JP2024071857A - Waste heat recovery device for internal combustion engine - Google Patents
Waste heat recovery device for internal combustion engine Download PDFInfo
- Publication number
- JP2024071857A JP2024071857A JP2022182321A JP2022182321A JP2024071857A JP 2024071857 A JP2024071857 A JP 2024071857A JP 2022182321 A JP2022182321 A JP 2022182321A JP 2022182321 A JP2022182321 A JP 2022182321A JP 2024071857 A JP2024071857 A JP 2024071857A
- Authority
- JP
- Japan
- Prior art keywords
- cooling water
- internal combustion
- combustion engine
- heat recovery
- recovery device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000011084 recovery Methods 0.000 title claims abstract description 90
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 71
- 239000002918 waste heat Substances 0.000 title claims abstract description 34
- 239000000498 cooling water Substances 0.000 claims abstract description 106
- 238000009835 boiling Methods 0.000 claims abstract description 7
- 238000001816 cooling Methods 0.000 claims abstract description 6
- 230000005855 radiation Effects 0.000 claims description 13
- 238000004364 calculation method Methods 0.000 claims description 9
- 230000005611 electricity Effects 0.000 claims description 6
- 239000007789 gas Substances 0.000 claims description 5
- 230000017525 heat dissipation Effects 0.000 description 43
- 239000002826 coolant Substances 0.000 description 40
- 238000011144 upstream manufacturing Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
本発明は、内燃機関の燃焼に伴って発生する廃熱を回収するための内燃機関の廃熱回収装置に関する。 The present invention relates to a waste heat recovery device for an internal combustion engine for recovering waste heat generated by combustion in the internal combustion engine.
従来の内燃機関の廃熱回収装置として、例えば特許文献1に開示されたものが知られている。この廃熱回収装置は、内燃機関の冷却水が循環し、ラジエータを有する冷却水回路(ラジエータ用冷却水回路)と、冷却水よりも低沸点の有機媒体が循環し、蒸発器、膨張機及び凝縮器を有するランキンサイクル(ORC)回路と、内燃機関の排気熱を回収する排気熱回収器と、ラジエータ用冷却水回路の内燃機関よりも下流側から分岐し、排気熱回収器及び蒸発器を通り、冷却水回路の内燃機関よりも上流側に合流するランキンサイクル用冷却水回路(ORC用冷却水回路)と、ORC用冷却水回路における冷却水の流れを、排気熱回収器と蒸発器を経由する流れ又は蒸発器のみを経由する流れに切り替える切替手段を備える。 A conventional waste heat recovery device for an internal combustion engine is disclosed in, for example, Patent Document 1. This waste heat recovery device includes a cooling water circuit (radiator cooling water circuit) through which the cooling water of the internal combustion engine circulates and which has a radiator, a Rankine cycle (ORC) circuit through which an organic medium with a lower boiling point than the cooling water circulates and which has an evaporator, an expander, and a condenser, an exhaust heat recovery device that recovers exhaust heat from the internal combustion engine, a Rankine cycle cooling water circuit (ORC cooling water circuit) that branches off from the radiator cooling water circuit downstream of the internal combustion engine, passes through the exhaust heat recovery device and the evaporator, and merges with the cooling water circuit upstream of the internal combustion engine, and a switching means that switches the flow of cooling water in the ORC cooling water circuit between a flow that passes through the exhaust heat recovery device and the evaporator, or a flow that passes only through the evaporator.
この廃熱回収装置では、検出された冷却水の温度、例えば内燃機関の下流側の冷却水温度が適温範囲(例えば80~95℃)内にあるときには、ORC用冷却水回路の冷却水の流れが排気熱回収器と蒸発器を経由する流れに切り替えられる。これにより、ORC用冷却水回路の冷却水は、排気熱回収器において排気熱を受熱した後、蒸発器において、ORC回路の低沸点の有機媒体に授熱し、気化させる。気化した有機媒体が膨張機を駆動することによって、有機媒体の熱エネルギが機械エネルギに変換され、さらに膨張機に連結された発電機の発電により電気エネルギとして回収(回生)される。 In this waste heat recovery system, when the detected coolant temperature, for example the coolant temperature downstream of the internal combustion engine, is within an appropriate temperature range (for example, 80 to 95°C), the flow of coolant in the ORC coolant circuit is switched to a flow that passes through the exhaust heat recovery device and the evaporator. As a result, the coolant in the ORC coolant circuit receives exhaust heat in the exhaust heat recovery device, and then transfers heat to the low-boiling organic medium in the ORC circuit in the evaporator, causing it to be vaporized. The vaporized organic medium drives the expander, converting the thermal energy of the organic medium into mechanical energy, which is then recovered (regenerated) as electrical energy by the generator connected to the expander.
また、冷却水温度が上記の適温範囲よりも高いときには、冷却水の流れが蒸発器のみを経由する流れに切り替えられる。これにより、RC用冷却水回路の冷却水は、排気熱回収器で排気熱を受熱することなく、蒸発器において有機媒体に授熱することで、温度が低下する。 When the cooling water temperature is higher than the above-mentioned optimum temperature range, the flow of the cooling water is switched to flow only through the evaporator. As a result, the temperature of the cooling water in the RC cooling water circuit is reduced by transferring heat to the organic medium in the evaporator without receiving exhaust heat in the exhaust heat recovery device.
ランキンサイクル回路によって回生を行う場合、入力される熱量が多いほど、大きな回生量が得られるので、上記のように排気熱を熱源とするときには、できるだけ多くの排気熱量を冷却水に移すことが望ましい。しかし、従来の廃熱回収装置では、蒸発器から流出した冷却水は、ラジエータ用冷却水回路に合流した後、ラジエータの前に、内燃機関に流入するように構成されている。このため、冷却水に移す排気熱量を多くすると、高温の冷却水が放熱されることなく、内燃機関に流入する結果、冷却水温度が上昇し、適温範囲から外れるおそれがあるため、排気熱量を制限することが必要になり、十分な回生量を得ることができない。 When regenerating using a Rankine cycle circuit, the more heat input, the greater the amount of regeneration that can be obtained. Therefore, when exhaust heat is used as the heat source as described above, it is desirable to transfer as much of the exhaust heat as possible to the coolant. However, in conventional waste heat recovery devices, the coolant that flows out of the evaporator is configured to merge with the radiator coolant circuit and then flow into the internal combustion engine before the radiator. For this reason, if the amount of exhaust heat transferred to the coolant is increased, the high-temperature coolant will flow into the internal combustion engine without being dissipated, which will cause the coolant temperature to rise and fall outside the optimum temperature range. This makes it necessary to limit the amount of exhaust heat, and it is not possible to obtain a sufficient amount of regeneration.
本発明は、このような課題を解決するためになされたものであり、内燃機関の負荷に応じて、放熱を適切に行いながら、排気熱を可能な限り、回収することができる内燃機関の廃熱回収装置を提供することを目的とする。そして、ひいては、エネルギの再利用を促進し、エネルギ効率の向上に寄与するものである。 The present invention was made to solve these problems, and aims to provide a waste heat recovery device for an internal combustion engine that can recover as much exhaust heat as possible while appropriately dissipating heat according to the load of the internal combustion engine. This will ultimately promote the reuse of energy and contribute to improving energy efficiency.
この目的を達成するために、請求項1に係る発明は、内燃機関の燃焼に伴って発生する廃熱を回収するための内燃機関の廃熱回収装置であって、内燃機関2を冷却するための冷却水が循環するとともに、冷却水を送出する冷却水ポンプ(実施形態における(以下、本項において同じ)第1ポンプ32)、及び冷却水を放熱するためのラジエータ33を有する冷却水回路3と、冷却水よりも低沸点の作動媒体が循環するとともに、作動媒体を送出する作動媒体ポンプ(第2ポンプ52)と、冷却水との熱交換によって作動媒体を加熱し、気化させる蒸発器53と、気化した作動媒体を膨張・減圧するとともに、作動媒体の熱エネルギを機械エネルギに変換する膨張機54と、機械エネルギによって発電を行う発電機56と、膨張機54から流出した作動媒体を外気との熱交換によって冷却し、液化させる凝縮器55と、を有するランキンサイクル回路5と、内燃機関2の排気通路21に設けられ、排気の熱を回収する排気熱回収器22と、冷却水回路3の内燃機関2よりも下流側の分岐部から分岐し、受熱のために排気熱回収器22を通り、授熱のために蒸発器53を通るとともに、冷却水回路3の分岐部とラジエータ33との間の合流部に合流する排気熱回収回路4と、を備え、排気熱回収回路4は、排気熱回収器22をバイパスする第1バイパス通路42と、分岐部側からの冷却水の流れを、排気熱回収器22側又は前記第1バイパス通路42側に切り替える第1切替弁44と、を有し、ランキンサイクル回路5は、膨張機54をバイパスする第2バイパス通路57と、蒸発器53側からの作動媒体の流れを、膨張機54側又は第2バイパス通路57側に切り替える第2切替弁58と、を有し、内燃機関2の負荷(アクセル開度AP)を取得する負荷取得手段(アクセル開度センサ65)と、取得された内燃機関2の負荷に応じて、第1切替弁44及び第2切替弁58を制御する制御手段(ECU6)と、をさらに備えることを特徴とする。 In order to achieve this object, the invention according to claim 1 is a waste heat recovery device for an internal combustion engine for recovering waste heat generated by combustion in the internal combustion engine, comprising a cooling water circuit 3 having a cooling water pump (first pump 32 in the embodiment (hereinafter the same in this paragraph)) through which cooling water for cooling the internal combustion engine 2 circulates and which delivers the cooling water, and a radiator 33 for dissipating heat from the cooling water, a working medium pump (second pump 52) through which a working medium having a lower boiling point than the cooling water circulates and which delivers the working medium, an evaporator 53 which heats and vaporizes the working medium by heat exchange with the cooling water, an expander 54 which expands and decompresses the vaporized working medium and converts the thermal energy of the working medium into mechanical energy, a generator 56 which generates electricity by the mechanical energy, and a condenser 55 which cools and liquefies the working medium flowing out of the expander 54 by heat exchange with outside air, and a Rankine cycle circuit 5 which is provided in an exhaust passage 21 of the internal combustion engine 2 and has a condenser 55 for cooling and liquefying the working medium flowing out of the expander 54, and an exhaust heat recovery circuit 4 that branches off from a branch portion of the coolant circuit 3 downstream of the internal combustion engine 2, passes through the exhaust heat recovery device 22 to receive heat, passes through an evaporator 53 to transfer heat, and joins a joining portion between the branch portion of the coolant circuit 3 and a radiator 33, the exhaust heat recovery circuit 4 including a first bypass passage 42 that bypasses the exhaust heat recovery device 22, and a first switching valve 44 that switches the flow of coolant from the branch portion side to the exhaust heat recovery device 22 side or the first bypass passage 42 side. The Rankine cycle circuit 5 has a second bypass passage 57 that bypasses the expander 54, and a second switching valve 58 that switches the flow of the working medium from the evaporator 53 side to the expander 54 side or the second bypass passage 57 side, and is further characterized by having a load acquisition means (accelerator opening sensor 65) that acquires the load (accelerator opening AP) of the internal combustion engine 2, and a control means (ECU 6) that controls the first switching valve 44 and the second switching valve 58 according to the acquired load of the internal combustion engine 2.
上記のように、本発明の内燃機関の廃熱回収装置は、内燃機関の冷却水が循環し、冷却水を放熱するためのラジエータを有する冷却水回路と、冷却水よりも低沸点の作動媒体が循環し、蒸発器や膨張機、発電機などを有するランキンサイクル回路と、排気の熱を回収する排気熱回収器と、冷却水回路の内燃機関よりも下流側の分岐部から分岐し、排気熱回収器及び蒸発器を順に通り、冷却水回路の分岐部とラジエータとの間の合流部に合流する排気熱回収回路と、分岐部側からの冷却水の流れを、排気熱回収器側又はこれをバイパスする第1バイパス通路側に切り替える第1切替弁と、蒸発器側からの作動媒体の流れを、膨張機側又はこれをバイパスする第2バイパス通路側に切り替える第2切替弁を備える。 As described above, the waste heat recovery device for an internal combustion engine of the present invention includes a coolant circuit through which the coolant for the internal combustion engine circulates and which has a radiator for dissipating heat from the coolant, a Rankine cycle circuit through which a working medium with a boiling point lower than that of the coolant circulates and which has an evaporator, an expander, a generator, and the like, an exhaust heat recovery device that recovers heat from the exhaust, an exhaust heat recovery circuit that branches off from a branch point downstream of the internal combustion engine of the coolant circuit, passes through the exhaust heat recovery device and the evaporator in order, and merges into a junction between the branch point of the coolant circuit and the radiator, a first switching valve that switches the flow of the coolant from the branch point side to the exhaust heat recovery device side or a first bypass passage side that bypasses it, and a second switching valve that switches the flow of the working medium from the evaporator side to the expander side or a second bypass passage side that bypasses it.
また、本発明によれば、内燃機関の負荷を取得する。この場合の内燃機関の負荷は、内燃機関の燃焼に由来して冷却水に発生した熱分を放熱するために要求される放熱要求の度合を表す。そして、取得された内燃機関の負荷に応じて、第1切替弁及び第2切替弁を切り替える。 According to the present invention, the load of the internal combustion engine is acquired. In this case, the load of the internal combustion engine represents the degree of heat dissipation required to dissipate the heat generated in the cooling water due to the combustion in the internal combustion engine. Then, the first switching valve and the second switching valve are switched according to the acquired load of the internal combustion engine.
例えば、内燃機関の負荷が比較的小さいとき(放熱要求が比較的小さいとき)には、冷却水回路の第1切替弁を排気熱回収器側に切り替え、ランキンサイクル回路の第2切替弁を膨張機側に切り替える。これにより、冷却水が排気熱回収器において排気熱を受熱した後、蒸発器において作動媒体に授熱するとともに、気化した作動媒体によって膨張機が駆動され、発電機の発電が行われることで、排気熱が電気エネルギに変換され、回収(回生)される。また、この場合、本来の放熱要求が小さいので、冷却水は、この放熱要求分と排気熱からの受熱分を併せて、ラジエータによって適切に放熱される。 For example, when the load on the internal combustion engine is relatively small (when the heat dissipation requirement is relatively small), the first switching valve of the cooling water circuit is switched to the exhaust heat recovery device side, and the second switching valve of the Rankine cycle circuit is switched to the expander side. As a result, the cooling water receives exhaust heat in the exhaust heat recovery device, and then transfers heat to the working medium in the evaporator. The expander is driven by the vaporized working medium, and the generator generates electricity, converting the exhaust heat into electrical energy and recovering (regenerating). In this case, since the original heat dissipation requirement is small, the cooling water appropriately dissipates heat by the radiator, combining this heat dissipation requirement with the heat received from the exhaust heat.
一方、例えば、内燃機関の負荷が比較的大きいとき(放熱要求が比較的大きいとき)には、第1切替弁を第1バイパス通路側に切り替え、第2切替弁を第2バイパス通路側に切り替える。これにより、冷却水による排気熱の受熱や膨張機の駆動は行われず、冷却水は、蒸発器において作動媒体に授熱した後、ラジエータによって適切に放熱される。以上のように、内燃機関の負荷すなわち放熱要求に応じて、放熱を適切に行いながら、排気熱を可能な限り、回収することができる。 On the other hand, for example, when the load on the internal combustion engine is relatively large (when the heat dissipation requirement is relatively large), the first switching valve is switched to the first bypass passage side, and the second switching valve is switched to the second bypass passage side. As a result, the coolant does not receive exhaust heat and the expander is not driven, and the coolant transfers heat to the working medium in the evaporator, and then the heat is appropriately dissipated by the radiator. As described above, it is possible to recover as much exhaust heat as possible while appropriately dissipating heat according to the load on the internal combustion engine, i.e., the heat dissipation requirement.
請求項2に係る発明は、請求項1に記載の内燃機関の廃熱回収装置において、制御手段は、内燃機関2が低中負荷状態のときに、第1切替弁44を排気熱回収器22側に切り替えるとともに、第2切替弁58を膨張機54側に切り替えること(図2のステップ1、2)を特徴とする。 The invention according to claim 2 is characterized in that in the waste heat recovery device for an internal combustion engine described in claim 1, the control means switches the first switching valve 44 to the exhaust heat recovery device 22 side and switches the second switching valve 58 to the expander 54 side when the internal combustion engine 2 is in a low to medium load state (steps 1 and 2 in FIG. 2).
この構成によれば、内燃機関が低中負荷状態で、内燃機関から流出する冷却水の熱量が過大でない場合(放熱要求が小さい場合)には、第1切替弁及び第2切替弁を上記のように切り替えることにより、冷却水が排気熱回収器に流れるとともに、作動媒体が膨張機に流れるように制御する。これにより、排気熱回収器において排気熱を冷却水に移すとともに、気化した作動媒体で膨張機を駆動し、発電機で発電を行うことによって、排気熱を最大限、回収でき、エネルギ効率を向上させることができる。また、冷却水の放熱を、本来の放熱要求分と排気熱からの受熱分を併せて、ラジエータによって適切に行うことができる。 According to this configuration, when the internal combustion engine is in a low to medium load state and the amount of heat of the cooling water flowing out of the internal combustion engine is not excessive (when the heat dissipation requirement is small), the first and second switching valves are switched as described above, so that the cooling water flows to the exhaust heat recovery device and the working medium flows to the expander. As a result, exhaust heat is transferred to the cooling water in the exhaust heat recovery device, the expander is driven by the vaporized working medium, and electricity is generated by the generator, so that the maximum amount of exhaust heat can be recovered and energy efficiency can be improved. In addition, the heat dissipation of the cooling water can be appropriately performed by the radiator, combining the original heat dissipation requirement and the heat received from the exhaust heat.
請求項3に係る発明は、請求項1に記載の内燃機関の廃熱回収装置において、制御手段は、内燃機関2が高負荷状態のときに、第1切替弁44を第1バイパス通路42側に切り替えるとともに、第2切替弁58を第2バイパス通路57側に切り替えること(図2のステップ1、3)を特徴とする。 The invention according to claim 3 is characterized in that in the waste heat recovery device for an internal combustion engine described in claim 1, the control means switches the first switching valve 44 to the first bypass passage 42 side and switches the second switching valve 58 to the second bypass passage 57 side when the internal combustion engine 2 is in a high load state (steps 1 and 3 in FIG. 2).
この構成によれば、内燃機関が高負荷状態で、内燃機関から流出する冷却水の熱量が過大である場合(放熱要求が大きい場合)には、第1切替弁及び第2切替弁を上記のように切り替えることにより、冷却水が排気熱回収器に流れないとともに、作動媒体が膨張機に流れないように制御する。これにより、冷却水による排気熱の受熱や膨張機の駆動が行われないとともに、冷却水は、蒸発器において作動媒体に授熱した後、ラジエータに流入するので、冷却水の放熱をラジエータによって適切に行うことができる。 According to this configuration, when the internal combustion engine is in a high load state and the heat amount of the cooling water flowing out of the internal combustion engine is excessive (when the heat dissipation demand is large), the first and second switching valves are switched as described above, so that the cooling water does not flow to the exhaust heat recovery device and the working medium does not flow to the expander. As a result, the cooling water does not receive exhaust heat and the expander is not driven, and the cooling water flows into the radiator after transferring heat to the working medium in the evaporator, so that the radiator can properly dissipate heat from the cooling water.
請求項4に係る発明は、請求項1から3のいずれかに記載の内燃機関の廃熱回収装置において、冷却水回路3の分岐部に設けられ、分岐部からラジエータ33側に流れる冷却水流量と排気熱回収回路4側に流れる冷却水流量との流量比RQWを制御する流量制御弁43と、ラジエータ33の放熱量QHRを算出する放熱量算出手段(ECU6、図2のステップ4)と、をさらに備え、制御手段は、算出された放熱量QHRがラジエータ33の最大放熱能力QHMAXになるように、流量制御弁43を制御すること(図2のステップ5、6)を特徴とする。 The invention according to claim 4 is characterized in that, in the waste heat recovery device for an internal combustion engine according to any one of claims 1 to 3, it further comprises a flow control valve 43 provided at the branch of the cooling water circuit 3 for controlling the flow rate ratio RQW between the cooling water flow rate flowing from the branch to the radiator 33 side and the cooling water flow rate flowing to the exhaust heat recovery circuit 4 side, and a heat radiation amount calculation means (ECU 6, step 4 in FIG. 2) for calculating the heat radiation amount QHR of the radiator 33, and the control means controls the flow control valve 43 so that the calculated heat radiation amount QHR becomes the maximum heat radiation capacity QHMAX of the radiator 33 (steps 5 and 6 in FIG. 2).
この構成によれば、冷却水回路の分岐部に流量制御弁が設けられており、この流量制御弁は、分岐部からラジエータ側に流れる冷却水流量と排気熱回収回路側に流れる冷却水流量との流量比を制御する。また、ラジエータの放熱量が算出され、流量制御弁は、算出された放熱量がラジエータの最大放熱能力になるように制御される。これにより、ラジエータの最大放熱能力が常時、発揮されることによって、放熱要求を可能な限り満たしながら、排気熱の回収を最大限、行うことができる。また、内燃機関が高負荷状態で、放熱要求がラジエータの最大放熱能力を上回るような場合には、放熱能力の不足分がランキンサイクル回路による放熱によって補われるので、ラジエータの最大放熱能力を大きくする必要がなく、その小型化を図ることができる。 According to this configuration, a flow control valve is provided at the branch of the cooling water circuit, and this flow control valve controls the flow ratio between the flow rate of the cooling water flowing from the branch to the radiator side and the flow rate of the cooling water flowing to the exhaust heat recovery circuit side. In addition, the amount of heat dissipation of the radiator is calculated, and the flow control valve is controlled so that the calculated amount of heat dissipation is the maximum heat dissipation capacity of the radiator. As a result, the maximum heat dissipation capacity of the radiator is always exerted, and exhaust heat can be recovered to the maximum while satisfying the heat dissipation requirements as much as possible. In addition, when the internal combustion engine is in a high load state and the heat dissipation requirements exceed the maximum heat dissipation capacity of the radiator, the shortage of heat dissipation capacity is compensated for by heat dissipation through the Rankine cycle circuit, so there is no need to increase the maximum heat dissipation capacity of the radiator, and it is possible to reduce its size.
以下、図面を参照しながら、本発明の好ましい実施形態を詳細に説明する。図1は、実施形態による内燃機関の廃熱回収装置1を示す。廃熱回収装置1は、例えば車両(図示せず)に動力源として搭載された内燃機関(以下「エンジン」という)2の燃焼に伴って発生する廃熱を回収するものである。 Below, a preferred embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 shows an internal combustion engine waste heat recovery device 1 according to an embodiment. The waste heat recovery device 1 recovers waste heat generated by combustion in an internal combustion engine (hereinafter referred to as "engine") 2 mounted as a power source in, for example, a vehicle (not shown).
図1に示すように、廃熱回収装置1は、エンジン(ENG)2を冷却するための冷却水が循環する冷却水回路3と、冷却水回路3から分岐し、後述する排気熱回収器22を通って冷却水が循環する排気熱回収回路4と、作動媒体としての有機媒体(例えばシリコンオイル)が循環し、ランキンサイクルを構成するランキンサイクル(ORC)回路5と、これらの回路の動作を制御するECU(電子制御ユニット)6を備える。なお、図1及び後述の図3、図4では、冷却水又は排気(排ガス)が流れる流路を太線で示し、有機媒体が流れる流路を細線で示す。 As shown in FIG. 1, the waste heat recovery device 1 includes a cooling water circuit 3 through which cooling water for cooling the engine (ENG) 2 circulates, an exhaust heat recovery circuit 4 that branches off from the cooling water circuit 3 and through an exhaust heat recovery device 22 (described later) through which the cooling water circulates, a Rankine cycle (ORC) circuit 5 through which an organic medium (e.g., silicon oil) as a working medium circulates and which constitutes a Rankine cycle, and an ECU (electronic control unit) 6 that controls the operation of these circuits. Note that in FIG. 1 and FIGS. 3 and 4 described later, the flow paths through which the cooling water or exhaust (exhaust gas) flows are indicated by thick lines, and the flow paths through which the organic medium flows are indicated by thin lines.
エンジン2の排気通路21には、エンジン2から排出された排ガスの熱(排気熱)を回収するための排気熱回収器22が設けられている。 An exhaust heat recovery device 22 is provided in the exhaust passage 21 of the engine 2 to recover the heat (exhaust heat) of the exhaust gas discharged from the engine 2.
冷却水回路3は、エンジン2を通る環状の冷却水流路31と、冷却水流路31に沿って設けられた第1ポンプ32及びラジエータ(RAD)33を有する。第1ポンプ32は、エンジン2の上流側に配置され、冷却水をエンジン2側に送出する。ラジエータ33は、エンジン2の下流側に配置され、外気との熱交換によって冷却水を冷却し、放熱する。また、冷却水回路3は、ラジエータ33をバイパスするように冷却水流路31に接続されたラジエータバイパス通路34を有しており、そのラジエータ33下流側の接続部には、サーモスタット35が設けられている。サーモスタット35は、冷却水の温度が所定温度(例えば80℃)以下のときに閉弁状態に維持されることで、冷却水がラジエータバイパス通路34側に流れる一方、所定温度を超えたときに開弁することで、冷却水がラジエータ33側に流れるように構成されている。 The cooling water circuit 3 has a ring-shaped cooling water passage 31 that passes through the engine 2, and a first pump 32 and a radiator (RAD) 33 that are provided along the cooling water passage 31. The first pump 32 is disposed upstream of the engine 2 and sends the cooling water to the engine 2 side. The radiator 33 is disposed downstream of the engine 2 and cools the cooling water by heat exchange with the outside air and dissipates heat. The cooling water circuit 3 also has a radiator bypass passage 34 that is connected to the cooling water passage 31 so as to bypass the radiator 33, and a thermostat 35 is provided at the connection part downstream of the radiator 33. The thermostat 35 is configured to be maintained in a closed state when the temperature of the cooling water is equal to or lower than a predetermined temperature (e.g., 80°C), so that the cooling water flows to the radiator bypass passage 34 side, and to open the valve when the temperature exceeds the predetermined temperature, so that the cooling water flows to the radiator 33 side.
排気熱回収回路4は、環状の排気熱回収流路41と、第1バイパス通路42を有する。排気熱回収流路41は、冷却水流路31のエンジン2よりも下流側の分岐部から分岐し、排気熱回収器22及びランキンサイクル回路5の後述する蒸発器53を順に通るとともに、冷却水流路31の分岐部とラジエータ33との間の合流部36に合流する。この分岐部には、流量制御弁43が設けられている。流量制御弁43は、その弁開度に応じて、エンジン2から分岐部を介してラジエータ33側に流れる冷却水流量と排気熱回収回路4側に流れる冷却水流量との流量比RQWを無段階に調整することが可能なものであり、その動作はECU6によって制御される。 The exhaust heat recovery circuit 4 has an annular exhaust heat recovery passage 41 and a first bypass passage 42. The exhaust heat recovery passage 41 branches from a branch downstream of the engine 2 of the cooling water passage 31, passes through the exhaust heat recovery device 22 and an evaporator 53 of the Rankine cycle circuit 5, and merges with the junction 36 between the branch of the cooling water passage 31 and the radiator 33. A flow control valve 43 is provided at this branch. The flow control valve 43 is capable of continuously adjusting the flow rate ratio RQW between the cooling water flow rate flowing from the engine 2 through the branch to the radiator 33 side and the cooling water flow rate flowing to the exhaust heat recovery circuit 4 side according to the valve opening degree, and its operation is controlled by the ECU 6.
第1バイパス通路42は、排気熱回収器22をバイパスするように、排気熱回収流路41に接続されており、排気熱回収器22上流側の接続部には、第1切替弁44が設けられている。第1切替弁44は、分岐部側からの冷却水の流れを、排気熱回収器22側又は第1バイパス通路42側の一方に切り替える。 The first bypass passage 42 is connected to the exhaust heat recovery flow path 41 so as to bypass the exhaust heat recovery device 22, and a first switching valve 44 is provided at the connection part upstream of the exhaust heat recovery device 22. The first switching valve 44 switches the flow of cooling water from the branch part side to either the exhaust heat recovery device 22 side or the first bypass passage 42 side.
ランキンサイクル回路5は、有機媒体が循環する環状の有機媒体流路51と、有機媒体流路51に沿って順に設けられた第2ポンプ52、蒸発器53、膨張機54及び凝縮器55と、膨張機54に接続された発電機56を有する。第2ポンプ52は、液体状の有機媒体を蒸発器53側に送出する。蒸発器53は、冷却水との熱交換によって有機媒体を加熱し、気化(蒸発)させる。膨張機54は、気化した有機媒体を膨張・減圧するとともに、有機媒体の熱エネルギを機械エネルギに変換する。発電機56は、膨張機54の機械エネルギによって発電を行い、電気エネルギとしてバッテリ(図示せず)に回収(回生)する。また、凝縮器55は、膨張機54から流出した有機媒体を外気との熱交換によって冷却し、液化(凝縮)させる。 The Rankine cycle circuit 5 has a ring-shaped organic medium flow path 51 through which the organic medium circulates, a second pump 52, an evaporator 53, an expander 54, and a condenser 55 arranged in sequence along the organic medium flow path 51, and a generator 56 connected to the expander 54. The second pump 52 sends the liquid organic medium to the evaporator 53. The evaporator 53 heats the organic medium by heat exchange with the cooling water and vaporizes (evaporates). The expander 54 expands and decompresses the vaporized organic medium, and converts the thermal energy of the organic medium into mechanical energy. The generator 56 generates electricity using the mechanical energy of the expander 54, and recovers (regenerates) it as electrical energy in a battery (not shown). The condenser 55 cools the organic medium flowing out of the expander 54 by heat exchange with the outside air, and liquefies (condenses).
また、ランキンサイクル回路5は、膨張機54をバイパスするように有機媒体流路51に接続された第2バイパス通路57を有しており、その蒸発器53側の接続部には、第2切替弁58が設けられている。第2切替弁58は、蒸発器53側からの有機媒体の流れを、膨張機54側又は第2バイパス通路57側の一方に切り替える。また、第2バイパス通路57には、有機媒体の圧力を制御する圧力制御弁59が設けられている。 The Rankine cycle circuit 5 also has a second bypass passage 57 connected to the organic medium flow path 51 so as to bypass the expander 54, and a second switching valve 58 is provided at the connection on the evaporator 53 side. The second switching valve 58 switches the flow of the organic medium from the evaporator 53 side to either the expander 54 side or the second bypass passage 57 side. The second bypass passage 57 also has a pressure control valve 59 that controls the pressure of the organic medium.
排気熱回収流路41の蒸発器53よりも上流側には第1水温センサ61が、冷却水流路31のラジエータ33の上流側及び下流側には第2及び第3水温センサ62、63が、それぞれ設けられている。第1~第3水温センサ61~63は、それぞれの位置における冷却水の温度を第1~第3水温TW1~TW3として検出し、それらの検出信号をECU6に出力する。 A first water temperature sensor 61 is provided upstream of the evaporator 53 in the exhaust heat recovery passage 41, and second and third water temperature sensors 62, 63 are provided upstream and downstream of the radiator 33 in the cooling water passage 31, respectively. The first to third water temperature sensors 61 to 63 detect the temperature of the cooling water at their respective positions as first to third water temperatures TW1 to TW3, and output the detection signals to the ECU 6.
また、ラジエータ33の上流側には、流量センサ64が設けられている。流量センサ64は、ラジエータ33に流入する冷却水流量QWを検出し、その検出信号をECU6に出力する。ECU6にはさらに、アクセル開度センサ65から、車両のアクセルペダル(図示せず)の踏込み量(以下「アクセル開度」という)APを表す検出信号が入力される。 A flow sensor 64 is provided upstream of the radiator 33. The flow sensor 64 detects the coolant flow rate QW flowing into the radiator 33 and outputs a detection signal to the ECU 6. The ECU 6 also receives a detection signal from an accelerator position sensor 65 indicating the amount of depression of the accelerator pedal (not shown) of the vehicle (hereinafter referred to as "accelerator position") AP.
ECU6は、CPU、RAM、ROM及びI/Oインターフェース(いずれも図示せず)などから成るマイクロコンピュータで構成されている。ECU6は、上述した各種のセンサ61~65の検出信号などに応じて、エンジン2の燃焼に伴って発生した廃熱の回収を制御する。 The ECU 6 is composed of a microcomputer that includes a CPU, RAM, ROM, and an I/O interface (none of which are shown). The ECU 6 controls the recovery of waste heat generated by combustion in the engine 2 in response to detection signals from the various sensors 61 to 65 described above.
図2は、ECU6によって実行される廃熱回収制御処理を示す。本処理は、例えば所定の周期で繰り返し実行される。まずステップ1(「S1」と図示。以下同じ)では、エンジン2が低中負荷状態であるか否かを判定する。この判定は、例えば、検出されたアクセル開度APが、エンジン2の低中負荷状態に相当する所定開度APREF以下であるか否かを判別することによって行われる。 Figure 2 shows the waste heat recovery control process executed by the ECU 6. This process is executed repeatedly, for example, at a predetermined cycle. First, in step 1 (shown as "S1"; the same applies below), it is determined whether the engine 2 is in a low to medium load state. This determination is made, for example, by determining whether the detected accelerator opening AP is equal to or smaller than a predetermined opening APREF, which corresponds to a low to medium load state of the engine 2.
この判定結果がYESで、エンジン2が低中負荷状態のときには、ステップ2に進み、第1切替弁44を排気熱回収器22側に切り替えるとともに、第2切替弁58を膨張機54側に切り替える。 If the result of this determination is YES and the engine 2 is in a low to medium load state, the process proceeds to step 2, where the first switching valve 44 is switched to the exhaust heat recovery device 22 side and the second switching valve 58 is switched to the expander 54 side.
次に、ステップ4において、ラジエータ33からの放熱量QHRを算出する。その算出は、例えば、水温センサ62、63で検出された、ラジエータ33の上流側及び下流側における第2及び第3水温TW2、TW3と、流量センサ64で検出された冷却水流量QWに基づき、行われる。 Next, in step 4, the amount of heat radiation QHR from the radiator 33 is calculated. This calculation is performed, for example, based on the second and third water temperatures TW2, TW3 upstream and downstream of the radiator 33 detected by the water temperature sensors 62, 63, and the cooling water flow rate QW detected by the flow rate sensor 64.
次に、算出した放熱量QHRがラジエータ33の所定の最大放熱能力QHMAX(ラジエータ33が放熱することが可能な最大熱量)になるように、目標流量比RQWCMDを算出(設定)する。この目標流量比RQWCMDは、流量制御弁43により制御される流量比RQW(流量制御弁43からラジエータ33側に流れる冷却水流量と排気熱回収回路4側に流れる冷却水流量との流量比)の目標値である。 Next, the target flow ratio RQWCMD is calculated (set) so that the calculated heat radiation amount QHR becomes the predetermined maximum heat radiation capacity QHMAX of the radiator 33 (the maximum amount of heat that the radiator 33 can dissipate). This target flow ratio RQWCMD is the target value of the flow ratio RQW (the flow ratio between the cooling water flow rate flowing from the flow control valve 43 to the radiator 33 side and the cooling water flow rate flowing to the exhaust heat recovery circuit 4 side) controlled by the flow control valve 43.
目標流量比RQWCMDの設定は、例えば、放熱量QHRが最大放熱能力QHMAXよりも小さく、放熱能力に余裕があるときに、その差に応じて、目標流量比RQWCMDを排気熱回収回路4側への冷却水流量の割合が大きくなるように変化させるとともに、放熱量QHRが最大放熱能力QHMAXにほぼ一致したときに、目標流量比RQWCMDを維持することによって、行われる。 The target flow ratio RQWCMD is set, for example, when the heat dissipation amount QHR is smaller than the maximum heat dissipation capacity QHMAX and there is a margin of heat dissipation capacity, by changing the target flow ratio RQWCMD in accordance with the difference so that the proportion of the cooling water flow to the exhaust heat recovery circuit 4 side increases, and by maintaining the target flow ratio RQWCMD when the heat dissipation amount QHR is approximately equal to the maximum heat dissipation capacity QHMAX.
次に、算出した目標流量比RQWCMDに基づき、目標流量比RQWCMDが得られるように流量制御弁43の弁開度を制御し、本処理を終了する。 Next, based on the calculated target flow ratio RQWCMD, the valve opening of the flow control valve 43 is controlled so as to obtain the target flow ratio RQWCMD, and this process ends.
図3は、エンジン2が低中負荷状態のときに、上述した制御によって得られる動作を示す。なお、図3及び図4では、冷却水や有機媒体が流れる流路を実線で示し、流れない流路を点線で示す。まず、冷却水回路3では、冷却水は、第1ポンプ32の作動により、冷却水流路31を時計方向に流れる。エンジン2から流出した高温の冷却水は、流量制御弁43の制御により、ステップ5で設定された目標流量比RQWCMDになるように、ラジエータ33側と排気熱回収回路4側に分配される。 Figure 3 shows the operation obtained by the above-mentioned control when the engine 2 is in a low to medium load state. In Figures 3 and 4, the flow paths through which the coolant and organic medium flow are indicated by solid lines, and the flow paths through which they do not flow are indicated by dotted lines. First, in the coolant circuit 3, the coolant flows clockwise through the coolant flow path 31 by the operation of the first pump 32. The high-temperature coolant flowing out of the engine 2 is distributed to the radiator 33 side and the exhaust heat recovery circuit 4 side by the control of the flow control valve 43 so as to achieve the target flow ratio RQWCMD set in step 5.
このうち、排気熱回収回路4側に分配された冷却水は、ステップ2における第1切替弁44の切替により、排気熱回収器22に流入し、排気との熱交換によって受熱する。受熱された冷却水は、その後、ランキンサイクル回路5の蒸発器53に流入し、熱交換によって有機媒体に授熱し、有機媒体を気化(蒸発)させる一方、自身は冷却される。冷却水は、その後、冷却水流路31の合流部36において、エンジン2から直接、送られた高温の冷却水と合流した後、ラジエータ33において外気と熱交換され、放熱される。 The coolant distributed to the exhaust heat recovery circuit 4 flows into the exhaust heat recovery device 22 by switching the first switching valve 44 in step 2, and receives heat through heat exchange with the exhaust gas. The heated coolant then flows into the evaporator 53 of the Rankine cycle circuit 5, where it transfers heat to the organic medium through heat exchange, vaporizing (evaporating) the organic medium while being cooled. The coolant then merges with the high-temperature coolant sent directly from the engine 2 at the junction 36 of the coolant flow path 31, and then exchanges heat with the outside air in the radiator 33, dissipating heat.
一方、ランキンサイクル回路5では、第2ポンプ52の作動により、有機媒体は、有機媒体流路51を時計方向に流れ、蒸発器53において、排気熱回収器22で受熱した冷却水との熱交換によって気化する。気化した有機媒体は、ステップ2における第2切替弁58の切替により、膨張機54に送られ、膨張機54において減圧・降温される。また、この減圧・降温された有機媒体の熱エネルギが、膨張機54の機械エネルギに変換され、さらに発電機56の発電に用いられることにより、電気エネルギとしてバッテリに回収(回生)される。その後、有機媒体は、凝縮器55における外気との熱交換によって冷却され、液化した後、第2ポンプ52に戻る。 Meanwhile, in the Rankine cycle circuit 5, the organic medium flows clockwise through the organic medium flow path 51 by the operation of the second pump 52, and is vaporized in the evaporator 53 by heat exchange with the cooling water that has been heated by the exhaust heat recovery device 22. The vaporized organic medium is sent to the expander 54 by switching the second switching valve 58 in step 2, and is reduced in pressure and cooled in the expander 54. The thermal energy of the reduced-pressure, reduced-temperature organic medium is converted into mechanical energy in the expander 54, and is further used to generate electricity in the generator 56, and is recovered (regenerated) as electrical energy in the battery. The organic medium is then cooled by heat exchange with the outside air in the condenser 55, liquefied, and returned to the second pump 52.
以上のように、エンジン2の放熱要求が小さい低中負荷状態では、図5(b)に示すように、ラジエータ33の最大放熱能力から放熱要求を差し引いた余剰能力に相当する熱量を排ガス(排気)から冷却水に移し、ランキンサイクル回路5において発電を行うことによって、排気熱を最大限、電気エネルギとして回収でき、エネルギ効率を向上させることができる。また、ラジエータのみで放熱を行う(a)従来の場合と異なり、流量制御弁43による流量比RQWの制御によって、ラジエータ33の最大放熱能力を常時、発揮させながら、冷却水の放熱を、本来の放熱要求分と排気熱からの受熱分を併せて、適切に行うことができる。 As described above, in low to medium load conditions where the heat dissipation requirement of the engine 2 is small, as shown in FIG. 5(b), the amount of heat equivalent to the surplus capacity obtained by subtracting the heat dissipation requirement from the maximum heat dissipation capacity of the radiator 33 is transferred from the exhaust gas (exhaust) to the coolant, and power is generated in the Rankine cycle circuit 5, so that the maximum amount of exhaust heat can be recovered as electrical energy, improving energy efficiency. Also, unlike the conventional case (a) where heat dissipation is performed only by the radiator, by controlling the flow rate ratio RQW using the flow control valve 43, the maximum heat dissipation capacity of the radiator 33 is always exerted, and heat dissipation from the coolant can be appropriately performed by combining the original heat dissipation requirement and the heat received from the exhaust heat.
図2の廃熱回収制御処理に戻り、前記ステップ1の判定結果がNOで、エンジン2が高負荷状態のときには、ステップ3に進み、第1切替弁44を第1バイパス通路42側に切り替えるとともに、第2切替弁58を第2バイパス通路57側に切り替える。 Returning to the waste heat recovery control process in FIG. 2, if the determination result in step 1 is NO and the engine 2 is in a high load state, the process proceeds to step 3, where the first switching valve 44 is switched to the first bypass passage 42 side and the second switching valve 58 is switched to the second bypass passage 57 side.
ステップ3の後の処理は、前述したエンジン2が低中負荷状態の場合と同じであり、前記ステップ4~6を実行することによって、ラジエータ33の放熱量QHRの算出、ラジエータ33の最大放熱能力QHMAX及び放熱量QHRに応じた目標流量比RQWCMDの算出と、目標流量比RQWCMDに基づく流量制御弁43の制御を同様に行う。 The processing after step 3 is the same as when the engine 2 is in a low to medium load state described above, and by executing steps 4 to 6, the calculation of the heat dissipation amount QHR of the radiator 33, the calculation of the maximum heat dissipation capacity QHMAX of the radiator 33 and the target flow ratio RQWCMD according to the heat dissipation amount QHR, and the control of the flow control valve 43 based on the target flow ratio RQWCMD are performed in the same manner.
図4は、エンジン2が高負荷状態のときに、上述した制御によって得られる動作を示す。まず、冷却水回路3における動作は、低中負荷状態のときと同じであり、冷却水は、冷却水流路31を時計方向に流れ、エンジン2から流出した後、流量制御弁43の制御により、ステップ5で設定された目標流量比RQWCMDになるように、ラジエータ33側と排気熱回収回路4側に分配される。 Figure 4 shows the operation obtained by the above-mentioned control when the engine 2 is in a high load state. First, the operation in the cooling water circuit 3 is the same as when the engine 2 is in a low to medium load state, and the cooling water flows clockwise through the cooling water passage 31 and, after flowing out of the engine 2, is distributed to the radiator 33 side and the exhaust heat recovery circuit 4 side by the control of the flow control valve 43 so as to achieve the target flow ratio RQWCMD set in step 5.
このうち、排気熱回収回路4側に分配された冷却水は、ステップ3における第1切替弁44の切替により、排気熱回収器22には流れず、第1バイパス通路42に流入する。このため、冷却水は、排気熱から受熱することなく、そのまま蒸発器53に流入する。その後の動作は低中負荷状態のときと同じであり、冷却水は、蒸発器53において、熱交換によって有機媒体に授熱する一方、自身は冷却される。冷却水は、その後、冷却水流路31の合流部36に流入し、エンジン2から直接、送られた高温の冷却水と合流した後、ラジエータ33において外気と熱交換され、放熱される。 The cooling water distributed to the exhaust heat recovery circuit 4 does not flow to the exhaust heat recovery device 22 but flows into the first bypass passage 42 due to the switching of the first switching valve 44 in step 3. Therefore, the cooling water flows directly into the evaporator 53 without receiving heat from the exhaust heat. The operation thereafter is the same as in the low to medium load state, and the cooling water transfers heat to the organic medium through heat exchange in the evaporator 53 while being cooled itself. The cooling water then flows into the confluence 36 of the cooling water flow path 31, where it merges with the high-temperature cooling water sent directly from the engine 2, and is then heat-exchanged with the outside air in the radiator 33, where heat is dissipated.
一方、ランキンサイクル回路5では、有機媒体は、有機媒体流路51を時計方向に流れ、蒸発器53において、排気熱回収器22で受熱した冷却水と熱交換される。この場合、ステップ3における第2切替弁58の切替により、有機媒体は、膨張機54側には流れず、第2バイパス通路57に流入することで、圧力制御弁59が作動する。その結果、ランキンサイクル回路5内の圧力が低下し、有機媒体の沸点が低下することによって、蒸発器53に流入する高温の冷却水と有機媒体との温度差が大きくなることで、蒸発器53における冷却水の冷却能力(放熱能力)を上げることができる。そのように冷却された冷却水は、冷却水流路31の合流部36において、エンジン2から直接、送られた高温の冷却水と合流した後、ラジエータ33において外気と熱交換され、放熱される。また、有機媒体は、凝縮器55に流入し、外気との熱交換によって冷却され、液化した後、第2ポンプ52に戻る。 On the other hand, in the Rankine cycle circuit 5, the organic medium flows in the organic medium flow path 51 in a clockwise direction, and in the evaporator 53, the organic medium is heat-exchanged with the cooling water that has been heated by the exhaust heat recovery device 22. In this case, by switching the second switching valve 58 in step 3, the organic medium does not flow to the expander 54 side, but flows into the second bypass passage 57, and the pressure control valve 59 is operated. As a result, the pressure in the Rankine cycle circuit 5 decreases, and the boiling point of the organic medium decreases, so that the temperature difference between the high-temperature cooling water flowing into the evaporator 53 and the organic medium increases, and the cooling capacity (heat dissipation capacity) of the cooling water in the evaporator 53 can be increased. The cooling water thus cooled merges with the high-temperature cooling water sent directly from the engine 2 at the junction 36 of the cooling water flow path 31, and then exchanges heat with the outside air in the radiator 33 and dissipates heat. The organic medium also flows into the condenser 55, where it is cooled by heat exchange with the outside air, liquefied, and then returns to the second pump 52.
以上のように、エンジン2の放熱要求が大きい高負荷状態では、冷却水による排気熱の受熱や膨張機54の駆動が行われないとともに、冷却水は、蒸発器53において有機媒体に授熱(放熱)した後、ラジエータ33に流入するので、冷却水の放熱をラジエータ33によって適切に行うことができる。また、図5に示すように、ラジエータ33の最大放熱能力を超える分の熱量が、ランキンサイクル回路5において放熱されるので、その分、ラジエータ33の最大放熱能力を低減し、その小型化を図ることができる。 As described above, when the engine 2 is under high load and the heat dissipation requirement is high, the coolant does not receive exhaust heat and the expander 54 is not driven, and the coolant flows into the radiator 33 after transferring (dissipating) heat to the organic medium in the evaporator 53, so that the heat dissipation from the coolant can be appropriately performed by the radiator 33. Also, as shown in FIG. 5, the amount of heat that exceeds the maximum heat dissipation capacity of the radiator 33 is dissipated in the Rankine cycle circuit 5, so that the maximum heat dissipation capacity of the radiator 33 can be reduced by that amount, and the radiator 33 can be made smaller.
なお、本発明は、説明した実施形態に限定されることなく、種々の態様で実施することができる。例えば、実施形態では、エンジン2の放熱要求の度合を表す負荷として、アクセル開度APを用いているが、これに限らず、エンジン2の負荷を適切に表す他のパラメータ、例えば、燃料噴射量や吸入空気量、エンジン2の出口付近の冷却水温度などを採用してもよい。 The present invention is not limited to the embodiment described above, and can be implemented in various ways. For example, in the embodiment, the accelerator opening AP is used as the load that indicates the degree of heat dissipation requirement of the engine 2, but this is not limiting, and other parameters that appropriately indicate the load of the engine 2, such as the fuel injection amount, the intake air amount, or the cooling water temperature near the outlet of the engine 2, may be used.
また、実施形態では、ラジエータ33の放熱量QHRの算出を、ラジエータ33の上流側及び下流側における第2及び第3水温TW2、TW3と冷却水流量QWに基づいて行うと説明したが、算出精度を確保できるものである限り、算出方法は任意である。 In the embodiment, the calculation of the heat radiation amount QHR of the radiator 33 is described as being performed based on the second and third water temperatures TW2, TW3 upstream and downstream of the radiator 33 and the cooling water flow rate QW, but any calculation method may be used as long as the calculation accuracy can be ensured.
さらに、実施形態では、エンジン2が低中負荷状態であるか否かの判定を、検出されたアクセル開度APと単一の所定開度APREFを比較することによって行っているが、この所定開度APREFにヒステリシスを設定することによって、比較結果に応じた制御ハンチングを回避するようにしてもよい。また、実施形態において示した具体的な構成や数値などはあくまで例示であり、細部の構成を、本発明の趣旨の範囲内で変更することが可能である。 In addition, in the embodiment, the determination of whether the engine 2 is in a low to medium load state is made by comparing the detected accelerator opening AP with a single predetermined opening APREF, but control hunting according to the comparison result may be avoided by setting hysteresis in this predetermined opening APREF. In addition, the specific configurations and numerical values shown in the embodiment are merely examples, and the detailed configurations can be changed within the scope of the spirit of the present invention.
1 廃熱回収装置
2 内燃機関(エンジン)
3 冷却水回路
4 排気熱回収回路
5 ランキンサイクル回路
6 ECU(制御手段、放熱量算出手段)
21 排気通路
22 排気熱回収器
32 第1ポンプ(冷却水ポンプ)
33 ラジエータ
36 合流部
42 第1バイパス通路
44 第1切替弁
52 第2ポンプ(作動媒体ポンプ)
53 蒸発器
54 膨張機
55 凝縮器
57 第2バイパス通路
58 第2切替弁
65 アクセル開度センサ(負荷取得手段)
AP アクセル開度(内燃機関の負荷)
RQW 流量比
QHR ラジエータの放熱量
QHMAX ラジエータの最大放熱能力
1 Waste heat recovery device 2 Internal combustion engine
3 Cooling water circuit 4 Exhaust heat recovery circuit 5 Rankine cycle circuit 6 ECU (control means, heat radiation amount calculation means)
21 exhaust passage 22 exhaust heat recovery device 32 first pump (cooling water pump)
33 Radiator 36 Junction 42 First bypass passage 44 First switching valve 52 Second pump (working medium pump)
53 Evaporator 54 Expander 55 Condenser 57 Second bypass passage 58 Second switching valve 65 Accelerator opening sensor (load acquisition means)
AP Accelerator opening (load on internal combustion engine)
RQW Flow ratio QHR Radiator heat dissipation amount QHMAX Radiator maximum heat dissipation capacity
Claims (4)
前記内燃機関を冷却するための冷却水が循環するとともに、冷却水を送出する冷却水ポンプ、及び冷却水を放熱するためのラジエータを有する冷却水回路と、
冷却水よりも低沸点の作動媒体が循環するとともに、作動媒体を送出する作動媒体ポンプと、冷却水との熱交換によって作動媒体を加熱し、気化させる蒸発器と、気化した作動媒体を膨張・減圧するとともに、作動媒体の熱エネルギを機械エネルギに変換する膨張機と、当該機械エネルギによって発電を行う発電機と、前記膨張機から流出した作動媒体を外気との熱交換によって冷却し、液化させる凝縮器と、を有するランキンサイクル回路と、
前記内燃機関の排気通路に設けられ、排気の熱を回収する排気熱回収器と、
前記冷却水回路の前記内燃機関よりも下流側の分岐部から分岐し、受熱のために前記排気熱回収器を通り、授熱のために前記蒸発器を通るとともに、前記冷却水回路の前記分岐部と前記ラジエータとの間に合流する排気熱回収回路と、を備え、
前記排気熱回収回路は、前記排気熱回収器をバイパスする第1バイパス通路と、前記分岐部側からの冷却水の流れを、前記排気熱回収器側又は前記第1バイパス通路側に切り替える第1切替弁と、を有し、
前記ランキンサイクル回路は、前記膨張機をバイパスする第2バイパス通路と、前記蒸発器側からの作動媒体の流れを、前記膨張機側又は前記第2バイパス通路側に切り替える第2切替弁と、を有し、
前記内燃機関の負荷を取得する負荷取得手段と、
前記取得された内燃機関の負荷に応じて、前記第1切替弁及び前記第2切替弁を制御する制御手段と、をさらに備えることを特徴とする内燃機関の廃熱回収装置。 A waste heat recovery device for an internal combustion engine for recovering waste heat generated by combustion in the internal combustion engine,
a cooling water circuit through which cooling water for cooling the internal combustion engine circulates, the cooling water circuit having a cooling water pump for delivering the cooling water and a radiator for dissipating heat from the cooling water;
a Rankine cycle circuit including a working medium pump through which a working medium having a boiling point lower than that of cooling water circulates and which delivers the working medium, an evaporator which heats and vaporizes the working medium by heat exchange with the cooling water, an expander which expands and reduces the pressure of the vaporized working medium and converts the thermal energy of the working medium into mechanical energy, a generator which generates electricity using the mechanical energy, and a condenser which cools and liquefies the working medium flowing out of the expander by heat exchange with outside air;
an exhaust heat recovery device provided in an exhaust passage of the internal combustion engine and configured to recover heat from exhaust gas;
an exhaust heat recovery circuit that branches off from a branching portion of the cooling water circuit downstream of the internal combustion engine, passes through the exhaust heat recovery device to receive heat, passes through the evaporator to transfer heat, and joins between the branching portion of the cooling water circuit and the radiator,
the exhaust heat recovery circuit includes a first bypass passage that bypasses the exhaust heat recovery device, and a first switching valve that switches a flow of cooling water from the branching portion side to the exhaust heat recovery device side or the first bypass passage side,
the Rankine cycle circuit includes a second bypass passage that bypasses the expander, and a second switching valve that switches a flow of the working medium from the evaporator side to the expander side or the second bypass passage side,
A load acquisition means for acquiring a load of the internal combustion engine;
a control unit that controls the first changeover valve and the second changeover valve in accordance with the acquired load of the internal combustion engine.
前記ラジエータの放熱量を算出する放熱量算出手段と、をさらに備え、
前記制御手段は、前記算出された放熱量が前記ラジエータの最大放熱能力になるように、前記流量制御弁を制御することを特徴とする、請求項1から3のいずれかに記載の内燃機関の廃熱回収装置。
a flow control valve provided at the branching portion of the cooling water circuit for controlling a flow rate ratio between a flow rate of the cooling water flowing from the branching portion to the radiator side and a flow rate of the cooling water flowing to the exhaust heat recovery circuit side;
and a heat radiation amount calculation means for calculating a heat radiation amount of the radiator.
4. The waste heat recovery device for an internal combustion engine according to claim 1, wherein the control means controls the flow control valve so that the calculated amount of heat radiation becomes equal to a maximum heat radiation capacity of the radiator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022182321A JP2024071857A (en) | 2022-11-15 | 2022-11-15 | Waste heat recovery device for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022182321A JP2024071857A (en) | 2022-11-15 | 2022-11-15 | Waste heat recovery device for internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024071857A true JP2024071857A (en) | 2024-05-27 |
Family
ID=91193939
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022182321A Pending JP2024071857A (en) | 2022-11-15 | 2022-11-15 | Waste heat recovery device for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2024071857A (en) |
-
2022
- 2022-11-15 JP JP2022182321A patent/JP2024071857A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8683801B2 (en) | Rankine cycle condenser pressure control using an energy conversion device bypass valve | |
US9745869B2 (en) | System and method for regulating EGR cooling using a Rankine cycle | |
JP4089619B2 (en) | Rankine cycle system | |
US8567193B2 (en) | Waste heat recovering device | |
US9470115B2 (en) | Split radiator design for heat rejection optimization for a waste heat recovery system | |
US9441576B2 (en) | Waste heat utilization device for internal combustion engine | |
JP4140544B2 (en) | Waste heat utilization equipment | |
US20090241543A1 (en) | Rankine cycle load limiting through use of a recuperator bypass | |
JP2008128254A (en) | System having organic rankine cycle circulation for driving at least one inflating device, heat exchanger for driving inflating device, and method for operating at least one inflating device | |
JP2010540837A (en) | Cascade type organic Rankine cycle (ORC) system using waste heat from reciprocating engine | |
CN108431376A (en) | The function synergic effect of thermodynamic cycle and heat source | |
US8931275B2 (en) | Adaptive heat exchange architecture for optimum energy recovery in a waste heat recovery architecture | |
JP2007505259A (en) | Heat tempering system | |
WO2013065371A1 (en) | Waste-heat recovery system | |
JP7057323B2 (en) | Thermal cycle system | |
JP2024071857A (en) | Waste heat recovery device for internal combustion engine | |
US20150000274A1 (en) | Waste heat recovery system including connection to a vehicle air conditioning system | |
JP4140543B2 (en) | Waste heat utilization equipment | |
JP2009138575A (en) | Engine exhaust heat recovering device | |
US9297280B2 (en) | Method and apparatus for utilizing the exhaust heat from internal combustion engine | |
US20230029261A1 (en) | Energy recovery device | |
EP3485156B1 (en) | A method and system for controlling the rotational speed of an expander in a waste heat recovery system | |
JP2021008872A (en) | Heat cycle system | |
SE1950709A1 (en) | Thermal Management System, Method of Cooling a Condenser of a Waste Heat Recovery System, and Related Devices | |
JP2019116857A (en) | Waste heat recovery device |