開示はこれらの実施例によって何ら限定されるものではない。 The present disclosure will be explained in detail below with reference to examples, but the present disclosure is not limited to these examples.

1.蓄電デバイス用重合体A1~A3の合成
[製造例1:重合体A1の合成]
内容量1Lのガラス製4つ口セパラブルフラスコに、イオン交換水363gを仕込み、窒素雰囲気下で0.5時間攪拌した。フラスコ内の溶液を75℃に昇温し、フラスコ内にN-ヒドロキシエチルアクリルアミド(KJケミカルス社製)50.0gの60質量%水溶液83g、および2,2'-アゾビス(2-メチルプロピオンアミジン)二塩酸塩(富士フイルム和光純薬社製)0.6gの1質量%水溶液60gを1時間かけて滴下した。その後、フラスコ内の溶液を75℃でさらに4時間保持することで、製造例1のポリマー溶液(重合体A1)を得た。ポリマー溶液中の重合体濃度は、10質量%であった。重合体1の重量平均分子量は75万であった(表1)。
[製造例2~3:重合体A2~A3の合成]
製造例1の方法に従って、一般式(1)の構成単位を形成する重合性単量体と、表1に記載の残りの構成単位IIを形成する重合性単量体(PEG10-A:ポリエチレングリコールアクリレート、EO付加モル数10、日油社製の"AE-400")とを共重合して、製造例2~3のポリマー溶液(重合体A2~A3)を得た。ポリマー溶液中の重合体A2~A3の濃度はそれぞれ、10質量%であった。重合体A2~A3の重量平均分子量は表1に示した。
1. Synthesis of Polymers A1 to A3 for Electric Storage Devices [Production Example 1: Synthesis of Polymer A1]
363 g of ion-exchanged water was charged into a 1 L four-neck glass separable flask and stirred under a nitrogen atmosphere for 0.5 hours. The solution in the flask was heated to 75°C, and 83 g of a 60% by mass aqueous solution of 50.0 g of N-hydroxyethylacrylamide (KJ Chemicals) and 60 g of a 1% by mass aqueous solution of 0.6 g of 2,2'-azobis(2-methylpropionamidine) dihydrochloride (FUJIFILM Wako Pure Chemical Industries, Ltd.) were dropped into the flask over 1 hour. The solution in the flask was then kept at 75°C for another 4 hours to obtain a polymer solution (polymer A1) of Production Example 1. The polymer concentration in the polymer solution was 10% by mass. The weight average molecular weight of polymer 1 was 750,000 (Table 1).
[Production Examples 2 to 3: Synthesis of Polymers A2 to A3]
According to the method of Production Example 1, the polymerizable monomer forming the structural unit of general formula (1) and the polymerizable monomer forming the remaining structural unit II shown in Table 1 (PEG 10 -A: polyethylene glycol acrylate, EO addition mole number 10, "AE-400" manufactured by NOF Corporation) were copolymerized to obtain polymer solutions (polymers A2 to A3) of Production Examples 2 to 3. The concentrations of polymers A2 to A3 in the polymer solutions were each 10 mass %. The weight average molecular weights of polymers A2 to A3 are shown in Table 1.

Figure 2024079609000004
Figure 2024079609000004

[重量平均分子量の測定]
蓄電デバイス用重合体の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により測定した。詳細な条件を下記に示す。
<測定条件>
測定装置:HLC-8320GPC(東ソー社製、検出器一体型)
カラム:GMPWXL+GMPWXL(アニオン、東ソー社製)
溶離液:0.2モル濃度のリン酸バッファー/アセトニトリル(=9/1)
流量:0.5mL/分
カラム温度:40℃
検出器:RI 検出器
標準物質:ポリエチレンオキサイド
[Measurement of weight average molecular weight]
The weight-average molecular weight of the polymer for use in an electricity storage device was measured by gel permeation chromatography (GPC) under the following detailed conditions.
<Measurement conditions>
Measuring device: HLC-8320GPC (Tosoh Corporation, detector integrated type)
Column: GMPWXL + GMPWXL (anion, manufactured by Tosoh Corporation)
Eluent: 0.2 molar phosphate buffer/acetonitrile (=9/1)
Flow rate: 0.5 mL/min Column temperature: 40° C.
Detector: RI Detector standard material: polyethylene oxide

2.シリコン系負極ペーストの調製
(実施例1)
導電材(アセチレンブラック、デンカ社製、「Li-100」) 0.16gと1.5質量%の増粘剤(カルボキシメチルセルロースナトリウム、富士フイルム和光純薬社製)水溶液 5.5gと黒鉛系負極活物質(グラファイト、昭和電工社製「MCMG-CF-C」)7.88gとシリコン系負極活物質(一酸化シリコン、富士フイルム和光純薬社製)0.88gを混合して、スラリー[1]を調製した。
次いで、スラリー[1]に、1.5質量%の増粘剤(カルボキシメチルセルロースナトリウム、富士フイルム和光純薬社製)水溶液 3.73gおよびイオン交換水 0.53g入れて混合して、スラリー[2]を調製した。
次に、調製した製造例1の10質量%の重合体A1水溶液1.85gを添加し、実施例1のシリコン系負極ペーストの調製を行った。各成分の混合には、「あわとり練太郎(ARV-310)」を用いた。シリコン系負極ペースト中の各成分の含有量は、重合体:0.9質量%、シリコン系負極活物質:4.3質量%、黒鉛系負極活物質:38.4質量%、導電材:0.8質量%、増粘剤:0.67質量%であった。シリコン系負極ペースト中の重合体の含有量は、シリコン系負極活物質100質量部に対して21質量部であった。シリコン系負極ペーストの固形分濃度は45質量%であった。
(比較例1~2)
実施例1のシリコン系負極ペーストの調製方法と同様にして、比較例1~2のシリコン系負極ペーストを調製した。配合組成は実施例1と同じで、使用した重合体の種類のみを変更した。
2. Preparation of silicon-based negative electrode paste (Example 1)
A slurry [1] was prepared by mixing 0.16 g of a conductive material (acetylene black, manufactured by Denka Co., Ltd., "Li-100"), 5.5 g of a 1.5 mass % aqueous solution of a thickener (sodium carboxymethylcellulose, manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.), 7.88 g of a graphite-based negative electrode active material (graphite, manufactured by Showa Denko K.K., "MCMG-CF-C"), and 0.88 g of a silicon-based negative electrode active material (silicon monoxide, manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.).
Next, 3.73 g of a 1.5% by mass aqueous solution of a thickener (sodium carboxymethylcellulose, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and 0.53 g of ion-exchanged water were added to and mixed with the slurry [1] to prepare a slurry [2].
Next, 1.85 g of the 10 mass % aqueous solution of polymer A1 prepared in Production Example 1 was added to prepare the silicon-based negative electrode paste of Example 1. The components were mixed using a "Thin Mixer (ARV-310)". The contents of the components in the silicon-based negative electrode paste were: polymer: 0.9 mass %, silicon-based negative electrode active material: 4.3 mass %, graphite-based negative electrode active material: 38.4 mass %, conductive material: 0.8 mass %, and thickener: 0.67 mass %. The content of the polymer in the silicon-based negative electrode paste was 21 parts by mass relative to 100 parts by mass of the silicon-based negative electrode active material. The solid content of the silicon-based negative electrode paste was 45 mass %.
(Comparative Examples 1 to 2)
Silicon-based negative electrode pastes of Comparative Examples 1 and 2 were prepared in the same manner as in Example 1. The blended compositions were the same as in Example 1, and only the type of polymer used was changed.

3.シリコン系負極の作製1
厚さ20μmの銅箔上に、負極容量密度が6mAh/cm2となるように、シリコン系負極ペーストを塗工し、塗膜(厚さ380μm)を、真空乾燥器を用いて100℃で12時間乾燥した。これにより、集電体上に合材層(厚さ120μm)が形成されたシリコン系負極(負極合剤層を有するシリコン系負極)を作製した。これをプレス機でプレスして、集電体上に合材層(100μm)が形成されたシリコン系負極(負極合剤層を有するシリコン系負極)とした。電極(負極)組成としては、グラファイト85.3質量%、SiO(平均粒径:1μm)9.5質量%、導電材:1.7質量%、増粘剤:1.5質量%、重合体:2.0質量%となるように作製した。
[シリコン系負極活物質の平均粒径の測定]
レーザー回折/散乱式粒子径分布測定装置LA-920(堀場製作所製)を用いて体積平均粒径(D50)を測定した。
3. Preparation of silicon-based negative electrode 1
A silicon-based negative electrode paste was applied onto a copper foil having a thickness of 20 μm so that the negative electrode capacity density was 6 mAh/cm 2 , and the coating film (thickness 380 μm) was dried at 100 ° C. for 12 hours using a vacuum dryer. This produced a silicon-based negative electrode (silicon-based negative electrode having a negative electrode mixture layer) in which a composite layer (thickness 120 μm) was formed on the current collector. This was pressed with a press machine to produce a silicon-based negative electrode (silicon-based negative electrode having a negative electrode mixture layer) in which a composite layer (100 μm) was formed on the current collector. The electrode (negative electrode) composition was prepared to be 85.3% by mass of graphite, 9.5% by mass of SiO (average particle size: 1 μm), 1.7% by mass of conductive material, 1.5% by mass of thickener, and 2.0% by mass of polymer.
[Measurement of average particle size of silicon-based negative electrode active material]
The volume average particle size (D 50 ) was measured using a laser diffraction/scattering type particle size distribution measuring device LA-920 (manufactured by Horiba, Ltd.).

4.負極性能の評価
実施例1及び比較例1~2のシリコン系負極を用い下記のようにして作製した蓄電デバイスの充放電特性を、下記充放電サイクル試験により負極性能を評価した。
[コインセル(蓄電デバイス)の作製]
シリコン系負極をそれぞれ直径14mmに打ち抜きプレスした。そして、プレスしたシリコン系負極上に、直径19mmのセパレータ[宝泉社製]、直径15mm、厚さ0.5mmのコイン状の金属リチウム箔を対極として配置し、2032型コインハーフセルを作製した。電解液には、1M LiPF6 EC/DEC(体積比)=3/7を用いた。
[充放電サイクル試験]
作製したコインセルを、エレクトロフィールド社製充放電試験機(ABE1024)を用いて、45℃の環境下、充放電サイクル試験を行った。充電は、OCVから0Vまで0.1Cで定電流充電をした後、10分間定電圧充電することとした。放電は、1.2Vまで0.1Cで定電流放電することとした。この充放電を50サイクル繰り返した。尚、本セルの充電とは、リチウム金属からシリコン系負極へのリチウムイオン挿入過程をいい、放電はその逆反応をいう。
[容量維持率]
作製したコインセル(蓄電デバイス)を用いて上記充放電サイクル試験を行い、下記式により容量維持率を求めた。結果を表2に示す。
容量維持率=(50サイクル目の放電容量)/(1サイクル目の放電容量)
4. Evaluation of Negative Electrode Performance The charge/discharge characteristics of the electricity storage devices prepared as described below using the silicon-based negative electrodes of Example 1 and Comparative Examples 1 and 2 were evaluated for negative electrode performance by the following charge/discharge cycle test.
[Fabrication of coin cells (electricity storage devices)]
Each silicon-based negative electrode was punched out to a diameter of 14 mm and pressed. A separator with a diameter of 19 mm [manufactured by Hosen Co., Ltd.] and a coin-shaped lithium foil with a diameter of 15 mm and a thickness of 0.5 mm were placed on the pressed silicon-based negative electrode to prepare a 2032-type coin half cell. 1M LiPF 6 EC/DEC (volume ratio) = 3/7 was used as the electrolyte.
[Charge-discharge cycle test]
The prepared coin cell was subjected to a charge-discharge cycle test in an environment of 45°C using an Electrofield charge-discharge tester (ABE1024). Charging was performed by constant current charging at 0.1C from OCV to 0V, followed by constant voltage charging for 10 minutes. Discharging was performed by constant current discharging at 0.1C to 1.2V. This charging and discharging was repeated 50 cycles. Note that charging of this cell refers to the process of lithium ions being inserted from lithium metal to the silicon-based negative electrode, and discharging refers to the reverse reaction.
[Capacity retention rate]
The above-mentioned charge/discharge cycle test was carried out using the produced coin cell (electricity storage device), and the capacity retention rate was calculated by the following formula. The results are shown in Table 2.
Capacity retention rate=(discharge capacity at 50th cycle)/(discharge capacity at 1st cycle)

Figure 2024079609000005
Figure 2024079609000005

表2に示されるように、構成単位Iの含有量が95質量%超の重合体A1を用いた実施例1では、構成単位Iの含有量が95質量%以下である重合体A2及びA3を用いた比較例1~2に比べて、充放電サイクルでの容量維持率が高く、シリコン系負極活物質を用いた負極を備える蓄電デバイスの充放電サイクル特性が向上できることがわかった。 As shown in Table 2, in Example 1, which used polymer A1 with a content of structural unit I exceeding 95% by mass, the capacity retention rate during charge-discharge cycles was higher than in Comparative Examples 1 and 2, which used polymers A2 and A3 with a content of structural unit I of 95% by mass or less, and it was found that the charge-discharge cycle characteristics of an electricity storage device having a negative electrode using a silicon-based negative electrode active material can be improved.

5.シリコン系負極の作製2(フルセル用負極)
厚さ20μmの銅箔上に、負極容量密度が2.1mAh/cm2となるように、シリコン系負極ペーストを塗工し、塗膜(厚さ130μm)を、真空乾燥器を用いて100℃で12時間乾燥した。これにより、集電体上に合材層(厚さ45μm)が形成されたシリコン系負極(負極合剤層を有するシリコン系負極)を作製した。これをプレス機でプレスして、集電体上に合材層(35μm)が形成されたシリコン系負極(負極合剤層を有するシリコン系負極)とした。電極(負極)組成としては、グラファイト85.3質量%、SiO(平均粒径:1μm)9.5質量%、導電材:1.7質量%、増粘剤:1.5質量%、重合体
:2.0質量%となるように作製した。
5. Preparation of silicon-based negative electrode 2 (negative electrode for full cell)
A silicon-based negative electrode paste was applied onto a copper foil having a thickness of 20 μm so that the negative electrode capacity density was 2.1 mAh/cm 2 , and the coating film (thickness 130 μm) was dried at 100 ° C. for 12 hours using a vacuum dryer. This produced a silicon-based negative electrode (silicon-based negative electrode having a negative electrode mixture layer) in which a composite layer (thickness 45 μm) was formed on the current collector. This was pressed with a press machine to produce a silicon-based negative electrode (silicon-based negative electrode having a negative electrode mixture layer) in which a composite layer (35 μm) was formed on the current collector. The electrode (negative electrode) composition was prepared to be 85.3% by mass of graphite, 9.5% by mass of SiO (average particle size: 1 μm), 1.7% by mass of conductive material, 1.5% by mass of thickener, and 2.0% by mass of polymer.

6.フルセル用正極の作製
正極活物質(日本化学工業社製、NCM523)15g、ポリビニリデンフルオライド(PVDF)のn-メチルピロリドン(NMP)溶液(固形分8% KFポリマーL#7208、株式会社クレハ製、バインダー溶液)5.98g、導電材(アセチレンブラック、デンカ社製、「Li-100」) 0.48gと溶媒(NMP)12.97gを自転公転ミキサー(AR-100 株式会社 シンキー製)にて、10分間混合して、固形分46質量%の正極ペーストを作製した。これを厚さ20μmのアルミホイルに塗布して、100℃で乾燥させることによって正極容量密度が2.0mAh/cm2正極を製造した。
6. Preparation of a positive electrode for full cells 15 g of positive electrode active material (manufactured by Nippon Chemical Industry Co., Ltd., NCM523), 5.98 g of n-methylpyrrolidone (NMP) solution of polyvinylidene fluoride (PVDF) (solid content 8% KF polymer L#7208, manufactured by Kureha Corporation, binder solution), 0.48 g of conductive material (acetylene black, manufactured by Denka Co., Ltd., "Li-100") and 12.97 g of solvent (NMP) were mixed for 10 minutes in a rotation and revolution mixer (AR-100 manufactured by Thinky Corporation) to prepare a positive electrode paste with a solid content of 46% by mass. This was applied to an aluminum foil with a thickness of 20 μm and dried at 100 ° C. to produce a positive electrode with a positive electrode capacity density of 2.0 mAh / cm 2 .

[コインセル(蓄電デバイス)の作製(フルセル)]
正極を直径13mm、シリコン系負極を直径14mmに打ち抜き、正極上に、直径19mmのセパレータ[宝泉社製]、その後にシリコン系負極を対極として配置し、2032型コインセル(フルセル)を作製した。電解液には、1M LiPF6 EC/DEC(体積比)=3/7を用いた。
[Fabrication of coin cells (electricity storage devices) (full cells)]
The positive electrode was punched out to a diameter of 13 mm, and the silicon-based negative electrode was punched out to a diameter of 14 mm. A separator with a diameter of 19 mm [manufactured by Hosen Co., Ltd.] was placed on the positive electrode, followed by the silicon-based negative electrode as a counter electrode to prepare a 2032-type coin cell (full cell). 1M LiPF6 EC/DEC (volume ratio) = 3/7 was used as the electrolyte.

[フルセルの評価]
得られたフルセルを用いて、電池特性(レート特性5C)を測定した。具体的には、電池を25℃の環境下で下記の条件に従い0.1Cで4.2Vまで充電し、その後0.1Cで3Vになるまで放電し放電容量を求めた。次いで5Cの放電容量を同様にして求め、0.1Cの放電容量を基準に5Cの放電容量維持率を求めた。
(充電条件) 0.1C CC―CV4.2V(0.02C Cut off)
(放電条件) 0.1Cもしくは5C CC(3V Cut off)
高速放電容量維持率(%)=(5Cの放電容量/0.1Cの放電容量)×100
[Full cell evaluation]
The resulting full cell was used to measure the battery characteristics (rate characteristics 5C). Specifically, the battery was charged to 4.2 V at 0.1 C under the following conditions in an environment of 25° C., and then discharged to 3 V at 0.1 C to determine the discharge capacity. The 5C discharge capacity was then determined in the same manner, and the 5C discharge capacity retention rate was calculated based on the 0.1C discharge capacity.
(Charging conditions) 0.1C CC-CV4.2V (0.02C Cut off)
(Discharge conditions) 0.1C or 5C CC (3V Cut off)
High-speed discharge capacity retention rate (%)=(5 C discharge capacity/0.1 C discharge capacity)×100

Figure 2024079609000006
Figure 2024079609000006

表3に示されるように、構成単位Iの含有量が95質量%超の重合体A1を用いた実施例1では、構成単位Iの含有量が95質量%以下である重合体A2及びA3を用いた比較例1~2に比べて高速放電容量維持率が高く、シリコン系負極活物質を用いた負極を備える蓄電デバイスの高速放電容量維持率の特性が向上できることがわかった。 As shown in Table 3, in Example 1, which used polymer A1 with a content of structural unit I exceeding 95% by mass, the high-rate discharge capacity retention rate was higher than in Comparative Examples 1 and 2, which used polymers A2 and A3 with a content of structural unit I of 95% by mass or less, and it was found that the high-rate discharge capacity retention rate characteristics of an electricity storage device having a negative electrode using a silicon-based negative electrode active material can be improved.

本開示に係る蓄電デバイス用重合体は、例えば、様々な蓄電デバイスに利用できる。 The polymer for electricity storage devices according to the present disclosure can be used, for example, in various electricity storage devices.

Claims (6)

下記式(I)で表される構成単位を含み、
下記式(I)で表される構成単位の含有量が95質量%超の、蓄電デバイス用重合体。
Figure 2024079609000007
前記式(I)中、R1は、水素原子又はメチル基であり、R2は、水素原子、炭素数1以上4以下の炭化水素基、又は、1個以上3個以下の水酸基を有する直鎖もしくは分岐鎖の炭素数1以上4以下の炭化水素基であり、R3は、1個以上3個以下の水酸基を有する直鎖又は分岐鎖の炭素数1以上4以下の炭化水素基である。
Contains a structural unit represented by the following formula (I):
A polymer for an electricity storage device, comprising a structural unit represented by the following formula (I) in an amount of more than 95 mass %:
Figure 2024079609000007
In the formula (I), R 1 is a hydrogen atom or a methyl group, R 2 is a hydrogen atom, a hydrocarbon group having from 1 to 4 carbon atoms, or a linear or branched hydrocarbon group having from 1 to 4 carbon atoms and having from 1 to 3 hydroxyl groups, and R 3 is a linear or branched hydrocarbon group having from 1 to 4 carbon atoms and having from 1 to 3 hydroxyl groups.
前記(I)で表される構成単位の含有量が100質量%である、請求項1に記載の蓄電デバイス用重合体。 The polymer for an electricity storage device according to claim 1, wherein the content of the structural unit represented by (I) is 100% by mass. 請求項1又は2に記載の蓄電デバイス用重合体を含む、蓄電デバイス用バインダー組成物。 A binder composition for an electric storage device comprising the polymer for an electric storage device according to claim 1 or 2. シリコン系負極活物質、及び、請求項1又は2に記載の蓄電デバイス用重合体を含む、蓄電デバイス負極用ペースト。 A paste for a negative electrode of an electricity storage device, comprising a silicon-based negative electrode active material and the polymer for a electricity storage device according to claim 1 or 2. 集電体、及び前記集電体上に形成された合材層を含む蓄電デバイス用負極であって、
前記合材層が、シリコン系負極活物質、及び、請求項1又は2に記載の蓄電デバイス用重合体を含む、蓄電デバイス用負極。
A negative electrode for an electricity storage device comprising a current collector and a mixture layer formed on the current collector,
3. A negative electrode for an electricity storage device, wherein the mixture layer comprises a silicon-based negative electrode active material and the polymer for an electricity storage device according to claim 1.
請求項5に記載の蓄電デバイス用負極を備える、蓄電デバイス。 An electricity storage device comprising the electricity storage device negative electrode according to claim 5.
JP2023194655A 2022-11-30 2023-11-15 Polymers for power storage devices Pending JP2024079609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/041318 WO2024116881A1 (en) 2022-11-30 2023-11-16 Polymer for power storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022191648 2022-11-30
JP2022191648 2022-11-30

Publications (1)

Publication Number Publication Date
JP2024079609A true JP2024079609A (en) 2024-06-11

Family

ID=91391210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023194655A Pending JP2024079609A (en) 2022-11-30 2023-11-15 Polymers for power storage devices

Country Status (1)

Country Link
JP (1) JP2024079609A (en)

Similar Documents

Publication Publication Date Title
JP5860834B2 (en) Lithium ion rechargeable battery cell
KR101529739B1 (en) Method for producing electrode slurry for lithium ion secondary battery
JP7122858B2 (en) Aqueous binder resin composition, non-aqueous battery slurry, non-aqueous battery electrode, non-aqueous battery separator, and non-aqueous battery
CN108780892B (en) Binder composition for nonaqueous secondary battery electrode, slurry composition for nonaqueous secondary battery electrode, electrode for nonaqueous secondary battery, and nonaqueous secondary battery
CN111725509B (en) Negative electrode material, negative electrode slurry, negative electrode plate and lithium ion battery
JP7193449B2 (en) Porous silicon materials and conductive polymer binder electrodes
EP3831859B1 (en) Copolymer for electrode binder and lithium ion secondary battery
CN113273005A (en) Secondary battery, device comprising same, method for producing secondary battery, and binder composition
WO2019156031A1 (en) Lithium ion secondary battery electrode, production method for same, and lithium ion secondary battery
CN114024035B (en) Battery with a battery cell
KR102419750B1 (en) Conductive polymer binder for novel silicon/graphene anodes in lithium-ion batteries
CN114024099A (en) Battery with a battery cell
CN107534152B (en) Composition for binder for nonaqueous battery electrode, composition for nonaqueous battery electrode, and nonaqueous battery
TW201925278A (en) Method of producing slurry for nonaqueous battery electrode
TWI825125B (en) Binder copolymer for non-aqueous battery electrode, and slurry for producing non-aqueous battery electrode
JP5136946B2 (en) Binder resin composition for non-aqueous electrolyte system energy device electrode, electrode for non-aqueous electrolyte system energy device using the same, and non-aqueous electrolyte system energy device
WO2024116881A1 (en) Polymer for power storage device
JP2024079609A (en) Polymers for power storage devices
US20230223540A1 (en) Binder for nonaqueous secondary battery electrode and slurry for nonaqueous secondary battery electrode
JP7359337B1 (en) Negative electrode binder composition, method for producing the same, negative electrode, and secondary battery
CN114361456B (en) Water-based functional ion-conducting binder for lithium battery, preparation method and application
US20240079596A1 (en) Electrode plate and preparation method thereof, secondary battery and electrical device
JP2019169444A (en) Secondary battery electrode, secondary battery, and manufacturing method thereof
JP7245100B2 (en) lithium ion secondary battery
JP2023157080A (en) Negative electrode and nonaqueous electrolyte secondary battery