JP2024075109A - Coated Cutting Tools - Google Patents

Coated Cutting Tools Download PDF

Info

Publication number
JP2024075109A
JP2024075109A JP2022186312A JP2022186312A JP2024075109A JP 2024075109 A JP2024075109 A JP 2024075109A JP 2022186312 A JP2022186312 A JP 2022186312A JP 2022186312 A JP2022186312 A JP 2022186312A JP 2024075109 A JP2024075109 A JP 2024075109A
Authority
JP
Japan
Prior art keywords
nitride layer
hard coating
alcrsi
atomic
ray diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022186312A
Other languages
Japanese (ja)
Inventor
宣仁 那須
智也 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Moldino Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moldino Tool Engineering Ltd filed Critical Moldino Tool Engineering Ltd
Priority to JP2022186312A priority Critical patent/JP2024075109A/en
Publication of JP2024075109A publication Critical patent/JP2024075109A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

【課題】スパッタリング法で被覆したAlCrSiの窒化物の層上にTiSiの窒化物の層を設けた被覆切削工具について、耐久性を向上させる。【解決手段】基材と、基材上に形成される硬質皮膜とを備える被覆切削工具。硬質皮膜は、基材の上に設けられるAlCrSiの窒化物の層と、AlCrSiの窒化物の層上に設けられるTiSiの窒化物の層とを有する。硬質皮膜は、X線回折において面心立方格子構造を示し、X線回折により求めた2θが37°~38°の範囲に(111)面のピークを有し、(111)面のX線回折ピークの半値幅が0.50°以上0.60°以下である。硬質皮膜は、半金属を含む金属元素と非金属元素の合計を100原子%とした場合、Arを0.2原子%以下で含有している。【選択図】図1[Problem] To improve the durability of a coated cutting tool in which a TiSi nitride layer is provided on an AlCrSi nitride layer coated by a sputtering method. [Solution] A coated cutting tool comprising a substrate and a hard coating formed on the substrate. The hard coating comprises an AlCrSi nitride layer provided on the substrate and a TiSi nitride layer provided on the AlCrSi nitride layer. The hard coating exhibits a face-centered cubic lattice structure in X-ray diffraction, has a (111) plane peak in the range of 2θ of 37° to 38° as determined by X-ray diffraction, and has a half-width of the X-ray diffraction peak of the (111) plane of 0.50° to 0.60°. The hard coating contains 0.2 atomic % or less of Ar when the total of metal elements including metalloids and nonmetal elements is 100 atomic %. [Selected Figure] Figure 1

Description

本発明は、被覆切削工具に関する。 The present invention relates to a coated cutting tool.

AlCrSi窒化物の層上にTiSi窒化物の層を設けた被覆切削工具は耐久性に優れており種々検討がされている。例えば、特許文献1にはアークイオンプレーティング法により、基材の表面にTiボンバード層を形成した後にAlCrSiの窒化物の層を設けてその上にTiSiの窒化物の層を設けた被覆切削工具を開示している。 Coated cutting tools in which a layer of TiSi nitride is provided on a layer of AlCrSi nitride have excellent durability and are being studied in various ways. For example, Patent Document 1 discloses a coated cutting tool in which a Ti bombarded layer is formed on the surface of a substrate by arc ion plating, and then a layer of AlCrSi nitride is provided on top of that, and a layer of TiSi nitride is provided on top of that.

国際公開第2014/156699号International Publication No. WO 2014/156699

近年、被覆切削工具において高出力スパッタリング法が適用され始めている。本発明者等の検討によると、スパッタリング法で被覆したAlCrSiの窒化物の層上にTiSiの窒化物の層を設けた被覆切削工具について、耐久性に改善の余地があることを確認した。 In recent years, high-power sputtering has begun to be used for coated cutting tools. The inventors' research has confirmed that there is room for improvement in the durability of coated cutting tools in which a TiSi nitride layer is provided on an AlCrSi nitride layer coated by sputtering.

本発明の一態様は、基材と、前記基材上に形成される硬質皮膜とを備え、前記硬質皮膜は、前記基材の上に設けられるAlCrSiの窒化物の層と、前記AlCrSiの窒化物の層上に設けられるTiSiの窒化物の層とを有し、X線回折において面心立方格子構造を示し、前記X線回折により求めた2θが37°~38°の範囲に(111)面のピークを有し、前記(111)面のX線回折ピークの半値幅が0.50°以上0.60°以下であり、半金属を含む金属元素と非金属元素の合計を100原子%とした場合、Arを0.2原子%以下で含有している被覆切削工具である。 One aspect of the present invention is a coated cutting tool comprising a substrate and a hard coating formed on the substrate, the hard coating having an AlCrSi nitride layer provided on the substrate and a TiSi nitride layer provided on the AlCrSi nitride layer, exhibiting a face-centered cubic lattice structure in X-ray diffraction, having a (111) plane peak in the range of 2θ of 37° to 38° as determined by the X-ray diffraction, the half-width of the X-ray diffraction peak of the (111) plane being 0.50° or more and 0.60° or less, and containing 0.2 atomic % or less of Ar when the total of metal elements including metalloids and nonmetal elements is 100 atomic %.

本発明によれば、耐久性に優れる被覆切削工具を提供することができる。 The present invention provides a coated cutting tool with excellent durability.

本実施例1に係る硬質皮膜の断面観察写真(×30000倍)の一例である。3 is an example of a cross-sectional observation photograph (×30,000) of the hard coating according to the present Example 1. 比較例1に係る硬質皮膜の断面観察写真(×30000倍)の一例である。4 is an example of a cross-sectional observation photograph (×30,000) of the hard coating according to Comparative Example 1. 本実施例1に係る硬質皮膜のX線回折測定結果を示す図である。FIG. 4 is a diagram showing the results of X-ray diffraction measurement of the hard coating according to the present Example 1.

本発明者等は、スパッタリング法によりAlCrSiの窒化物の層とTiSiの窒化物の層とを設けた被覆切削工具について、X線回折における(111)面のピーク強度の半値幅が一定範囲にあるときに耐久性が優れることを確認して本発明に到達した。以下、詳細に説明する。 The inventors of the present invention have confirmed that a coated cutting tool having an AlCrSi nitride layer and a TiSi nitride layer formed by a sputtering method has excellent durability when the half-width of the peak intensity of the (111) plane in X-ray diffraction is within a certain range. This will be explained in detail below.

本実施形態の被覆切削工具においては、基材は特段限定されないが、強度と靭性に優れるWC-Co基超硬合金を基材とすることが好ましい。 In the coated cutting tool of this embodiment, the substrate is not particularly limited, but it is preferable to use a WC-Co-based cemented carbide substrate, which has excellent strength and toughness.

本実施形態の被覆切削工具においては、基材の上にAlCrSiの窒化物の層を設ける。AlCrSiの窒化物の層は耐熱性と耐摩耗性の優れる膜種であり、TiSiの窒化物の層の下層として設けることで被覆切削工具の耐久性を高めることができる。本実施形態に係るAlCrSiの窒化物の層は、金属(半金属を含む。以下同様。)元素の総量に対して、Alは50原子%以上70原子%以下が好ましい。Crは30原子%以上45原子%以下が好ましい。Siは1原子%以上10原子%以下が好ましい。更には、Siは1原子%以上3原子%以下が好ましい。Siの添加量を少なくすることでhcp構造のAlNが低減して好ましい。
本実施形態に係るAlCrSiの窒化物の層はナノインデンテーション硬度が30GPa以上35GPa以下、弾性率が520GPa以上620GPa以下であることが好ましい。
In the coated cutting tool of this embodiment, an AlCrSi nitride layer is provided on the substrate. The AlCrSi nitride layer is a film type with excellent heat resistance and wear resistance, and by providing it as an underlayer of the TiSi nitride layer, the durability of the coated cutting tool can be improved. In the AlCrSi nitride layer according to this embodiment, Al is preferably 50 atomic % or more and 70 atomic % or less with respect to the total amount of metal (including metalloid, the same applies below). Cr is preferably 30 atomic % or more and 45 atomic % or less. Si is preferably 1 atomic % or more and 10 atomic % or less. Furthermore, Si is preferably 1 atomic % or more and 3 atomic % or less. By reducing the amount of Si added, AlN with a hcp structure is reduced, which is preferable.
The AlCrSi nitride layer according to this embodiment preferably has a nanoindentation hardness of 30 GPa or more and 35 GPa or less, and an elastic modulus of 520 GPa or more and 620 GPa or less.

本実施形態の被覆切削工具においては、上述したAlCrSiの窒化物の層上にはTiSiの窒化物の層を設ける。TiSiの窒化物は皮膜組織が微細で高い硬度を有する膜種であり、AlCrSiの窒化物の上層として設けることで被覆切削工具の耐久性を高めることができる。本実施形態に係るTiSiの窒化物の層は、ナノインデンテーション硬度が40GPa以上であることが好ましい。Tiは60原子%以上90原子%以下が好ましい。Siは10原子%以上40原子%以下が好ましい。 In the coated cutting tool of this embodiment, a layer of TiSi nitride is provided on the layer of AlCrSi nitride described above. TiSi nitride is a film type with a fine film structure and high hardness, and providing it as an upper layer of AlCrSi nitride can increase the durability of the coated cutting tool. The TiSi nitride layer according to this embodiment preferably has a nanoindentation hardness of 40 GPa or more. Ti is preferably 60 atomic % or more and 90 atomic % or less. Si is preferably 10 atomic % or more and 40 atomic % or less.

本実施形態に係る硬質皮膜は、X線回折において面心立方格子構造を示し、X線回折により求めた2θが37°~38°の範囲に(111)面のピークを有する。このピークはCrNに由来するピークであり、AlCrSiの窒化物を評価するのに適している。
本実施形態に係る硬質皮膜は、2θが37°~38°にある(111)面のX線回折ピークの半値幅が0.50°以上0.60°以下である。これによりAlCrSiの窒化物の層が硬度、弾性係数および圧縮残留応力を低下させずに皮膜組織が微細になり被覆切削工具の耐久性を高めることができる。
X線回折は、市販のX線回折装置を用い、管電圧45kV、管電流40mA、X線源Cukα(λ=0.15405nm)、2θが20~80度の測定条件で測定すればよい。
The hard coating according to this embodiment exhibits a face-centered cubic lattice structure in X-ray diffraction, and has a (111) peak in the range of 2θ of 37° to 38° as determined by X-ray diffraction. This peak is derived from CrN and is suitable for evaluating AlCrSi nitrides.
In the hard coating according to this embodiment, the half-width of the X-ray diffraction peak of the (111) plane at 2θ of 37° to 38° is 0.50° or more and 0.60° or less, which allows the AlCrSi nitride layer to have a fine coating structure without reducing the hardness, elastic modulus, and compressive residual stress, thereby improving the durability of the coated cutting tool.
X-ray diffraction may be measured using a commercially available X-ray diffraction device under measurement conditions of a tube voltage of 45 kV, a tube current of 40 mA, an X-ray source Cukα (λ=0.15405 nm), and 2θ of 20 to 80 degrees.

本実施形態に係るAlCrSiの窒化物の層は、制限視野回折パターンの輝度から求められる強度プロファイルにおいてhcp構造のAlNに起因するピークを有しないことが好ましい。ミクロレベルでhcp構造のAlNが少ないことで被覆切削工具の耐久性を高めることができる。本実施形態においては、制限視野回折パターンの輝度から求められる強度プロファイルはバックグラウンドを除去して評価する。 The AlCrSi nitride layer according to this embodiment preferably does not have a peak due to AlN with a hcp structure in the intensity profile determined from the brightness of the selected area diffraction pattern. Having less AlN with a hcp structure at the micro level can increase the durability of the coated cutting tool. In this embodiment, the intensity profile determined from the brightness of the selected area diffraction pattern is evaluated after removing the background.

本実施形態に係る硬質皮膜については、半金属を含む金属元素と非金属元素の総量を100原子%とした場合、アルゴン(Ar)を0.2原子%以下で含有する。
スパッタリング法では、アルゴンイオンを用いてターゲット成分をスパッタリングして
硬質皮膜を被覆するため、硬質皮膜にアルゴンを含有させやすい。硬質皮膜の結晶粒径が微粒化すると硬度が高まる一方、結晶粒界が多くなり、硬質皮膜に含有されるアルゴンが結晶粒界に濃化する。硬質皮膜のアルゴン含有比率が大きすぎる場合には、硬質皮膜の靭性が低下し、十分な工具性能が発揮され難い。そのため、本実施形態では硬質皮膜の結晶粒界に濃化するアルゴンを低減させるよう、半金属を含む金属元素と非金属元素の総量を100原子%とした場合、アルゴンを0.2原子%以下で含有させる。本実施形態においては、アルゴン(Ar)の含有比率の下限を特段限定するものではない。本実施形態に係る硬質皮膜は、スパッタリング法で被覆するため、アルゴン(Ar)を0.01原子%以上で含有し得る。
The hard coating according to this embodiment contains argon (Ar) at 0.2 atomic % or less when the total amount of metal elements including metalloids and nonmetal elements is taken as 100 atomic %.
In the sputtering method, the target components are sputtered using argon ions to coat the hard film, so that it is easy to make the hard film contain argon. When the grain size of the hard film is finer, the hardness increases, while the grain boundaries increase, and the argon contained in the hard film is concentrated at the grain boundaries. If the argon content ratio of the hard film is too high, the toughness of the hard film decreases, and it is difficult to exhibit sufficient tool performance. Therefore, in this embodiment, in order to reduce the argon concentrated at the grain boundaries of the hard film, argon is contained at 0.2 atomic % or less when the total amount of metal elements including metalloids and nonmetal elements is 100 atomic %. In this embodiment, the lower limit of the content ratio of argon (Ar) is not particularly limited. Since the hard film according to this embodiment is coated by the sputtering method, it may contain argon (Ar) at 0.01 atomic % or more.

本実施形態に係る硬質皮膜については、AlCrSiの窒化物の層の膜厚をt1、TiSiの窒化物の層の膜厚をt2とした場合、t1/t2が0.7以上1.3以下であることが好ましい。AlCrSiの窒化物の層とTiSiの窒化物の層の膜厚が同程度であることで被覆切削工具の耐久性が優れるものとなる。t1は0.5μm以上3μm以下が好ましい。t2は0.5μm以上3μm以下が好ましい。 For the hard coating according to this embodiment, when the thickness of the AlCrSi nitride layer is t1 and the thickness of the TiSi nitride layer is t2, it is preferable that t1/t2 is 0.7 or more and 1.3 or less. By making the thickness of the AlCrSi nitride layer and the TiSi nitride layer approximately the same, the durability of the coated cutting tool becomes excellent. t1 is preferably 0.5 μm or more and 3 μm or less. t2 is preferably 0.5 μm or more and 3 μm or less.

本実施形態の被覆切削工具は、基材とAlCrSi窒化物の層との間には中間皮膜を設けても良い。AlCrSiの窒化物の層とTiSiの窒化物の層との間には、AlCrSiの窒化物の層とTiSiの窒化物の層とが交互に積層した積層皮膜を設けてもよい。
積層皮膜の合計膜厚は、積層皮膜の下側に位置するAlCrSiの窒化物の層の膜厚よりも小さいことが好ましい。積層皮膜の合計膜厚は、積層皮膜の上側に位置するTiSiの窒化物の層の膜厚よりも小さいことが好ましい。積層皮膜の構成層の膜厚は、1nm以上10nm以下の範囲であることが好ましい。ナノレベルで交互に積層する積層皮膜は互いの層の組成が混ざり合う。そのため、ナノレベルで交互に積層するAlCrSiの窒化物の層とTiSiの窒化物の層について、AlCrSiの窒化物の層はTiを含有し、積層皮膜のTiSiの窒化物の層はAlとCrを含有する。積層皮膜の合計膜厚をt3とした場合、t3/(t1+t2+t3)が0.05以上0.3以下であることが好ましい。更には、t3/(t1+t2+t3)が0.07以上0.2以下であることが好ましい。上層のTiSiの窒化物の層上に、さらに別の硬質皮膜を設けてもよい。
In the coated cutting tool of this embodiment, an intermediate coating may be provided between the substrate and the AlCrSi nitride layer, and a laminate coating in which layers of AlCrSi nitride and layers of TiSi nitride are alternately laminated may be provided between the AlCrSi nitride layer and the TiSi nitride layer.
The total thickness of the laminated film is preferably smaller than the thickness of the AlCrSi nitride layer located below the laminated film. The total thickness of the laminated film is preferably smaller than the thickness of the TiSi nitride layer located above the laminated film. The thickness of the constituent layers of the laminated film is preferably in the range of 1 nm to 10 nm. The compositions of the layers of the laminated film alternately laminated at the nano level are mixed together. Therefore, for the AlCrSi nitride layer and the TiSi nitride layer alternately laminated at the nano level, the AlCrSi nitride layer contains Ti, and the TiSi nitride layer of the laminated film contains Al and Cr. When the total thickness of the laminated film is t3, it is preferable that t3/(t1+t2+t3) is 0.05 to 0.3. Furthermore, it is preferable that t3/(t1+t2+t3) is 0.07 to 0.2. Another hard film may be provided on the upper TiSi nitride layer.

本実施形態に係る硬質皮膜はスパッタリング法で被覆されるスパッタ皮膜である。スパッタリング法の中でも、ターゲットに順次電力を印加するスパッタリング法を適用して、電力が印加されるターゲットが切り替わる際に、電力の印加が終了するターゲットと電力の印加を開始するターゲットの両方のターゲットに同時に電力が印加されている時間を設けるスパッタリング法を適用することが好ましい。
電力パルスの最大電力密度は、0.5kW/cm以上とすることが好ましい。電力の印加が終了する合金ターゲットと電力の印加を開始する合金ターゲットの両方の合金ターゲットに同時に電力が印加されている時間は5マイクロ秒以上20マイクロ秒以下とすることが好ましい。ターゲット成分のイオン化率を高めるために、AlCrSi系合金ターゲット3個以上とTiSi系合金ターゲット3個以上用いることが好ましい。
スパッタリング装置の炉内温度を430℃以上として予備放電を実施し、炉内に導入する窒素ガスの流量を350sccm以上、アルゴンガスの流量を300sccm以上450sccm以下とすることが好ましい。炉内圧力は0.6Pa~0.8Paとすることが好ましい。基体となる切削工具に印加する負のバイアス電圧は、-80V~-40Vの範囲に制御することが好ましい。硬質皮膜は炉内温度を500℃以上550℃以下で被覆することが好ましい。
The hard coating according to the present embodiment is a sputtered coating formed by a sputtering method. Among the sputtering methods, it is preferable to use a sputtering method in which power is sequentially applied to targets, and when the target to which power is applied is switched, a time is provided during which power is simultaneously applied to both the target to which power application ends and the target to which power application starts.
The maximum power density of the power pulse is preferably 0.5 kW/ cm2 or more. The time during which power is simultaneously applied to both the alloy target to which power application ends and the alloy target to which power application starts is preferably 5 microseconds or more and 20 microseconds or less. In order to increase the ionization rate of the target components, it is preferable to use three or more AlCrSi-based alloy targets and three or more TiSi-based alloy targets.
It is preferable to carry out preliminary discharge with the temperature inside the sputtering apparatus set to 430°C or higher, and to set the flow rate of nitrogen gas introduced into the furnace to 350 sccm or higher, and the flow rate of argon gas to 300 sccm or higher and 450 sccm or lower. The pressure inside the furnace is preferably set to 0.6 Pa to 0.8 Pa. The negative bias voltage applied to the cutting tool as the substrate is preferably controlled in the range of -80 V to -40 V. The hard coating is preferably applied at a furnace temperature of 500°C to 550°C.

本実施形態の硬質皮膜は、スパッタリングターゲットに含まれる不可避不純物を含む場合がある。硬質皮膜中の不可避不純物は、硬質皮膜の性能に影響を与えない範囲であれば含有を許容される。本実施形態の硬質皮膜では、半金属を含む金属元素および窒素以外の不純物の含有量は、EPMA(電子線マイクロアナライザー)による定量分析で、各元素について1原子%以下であることが好ましい。 The hard coating of this embodiment may contain unavoidable impurities contained in the sputtering target. The unavoidable impurities in the hard coating are permitted to be present within a range that does not affect the performance of the hard coating. In the hard coating of this embodiment, the content of impurities other than metal elements, including metalloids, and nitrogen is preferably 1 atomic % or less for each element as determined by quantitative analysis using an EPMA (electron probe microanalyzer).

以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 The present invention will be explained in more detail below with reference to examples and comparative examples, but the present invention is not limited to the following examples.

<工具>
工具として、組成がWC(bal.)-Co(8.0質量%)-Cr(0.5質量%)-Ta(0.3質量%)、WC平均粒度0.5μm、硬度93.6HRA(ロックウェル硬さ、JIS G 0202に準じて測定した値)からなる超硬合金製の2枚刃ボールエンドミル(工具径0.8mm、株式会社MOLDINO製)を準備した。
<Tools>
As a tool, a two-blade ball end mill (tool diameter 0.8 mm, manufactured by MOLDINO Co., Ltd.) made of cemented carbide having a composition of WC (bal.)-Co (8.0 mass%)-Cr (0.5 mass%)-Ta (0.3 mass%), an average WC grain size of 0.5 μm, and a hardness of 93.6 HRA (Rockwell hardness, a value measured in accordance with JIS G 0202) was prepared.

スパッタ蒸発源を12機搭載できるスパッタリング装置を使用した。これらの蒸着源のうち、AlCrSi系合金ターゲット(Al58%Cr40%Si2% 数字は原子比率、以下同様。)6個およびTiSi系合金ターゲット(Ti80%Si20%)6個を蒸着源として装置内に設置した。なお、寸法が直径16cm、厚み12mmのターゲットを用いた。
工具をスパッタリング装置内のサンプルホルダーに固定し、工具にバイアス電源を接続した。なお、バイアス電源は、ターゲットとは独立して工具に負のバイアス電圧を印加する構造となっている。工具は、毎分3回転で自転し、かつ、固定治具とサンプルホルダーを介して公転する。工具とターゲット表面との間の最近接距離を100mmとした。
導入ガスは、ArおよびNを用い、スパッタリング装置に設けられたガス供給ポートから導入した。
A sputtering device capable of mounting 12 sputter evaporation sources was used. Among these evaporation sources, six AlCrSi alloy targets (Al58%Cr40%Si2%; numbers indicate atomic ratios, the same applies below) and six TiSi alloy targets (Ti80%Si20%) were installed in the device as evaporation sources. The targets used had a diameter of 16 cm and a thickness of 12 mm.
The tool was fixed to a sample holder in a sputtering apparatus, and a bias power supply was connected to the tool. The bias power supply was structured to apply a negative bias voltage to the tool independently of the target. The tool rotated at three revolutions per minute and revolved around the fixture and the sample holder. The closest distance between the tool and the target surface was set to 100 mm.
The gases used were Ar and N2 , and were introduced from a gas supply port provided in the sputtering device.

<ボンバード処理>
まず、工具に硬質皮膜を被覆する前に、以下の手順で工具にボンバード処理を行った。スパッタリング装置内のヒーターにより炉内温度が430℃になった状態で30分間の加熱を行った。その後、スパッタリング装置の炉内を真空排気し、炉内圧力を5.0×10-3Pa以下とした。そして、Arガスをスパッタリング装置の炉内に導入し、炉内圧力を0.8Paに調整した。そして、工具に-200Vの直流バイアス電圧を印加して、Arイオンによる工具のクリーニング(ボンバード処理)を実施した。
<Bombardment Processing>
First, before the tool was coated with a hard coating, the tool was bombarded in the following manner. Heating was performed for 30 minutes with the furnace temperature at 430° C. by a heater in the sputtering device. Thereafter, the furnace of the sputtering device was evacuated to a vacuum and the furnace pressure was set to 5.0×10 −3 Pa or less. Then, Ar gas was introduced into the furnace of the sputtering device, and the furnace pressure was adjusted to 0.8 Pa. Then, a DC bias voltage of −200 V was applied to the tool, and cleaning (bombardment) of the tool with Ar ions was performed.

本実施例1について、ボンバード処理後、炉内温度を510℃に保持したまま、スパッタリング装置の炉内にArガスを400sccmで導入し、その後、Nガスを470sccmで導入して炉内圧力を0.72Paとした。次いで、工具に-50Vの直流バイアス電圧を印加して、AlCrSi系合金ターゲットに印加に1.5kW/cmの最大電力密度を印加し、電力の1周期当りの放電時間を3.6ミリ秒、AlCrSi系合金ターゲットに同時に電力が印加されている時間を10マイクロ秒として膜厚が約0.6μmのAlCrSiの窒化物の層を被覆した。 In this embodiment 1, after the bombardment process, while the temperature inside the furnace was kept at 510° C., Ar gas was introduced into the furnace of the sputtering device at 400 sccm, and then N 2 gas was introduced at 470 sccm to set the pressure inside the furnace to 0.72 Pa. Next, a DC bias voltage of −50 V was applied to the tool, and a maximum power density of 1.5 kW/cm 2 was applied to the AlCrSi alloy target, with the discharge time per power cycle being 3.6 milliseconds and the time during which power was simultaneously applied to the AlCrSi alloy target being 10 microseconds, to coat a layer of AlCrSi nitride having a film thickness of about 0.6 μm.

次いで、炉内温度を510℃に保持したまま、スパッタリング装置の炉内にArガスを400sccmで導入し、その後、Nガスを410sccmで導入して炉内圧力を0.7Paとした。次いで、工具に-50Vの直流バイアス電圧を印加して、AlCrSi系合金ターゲットに1.5kW/cmの最大電力密度を印加して、電力の1周期当りの放電時間を3.6ミリ秒、AlCrSi系合金ターゲットに同時に電力が印加されている時間を10マイクロ秒とした。また、TiSi系合金ターゲットに1.5kW/cmの最大電力密度を印加して、電力の1周期当りの放電時間を3.6ミリ秒、TiSi系合金ターゲットに同時に電力が印加されている時間を10マイクロ秒とした。そして、それぞれの合金ターゲットに連続的に電力を印加して、個々の層の膜厚が約4nmで総膜厚が約0.1μmの積層皮膜を被覆した。この積層皮膜は、AlCrSiの窒化物の層とTiSiの窒化物の層が交互に積層された硬質皮膜である。積層皮膜において、AlCrSiの窒化物の層はTiを含有し、TiSiの窒化物の層はAlとCrを含有している。 Next, while the furnace temperature was maintained at 510°C, Ar gas was introduced into the furnace of the sputtering device at 400 sccm, and then N2 gas was introduced at 410 sccm to set the furnace pressure to 0.7 Pa. Next, a DC bias voltage of -50V was applied to the tool, and a maximum power density of 1.5 kW/ cm2 was applied to the AlCrSi alloy target, with the discharge time per power cycle being 3.6 milliseconds and the time during which power was simultaneously applied to the AlCrSi alloy target being 10 microseconds. Also, a maximum power density of 1.5 kW/ cm2 was applied to the TiSi alloy target, with the discharge time per power cycle being 3.6 milliseconds and the time during which power was simultaneously applied to the TiSi alloy target being 10 microseconds. Then, power was applied continuously to each alloy target to coat a laminated film with an individual layer thickness of about 4 nm and a total thickness of about 0.1 μm. This laminate coating is a hard coating in which layers of AlCrSi nitride and layers of TiSi nitride are alternately laminated, in which the layers of AlCrSi nitride contain Ti, and the layers of TiSi nitride contain Al and Cr.

次いで、炉内温度を510℃に保持したまま、スパッタリング装置の炉内にArガスを400sccmで導入し、その後、Nガスを270sccmで導入して炉内圧力を0.54Paとした。工具に-50Vの直流バイアス電圧を印加して、TiSi系合金ターゲットに1.5kW/cmの最大電力密度を印加して、印加電力の1周期当りの放電時間を3.6ミリ秒、TiSi系合金ターゲットに同時に電力が印加されている時間を10マイクロ秒として膜厚が約0.4μmのTiSiの窒化物の層を被覆した。 Next, while the furnace temperature was kept at 510° C., Ar gas was introduced into the furnace of the sputtering device at 400 sccm, and then N 2 gas was introduced at 270 sccm to set the furnace pressure to 0.54 Pa. A DC bias voltage of −50 V was applied to the tool, and a maximum power density of 1.5 kW/cm 2 was applied to the TiSi-based alloy target, with the discharge time per cycle of the applied power being 3.6 milliseconds and the time during which power was simultaneously applied to the TiSi-based alloy target being 10 microseconds, to coat a layer of TiSi nitride with a film thickness of about 0.4 μm.

本実施例2は硬質皮膜の各層の被覆時に、炉内温度を540℃とした以外は本実施例1と同じとした。
比較例1は硬質皮膜の各層の被覆時に、炉内温度を430℃とした以外は本実施例1と同じとした。
比較例2は硬質皮膜の各層の被覆時に、炉内温度を450℃とした以外は本実施例1と同じとした。
比較例3は硬質皮膜の各層の被覆時に、炉内温度を480℃とした以外は本実施例1と同じとした。
比較例4は硬質皮膜の各層の被覆時に、炉内温度を570℃とした以外は本実施例1と同じとした。
Example 2 was the same as Example 1, except that the temperature inside the furnace was 540° C. when each layer of the hard coating was applied.
Comparative Example 1 was the same as Example 1, except that the temperature inside the furnace was 430° C. when each layer of the hard coating was applied.
Comparative Example 2 was the same as Example 1, except that the temperature inside the furnace was 450° C. when each layer of the hard coating was applied.
Comparative Example 3 was the same as Example 1, except that the temperature inside the furnace was 480° C. when each layer of the hard coating was applied.
Comparative Example 4 was the same as Example 1, except that the temperature inside the furnace was 570° C. when each layer of the hard coating was applied.

硬質皮膜の皮膜組成は、電子プローブマイクロアナライザー装置(株式会社日本電子製 JXA-8500F)に付属する波長分散型電子プローブ微小分析(WDS-EPMA)で測定した。物性評価用のボールエンドミルを鏡面加工して、加速電圧10kV、照射電流5×10-8A、取り込み時間10秒とし、分析領域が直径1μmの範囲を5点測定してその平均値からArの含有比率を求めた。 The composition of the hard coating was measured by a wavelength dispersive electron probe microanalysis (WDS-EPMA) attached to an electron probe microanalyzer (JXA-8500F, manufactured by JEOL Ltd.) A ball end mill for evaluating physical properties was mirror-finished, and measurements were taken at five points over an analysis area of 1 μm in diameter at an acceleration voltage of 10 kV, a probe current of 5×10 −8 A, and a capture time of 10 seconds, and the Ar content was calculated from the average value.

X線回折装置(株式会社PaNalytical製 EMPYREA)を用い、管電圧45kV、管電流40mA、X線源Cukα(λ=0.15405nm)、2θが20~80度の測定条件で結晶構造の確認及び半値幅の測定を行った。 The crystal structure was confirmed and the half-width was measured using an X-ray diffraction device (EMPYREA manufactured by PaNalytical Co., Ltd.) under the following measurement conditions: tube voltage 45 kV, tube current 40 mA, X-ray source Cukα (λ = 0.15405 nm), 2θ 20 to 80 degrees.

AlCrSiの窒化物の層についてナノインデンテーションテスター(株式会社エリオニクス社製ENT-2100)を用いて硬度と弾性係数を分析した。分析は、皮膜の最表面に対し試験片を5度傾けた皮膜断面を鏡面研磨後、皮膜の研磨面内で最大押し込み深さが膜厚の略1/10未満となる領域を選定した。押し込み荷重9.807mNの測定条件で15点測定し、値の大きい側の5点と値の小さい側の5点を除いた5点の平均値から求めた。 The hardness and elastic modulus of the AlCrSi nitride layer were analyzed using a nanoindentation tester (ENT-2100, manufactured by Elionix Co., Ltd.). For the analysis, the cross section of the film was mirror-polished by tilting a test piece 5 degrees relative to the outermost surface of the film, and then an area within the polished surface of the film where the maximum indentation depth was approximately 1/10 of the film thickness was selected. 15 points were measured under measurement conditions of an indentation load of 9.807 mN, and the hardness and elastic modulus were calculated from the average value of the five points excluding the five points with the largest value and the five points with the smallest value.

硬質皮膜の残留圧縮応力は、粗さ測定器(東京精密製表面粗さ測定器DX-23)を用い、測定長さ22mm、測定速度1.5mm/sの測定条件で試料のたわみ量を測定し、次式を用いて算出した。なお、Es値は基材のヤング率、D値は試験片の厚み、δ値は被覆前後で生じる試験片のたわみ量、L値は被覆によってたわみが生じた試験片の長さ方向端面から、最大たわみ部までの長さ、vs値は試験片に使用した基材のポアソン比、およびdは試験片表面に被覆した硬質皮膜の膜厚である。 The residual compressive stress of the hard coating was calculated using the following formula after measuring the amount of deflection of the sample using a roughness tester (Tokyo Seimitsu Surface Roughness Tester DX-23) under measurement conditions of a measurement length of 22 mm and a measurement speed of 1.5 mm/s. The Es value is the Young's modulus of the substrate, the D value is the thickness of the test piece, the δ value is the amount of deflection of the test piece before and after coating, the L value is the length from the longitudinal end face of the test piece where deflection occurred due to coating to the maximum deflection point, the vs value is the Poisson's ratio of the substrate used for the test piece, and d is the film thickness of the hard coating coated on the surface of the test piece.

(式) σ=Es*D*δ/3*I*(1-νs)*d (Formula) σ=Es* D2 *δ/3* I2 *(1-νs)*d

(条件)乾式加工
工具:2枚刃超硬ボールエンドミル
型番:EPDBE2010-6、ボール半径0.5mm
切削方法:底面切削
被削材:STAVAX(52HRC)(ボーラー・ウッデホルム株式会社製)
切り込み:軸方向、0.03mm、径方向、0.03mm
切削速度:67.8m/min
一刃送り量:0.0135mm/刃
切削距離:15m
評価方法:切削加工後、走査型電子顕微鏡を用いて倍率1000倍で観察し、工具逃げ面において工具と被削材が擦過した幅を測定し、そのうちの擦過幅が最も大きかった部分を逃げ面最大摩耗幅とした。
(Conditions) Dry machining Tool: 2-blade carbide ball end mill Model: EPDBE2010-6, ball radius 0.5 mm
Cutting method: Bottom cutting Workpiece: STAVAX (52HRC) (manufactured by BOHER-Uddeholm Co., Ltd.)
Cut: Axial direction, 0.03 mm, Radial direction, 0.03 mm
Cutting speed: 67.8 m/min
Feed per blade: 0.0135 mm/blade Cutting distance: 15 m
Evaluation method: After cutting, the cutting surfaces were observed at a magnification of 1000 times using a scanning electron microscope, and the width of the abrasion between the tool and the workpiece on the tool flank was measured. The part with the largest abrasion width was recorded as the maximum abrasion width on the flank.

Figure 2024075109000002
Figure 2024075109000002

何れの硬質皮膜も結晶構造は面心立方格子構造であり、アルゴンを0.01~0.03原子%の範囲で含有していた。
組織観察写真の代表例として図1に本実施例1、図2に比較例1の破断面観察写真を示す。被覆温度が高い本実施例1、2と比較例4はAlCrSiの窒化物の層が微細化していた。一方、上層のTiSiの窒化物の層は被覆温度による大きな組織変化は確認されなかった。
X線回折の代表例として本実施例1のX線回折結果を図3に示す。本実施例1、2の(111)面の半値幅は0.56°~0.57°であり、他に比べて値が小さくなった。比較例4のAlCrSiの窒化物の層は微細化していたが、被覆温度が高すぎるため(111)面の半値幅の値は大きくなり、本実施例に比べて硬度、弾性係数及び残留応力が低くなっていた。
本実施例1、2は比較例に比べて皮膜特性および被覆切削工具の耐久性が優れた。本実施例1、2は硬質皮膜の(111)面の半値幅が0.56°~0.57°であることで、皮膜組織が微細化しつつも、硬度、弾性率および圧縮残留応力が高く、被覆切削工具の耐久性に優れたと推定される。
All of the hard coatings had a face-centered cubic lattice crystal structure and contained argon in the range of 0.01 to 0.03 atomic %.
As representative examples of microstructural observation photographs, Fig. 1 shows the fracture surface observation photographs of Example 1, and Fig. 2 shows the fracture surface observation photographs of Comparative Example 1. In Examples 1 and 2 and Comparative Example 4, which were coated at high temperatures, the AlCrSi nitride layer was refined. On the other hand, no significant microstructural change due to the coating temperature was confirmed in the upper TiSi nitride layer.
As a representative example of X-ray diffraction, the X-ray diffraction results of this Example 1 are shown in Figure 3. The half-width of the (111) plane of this Example 1 and 2 was 0.56° to 0.57°, which was smaller than the other values. The AlCrSi nitride layer of Comparative Example 4 was finer, but the half-width of the (111) plane was larger because the coating temperature was too high, and the hardness, elastic modulus, and residual stress were lower than those of this Example.
The coating properties and the durability of the coated cutting tool were superior to those of the comparative example in Examples 1 and 2. It is presumed that the half-width of the (111) plane of the hard coating in Examples 1 and 2 was 0.56° to 0.57°, and therefore the coating structure was fine, while the hardness, elastic modulus, and compressive residual stress were high, and the durability of the coated cutting tool was superior.

Claims (1)

基材と、前記基材上に形成される硬質皮膜とを備え、前記硬質皮膜は、前記基材の上に設けられるAlCrSiの窒化物の層と、前記AlCrSiの窒化物の層上に設けられるTiSiの窒化物の層とを有し、X線回折において面心立方格子構造を示し、前記X線回折により求めた2θが37°~38°の範囲に(111)面のピークを有し、前記(111)面のX線回折ピークの半値幅が0.50°以上0.60°以下であり、半金属を含む金属元素と非金属元素の合計を100原子%とした場合、Arを0.2原子%以下で含有していることを特徴とする被覆切削工具。 A coated cutting tool comprising a substrate and a hard coating formed on the substrate, the hard coating having an AlCrSi nitride layer formed on the substrate and a TiSi nitride layer formed on the AlCrSi nitride layer, exhibiting a face-centered cubic lattice structure in X-ray diffraction, having a (111) plane peak in the range of 2θ of 37° to 38° as determined by the X-ray diffraction, the half-width of the (111) plane X-ray diffraction peak being 0.50° or more and 0.60° or less, and containing 0.2 atomic % or less of Ar when the total of metal elements including metalloids and nonmetal elements is 100 atomic %.
JP2022186312A 2022-11-22 2022-11-22 Coated Cutting Tools Pending JP2024075109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022186312A JP2024075109A (en) 2022-11-22 2022-11-22 Coated Cutting Tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022186312A JP2024075109A (en) 2022-11-22 2022-11-22 Coated Cutting Tools

Publications (1)

Publication Number Publication Date
JP2024075109A true JP2024075109A (en) 2024-06-03

Family

ID=91321576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022186312A Pending JP2024075109A (en) 2022-11-22 2022-11-22 Coated Cutting Tools

Country Status (1)

Country Link
JP (1) JP2024075109A (en)

Similar Documents

Publication Publication Date Title
JP6362003B2 (en) Coated cutting tool
JP6844705B2 (en) Cover cutting tool
WO2022172954A1 (en) Coated tool
JP2023179643A (en) Coated tool
WO2022202729A1 (en) Coated cutting tool
JP6844704B2 (en) Cover cutting tool
JP2024075109A (en) Coated Cutting Tools
WO2020194899A1 (en) Coated cutting tool
WO2023022230A1 (en) Coated tool
JP2024047170A (en) Coated cutting tool
WO2024048304A1 (en) Coated tool
WO2024004873A1 (en) Coated cutting tool
WO2024048306A1 (en) Coated tool
JP2024027836A (en) Coated tool
WO2023181927A1 (en) Coated member
JP2021112805A (en) Coated cutting tool