JP2024070441A - Electrolytic water generator - Google Patents
Electrolytic water generator Download PDFInfo
- Publication number
- JP2024070441A JP2024070441A JP2022180942A JP2022180942A JP2024070441A JP 2024070441 A JP2024070441 A JP 2024070441A JP 2022180942 A JP2022180942 A JP 2022180942A JP 2022180942 A JP2022180942 A JP 2022180942A JP 2024070441 A JP2024070441 A JP 2024070441A
- Authority
- JP
- Japan
- Prior art keywords
- electrolyte
- chamber
- aqueous solution
- electrolytic cell
- outlet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 105
- 239000003792 electrolyte Substances 0.000 claims abstract description 223
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 39
- 239000007864 aqueous solution Substances 0.000 claims description 91
- 230000002378 acidificating effect Effects 0.000 claims description 32
- 238000011144 upstream manufacturing Methods 0.000 claims description 29
- 238000007599 discharging Methods 0.000 claims description 4
- 230000001419 dependent effect Effects 0.000 claims description 2
- 230000000087 stabilizing effect Effects 0.000 abstract description 2
- 239000000243 solution Substances 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 16
- 238000005868 electrolysis reaction Methods 0.000 description 10
- 150000003839 salts Chemical class 0.000 description 5
- 238000005341 cation exchange Methods 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 239000003011 anion exchange membrane Substances 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001223 reverse osmosis Methods 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 235000011167 hydrochloric acid Nutrition 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
本発明は、電解水生成装置に関する。 The present invention relates to an electrolytic water generating device.
三室型の電解水生成装置には、一般に、電気分解後の電解質水溶液を再度、電解槽に送る循環経路が設けられている。循環経路における電解槽の後段にて、高濃度の電解質水溶液が供給され、消費分の電解質が補充される。この補充に伴う余剰の電解質水溶液は、循環経路から装置外に廃棄される。環境及びコストの観点から、電解質水溶液の廃棄を減らすことが望ましい。そこで、本願出願人は、余剰の電解質水溶液を一室型の電解槽で再利用する電解水生成装置を開発した(特許文献1)。 Three-chamber electrolytic water generators are generally provided with a circulation path that sends the electrolytic aqueous solution after electrolysis back to the electrolytic cell. A high-concentration electrolyte aqueous solution is supplied downstream of the electrolytic cell in the circulation path to replenish the electrolyte that has been consumed. The surplus electrolyte aqueous solution resulting from this replenishment is discharged from the circulation path to the outside of the device. From the standpoint of the environment and costs, it is desirable to reduce the amount of electrolyte aqueous solution that is discharged. Therefore, the applicant of the present application has developed an electrolytic water generator that reuses the surplus electrolyte aqueous solution in a single-chamber electrolytic cell (Patent Document 1).
ここで、循環経路における余剰の電解質水溶液を一室型の電解槽で再利用する場合、一室型の電解槽で一定の品質の酸性電解水を継続して生成する観点から、循環経路において電気分解後の電解質水溶液に高濃度の電解質水溶液が十分に混合され、塩分濃度および酸性度が一室型の電解槽での電気分解に適した状態である、すなわち品質、が安定した電解質水溶液が一室型の電解槽に送られることが望ましい。すなわち、電解水生成装置において、一室型の電解槽で再利用する電解質水溶液の短時間での品質の安定化が望まれる。 When the surplus electrolyte aqueous solution in the circulation path is reused in a single-chamber electrolytic cell, from the viewpoint of continuously producing acidic electrolytic water of a certain quality in the single-chamber electrolytic cell, it is desirable that the electrolyte aqueous solution after electrolysis in the circulation path is sufficiently mixed with a high-concentration electrolyte aqueous solution, and that the salinity and acidity are in a state suitable for electrolysis in a single-chamber electrolytic cell, i.e., that the electrolyte aqueous solution with stable quality is sent to the single-chamber electrolytic cell. In other words, it is desirable to stabilize the quality of the electrolyte aqueous solution reused in the single-chamber electrolytic cell in a short period of time in the electrolytic water generating device.
本発明は、例えば以下の通りである。以下では、図の符号を参照のために用いている。
(1)供給される電解質水溶液を電気分解し、電解質の一部が消費された電解質水溶液を排出する第1中間室(23)と、前記第1中間室(23)からイオン化した電解質が供給される第1アノード室(22)及び第1カソード室(21)と、を有する第1の三室型電解槽(2、2A)と、
一室型電解槽(3)と、
電解質供給部(4)と、
電解質水溶液が前記電解質供給部(4)から供給されるとともに、前記第1中間室(23)との間で電解質水溶液を循環させ、かつ前記一室型電解槽(3)に電解質水溶液を供給する電解質循環部(5、5A~5D)と、
前記電解質循環部(5、5A~5D)において前記第1中間室(23)および前記一室型電解槽(3)への電解質水溶液の供給量よりも前記電解質供給部(4)および前記第1中間室(23)からの電解質水溶液の供給量が多いことによる余剰の電解質水溶液を前記電解質循環部(5、5A~5D)との間で循環させる余剰循環部(6)と、
を備えることを特徴とする電解水生成装置(1、1A、1B)。
(2)(1)に記載の電解水生成装置(1、1A)において、
前記第1アノード室(22)から酸性電解水が供給される第1配管(88)と、原水が流通し前記第1配管(88)と合流する第2配管(90)と、を備えることを特徴とする電解水生成装置(1、1A)。
(3)(1)に記載の電解水生成装置(1、1A)において、
前記電解質循環部(5、5A~5C)は、
前記電解質供給部(4)からの電解質水溶液の第1流入口(53)と、
前記一室型電解槽(3)への電解質水溶液の第1流出口(54)と、
前記第1流入口(53)から前記第1流出口(54)へ電解質水溶液が流れる方向(X)において、前記第1流入口(53)よりも下流にある、前記余剰循環部(6)への電解質水溶液の第2流出口(55)と、
前記流れる方向(X)において、前記第1流入口(53)よりも下流、かつ前記第2流出口(55)よりも上流にある、前記第1中間室(23)からの電解質水溶液の第2流入口(56)と、
前記流れる方向(X)において、前記第2流入口(56)よりも上流にある、前記第1中間室(23)への電解質水溶液の第3流出口(57)と、
前記流れる方向(X)において、前記第1流出口(54)よりも上流にある、前記余剰循環部(6)からの電解質水溶液の第3流入口(58)と、を備えること特徴とする電解水生成装置(1、1A)。
(4)(3)に記載の電解水生成装置(1、1A)において、
前記第3流入口(58)は、前記流れる方向(X)において、前記第2流出口(55)の上流および下流にそれぞれあること特徴とする電解水生成装置(1、1A)。
(5)(1)または(3)に記載の電解水生成装置(1A)において、
供給される電解質水溶液を電気分解し、電解質が消費された電解質水溶液を排出する第2中間室(23)と、前記第2中間室(23)からイオン化した電解質が供給される第2アノード室(22)及び第2カソード室(21)と、前記第2アノード室(22)と前記第2カソード室(21)とを連結し、前記第2アノード室(22)が生成する酸性電解水を前記第2カソード室(21)に送る第3配管(96)と、を有する第2の三室型電解槽(2A)を備え、
前記電解質循環部(5A、5C)は、前記第2中間室(23)との間で電解質水溶液を循環させること特徴とする電解水生成装置(1A)。
(6)(3)に従属する(5)に記載の電解水生成装置(1A)において、
前記電解質循環部(5A、5C)は、
前記流れる方向(X)において、前記第1流入口(53)よりも下流、かつ前記第2流出口(55)よりも上流にある、前記第2中間室(23)への電解質水溶液の第4流出口(591、591C)と、
前記流れる方向(X)において、前記第2流出口(55)よりも下流、かつ、前記第1流出口(54)よりも上流にある、前記第2中間室(23)からの電解質水溶液の第4流入口(592)と、を備えることを特徴とする電解水生成装置(1A)。
(7)(1)に記載の電解水生成装置(1B)において、
前記第1の三室型電解槽(2A)は、前記アノード室(22)と前記カソード室(21)とを連結し、前記アノード室(22)が生成する酸性電解水を前記カソード室(21)に送る連結配管(96)を有することを特徴とする電解水生成装置(1B)。
The invention is, for example, as follows: In the following, the reference numbers of the figures are used for reference.
(1) a first three-compartment electrolytic cell (2, 2A) having a first intermediate chamber (23) for electrolyzing a supplied aqueous electrolyte solution and discharging the aqueous electrolyte solution from which a portion of the electrolyte has been consumed, and a first anode chamber (22) and a first cathode chamber (21) to which ionized electrolyte is supplied from the first intermediate chamber (23);
A single-chamber electrolytic cell (3);
An electrolyte supply (4);
an electrolyte circulation unit (5, 5A to 5D) which supplies an aqueous electrolyte solution from the electrolyte supply unit (4), circulates the aqueous electrolyte solution between the electrolyte supply unit (4) and the first intermediate chamber (23), and supplies the aqueous electrolyte solution to the single-chamber electrolytic cell (3);
a surplus circulation section (6) for circulating a surplus of electrolyte aqueous solution between the electrolyte circulation section (5, 5A to 5D) and the electrolyte aqueous solution resulting from a supply amount of electrolyte aqueous solution from the electrolyte supply section (4) and the first intermediate chamber (23) being greater than a supply amount of electrolyte aqueous solution to the first intermediate chamber (23) and the single-chamber electrolytic cell (3) in the electrolyte circulation section (5, 5A to 5D);
An electrolytic water generating device (1, 1A, 1B) comprising:
(2) In the electrolytic water generating device (1, 1A) according to (1),
The electrolyzed water generating device (1, 1A) comprises a first pipe (88) through which acidic electrolyzed water is supplied from the first anode chamber (22), and a second pipe (90) through which raw water flows and which joins the first pipe (88).
(3) In the electrolytic water generating device (1, 1A) according to (1),
The electrolyte circulation unit (5, 5A to 5C) is
a first inlet (53) for an aqueous electrolyte solution from the electrolyte supply unit (4);
a first outlet (54) for the aqueous electrolyte solution into the single-chamber electrolytic cell (3);
a second outlet (55) for the aqueous electrolyte solution to the surplus circulation section (6), the second outlet (55) being located downstream of the first inlet (53) in a direction (X) in which the aqueous electrolyte solution flows from the first inlet (53) to the first outlet (54);
a second inlet (56) for the aqueous electrolyte solution from the first intermediate chamber (23), the second inlet (56) being downstream of the first inlet (53) and upstream of the second outlet (55) in the flow direction (X);
a third outlet (57) for the aqueous electrolyte solution to the first intermediate chamber (23), the third outlet (57) being located upstream of the second inlet (56) in the flow direction (X);
and a third inlet (58) for the aqueous electrolyte solution from the surplus circulation section (6), the third inlet (58) being located upstream of the first outlet (54) in the flow direction (X).
(4) In the electrolytic water generating device (1, 1A) according to (3),
The electrolytic water generating device (1, 1A) is characterized in that the third inlet (58) is located upstream and downstream of the second outlet (55) in the flow direction (X).
(5) In the electrolytic water generating device (1A) according to (1) or (3),
a second three-chamber electrolytic cell (2A) having a second intermediate chamber (23) for electrolyzing a supplied electrolyte aqueous solution and discharging the electrolyte aqueous solution from which the electrolyte has been consumed, a second anode chamber (22) and a second cathode chamber (21) to which an ionized electrolyte is supplied from the second intermediate chamber (23), and a third pipe (96) connecting the second anode chamber (22) and the second cathode chamber (21) and sending acidic electrolyzed water generated in the second anode chamber (22) to the second cathode chamber (21),
The electrolytic water generating device (1A) is characterized in that the electrolyte circulation section (5A, 5C) circulates an aqueous electrolyte solution between the electrolyte circulation section (5A, 5C) and the second intermediate chamber (23).
(6) In the electrolytic water generating device (1A) according to (5) which is dependent on (3),
The electrolyte circulation unit (5A, 5C)
a fourth outlet (591, 591C) for the aqueous electrolyte solution to the second intermediate chamber (23), the fourth outlet (591, 591C) being downstream of the first inlet (53) and upstream of the second outlet (55) in the flow direction (X);
and a fourth inlet (592) for the electrolyte aqueous solution from the second intermediate chamber (23), the fourth inlet (592) being located downstream of the second outlet (55) and upstream of the first outlet (54) in the flow direction (X).
(7) In the electrolytic water generating device (1B) according to (1),
The first three-chamber electrolytic cell (2A) has a connecting pipe (96) that connects the anode chamber (22) and the cathode chamber (21) and sends acidic electrolyzed water generated in the anode chamber (22) to the cathode chamber (21).
本発明では、一室型の電解槽で再利用する電解質水溶液の品質を安定化できる。 The present invention makes it possible to stabilize the quality of the aqueous electrolyte solution reused in a single-chamber electrolytic cell.
以下、図を参照して各実施形態を説明する。
(第1実施形態)
図1は、電解水生成装置1の構成を示す図である。
電解水生成装置1は、三室型電解槽2(本発明の第1の三室型電解槽に相当)、一室型電解槽3、電解質供給部4、電解質循環部5、電解質オーバーフロータンク6(本発明の余剰循環部に相当)を備える。
Each embodiment will be described below with reference to the drawings.
First Embodiment
FIG. 1 is a diagram showing the configuration of an electrolytic water generating device 1.
The electrolytic water generating device 1 comprises a three-chamber electrolytic cell 2 (corresponding to the first three-chamber electrolytic cell of the present invention), a single-chamber electrolytic cell 3, an electrolyte supply section 4, an electrolyte circulation section 5, and an electrolyte overflow tank 6 (corresponding to the surplus circulation section of the present invention).
三室型電解槽2は、内部がカソード室21(本発明の第1カソード室に相当)、アノード室22(本発明の第1アノード室に相当)、カソード室21およびアノード室22の間にある中間室23(本発明の第1中間室に相当)に仕切られる。中間室23には、電解質循環部5から電解質水溶液が供給される。電解質水溶液として、例えばNaClが高濃度で溶解する塩水が用いられる。高濃度の塩水は、飽和食塩水であってもよい。電解質水溶液として、炭酸ナトリウム、炭酸水素ナトリウム、塩酸、塩化カリウム、塩化カルシウムまたはその混合物などの電解質が溶解するものが用いられてもよい。 The three-chamber electrolytic cell 2 is divided into a cathode chamber 21 (corresponding to the first cathode chamber of the present invention), an anode chamber 22 (corresponding to the first anode chamber of the present invention), and an intermediate chamber 23 (corresponding to the first intermediate chamber of the present invention) between the cathode chamber 21 and the anode chamber 22. An aqueous electrolyte solution is supplied to the intermediate chamber 23 from the electrolyte circulation unit 5. As the aqueous electrolyte solution, for example, salt water in which NaCl is dissolved at a high concentration is used. The highly concentrated salt water may be saturated salt water. As the aqueous electrolyte solution, an electrolyte such as sodium carbonate, sodium bicarbonate, hydrochloric acid, potassium chloride, calcium chloride, or a mixture thereof may be used.
カソード室21と中間室23は、陽イオン交換膜211に仕切られる。陽イオン交換膜211は、Na+等の陽イオンを選択的に透過させる。陽イオン交換膜211の背面側にカソード電極24がある。 The cathode chamber 21 and the intermediate chamber 23 are separated by a cation exchange membrane 211. The cation exchange membrane 211 selectively allows cations such as Na + to pass through. A cathode electrode 24 is provided on the rear side of the cation exchange membrane 211.
アノード室22と中間室23は、陰イオン交換膜221に仕切られる。陰イオン交換膜221は、Cl-等の陰イオンを選択的に透過させる。陰イオン交換膜221の背面側にアノード電極25がある。 The anode chamber 22 and the intermediate chamber 23 are separated by an anion exchange membrane 221. The anion exchange membrane 221 selectively allows anions such as Cl 2 - to pass therethrough. An anode electrode 25 is provided on the rear side of the anion exchange membrane 221.
原水供給部81は、原水を、配管82および配管82から分岐する配管83を介してカソード室21に供給するとともに、配管82および配管82から分岐する配管84を介してアノード室22に供給する。原水として、水道水やRO(Reverse Osmosis)水等を用いることができる。原水は、電解質の濃度が15ppm以下等、電解質が僅かに溶解していてもよい。配管82には、配管82内を開閉する開閉機構85が設けられている。 The raw water supply unit 81 supplies raw water to the cathode chamber 21 via a pipe 82 and a pipe 83 branching off from the pipe 82, and to the anode chamber 22 via a pipe 82 and a pipe 84 branching off from the pipe 82. Tap water, RO (Reverse Osmosis) water, etc. can be used as the raw water. The raw water may contain a small amount of dissolved electrolyte, such as an electrolyte concentration of 15 ppm or less. An opening/closing mechanism 85 that opens and closes the inside of the pipe 82 is provided in the pipe 82.
電解水生成装置1は、全体を制御する不図示のプロセッサ、プロセッサに読み込まれるプログラム等を記憶する不図示のメモリ、設定画面等を表示する不図示のディスプレイ、ユーザから設定等の入力を受け付けるボタン等の不図示の入力部を備える。開閉機構85は、プロセッサに制御される。 The electrolytic water generating device 1 includes a processor (not shown) that controls the entire device, a memory (not shown) that stores programs and the like that are loaded into the processor, a display (not shown) that displays a setting screen and the like, and an input unit (not shown) such as a button that receives settings and other inputs from the user. The opening and closing mechanism 85 is controlled by the processor.
三室型電解槽2による電気分解の実行時には、カソード電極24およびアノード電極25に直流電圧が印加される。すると、中間室23内のNa+等の陽イオンがカソード室21に移動し、公知の反応によりカソード室21にアルカリ性電解水が生じる。アルカリ性電解水は、カソード室21から配管86を介してアルカリ性電解水排出口87へ送られる。 When electrolysis is performed by the three-chamber electrolytic cell 2, a DC voltage is applied to the cathode electrode 24 and the anode electrode 25. Then, cations such as Na + in the intermediate chamber 23 move to the cathode chamber 21, and alkaline electrolyzed water is generated in the cathode chamber 21 by a known reaction. The alkaline electrolyzed water is sent from the cathode chamber 21 to the alkaline electrolyzed water outlet 87 through a pipe 86.
また、中間室23内のCl-等の陰イオンがアノード室22に移動し、公知の反応によりアノード室22に酸性電解水(例えば次亜塩素酸水)が生じる。酸性電解水は、アノード室22から配管88(本発明の第1配管に相当)を介して酸性電解水排出口89へ送られる。配管88と原水供給部81とが配管90(本発明の第2配管に相当)で接続される。配管90には、プロセッサの制御下にある開閉機構91が設けられている。開閉機構91を開け、原水供給部81から配管90を介して原水を配管88に送ることで、アノード室22で生成される酸性電解水を希釈できる。これにより、例えば、アノード室22で生成される次亜塩素酸水を、弱酸性次亜塩素酸水または微酸性次亜塩素酸水に希釈できる。このように、三室型電解槽2による電気分解の作用により、中間室23では、電解質水溶液中の電解質の一部が消費される。中間室23は、電解質の一部が消費された電解質水溶液を配管51を介して電解質循環部5に送る。 Moreover, anions such as Cl − in the intermediate chamber 23 move to the anode chamber 22, and acidic electrolyzed water (e.g., hypochlorous acid water) is generated in the anode chamber 22 by a known reaction. The acidic electrolyzed water is sent from the anode chamber 22 to the acidic electrolyzed water outlet 89 through a pipe 88 (corresponding to the first pipe of the present invention). The pipe 88 and the raw water supply unit 81 are connected through a pipe 90 (corresponding to the second pipe of the present invention). The pipe 90 is provided with an opening/closing mechanism 91 under the control of a processor. The acidic electrolyzed water generated in the anode chamber 22 can be diluted by opening the opening/closing mechanism 91 and sending raw water from the raw water supply unit 81 through the pipe 90 to the pipe 88. This allows, for example, the hypochlorous acid water generated in the anode chamber 22 to be diluted to weakly acidic hypochlorous acid water or slightly acidic hypochlorous acid water. In this way, a part of the electrolyte in the electrolyte aqueous solution is consumed in the intermediate chamber 23 by the action of electrolysis in the three-chamber electrolytic cell 2. The intermediate chamber 23 sends the electrolyte aqueous solution, from which a portion of the electrolyte has been consumed, to the electrolyte circulation unit 5 via a pipe 51 .
電解質供給部4は、電解質が高濃度に溶解する電解質水溶液、例えば飽和食塩水を貯留する。電解質供給部4は、プロセッサの制御下にあるポンプ41が設けられた配管42を介し、電解質循環部5に接続する。プロセッサが例えば三室型電解槽2の稼働時間に応じてポンプ41を駆動することで、電解質供給部4は、必要量の電解質水溶液を電解質循環部5に送る。 The electrolyte supply unit 4 stores an electrolyte aqueous solution, such as saturated saline, in which the electrolyte is dissolved at a high concentration. The electrolyte supply unit 4 is connected to the electrolyte circulation unit 5 via a pipe 42 equipped with a pump 41 under the control of a processor. The processor drives the pump 41 according to the operating time of the three-chamber electrolytic cell 2, for example, and the electrolyte supply unit 4 sends the required amount of electrolyte aqueous solution to the electrolyte circulation unit 5.
電解質循環部5は、電解質水溶液が電解質供給部4から供給されるとともに、中間室23との間で電解質水溶液を循環させ、かつ一室型電解槽3に電解質水溶液を供給する。中間室23の出口及び入口には、中間室23に電解質水溶液を循環させる配管51が接続する。配管51において、電解質循環部5の下流、かつ中間室23の上流には、プロセッサの制御下にあるポンプ52が設けられている。ポンプ52の駆動により、中間室23に電解質水溶液が循環する。 The electrolyte circulation unit 5 receives the electrolyte aqueous solution from the electrolyte supply unit 4, circulates the electrolyte aqueous solution between the intermediate chamber 23, and supplies the electrolyte aqueous solution to the single-chamber electrolytic cell 3. A pipe 51 that circulates the electrolyte aqueous solution to the intermediate chamber 23 is connected to the outlet and inlet of the intermediate chamber 23. A pump 52 under the control of a processor is provided in the pipe 51 downstream of the electrolyte circulation unit 5 and upstream of the intermediate chamber 23. The electrolyte aqueous solution is circulated to the intermediate chamber 23 by driving the pump 52.
中間室23から循環する電解質水溶液は、三室型電解槽2による電気分解の作用により、電解質水溶液のpHが低下する(酸性度が高くなる)。そこで、電解質循環部5は、中間室23に電解質水溶液を送るとともに、中間室23から電気分解の利用後の電解質水溶液を回収し、利用後の電解質水溶液に電解質供給部4から電解質の濃度の高い電解質水溶液を加えて中間室23との間で循環させる。 The pH of the electrolyte aqueous solution circulating from the intermediate chamber 23 decreases (its acidity increases) due to the action of electrolysis in the three-chamber electrolytic cell 2. Therefore, the electrolyte circulation unit 5 sends the electrolyte aqueous solution to the intermediate chamber 23, recovers the electrolyte aqueous solution after electrolysis from the intermediate chamber 23, and adds an electrolyte aqueous solution with a high electrolyte concentration from the electrolyte supply unit 4 to the electrolyte aqueous solution after use, and circulates it between the intermediate chamber 23 and the intermediate chamber 23.
電解質オーバーフロータンク6は、電解質循環部5との間で循環経路を形成する配管61中に設けられる。配管61において、電解質オーバーフロータンク6の下流、かつ電解質循環部5の上流には、プロセッサによる制御下にあるポンプ62が設けられている。 The electrolyte overflow tank 6 is provided in a pipe 61 that forms a circulation path between the electrolyte overflow tank 6 and the electrolyte circulation unit 5. In the pipe 61, downstream of the electrolyte overflow tank 6 and upstream of the electrolyte circulation unit 5, a pump 62 that is under the control of a processor is provided.
電解質オーバーフロータンク6は、電解質循環部5において三室型電解槽2および一室型電解槽3への電解質水溶液の供給量よりも電解質供給部4および中間室23からの電解質水溶液の循環量が多いことによる余剰の電解質水溶液を、ポンプ62の駆動により、電解質循環部5との間で循環させる。電解質オーバーフロータンク6は、後述するが、一室型電解槽3へ供給する電解質水溶液の品質の安定化に寄与する。 The electrolyte overflow tank 6 circulates excess electrolyte aqueous solution between the electrolyte circulation unit 5 and the electrolyte circulation unit 5 by driving the pump 62, which occurs when the amount of electrolyte aqueous solution circulated from the electrolyte supply unit 4 and the intermediate chamber 23 is greater than the amount of electrolyte aqueous solution supplied to the three-chamber electrolytic cell 2 and the single-chamber electrolytic cell 3 in the electrolyte circulation unit 5. As described later, the electrolyte overflow tank 6 contributes to stabilizing the quality of the electrolyte aqueous solution supplied to the single-chamber electrolytic cell 3.
図2に参照されるように、電解質オーバーフロータンク6は、水位が設定値に至ると、余剰の電解質水溶液を排出口63から排出する。電解質オーバーフロータンク6内には、排出口63よりも高い位置に、電解質循環部5からの電解質水溶液の不図示の供給口がある。電解質オーバーフロータンク6内には、例えば配管61の一部を構成するチューブが差し込まれる。ポンプ62の駆動により、電解質オーバーフロータンク6内の電解質水溶液がチューブに吸い上げられ、配管61により電解質循環部5へ送られる。 As shown in FIG. 2, when the water level in the electrolyte overflow tank 6 reaches a set value, the electrolyte overflow tank 6 discharges excess electrolyte aqueous solution from the outlet 63. In the electrolyte overflow tank 6, at a position higher than the outlet 63, there is a supply port (not shown) for the electrolyte aqueous solution from the electrolyte circulation unit 5. In the electrolyte overflow tank 6, for example, a tube constituting a part of the piping 61 is inserted. When the pump 62 is driven, the electrolyte aqueous solution in the electrolyte overflow tank 6 is sucked up into the tube and sent to the electrolyte circulation unit 5 by the piping 61.
図1に示すように、一室型電解槽3では、陰極31および陽極32が隔膜で仕切られていない。一室型電解槽3は、配管33を介して電解質循環部5と接続する。配管33には、プロセッサの制御下にあるポンプ34が設けられている。ポンプ34の駆動により、電解質循環部5から一室型電解槽3に電解液水溶液が供給される。一室型電解槽3は、陰極31および陽極32により、供給される酸性に傾いた電解液水溶液を電気分解し、酸性電解水(例えば微酸性電解水)を生成する。 As shown in FIG. 1, in the single-chamber electrolytic cell 3, the cathode 31 and the anode 32 are not separated by a diaphragm. The single-chamber electrolytic cell 3 is connected to the electrolyte circulation unit 5 via a pipe 33. The pipe 33 is provided with a pump 34 under the control of a processor. The pump 34 is driven to supply an aqueous electrolyte solution from the electrolyte circulation unit 5 to the single-chamber electrolytic cell 3. The single-chamber electrolytic cell 3 electrolyzes the aqueous electrolyte solution, which is acidic, supplied by the cathode 31 and the anode 32, to generate acidic electrolyzed water (e.g., slightly acidic electrolyzed water).
一室型電解槽3で生成される酸性電解水は、配管35を介して酸性電解水排出口36に送られる。配管35と原水供給部81とが配管37で接続される。配管37には、プロセッサの制御下にある開閉機構38が設けられている。開閉機構38を開け、原水供給部81から配管37を介して原水を配管35に送ることで、一室型電解槽3で生成される酸性電解水を希釈できる。 The acidic electrolyzed water generated in the single-chamber electrolytic cell 3 is sent to the acidic electrolyzed water outlet 36 via piping 35. The piping 35 and the raw water supply unit 81 are connected via piping 37. The piping 37 is provided with an opening/closing mechanism 38 under the control of a processor. The acidic electrolyzed water generated in the single-chamber electrolytic cell 3 can be diluted by opening the opening/closing mechanism 38 and sending raw water from the raw water supply unit 81 via piping 37 to the piping 35.
本実施形態では、三室型電解槽2で電解質水溶液を循環使用しながらアルカリ性電解水および酸性電解水を生成する。また、本実施形態では、三室型電解槽2で循環使用した電解質水溶液を一室型電解槽3で再利用し、酸性電解水を生成する。これにより、本実施形態では、電解質水溶液の廃液を抑制しつつ、大容量の酸性電解水を継続して生成できる。 In this embodiment, alkaline electrolyzed water and acidic electrolyzed water are produced while circulating the electrolyte aqueous solution in the three-chamber electrolytic cell 2. In this embodiment, the electrolyte aqueous solution circulated in the three-chamber electrolytic cell 2 is reused in the single-chamber electrolytic cell 3 to produce acidic electrolyzed water. This makes it possible to continuously produce a large volume of acidic electrolyzed water while suppressing the waste of electrolyte aqueous solution.
三室型電解槽2で電気分解され、電解質循環部5に送られる電解質水溶液は、電気分解の作用により、塩分濃度が低下し、電解質水溶液のpHが低下する(酸性度が高くなる)。pHが低下する要因としては、中間室23に存在するNa+イオンとH+イオンの陽イオンの内、イオン化傾向としてNa+イオンの方が大きいため、陽イオン交換膜211を優先的に透過しカソード室21に移動する。したがって、中間室23では相対的にH+イオンが残存するため、これにより中間室23を循環する電解質水溶液の酸性度が高くなり、pHが低くなることが知られている。本実施形態では、電解質循環部5において、酸性度が高くなった電解質水溶液に高濃度の電解質水溶液を混合し、塩分濃度および酸性度を一室型電解槽3で生成する微酸性電解水の生成に適した液性とした後、当該電解質水溶液を一室型電解槽3に送る。 The electrolyte aqueous solution electrolyzed in the three-chamber electrolytic cell 2 and sent to the electrolyte circulation unit 5 has a lowered salt concentration and a lowered pH (higher acidity) due to the action of electrolysis. The reason for the lowered pH is that, of the cations Na + and H + present in the intermediate chamber 23, Na + ions have a higher ionization tendency, and therefore preferentially permeate the cation exchange membrane 211 and move to the cathode chamber 21. It is known that, therefore, H + ions remain relatively in the intermediate chamber 23, which increases the acidity of the electrolyte aqueous solution circulating through the intermediate chamber 23, and the pH decreases. In this embodiment, in the electrolyte circulation unit 5, the electrolyte aqueous solution with a higher acidity is mixed with a high-concentration electrolyte aqueous solution, and the electrolyte aqueous solution is made suitable for the generation of slightly acidic electrolytic water in the single-chamber electrolytic cell 3 in terms of salt concentration and acidity, and then sent to the single-chamber electrolytic cell 3.
そこで、本実施形態では、上記混合を十分に行うために、中間室23を通る電解質水溶液の循環系で生じる余剰の電解質水溶液を、電解質オーバーフロータンク6によって電解質循環部5に流入、流出させ、電解質循環部5内の電解質水溶液を撹拌する。これにより、本実施形態では、電解質水溶液の濃度を短時間で均一化でき、塩分濃度および酸性度が一室型電解槽3での微酸性電解水の生成に適した電解質水溶液を一室型電解槽3に送ることができる。以上により、本実施形態では、電解質循環部5から一室型電解槽3に送る電解質水溶液の品質の安定化を短時間で図ることができる。 Therefore, in this embodiment, in order to perform the above-mentioned mixing sufficiently, the excess electrolyte aqueous solution generated in the electrolyte aqueous solution circulation system passing through the intermediate chamber 23 is caused to flow in and out of the electrolyte circulation unit 5 by the electrolyte overflow tank 6, and the electrolyte aqueous solution in the electrolyte circulation unit 5 is stirred. As a result, in this embodiment, the concentration of the electrolyte aqueous solution can be homogenized in a short time, and an electrolyte aqueous solution with a salinity and acidity suitable for generating slightly acidic electrolyzed water in the single-chamber electrolytic cell 3 can be sent to the single-chamber electrolytic cell 3. As described above, in this embodiment, the quality of the electrolyte aqueous solution sent from the electrolyte circulation unit 5 to the single-chamber electrolytic cell 3 can be stabilized in a short time.
図3は、電解質循環部5における電解質水溶液の流入、流出の位置関係を説明するための図である。
電解質循環部5には、電解質供給部4からの電解質水溶液の第1流入口53と、一室型電解槽3への電解質水溶液の第1流出口54と、がある。電解質循環部5には、電解質オーバーフロータンク6への電解質水溶液の第2流出口55がある。第2流出口55は、第1流入口53から第1流出口54へ電解質水溶液が流れる方向Xにおいて、第1流入口53よりも下流にある。
FIG. 3 is a diagram for explaining the positional relationship of the inflow and outflow of the electrolyte aqueous solution in the electrolyte circulation section 5. As shown in FIG.
The electrolyte circulation unit 5 has a first inlet 53 for the aqueous electrolyte solution from the electrolyte supply unit 4, and a first outlet 54 for the aqueous electrolyte solution to the single-chamber electrolytic cell 3. The electrolyte circulation unit 5 has a second outlet 55 for the aqueous electrolyte solution to the electrolyte overflow tank 6. The second outlet 55 is located downstream of the first inlet 53 in the direction X in which the aqueous electrolyte solution flows from the first inlet 53 to the first outlet 54.
電解質循環部5には、中間室23からの電解質水溶液の第2流入口56が、方向Xにおいて、第1流入口53よりも下流、かつ第2流出口55よりも上流にある。電解質循環部5には、中間室23への電解質水溶液の第3流出口57が、方向Xにおいて、第2流入口56よりも上流にある、本実施形態では、第1流入口53よりも上流にある。電解質循環部5には、電解質オーバーフロータンク6からの電解質水溶液の第3流入口58が、方向Xにおいて、第1流出口54よりも上流にある、本実施形態では第2流出口55と同位置にあり、第2流出口55と対向している。 In the electrolyte circulation section 5, a second inlet 56 for the electrolyte aqueous solution from the intermediate chamber 23 is located downstream of the first inlet 53 and upstream of the second outlet 55 in the direction X. In the electrolyte circulation section 5, a third outlet 57 for the electrolyte aqueous solution to the intermediate chamber 23 is located upstream of the second inlet 56 in the direction X, and in this embodiment, upstream of the first inlet 53. In the electrolyte circulation section 5, a third inlet 58 for the electrolyte aqueous solution from the electrolyte overflow tank 6 is located upstream of the first outlet 54 in the direction X, and in this embodiment, is located at the same position as the second outlet 55 and faces the second outlet 55.
このような各口53~58の位置関係により、本実施形態では、電解質循環部5内において、電解質水溶液を良好に撹拌、混合でき、一室型電解槽3に送る電解質水溶液の品質を一室型電解槽3での酸性電解水の生成に適した品質に安定化できる。なお、各口53~58は、それぞれ複数あってもよい。各口53~58の上記位置は、例示であり、適宜に設定できる。 In this embodiment, due to the positional relationship of each of the ports 53 to 58, the electrolyte aqueous solution can be stirred and mixed well in the electrolyte circulation section 5, and the quality of the electrolyte aqueous solution sent to the single-chamber electrolytic cell 3 can be stabilized to a quality suitable for generating acidic electrolyzed water in the single-chamber electrolytic cell 3. Note that there may be multiple ports 53 to 58. The above positions of each of the ports 53 to 58 are examples and can be set as appropriate.
図4は、第3流入口58の他の例を示す図である。
電解質循環部5には、電解質オーバーフロータンク6からの電解質水溶液の第3流入口58が、方向Xにおいて、第2流出口55の上流および下流にそれぞれあってもよい。図4に示すように、第2流出口55を上記2か所に設けることによって、電解質循環部5内の電解質水溶液の撹拌効率を高めることができる。
FIG. 4 is a diagram showing another example of the third inlet 58. As shown in FIG.
The electrolyte circulation unit 5 may have third inlets 58 for the electrolyte aqueous solution from the electrolyte overflow tank 6, located upstream and downstream of the second outlet 55 in the direction X. As shown in Fig. 4, by providing the second outlets 55 at the above two locations, the stirring efficiency of the electrolyte aqueous solution in the electrolyte circulation unit 5 can be improved.
(第2実施形態)
図5は、電解水生成装置1Aの構成を示す図である。
電解水生成装置1Aは、電解水生成装置1に三室型電解槽2A(第2の三室型電解槽)を加えたものであり、他の構成は、電解水生成装置1と同様である。三室型電解槽2Aは、アルカリ性電解水生成用であり、アノード室22(本発明の第2アノード室に相当)で生成される酸性電解水が配管96(本発明の第3配管および連結配管に相当)を介してカソード室21(本発明の第2カソード室に相当)に送られる点が、三室型電解槽2と異なる点である。
Second Embodiment
FIG. 5 is a diagram showing the configuration of the electrolytic water generating device 1A.
The electrolytic water generator 1A is obtained by adding a three-chamber electrolytic cell 2A (a second three-chamber electrolytic cell) to the electrolytic water generator 1, and other configurations are the same as those of the electrolytic water generator 1. The three-chamber electrolytic cell 2A is for generating alkaline electrolytic water, and differs from the three-chamber electrolytic cell 2 in that acidic electrolytic water generated in the anode chamber 22 (corresponding to the second anode chamber of the present invention) is sent to the cathode chamber 21 (corresponding to the second cathode chamber of the present invention) via a pipe 96 (corresponding to the third pipe and the connecting pipe of the present invention).
三室型電解槽2Aの中間室23には、電解質循環部5Aを経由して電解質水溶液を循環させる配管92が接続する。配管92において、電解質循環部5Aの下流、かつ三室型電解槽2Aの中間室23の上流には、プロセッサの制御下にあるポンプ93が設けられている。ポンプ93の駆動により、三室型電解槽2Aの中間室23に電解質水溶液が送られる。三室型電解槽2Aのアノード室22には、原水供給部81から配管94を介して原水が送られる。配管94には、プロセッサの制御下にある開閉機構95が設けられる。三室型電解槽2Aのアノード室22にて生成される酸性電解水は、配管96を介して三室型電解槽2Aのカソード室21に送られる。三室型電解槽2Aのカソード室21にて生成されるアルカリ性電解水は、配管95を介してアルカリ性電解水排出口87に送られる。三室型電解槽2Aの他の要素24、25、211、221は、三室型電解槽2の要素24、25、211、221と同様である。 A pipe 92 is connected to the intermediate chamber 23 of the three-chamber electrolytic cell 2A, which circulates the electrolyte aqueous solution through the electrolyte circulation unit 5A. A pump 93 under the control of a processor is provided in the pipe 92 downstream of the electrolyte circulation unit 5A and upstream of the intermediate chamber 23 of the three-chamber electrolytic cell 2A. The electrolyte aqueous solution is sent to the intermediate chamber 23 of the three-chamber electrolytic cell 2A by driving the pump 93. Raw water is sent from the raw water supply unit 81 through a pipe 94 to the anode chamber 22 of the three-chamber electrolytic cell 2A. An opening and closing mechanism 95 under the control of a processor is provided in the pipe 94. The acidic electrolyzed water generated in the anode chamber 22 of the three-chamber electrolytic cell 2A is sent to the cathode chamber 21 of the three-chamber electrolytic cell 2A through a pipe 96. The alkaline electrolyzed water generated in the cathode chamber 21 of the three-chamber electrolytic cell 2A is sent to the alkaline electrolyzed water outlet 87 through a pipe 95. The other elements 24, 25, 211, and 221 of the three-chamber electrolytic cell 2A are similar to the elements 24, 25, 211, and 221 of the three-chamber electrolytic cell 2.
アルカリ性電解水生成用の三室型電解槽2Aは、三室型電解槽2よりもカソード室21でNa+等の陽イオンを除去できる。本実施形態では、三室型電解槽2Aの中間室23の循環追加処理後の電解質水溶液を電解質循環部5Aに送ることにより、より酸性度が高く、一室型電解槽3での微酸性電解水の生成に適した電解質水溶液を電解質循環部5Aにて生成することができる。当該電解質水溶液を電解質循環部5Aから一室型電解槽3に送ることで、一室型電解槽3にて安定した微酸性電解水を生成できる。 The three-chamber electrolytic cell 2A for generating alkaline electrolyzed water can remove cations such as Na + in the cathode chamber 21 more effectively than the three-chamber electrolytic cell 2. In this embodiment, the electrolyte aqueous solution after the additional circulation treatment in the intermediate chamber 23 of the three-chamber electrolytic cell 2A is sent to the electrolyte circulation unit 5A, so that the electrolyte aqueous solution having higher acidity and suitable for generating slightly acidic electrolyzed water in the single-chamber electrolytic cell 3 can be generated in the electrolyte circulation unit 5A. By sending the electrolyte aqueous solution from the electrolyte circulation unit 5A to the single-chamber electrolytic cell 3, stable slightly acidic electrolyzed water can be generated in the single-chamber electrolytic cell 3.
図6は、電解質循環部5Aにおける電解質水溶液の流入、流出の位置関係を説明するための図である。
電解質循環部5Aには、三室型電解槽2Aの中間室23への電解質水溶液の第4流出口591が、方向Xにおいて、第1流入口53よりも下流、かつ第2流出口55よりも上流にある、本実施形態では、第2流入口56よりも上流にある。電解質循環部5Aには、三室型電解槽2Aの中間室23からの電解質水溶液の第4流入口592が、方向Xにおいて、第1流出口54よりも上流にある。電解質循環部5Aのその他の構成は、図3の電解質循環部5と同様である。電解質循環部5Aにおいても、電解質オーバーフロータンク6からの電解質水溶液の第3流入口58は、方向Xにおいて、第2流出口55の上流および下流にそれぞれあってもよい。各口53~58、591、592の上記位置は、例示であり、適宜に設定できる。
FIG. 6 is a diagram for explaining the positional relationship of the inflow and outflow of the electrolyte aqueous solution in the electrolyte circulation section 5A.
In the electrolyte circulation unit 5A, a fourth outlet 591 for the electrolyte aqueous solution to the intermediate chamber 23 of the three-compartment electrolytic cell 2A is located downstream of the first inlet 53 and upstream of the second outlet 55 in the direction X, and in this embodiment, upstream of the second inlet 56. In the electrolyte circulation unit 5A, a fourth inlet 592 for the electrolyte aqueous solution from the intermediate chamber 23 of the three-compartment electrolytic cell 2A is located upstream of the first outlet 54 in the direction X. The other configurations of the electrolyte circulation unit 5A are similar to those of the electrolyte circulation unit 5 in FIG. 3. In the electrolyte circulation unit 5A, the third inlet 58 for the electrolyte aqueous solution from the electrolyte overflow tank 6 may also be located upstream and downstream of the second outlet 55 in the direction X. The above positions of the ports 53 to 58, 591, 592 are merely examples and can be set as appropriate.
なお、電解水生成装置1Aは、開閉機構85を閉めて三室型電解槽2を駆動させず、アルカリ性電解水生成用の三室型電解槽2A(本発明の第1の三室型電解槽に相当)および酸性電解水生成用(例えば微酸性電解水生成用)の一室型電解槽3を駆動させてもよい。または、図9、図10に示すように、電解水生成装置1Bは、三室型電解槽2を備えず、三室型電解槽2A(本発明の第1の三室型電解槽に相当)および一室型電解槽3を備えていてもよい。これらの場合でも、電解水生成装置1Bは、三室型電解槽2Aおよび電解質循環部5Dの作用により、塩分濃度および酸性度が一室型電解槽3での微酸性電解水の生成に適した電解質水溶液を電解質循環部5D内で生成し、一室型電解槽3に送ることができる。図10の各口53~55、58、591、592の位置は、図6と同様の位置となっているが、例示であり、適宜に設定できる。第3流入口58は、方向Xにおいて、第2流出口55の上流および下流にそれぞれあってもよい。 In addition, the electrolytic water generating device 1A may close the opening and closing mechanism 85 to not drive the three-chamber electrolytic cell 2, and may drive the three-chamber electrolytic cell 2A (corresponding to the first three-chamber electrolytic cell of the present invention) for generating alkaline electrolytic water and the single-chamber electrolytic cell 3 for generating acidic electrolytic water (for example, for generating slightly acidic electrolytic water). Alternatively, as shown in Figures 9 and 10, the electrolytic water generating device 1B may not include the three-chamber electrolytic cell 2, but may include the three-chamber electrolytic cell 2A (corresponding to the first three-chamber electrolytic cell of the present invention) and the single-chamber electrolytic cell 3. Even in these cases, the electrolytic water generating device 1B can generate an electrolyte aqueous solution in the electrolyte circulation unit 5D whose salinity and acidity are suitable for generating slightly acidic electrolytic water in the single-chamber electrolytic cell 3 by the action of the three-chamber electrolytic cell 2A and the electrolyte circulation unit 5D, and send it to the single-chamber electrolytic cell 3. The positions of the ports 53 to 55, 58, 591, and 592 in Figure 10 are the same as those in Figure 6, but are exemplary and can be set appropriately. The third inlet 58 may be located upstream and downstream of the second outlet 55 in the direction X.
(第3実施形態)
図7は、電解質循環部の他の実施形態5Bの構成を説明するための図である。
第3の実施形態の電解水生成装置は、電解水生成装置1Aにおいて、アルカリ生成用の三室型電解槽2Aを、通常の三室型電解槽2と同じ構成の三室型電解槽2Bに替えたものである。電解質循環部5Bには、三室型電解槽2Bの中間室23への第5流出口593が、方向Xにおいて、第1流入口53の下流、かつ第2流入口56の上流にある。電解質循環部5Bには、三室型電解槽2Bの中間室23からの第5流入口594が、方向Xにおいて、第2流入口56の下流、かつ第2流出口55の上流にある。各口53~58、593、594の上記位置は、例示であり、適宜に設定できる。第3流入口58は、方向Xにおいて、第2流出口55の上流および下流にそれぞれあってもよい。
Third Embodiment
FIG. 7 is a diagram for explaining the configuration of another embodiment 5B of the electrolyte circulating portion.
The electrolytic water generating apparatus of the third embodiment is an electrolytic water generating apparatus 1A in which the three-chamber electrolytic cell 2A for generating alkali is replaced with a three-chamber electrolytic cell 2B having the same configuration as the normal three-chamber electrolytic cell 2. In the electrolyte circulation section 5B, a fifth outlet 593 to the intermediate chamber 23 of the three-chamber electrolytic cell 2B is located downstream of the first inlet 53 and upstream of the second inlet 56 in the direction X. In the electrolyte circulation section 5B, a fifth inlet 594 from the intermediate chamber 23 of the three-chamber electrolytic cell 2B is located downstream of the second inlet 56 and upstream of the second outlet 55 in the direction X. The above positions of the ports 53 to 58, 593, and 594 are merely examples and can be set appropriately. The third inlet 58 may be located upstream and downstream of the second outlet 55 in the direction X.
本実施形態でも、三室型電解槽2Bにより、三室型電解槽2、2Bと電解質循環部5Bの間で循環する電解質水溶液の酸性度をより高めることができ、一室型電解槽3に、より酸性度が高く電気分解に適した電解質水溶液を送ることができる。 In this embodiment, the three-chamber electrolytic cell 2B can further increase the acidity of the electrolyte aqueous solution circulating between the three-chamber electrolytic cells 2, 2B and the electrolyte circulation section 5B, and an electrolyte aqueous solution with a higher acidity and suitable for electrolysis can be sent to the single-chamber electrolytic cell 3.
(第4実施形態)
図8は、電解質循環部の他の実施形態5Cの構成を説明するための図である。
第4の実施形態の電解水生成装置は、三室型電解槽2、2A、2Bを備える。本実施形態では、電解質循環部5Cにおいて、三室型電解槽2Aの中間室23への第4流出口591Cが、方向Xにおいて、第2流入口56の下流にある点が、第2実施形態の図6の第4流出口591と異なる。各口53~58、591C、592~594の上記位置は、例示であり、適宜に設定できる。第3流入口58は、方向Xにおいて、第2流出口55の上流および下流にそれぞれあってもよい。
Fourth Embodiment
FIG. 8 is a diagram for explaining the configuration of another embodiment 5C of the electrolyte circulating portion.
The electrolytic water generating device of the fourth embodiment includes three-chamber electrolytic cells 2, 2A, and 2B. In this embodiment, the fourth outlet 591C to the intermediate chamber 23 of the three-chamber electrolytic cell 2A in the electrolyte circulation section 5C is located downstream of the second inlet 56 in the direction X, which is different from the fourth outlet 591 in FIG. 6 of the second embodiment. The above positions of the ports 53 to 58, 591C, and 592 to 594 are merely examples and can be set appropriately. The third inlet 58 may be located upstream and downstream of the second outlet 55 in the direction X.
本実施形態では、三室型電解槽2A、2Bにより、三室型電解槽2、2A、2Bと電解質循環部5Cの間で循環する電解質水溶液の酸性度をさらに高めることができ、一室型電解槽3に、酸性度が高く電気分解に適した電解質水溶液を送ることができる。 In this embodiment, the three-chamber electrolytic cells 2A and 2B can further increase the acidity of the electrolyte aqueous solution circulating between the three-chamber electrolytic cells 2, 2A, and 2B and the electrolyte circulation section 5C, and an electrolyte aqueous solution with a high acidity suitable for electrolysis can be sent to the single-chamber electrolytic cell 3.
本発明は、その特徴から逸脱することなく、実施形態で実施できる。実施形態、変形例、効果は単なる例示であり、本発明を限定するものとして解釈されるべきではない。実施形態および変形例の特徴、構造は、追加でき、また代替の構成を得るために様々な方法で組み合わせることができる。 The present invention may be implemented in the embodiments without departing from its characteristics. The embodiments, variations, and effects are merely illustrative and should not be construed as limiting the present invention. The features and structures of the embodiments and variations may be added or combined in various ways to obtain alternative configurations.
1、1A~1B…電解水生成装置、2…三室型電解槽(本発明の第1の三室型電解槽に相当)、2A…三室型電解槽(図5では、三室型電解槽2の駆動時には本発明の第2の三室型電解槽に相当し、三室型電解槽2の停止時には本発明の第1の三室型電解槽に相当、図9では本発明の第1の三室型電解槽に相当)、3…一室型電解槽、4…電解質供給部、5、5A~5D…電解質循環部、6…電解質オーバーフロータンク(本発明の余剰循環部に相当)、21…カソード室(本発明の第1カソード室に相当、三室型電解槽2の駆動時の図5の三室型電解槽2Aのカソード室21は本発明の第2カソード室に相当)、22…アノード室(本発明の第1アノード室に相当、三室型電解槽2の駆動時の図5の三室型電解槽2Aのアノード室22は本発明の第2アノード室に相当)、23…中間室(本発明の第1中間室に相当、三室型電解槽2の駆動時の図5の三室型電解槽2Aの中間室23は本発明の第2中間室に相当)。
1, 1A to 1B... electrolytic water generating device, 2... three-chamber electrolytic cell (corresponding to the first three-chamber electrolytic cell of the present invention), 2A... three-chamber electrolytic cell (in FIG. 5, when the three-chamber electrolytic cell 2 is driven, it corresponds to the second three-chamber electrolytic cell of the present invention, and when the three-chamber electrolytic cell 2 is stopped, it corresponds to the first three-chamber electrolytic cell of the present invention, in FIG. 9, it corresponds to the first three-chamber electrolytic cell of the present invention), 3... single-chamber electrolytic cell, 4... electrolyte supply section, 5, 5A to 5D... electrolyte circulation section, 6... electrolyte overflow tank (corresponding to the surplus circulation section of the present invention), 21 5 when the three-chamber electrolytic cell 2 is operating corresponds to the second anode chamber of the present invention), 22... anode chamber (corresponding to the first anode chamber of the present invention, the anode chamber 22 of the three-chamber electrolytic cell 2A in FIG. 5 when the three-chamber electrolytic cell 2 is operating corresponds to the second anode chamber of the present invention), 23... intermediate chamber (corresponding to the first intermediate chamber of the present invention, the intermediate chamber 23 of the three-chamber electrolytic cell 2A in FIG. 5 when the three-chamber electrolytic cell 2 is operating corresponds to the second intermediate chamber of the present invention).
Claims (7)
一室型電解槽と、
電解質供給部と、
電解質水溶液が前記電解質供給部から供給されるとともに、前記第1中間室との間で電解質水溶液を循環させ、かつ前記一室型電解槽に電解質水溶液を供給する電解質循環部と、
前記電解質循環部において前記第1中間室および前記一室型電解槽への電解質水溶液の供給量よりも前記電解質供給部および前記第1中間室からの電解質水溶液の供給量が多いことによる余剰の電解質水溶液を前記電解質循環部との間で循環させる余剰循環部と、
を備えることを特徴とする電解水生成装置。 a first three-chamber electrolytic cell having a first intermediate chamber for electrolyzing a supplied electrolyte aqueous solution and discharging the electrolyte aqueous solution from which a portion of the electrolyte has been consumed, and a first anode chamber and a first cathode chamber to which ionized electrolyte is supplied from the first intermediate chamber;
A single-chamber electrolytic cell;
An electrolyte supply;
an electrolyte circulation unit that supplies an aqueous electrolyte solution from the electrolyte supply unit, circulates the aqueous electrolyte solution between the electrolyte supply unit and the first intermediate chamber, and supplies the aqueous electrolyte solution to the single-chamber electrolytic cell;
a surplus circulation section that circulates a surplus of electrolyte aqueous solution between the electrolyte circulation section and the electrolyte aqueous solution, which is generated when an amount of electrolyte aqueous solution supplied from the electrolyte supply section and the first intermediate chamber is greater than an amount of electrolyte aqueous solution supplied to the first intermediate chamber and the single-chamber electrolytic cell in the electrolyte circulation section;
An electrolytic water generating device comprising:
前記第1アノード室から酸性電解水が供給される第1配管と、原水が流通し前記第1配管と合流する第2配管と、を備えることを特徴とする電解水生成装置。 The electrolytic water generating device according to claim 1,
An electrolyzed water generating apparatus comprising: a first pipe through which acidic electrolyzed water is supplied from the first anode chamber; and a second pipe through which raw water flows and which merges with the first pipe.
前記電解質循環部は、
前記電解質供給部からの電解質水溶液の第1流入口と、
前記一室型電解槽への電解質水溶液の第1流出口と、
前記第1流入口から前記第1流出口へ電解質水溶液が流れる方向において、前記第1流入口よりも下流にある、前記余剰循環部への電解質水溶液の第2流出口と、
前記流れる方向において、前記第1流入口よりも下流、かつ前記第2流出口よりも上流にある、前記第1中間室からの電解質水溶液の第2流入口と、
前記流れる方向において、前記第2流入口よりも上流にある、前記第1中間室への電解質水溶液の第3流出口と、
前記流れる方向において、前記第1流出口よりも上流にある、前記余剰循環部からの電解質水溶液の第3流入口と、を備えること特徴とする電解水生成装置。 The electrolytic water generating device according to claim 1,
The electrolyte circulation unit is
A first inlet for an aqueous electrolyte solution from the electrolyte supply;
a first outlet for an aqueous electrolyte solution into the single-chamber electrolytic cell;
a second outlet for the electrolyte aqueous solution to the surplus circulation unit, the second outlet being located downstream of the first inlet in a direction in which the electrolyte aqueous solution flows from the first inlet to the first outlet;
a second inlet for the electrolyte aqueous solution from the first intermediate chamber, the second inlet being downstream of the first inlet and upstream of the second outlet in the flow direction;
a third outlet for the electrolyte aqueous solution to the first intermediate chamber, the third outlet being upstream of the second inlet in the flow direction;
and a third inlet for the electrolyte aqueous solution from the surplus circulation section, the third inlet being located upstream of the first outlet in the flow direction.
前記第3流入口は、前記流れる方向において、前記第2流出口の上流および下流にそれぞれあること特徴とする電解水生成装置。 The electrolytic water generating device according to claim 3,
An electrolytic water generating device characterized in that the third inlet is located upstream and downstream of the second outlet in the flow direction.
供給される電解質水溶液を電気分解し、電解質が消費された電解質水溶液を排出する第2中間室と、前記第2中間室からイオン化した電解質が供給される第2アノード室及び第2カソード室と、前記第2アノード室と前記第2カソード室とを連結し、前記第2アノード室が生成する酸性電解水を前記第2カソード室に送る第3配管と、を有する第2の三室型電解槽を備え、
前記電解質循環部は、前記第2中間室との間で電解質水溶液を循環させること特徴とする電解水生成装置。 The electrolytic water generating device according to claim 1 or 3,
a second three-chamber electrolytic cell having a second intermediate chamber for electrolyzing a supplied electrolyte aqueous solution and discharging the electrolyte aqueous solution from which the electrolyte has been consumed, a second anode chamber and a second cathode chamber to which an ionized electrolyte is supplied from the second intermediate chamber, and a third pipe connecting the second anode chamber and the second cathode chamber and sending the acidic electrolyzed water generated by the second anode chamber to the second cathode chamber,
The electrolytic water generating device is characterized in that the electrolyte circulation unit circulates an aqueous electrolyte solution between the second intermediate chamber and the electrolyte circulation unit.
前記電解質循環部は、
前記流れる方向において、前記第1流入口よりも下流、かつ前記第2流出口よりも上流にある、前記第2中間室への電解質水溶液の第4流出口と、
前記流れる方向において、前記第2流出口よりも下流、かつ、前記第1流出口よりも上流にある、前記第2中間室からの電解質水溶液の第4流入口と、を備えることを特徴とする電解水生成装置。 In the electrolytic water generating apparatus according to claim 5 which is dependent on claim 3,
The electrolyte circulation unit is
a fourth outlet for the electrolyte aqueous solution to the second intermediate chamber, the fourth outlet being located downstream of the first inlet and upstream of the second outlet in the flow direction;
and a fourth inlet for the electrolyte aqueous solution from the second intermediate chamber, which is downstream of the second outlet and upstream of the first outlet in the flow direction.
前記第1の三室型電解槽は、前記アノード室と前記カソード室とを連結し、前記アノード室が生成する酸性電解水を前記カソード室に送る連結配管を有することを特徴とする電解水生成装置。
The electrolytic water generating device according to claim 1,
The first three-chamber electrolytic cell has a connecting pipe that connects the anode chamber and the cathode chamber and sends acidic electrolytic water generated in the anode chamber to the cathode chamber.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022180942A JP7328726B1 (en) | 2022-11-11 | 2022-11-11 | Electrolyzed water generator |
PCT/JP2022/046587 WO2024100908A1 (en) | 2022-11-11 | 2022-12-19 | Electrolyzed water producing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022180942A JP7328726B1 (en) | 2022-11-11 | 2022-11-11 | Electrolyzed water generator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP7328726B1 JP7328726B1 (en) | 2023-08-17 |
JP2024070441A true JP2024070441A (en) | 2024-05-23 |
Family
ID=87563104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022180942A Active JP7328726B1 (en) | 2022-11-11 | 2022-11-11 | Electrolyzed water generator |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7328726B1 (en) |
WO (1) | WO2024100908A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04118191U (en) * | 1991-04-02 | 1992-10-22 | 石川島播磨重工業株式会社 | Ion exchange water softener salt water tank |
JP2012057229A (en) * | 2010-09-10 | 2012-03-22 | Japan Organo Co Ltd | Scale prevention method for three-compartment electrolytic water generator, and three-compartment electrolytic water generator |
JP2016160512A (en) * | 2015-03-04 | 2016-09-05 | 株式会社東芝 | Electrolytic device and inorganic chloride solution cartridge |
JP2017056397A (en) * | 2015-09-15 | 2017-03-23 | 株式会社東芝 | Electrolytic water supply system |
JP2018108562A (en) * | 2017-01-05 | 2018-07-12 | 株式会社テックコーポレーション | Electrolytic water generation device and electrolytic water generation method |
KR20190054754A (en) * | 2017-11-14 | 2019-05-22 | 주식회사 이플로우솔루션 | 3-room type electrolyzed water producing apparatus |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4118191B2 (en) | 2003-05-27 | 2008-07-16 | 株式会社荏原製作所 | Coagulation sedimentation processing equipment |
-
2022
- 2022-11-11 JP JP2022180942A patent/JP7328726B1/en active Active
- 2022-12-19 WO PCT/JP2022/046587 patent/WO2024100908A1/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04118191U (en) * | 1991-04-02 | 1992-10-22 | 石川島播磨重工業株式会社 | Ion exchange water softener salt water tank |
JP2012057229A (en) * | 2010-09-10 | 2012-03-22 | Japan Organo Co Ltd | Scale prevention method for three-compartment electrolytic water generator, and three-compartment electrolytic water generator |
JP2016160512A (en) * | 2015-03-04 | 2016-09-05 | 株式会社東芝 | Electrolytic device and inorganic chloride solution cartridge |
JP2017056397A (en) * | 2015-09-15 | 2017-03-23 | 株式会社東芝 | Electrolytic water supply system |
JP2018108562A (en) * | 2017-01-05 | 2018-07-12 | 株式会社テックコーポレーション | Electrolytic water generation device and electrolytic water generation method |
KR20190054754A (en) * | 2017-11-14 | 2019-05-22 | 주식회사 이플로우솔루션 | 3-room type electrolyzed water producing apparatus |
Also Published As
Publication number | Publication date |
---|---|
WO2024100908A1 (en) | 2024-05-16 |
JP7328726B1 (en) | 2023-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB2441427A (en) | Method and apparatus for generating electrolysed water | |
JP6105130B2 (en) | Electrolyzer | |
JP6139809B1 (en) | Electrolyzed water generating apparatus and electrolyzed water generating method | |
WO2016016954A1 (en) | Electrolytic ion water generation method and electrolytic ion water generation apparatus | |
JP2021169084A (en) | Electrolytic water generator and electrolytic water generating method | |
EP1461291B1 (en) | Electrolytic device and method for disinfecting water in a water supply system by means of the generation of active chlorine | |
JP2005177672A (en) | Electrolysis type ozonizer | |
KR101371616B1 (en) | Naocl dilution structure of generation-system for antiseptic solution including chlorine | |
KR100706118B1 (en) | Device for supplementing water of salt water-reservoir for device for generating sodium hypochlorite | |
JP5687789B1 (en) | Electrolyzed water generator | |
WO2024100908A1 (en) | Electrolyzed water producing device | |
JP2000140850A (en) | Aqueous hypochlorous acid solution generator | |
KR102250773B1 (en) | System for generating oxidizers | |
JP2004298832A (en) | Method and apparatus for making electrolytic water, and method and apparatus for making electrolytic hypo-water | |
JP2017056377A (en) | Electrolyzed water generating apparatus | |
JP2017164692A (en) | Electrolytic water generator | |
JP2015178061A (en) | Electrolytic water generator | |
JP4685830B2 (en) | Electrolyzed water production apparatus, electrolyzed water production method, and electrolyzed water | |
JPH09206755A (en) | Formation of alkaline ionized and hypochlorous acid sterilizing water and device therefor | |
KR200462705Y1 (en) | Hypochlorite water generator for medical device disinfection | |
JP6675112B2 (en) | Electrolysis raw water storage type electrolyzer | |
JP2002361252A (en) | Electrolytic bath of strong electrolytic water generator | |
JP2024094563A (en) | Electrolyzed water generator for generating alkaline electrolyzed water, electrolyzed water generator for generating acidic electrolyzed water | |
WO2022014127A1 (en) | Electrolyzed water generation device | |
JP3205527B2 (en) | Method for producing weakly acidic sterilized water and weakly alkaline water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221219 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20221219 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230419 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230530 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20230629 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230728 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7328726 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |