JP2024068123A - Method for regulating the voltage of a high-voltage electrical system of a vehicle as a function of the switching and/or operating conditions of the vehicle - Patents.com - Google Patents

Method for regulating the voltage of a high-voltage electrical system of a vehicle as a function of the switching and/or operating conditions of the vehicle - Patents.com Download PDF

Info

Publication number
JP2024068123A
JP2024068123A JP2023178568A JP2023178568A JP2024068123A JP 2024068123 A JP2024068123 A JP 2024068123A JP 2023178568 A JP2023178568 A JP 2023178568A JP 2023178568 A JP2023178568 A JP 2023178568A JP 2024068123 A JP2024068123 A JP 2024068123A
Authority
JP
Japan
Prior art keywords
voltage
intermediate circuit
voltage intermediate
vehicle
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023178568A
Other languages
Japanese (ja)
Inventor
ミュラー エリク
シュルテ マリオ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dr Ing HCF Porsche AG
Original Assignee
Dr Ing HCF Porsche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dr Ing HCF Porsche AG filed Critical Dr Ing HCF Porsche AG
Publication of JP2024068123A publication Critical patent/JP2024068123A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0092Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption with use of redundant elements for safety purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/12Buck converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

【課題】スイッチによって高電圧中間回路から分離された高電圧バッテリを備える電気自動車又はハイブリッド自動車である車両の高電圧中間回路の電圧を調整する方法、電気システム、制御ユニット、プログラム及び電気自動車又はハイブリッド自動車を提供する。【解決手段】方法は、定電圧中間回路208を高電圧中間回路202に電気的に接続する第1のDC/DCコンバータ206を作動させることと、定電圧中間回路208及び/又は高電圧中間回路202における電圧が規定値に低下するまで、定電圧中間回路208に接続された高電圧ヒータ210をオンすることと、を含む。電圧をより高い電圧に調整する必要がある場合、車両の低電圧電気システム212を定電圧中間回路208に接続する第2のDC/DCコンバータ214を作動させ、高電圧中間回路202がプリチャージされるまで、第1のDC/DCコンバータ206を作動させる。【選択図】図2A method, an electrical system, a control unit, a program and an electric or hybrid vehicle for regulating the voltage of a high-voltage intermediate circuit of a vehicle, which is an electric or hybrid vehicle with a high-voltage battery separated from the high-voltage intermediate circuit by a switch. The method comprises activating a first DC/DC converter, which electrically connects a constant voltage intermediate circuit to a high-voltage intermediate circuit, and switching on a high-voltage heater, which is connected to the constant voltage intermediate circuit, until the voltage in the constant voltage intermediate circuit and/or the high-voltage intermediate circuit drops to a specified value. If the voltage needs to be regulated to a higher voltage, a second DC/DC converter, which connects a low-voltage electrical system of the vehicle to the constant voltage intermediate circuit, is activated and the first DC/DC converter is activated until the high-voltage intermediate circuit is precharged.

Description

本発明は、高電圧電気中間回路及び1つ以上のバッテリバンクを備える高電圧電気エネルギー(電力)貯蔵システムを有する電気自動車又はハイブリッド車両への電圧の供給に関し、特に、高電圧電気中間回路の電圧を車両のスイッチング状態及び/又は作動状態に応じて調整するための方法に関する。 The present invention relates to the supply of voltage to an electric or hybrid vehicle having a high-voltage electrical energy (power) storage system with a high-voltage electrical intermediate circuit and one or more battery banks, and in particular to a method for regulating the voltage of the high-voltage electrical intermediate circuit depending on the switching and/or operating state of the vehicle.

電気自動車、すなわち、ハイブリッド車(Hybrid Electric Vehicle、HEV)、プラグインハイブリッド車(Plugin Hybrid Electric Vehicle、PHEV)、及び純粋な電気自動車(Electric Vehicle、EV)は、概して、高電圧電気システムが搭載される。高電圧電気システムは、高電圧バッテリと、高電圧バッテリに接続されたモータ制御ユニットと、モータ制御ユニットに接続された電気駆動モータとを備え、並びに、電気自動車のタイプ及び装備に応じて、例えば、空調機コンプレッサ、ヒータなどの高電圧構成要素を更に備える。DCモータを使用しない場合、周波数コンバータは、高電圧バッテリによって供給されるDC電流を、通常3相のAC電流に変換し、AC電流で作動するよう設計された電気モータを駆動することができる。 Electric vehicles, i.e. hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and pure electric vehicles (EV), are generally equipped with a high-voltage electrical system. The high-voltage electrical system includes a high-voltage battery, a motor control unit connected to the high-voltage battery, an electric drive motor connected to the motor control unit, and, depending on the type and equipment of the electric vehicle, further high-voltage components such as an air conditioner compressor, a heater, etc. If a DC motor is not used, a frequency converter can convert the DC current provided by the high-voltage battery into AC current, usually three phases, to drive an electric motor designed to operate with AC current.

現在利用可能なほとんどの電気自動車の高電圧電気システムは、約400ボルトのシステム電圧を有するアーキテクチャに基づいており、約800ボルトのシステム電圧を有する車両はますます一般的である。 The high-voltage electrical systems of most currently available electric vehicles are based on architectures with a system voltage of around 400 volts, with vehicles with system voltages of around 800 volts being increasingly common.

高電圧バッテリは、一般的に車両中間回路とも呼ばれる高電圧電気中間回路を介して高電圧構成要素に接続される。主に、電流又は電圧リップルを制限することを意図した電子電力回路のキャパシタンスから形成される高電圧中間回路は、例えば、接触器などのスイッチを介してバッテリに分離可能に接続され、車両がオフされたときに、また事故後にも高電圧中間回路を高電圧バッテリから切り離し、それによって高電圧との接触がほぼ回避される。 The high-voltage battery is connected to the high-voltage components via a high-voltage electrical intermediate circuit, also commonly referred to as the vehicle intermediate circuit. The high-voltage intermediate circuit, which is mainly formed from the capacitance of electronic power circuits intended to limit current or voltage ripple, is separably connected to the battery via a switch, e.g. a contactor, which disconnects the high-voltage intermediate circuit from the high-voltage battery when the vehicle is switched off and also after an accident, so that contact with the high voltage is largely avoided.

例えば、接続された高電圧構成要素などの高電圧中間回路上のキャパシタンスに起因して、スイッチを開いた後でさえも、高電圧中間回路に高電圧が存在することがある、結果として生じる安全リスクは、接触器を切断した後に高電圧中間回路に残っている高電圧を除去する、専用の放電デバイスによって除去される。 High voltages may be present in the high voltage intermediate circuit even after the switch is opened, due to capacitances on the high voltage intermediate circuit, e.g. connected high voltage components, the resulting safety risk is eliminated by a dedicated discharge device, which removes any high voltage remaining in the high voltage intermediate circuit after disconnecting the contactor.

車両のシステム電圧は、バッテリの充電状態及び回路構成、例えば、複数のバッテリバンクの直列又は並列回路に応じて、300~1000ボルトの範囲内で変化することができる。公称システム電圧が800ボルトの車両では、多くの場合、各400ボルトの電圧が直列に接続された2つのバッテリバンクがある。最も一般的な充電ステーションは、今日では最大400~500ボルトの充電電圧を有する。したがって、車両の2つのバッテリバンクの直列接続は切り離すことができ、バッテリバンクは、例えば、800ボルトのシステム電圧の充電デバイスが利用できない場合など、高電圧中間回路を介して、400ボルトの公称システム電圧のために構成された充電回路によって、別々に又は並列に充電されることができる。この目的のために、高電圧中間回路は、高電圧中間回路に再接続されたときに許容できない過電圧を通して個々のバッテリバンクを損傷又は破壊することを避けるために、直列回路が専用の放電デバイスから取り外された後にも放電されなければならない。この放電はまた、専用の放電デバイスによって実施される。 The system voltage of a vehicle can vary in the range of 300 to 1000 volts depending on the state of charge of the batteries and the circuit configuration, for example a series or parallel circuit of several battery banks. In vehicles with a nominal system voltage of 800 volts, there are often two battery banks connected in series with a voltage of 400 volts each. The most common charging stations today have a charging voltage of up to 400 to 500 volts. The series connection of the two battery banks of the vehicle can therefore be disconnected and the battery banks can be charged separately or in parallel by a charging circuit configured for a nominal system voltage of 400 volts via the high-voltage intermediate circuit, for example if a charging device for a system voltage of 800 volts is not available. For this purpose, the high-voltage intermediate circuit must also be discharged after the series circuit has been removed from the dedicated discharge device in order to avoid damaging or destroying the individual battery banks through impermissible overvoltages when they are reconnected to the high-voltage intermediate circuit. This discharge is also carried out by a dedicated discharge device.

車両がオンされると、スイッチが高電圧中間回路を高電圧バッテリに接続する前に、高電圧中間回路を少なくともおよそ高電圧バッテリの電圧に対応する電圧にプリチャージしなければならない。これは、とりわけ、安全機能が保証されたスイッチのその部品依存の電流制限、及びそれに関連する電磁妨害放射に応じるために、とりわけ、スイッチを通した電流ピークを回避するのに役立つ。高電圧中間回路において存在するキャパシタンスを高電圧バッテリの電圧にプリチャージするために、別個の低電力プリチャージ回路が使用される。最も単純な場合、これは、高電圧バッテリに切り替え可能に接続された抵抗器を介して行うことができる。 When the vehicle is switched on, before the switch connects the high-voltage intermediate circuit to the high-voltage battery, the high-voltage intermediate circuit must be precharged to a voltage that corresponds at least approximately to the voltage of the high-voltage battery. This serves, among other things, to avoid current peaks through the switch in order to comply with its component-dependent current limitations and the associated electromagnetic interference emissions of the switch, in which the safety function is guaranteed. A separate low-power precharge circuit is used to precharge the capacitances present in the high-voltage intermediate circuit to the voltage of the high-voltage battery. In the simplest case, this can be done via a resistor switchably connected to the high-voltage battery.

これまで常に必要とされてきた専用の放電及びプリチャージデバイスはコストがかかることに加えて、さらにエラーの原因となる可能性があるため望ましくない。 The dedicated discharge and precharge devices that have always been required are undesirable because they are costly and can also be a source of error.

したがって、本発明によって対処される問題は、他の手段によって電気自動車又はハイブリッド車両における専用の充電デバイスの機能を実装することである。 The problem addressed by this invention is therefore to implement the functionality of a dedicated charging device in an electric or hybrid vehicle by other means.

本発明の説明
前述の問題は、請求項1に記載の方法、請求項4に記載の電気システム、及び請求項6に記載の制御ユニットによって解決される。有利な更なる開発及び構成は、従属特許請求の範囲に特定される。
Description of the invention The aforementioned problem is solved by a method according to claim 1, an electrical system according to claim 4 and a control unit according to claim 6. Advantageous further developments and configurations are specified in the dependent claims.

本発明の第1の態様は、ハイブリッド自動車又は電気自動車に搭載されている、乗員室を暖めたり又は高電圧バッテリの温度制御を行う役目をするヒータ要素が、電力を迅速かつ容易に消費できるという知見を利用するものである。 The first aspect of the invention takes advantage of the finding that heater elements in hybrid or electric vehicles that serve to heat the passenger compartment or control the temperature of a high voltage battery can dissipate power quickly and easily.

本発明のこの第1の態様によれば、スイッチによって高電圧中間回路から分離された高電圧バッテリを有する電気自動車又はハイブリッド自動車である車両の高電圧中間回路の電圧を調整するための方法は、以下のステップを含む。すなわち、定電圧中間回路を高電圧中間回路に作動可能に電気的に接続する第1のDC/DCコンバータを作動するステップと、定電圧中間回路及び/又は高電圧中間回路における電圧が規定値に低下するまで、定電圧中間回路に接続された高電圧ヒータをオンするステップと、を含む。高電圧中間回路の電圧は、電圧測定デバイスによって適宜に監視される。第1のDC/DCコンバータは、高電圧中間回路から定電圧中間回路に電力供給するように少なくとも構成される。第1のDC/DCコンバータはまた、例えば、電気自動車又はハイブリッド自動車が充電ステーションに電気的に接続されている場合などに、例えば、定電圧中間回路が外部電圧源から電力供給されるときに、高電圧中間回路、ひいては定電圧中間回路からの高電圧バッテリに電力供給するように構成されてもよい。例えば、第1のDC/DCコンバータは、いわゆるバックブーストコンバータであってもよく、これは入力電圧を降圧させ、及び昇圧させることができる。第1のDC/DCコンバータはまた、好ましくは、双方向に作動可能である。 According to this first aspect of the invention, a method for regulating the voltage of a high-voltage intermediate circuit of a vehicle, which is an electric or hybrid vehicle having a high-voltage battery separated from the high-voltage intermediate circuit by a switch, comprises the steps of: activating a first DC/DC converter operatively electrically connecting the constant voltage intermediate circuit to the high-voltage intermediate circuit; and switching on a high-voltage heater connected to the constant voltage intermediate circuit until the voltage in the constant voltage intermediate circuit and/or the high-voltage intermediate circuit drops to a specified value. The voltage of the high-voltage intermediate circuit is monitored accordingly by a voltage measuring device. The first DC/DC converter is at least configured to power the constant voltage intermediate circuit from the high-voltage intermediate circuit. The first DC/DC converter may also be configured to power the high-voltage intermediate circuit, and thus the high-voltage battery from the constant voltage intermediate circuit, for example when the constant voltage intermediate circuit is powered from an external voltage source, such as when the electric or hybrid vehicle is electrically connected to a charging station. For example, the first DC/DC converter may be a so-called buck-boost converter, which is capable of stepping down and stepping up an input voltage. The first DC/DC converter is also preferably bidirectionally operable.

上述のように、場合によっては、高電圧中間回路を高電圧バッテリの電圧に対応する電圧へプリチャージすることが望ましい、または必要となる場合がある。これはまた、上述のように、高電圧バッテリが高電圧中間回路に電気的に接続する前に、高電圧バッテリの2つのバッテリバンクを直列回路から並列回路へ、又はその逆に切り替える場合にも必要となる場合がある。特に、直列接続から並列接続に2つのバッテリバンクを切り替えるときに、まず高電圧中間回路及び定電圧中間回路の電圧低減が必要とされ、これは上述の第1の態様に従って実施され得る。 As mentioned above, in some cases it may be desirable or necessary to pre-charge the high-voltage intermediate circuit to a voltage corresponding to the voltage of the high-voltage battery. This may also be necessary when switching two battery banks of a high-voltage battery from a series circuit to a parallel circuit or vice versa, as mentioned above, before the high-voltage battery is electrically connected to the high-voltage intermediate circuit. In particular, when switching two battery banks from a series connection to a parallel connection, a voltage reduction of the high-voltage intermediate circuit and the constant-voltage intermediate circuit is first required, which may be performed according to the first aspect described above.

1つの実施形態では、IEC60449に準拠した電圧範囲Iの制限値よりも著しく大きい規定値に達した時点で、電圧低減を終了することができる。高電圧ヒータが十分に早くオフ(電源オフ)された場合、又はオフ後に高電圧中間回路に残っている電圧が規定値に対応するようにオフ時間が選択される場合、より高い電圧レベルへのその後の調整は必ずしも必要ではない。この構成は、例えば、高電圧バッテリの2つのバッテリバンクの直列接続から並列接続に切り替えるとき、又は1つのバッテリバンクのみの高電圧中間回路への接続の前に使用され得る。 In one embodiment, the voltage reduction can be terminated when a specified value is reached that is significantly greater than the limit value of the voltage range I according to IEC 60449. If the high-voltage heater is switched off (powered off) early enough, or if the off-time is selected such that the voltage remaining in the high-voltage intermediate circuit after switching off corresponds to the specified value, a subsequent adjustment to a higher voltage level is not necessarily required. This configuration can be used, for example, when switching from a series to a parallel connection of two battery banks of high-voltage batteries, or before the connection of only one battery bank to the high-voltage intermediate circuit.

更なる実施形態では、高電圧中間回路の電圧は、IEC60449に準拠した電圧範囲Iの制限値よりも低く、例えば0ボルト近くまで低くすることができる。この構成では、例えば、前述のスイッチで、高電圧バッテリの2つのバッテリバンクを直列接続から並列接続へ切り替える場合、又は1つのバッテリバンクのみの高電圧中間回路への接続の前に、高電圧中間回路における電圧をその後より高い値に上昇させる必要がある場合がある。 In a further embodiment, the voltage of the high-voltage intermediate circuit can be lower than the limit of voltage range I according to IEC 60449, for example close to 0 volts. In this configuration, for example, when switching two battery banks of a high-voltage battery from a series to a parallel connection with the aforementioned switch, or before connecting only one battery bank to the high-voltage intermediate circuit, the voltage in the high-voltage intermediate circuit may subsequently need to be increased to a higher value.

高電圧バッテリの電圧は、その充電状態(SOC)によって変動するため、高電圧中間回路が、電圧低下後に、高電圧バッテリ又は高電圧バッテリの少なくとも1つのバッテリバンクに直接接続される場合、デフォルト値は、高電圧バッテリのSOCから導出され得る。例えば、車両がオフ(電源オフ)されたとき又は事故後など、IEC60449に従った電圧範囲Iに対する制限値より電圧を下げる必要がある場合は、固定のデフォルト値を使用することができる。 Since the voltage of the high-voltage battery varies with its state of charge (SOC), if the high-voltage intermediate circuit is directly connected to the high-voltage battery or to at least one battery bank of the high-voltage battery after a voltage drop, the default value can be derived from the SOC of the high-voltage battery. If the voltage needs to drop below the limit for voltage range I according to IEC 60449, for example when the vehicle is turned off (powered off) or after an accident, a fixed default value can be used.

したがって、1つ又は複数の実施形態では、方法はまた、電圧低下直後の車両状態又は車両の電気システムの構成の変化に応じて、高電圧中間回路の電圧のデフォルト値を決定することを含む。用語「車両状態」は、例えば、オフされた車両を意味してもよく、車両の電気システムの構成の変化は、高電圧バッテリの2つのバッテリバンクの直列接続から並列接続への切り替え、又は1つのバッテリバンクのみの高電圧中間回路への接続を表す。 Thus, in one or more embodiments, the method also includes determining a default value for the voltage of the high-voltage intermediate circuit in response to a vehicle state immediately after the voltage drop or a change in the configuration of the vehicle's electrical system. The term "vehicle state" may, for example, mean a vehicle that is turned off, and a change in the configuration of the vehicle's electrical system may represent a switch from a series connection of two battery banks of the high-voltage battery to a parallel connection, or a connection of only one battery bank to the high-voltage intermediate circuit.

電圧調整で高電圧中間回路の電圧を上げる必要がある場合、例えば、車両がオン(電源オン)された場合、高電圧中間回路における電圧をIEC60449に準拠した電圧範囲Iの閾値未満の値に低下させた場合、又は2つのバッテリバンクを並列接続から直列接続に切り替えた場合、高電圧中間回路のプリチャージが行われなければならない、以下で更に説明する本発明の第2の態様による車両の電気システムでは、プリチャージは、車両において更に存在する12ボルト回路のバッテリから行われる。この目的のために、12ボルトのバッテリは、双方向の第2のDC/DCコンバータを介して定電圧中間回路に接続され、高電圧中間回路の充電は、第1のDC/DCコンバータによって定電圧中間回路から行われる。プリチャージのために大量の電力を必要としないため、概してキャパシタンスが低い12ボルトのバッテリに過大な負荷はかからない。 If the voltage regulation requires an increase in the voltage of the high-voltage intermediate circuit, for example when the vehicle is switched on (powered on), when the voltage in the high-voltage intermediate circuit is reduced to a value below the threshold of the voltage range I according to IEC 60449, or when switching two battery banks from a parallel connection to a series connection, a pre-charging of the high-voltage intermediate circuit must be performed. In the vehicle electrical system according to the second aspect of the invention, which is further described below, the pre-charging is performed from the battery of the 12-volt circuit also present in the vehicle. For this purpose, the 12-volt battery is connected to the constant voltage intermediate circuit via a bidirectional second DC/DC converter, and the charging of the high-voltage intermediate circuit is performed from the constant voltage intermediate circuit by the first DC/DC converter. Since a large amount of power is not required for pre-charging, the 12-volt battery, which generally has a low capacitance, is not overloaded.

したがって、方法の1つ又は複数の実施形態は、定電圧中間回路に電力供給するために、例えば、12ボルト電流回路である、車両の低電圧電気システムを、定電圧中間回路に接続する第2のDC/DCコンバータを作動させるステップ、及び高圧中間回路が定電圧中間回路から規定値に対応する電圧までプリチャージされるまで、第1のDC/DCコンバータを作動させるステップと、を含む。 Thus, one or more embodiments of the method include the steps of operating a second DC/DC converter connecting the vehicle's low voltage electrical system, e.g. a 12 volt current circuit, to the constant voltage intermediate circuit to power the constant voltage intermediate circuit, and operating the first DC/DC converter until the high voltage intermediate circuit is precharged from the constant voltage intermediate circuit to a voltage corresponding to a specified value.

少なくとも電圧調整中、制御ユニットは、高電圧バッテリ及び高電圧中間回路の電圧を監視する。電圧の差が所定の閾値よりも小さくなり、高電圧バッテリが高電圧中間回路に接続されると、制御ユニットは、電気的接続を確立するためにスイッチを制御する。 At least during voltage regulation, the control unit monitors the voltages of the high-voltage battery and the high-voltage intermediate circuit. When the voltage difference is less than a predetermined threshold and the high-voltage battery is connected to the high-voltage intermediate circuit, the control unit controls the switch to establish an electrical connection.

1つ又は複数の実施形態では、高電圧中間回路のプリチャージは、例えばランプ関数に従って、高電圧中間回路の電圧を連続的に増加することによって行われる。高電圧中間回路の電圧の目標値に到達するとすぐに、必要に応じて、高電圧中間回路と高電圧バッテリとの間の電気的接続が確立された後に、プリチャージを終了することができる。 In one or more embodiments, the precharging of the high-voltage intermediate circuit is performed by continuously increasing the voltage of the high-voltage intermediate circuit, for example according to a ramp function. As soon as the target value of the voltage of the high-voltage intermediate circuit is reached, the precharging can be terminated, if necessary, after an electrical connection between the high-voltage intermediate circuit and the high-voltage battery has been established.

本発明の第2の態様によれば、電気自動車又はハイブリッド自動車である車両の電気システムは、高電圧中間回路に切り替え可能に接続された高電圧バッテリ、及び双方向の第1のDC/DCコンバータを介して高電圧中間回路に接続された定電圧中間回路を含む。電気システムはまた、定電圧中間回路から電力供給される高電圧ヒータを備える。制御ユニットは、第1及び第2のDC/DCコンバータ及び高電圧ヒータを制御するために、電気システムと関連付けられる。制御ユニットは、本発明の第1の態様による方法に従って制御ユニットによって制御される構成要素を制御するように構成される。 According to a second aspect of the invention, an electrical system of a vehicle, which is an electric or hybrid vehicle, includes a high-voltage battery switchably connected to a high-voltage intermediate circuit, and a constant voltage intermediate circuit connected to the high-voltage intermediate circuit via a bidirectional first DC/DC converter. The electrical system also comprises a high-voltage heater powered from the constant voltage intermediate circuit. A control unit is associated with the electrical system for controlling the first and second DC/DC converters and the high-voltage heater. The control unit is configured to control components controlled by the control unit according to the method according to the first aspect of the invention.

電気システムの1つ又は複数の実施形態では、少なくとも第1及び第2のDC/DCコンバータ及び高電圧ヒータが、車両側に提供される電源ユニットに組み込まれている。 In one or more embodiments of the electrical system, at least the first and second DC/DC converters and the high voltage heater are integrated into a power supply unit provided to the vehicle.

本発明による方法は、電子制御ユニットで実施することができ、電子制御ユニットは、1つ以上のマイクロプロセッサと、それらマイクロプロセッサに関連付けられた揮発性及び不揮発性メモリと、高電圧中間回路と電圧中間回路の電圧値を表す少なくとも信号に対する信号入力部、並びに定電圧中間回路に接続された少なくとも1つの高電圧ヒータと、定電圧中間回路と低電圧バッテリに接続された第2の双方向のDC/DCコンバータと、高電圧中間回路を高電圧バッテリに接続するための1つ以上のスイッチとを制御するための制御出力部とを備える。前述の要素は、1つ以上のデータライン及び/又はバスを介して互いに通信可能に接続される。不揮発性メモリは、マイクロプロセッサによって揮発性メモリ内で実行されるとき、制御ユニットが上述の方法の1つ以上の実施形態又は更なる発展を実行するコンピュータプログラムコマンドを含む。 The method according to the invention can be implemented in an electronic control unit comprising one or more microprocessors, volatile and non-volatile memories associated with the microprocessors, signal inputs for at least signals representative of the voltage values of the high voltage intermediate circuit and the voltage intermediate circuit, and control outputs for controlling at least one high voltage heater connected to the constant voltage intermediate circuit, a second bidirectional DC/DC converter connected to the constant voltage intermediate circuit and the low voltage battery, and one or more switches for connecting the high voltage intermediate circuit to the high voltage battery. The aforementioned elements are communicatively connected to each other via one or more data lines and/or buses. The non-volatile memory contains computer program commands which, when executed in the volatile memory by the microprocessor, cause the control unit to execute one or more embodiments or further developments of the above-mentioned method.

本発明による方法を実施するコンピュータプログラム製品は、制御回路のプロセッサによって実行されると、制御ユニットの制御出力部及び信号入力部に接続された電気自動車又はハイブリッド車両の電気システムの構成要素を制御するコマンドを含む。上述の方法の1つ又は複数の構成又は更なる発展を実行する。 A computer program product implementing the method according to the invention includes commands which, when executed by a processor of the control circuit, control components of the electrical system of an electric or hybrid vehicle connected to the control outputs and signal inputs of the control unit, to perform one or more configurations or further developments of the method described above.

コンピュータプログラム製品は、コンピュータ可読媒体又はデータキャリア上に記憶され得る。媒体又はデータキャリアは、例えば、ハードドライブ、CD、DVD、フラッシュドライブ、又はこれに類するものとして物理的に具現化することができるが、媒体又はデータキャリアは、対応する受信機によるコンピュータによって受信され、コンピュータのメモリに記憶され得る変調された電気信号、電磁信号、又は光学信号も含むことができる。 The computer program product may be stored on a computer-readable medium or data carrier. The medium or data carrier may be physically embodied, for example, as a hard drive, CD, DVD, flash drive, or the like, but may also include a modulated electrical, electromagnetic, or optical signal that may be received by a computer by a corresponding receiver and stored in the computer's memory.

以下、図面を参照して本発明を記載する。図面は、以下に示される。
本発明による方法の例示的なフローチャートである。 本発明による方法を実施するのに適した電気システムの例示的な概略図である。 本発明による方法を実施するための例示的な制御回路の概略ブロック図である。
The invention will now be described with reference to the drawings, in which:
2 is an exemplary flow chart of a method according to the present invention; FIG. 2 is an exemplary schematic diagram of an electrical system suitable for implementing the method according to the present invention; FIG. 2 is a schematic block diagram of an exemplary control circuit for implementing the method according to the present invention;

図1は、接触器218によって高電圧中間回路202から分離された高電圧バッテリ204を備える電気自動車又はハイブリッド自動車である車両の当該高電圧中間回路202の電圧を調整するための本発明による方法100の例示的なフローチャートを示す。第1に、ステップ102では、例えば、車両状態に応じて、デフォルト値が決定される。その後、ステップ104では、第1のDC/DCコンバータ206が作動可能とされ、定電圧中間回路208を高電圧中間回路202に作動可能に電気的に接続し、かつ高電圧中間回路202から定電圧中間回路208に電力供給する。ステップ106では、定電圧中間回路208に接続された高電圧ヒータ210がスイッチオンになる。代替的に、高電圧中間回路202は、定電圧中間回路208から分離されてもよく、また高電圧ヒータ210によって、後者のみが放電されてもよい。ステップ108では、デフォルト値に到達しているかどうかがチェックされる。そうでない場合、ステップ108の「いいえ」分岐では、高電圧ヒータ210はオンのままである。デフォルト値に達した場合、ステップ108の「はい」分岐では、高電圧ヒータ210はステップ110でオフになり、ステップ112では、新しいデフォルト値が存在するかどうかがチェックされる。そうでない場合、ステップ112の「いいえ」分岐では、第1のDC/DCコンバータ206は、他の目的のために更に作動させる必要がない限り、オフとされて、処理が完了する。新しいデフォルト値が、ステップ114の「はい」分岐にて存在する場合、第2のDC/DCコンバータ214は、ステップ116で作動し、低電圧電気システム212から定電圧中間回路208に電力供給する。更に、ステップ118では、第1のDC/DCコンバータ206が作動し、ここで、定電圧中間回路208から高電圧中間回路202に電力供給する。ステップ120では、新しいデフォルト値に到達しているかどうかがチェックされる。到達していない場合、ステップ120の分岐「いいえ」では、第1及び第2のDC/DCコンバータ206、214はオンのままである。新しいデフォルト値に到達した場合、ステップ120の「はい」分岐では、ステップ122において、高電圧中間回路に電力供給するための第2のDC/DCコンバータ214の作動が終了し、定電圧中間回路208から高電圧中間回路202に電力を供給するための第1のDC/DCコンバータ206の作動も終了し、処理は完了する。 1 shows an exemplary flow chart of a method 100 according to the invention for regulating the voltage of a high-voltage intermediate circuit 202 of a vehicle that is an electric or hybrid vehicle with a high-voltage battery 204 separated from the high-voltage intermediate circuit 202 by a contactor 218. First, in step 102, a default value is determined, for example depending on the vehicle state. Then, in step 104, the first DC/DC converter 206 is enabled and operatively electrically connects the constant voltage intermediate circuit 208 to the high-voltage intermediate circuit 202 and supplies power from the high-voltage intermediate circuit 202 to the constant voltage intermediate circuit 208. In step 106, a high-voltage heater 210 connected to the constant voltage intermediate circuit 208 is switched on. Alternatively, the high-voltage intermediate circuit 202 may be separated from the constant voltage intermediate circuit 208 and only the latter may be discharged by the high-voltage heater 210. In step 108, it is checked whether the default value has been reached. If not, in the "no" branch of step 108, the high voltage heater 210 remains on. If the default value has been reached, in the "yes" branch of step 108, the high voltage heater 210 is turned off in step 110 and in step 112 it is checked whether a new default value exists. If not, in the "no" branch of step 112, the first DC/DC converter 206 is turned off, unless it needs to be further activated for other purposes, and the process is completed. If a new default value exists in the "yes" branch of step 114, the second DC/DC converter 214 is activated in step 116 and supplies power from the low voltage electrical system 212 to the constant voltage intermediate circuit 208. Furthermore, in step 118, the first DC/DC converter 206 is activated and now supplies power from the constant voltage intermediate circuit 208 to the high voltage intermediate circuit 202. In step 120 it is checked whether a new default value has been reached. If not, in the "no" branch of step 120, the first and second DC/DC converters 206, 214 remain on. If the new default value is reached, in the "yes" branch of step 120, in step 122, operation of the second DC/DC converter 214 to supply power to the high voltage intermediate circuit is terminated, operation of the first DC/DC converter 206 to supply power from the constant voltage intermediate circuit 208 to the high voltage intermediate circuit 202 is also terminated, and the process is completed.

図1では、逐次作動を示すように見えるが、第1のDC/DCコンバータ及び高電圧ヒータ210又は第1のDC/DCコンバータ206及び第2のDC/DCコンバータ206の作動は並列して行うことができることに留意されたい。 Note that although FIG. 1 appears to show sequential operation, operation of the first DC/DC converter and the high voltage heater 210 or the first DC/DC converter 206 and the second DC/DC converter 206 can occur in parallel.

図2は、本発明による方法を実施するのに適した電気システム200の例示的な概略図を示す。高電圧バッテリ204は、スイッチ218を介して高電圧中間回路に分離可能に接続される。高電圧電力消費器(図面には示されていない)、例えば、駆動モータ等は、高電圧中間回路に接続される。キャパシタンスは、高電圧中間回路内に存在することができ、これは、スイッチ218が開放された後であっても、少なくともある延長期間、高電圧中間回路における高電圧を維持することができる。高電圧中間回路は、第1のDC/DCコンバータ206を介して、定電圧中間回路208に双方向で作動可能に接続される。高電圧ヒータ210及び双方向の第2のDC/DCコンバータ214は、定電圧中間回路208に接続される。第2のDC/DCコンバータ214は、低電圧電気システム212を定電圧中間回路208に作動可能に接続する。定電圧中間回路208には、AC/DCコンバータ220によって外部から電力供給することができる。図面に示されていない充電ステーションから電力供給されてもよい。第1及び第2のDC/DCコンバータ206、214、定電圧中間回路208、高電圧ヒータ210、及びAC/DCコンバータ220は、統合電源ユニット222に組み合わせることができる。 2 shows an exemplary schematic diagram of an electrical system 200 suitable for implementing the method according to the invention. A high-voltage battery 204 is separably connected to the high-voltage intermediate circuit via a switch 218. High-voltage power consumers (not shown in the drawing), such as a drive motor, are connected to the high-voltage intermediate circuit. A capacitance may be present in the high-voltage intermediate circuit, which may maintain a high voltage in the high-voltage intermediate circuit, at least for an extended period of time, even after the switch 218 is opened. The high-voltage intermediate circuit is operably connected bidirectionally to a constant-voltage intermediate circuit 208 via a first DC/DC converter 206. A high-voltage heater 210 and a bidirectional second DC/DC converter 214 are connected to the constant-voltage intermediate circuit 208. The second DC/DC converter 214 operably connects the low-voltage electrical system 212 to the constant-voltage intermediate circuit 208. The constant-voltage intermediate circuit 208 may be externally powered by an AC/DC converter 220. It may also be powered by a charging station, not shown in the drawing. The first and second DC/DC converters 206, 214, the constant voltage intermediate circuit 208, the high voltage heater 210, and the AC/DC converter 220 can be combined into an integrated power supply unit 222.

図3は、本発明による方法100を実施するための例示的な制御ユニット300の概略ブロック図を示す。マイクロプロセッサ302、揮発性メモリ304、不揮発性メモリ306、及び制御出力部310又は信号入力部308は、1つ以上のデータライン又はバス312を介して互いに通信可能に接続される。不揮発性メモリ306は、コンピュータプログラムコマンドを含み、このコンピュータプログラムコマンドは、マイクロプロセッサ302によって揮発性メモリ304において実行されるとき、制御ユニット300が、制御ユニット300の制御出力部310及び信号入力部308に接続された電気自動車又はハイブリッド自動車の電気システム200の構成要素を作動させて、本発明による方法100の1つ又は複数の実施形態を実行するように構成する。 3 shows a schematic block diagram of an exemplary control unit 300 for implementing the method 100 according to the present invention. The microprocessor 302, the volatile memory 304, the non-volatile memory 306, and the control output 310 or the signal input 308 are communicatively connected to each other via one or more data lines or buses 312. The non-volatile memory 306 includes computer program commands that, when executed in the volatile memory 304 by the microprocessor 302, configure the control unit 300 to operate components of the electric or hybrid vehicle electrical system 200 connected to the control output 310 and the signal input 308 of the control unit 300 to implement one or more embodiments of the method 100 according to the present invention.

100 方法
102 デフォルト値の決定
104 第1のDC/DCコンバータの作動
106 高電圧ヒータのスイッチオン
108 デフォルト値に達したか?
110 高電圧ヒータをスイッチオフ
114 新しいデフォルト値か?
116 第2のDC/DCコンバータの作動
118 第1のDC/DCコンバータの作動
120 新しいデフォルト値に達したか?
122 第1及び第2のDC/DCコンバータの作動
200 電気システム
202 高電圧中間回路
204 高電圧バッテリ
206 第1のDC/DCコンバータ
208 定電圧中間回路
210 高電圧ヒータ
212 低電圧電気システム
214 第2のDC/DCコンバータ
218 スイッチ/接触器
220 AC/DCコンバータ
222 統合電源ユニット
300 制御ユニット
302 マイクロプロセッサ
304 揮発性メモリ
306 不揮発性メモリ
308 信号入力部
310 制御出力部
312 データライン/バス
100 Method 102 Determine default value 104 Activate first DC/DC converter 106 Switch on high voltage heater 108 Default value reached?
110 Switch off high voltage heater 114 New default value?
116 Activate second DC/DC converter 118 Activate first DC/DC converter 120 New default value reached?
122 Operation of the first and second DC/DC converters 200 Electrical system 202 High voltage intermediate circuit 204 High voltage battery 206 First DC/DC converter 208 Constant voltage intermediate circuit 210 High voltage heater 212 Low voltage electrical system 214 Second DC/DC converter 218 Switch/contactor 220 AC/DC converter 222 Integrated power supply unit 300 Control unit 302 Microprocessor 304 Volatile memory 306 Non-volatile memory 308 Signal input 310 Control output 312 Data line/bus

Claims (9)

スイッチ(218)によって高電圧中間回路(202)から分離された高電圧バッテリ(204)を備える電気自動車又はハイブリッド自動車である車両の前記高電圧中間回路(202)の電圧を調整するための方法(100)であって、
定電圧中間回路(208)を前記高電圧中間回路(202)に電気的に接続する第1のDC/DCコンバータ(206)を作動させること(104)と、
前記定電圧中間回路(208)及び/又は前記高電圧中間回路(202)における前記電圧が規定値に低下するまで、前記定電圧中間回路(208)に接続された高電圧ヒータ(210)をオンすること(106)と、を含む、方法(100)。
A method (100) for regulating a voltage in a high voltage intermediate circuit (202) of a vehicle, which is an electric or hybrid vehicle, comprising a high voltage battery (204) separated from the high voltage intermediate circuit (202) by a switch (218), comprising:
activating (104) a first DC/DC converter (206) electrically connecting a constant voltage intermediate circuit (208) to the high voltage intermediate circuit (202);
and turning on (106) a high voltage heater (210) connected to the constant voltage intermediate circuit (208) until the voltage in the constant voltage intermediate circuit (208) and/or the high voltage intermediate circuit (202) drops to a specified value.
車両の状態又は電圧低下直後の前記車両の電気システム(200)の構成の変化に応じて、前記高電圧中間回路(202)の電圧調整のデフォルト値を決定すること(102)を更に含む、請求項1に記載の方法(100)。 The method (100) of claim 1 further comprising determining (102) a default value for the voltage regulation of the high voltage intermediate circuit (202) in response to a change in the vehicle state or configuration of the vehicle's electrical system (200) immediately following a voltage drop. 前記定電圧中間回路(208)に電力供給するために、前記車両の低電圧電気システム(212)を前記定電圧中間回路(208)に接続する第2のDC/DCコンバータ(214)を作動させること(116)と、
前記定電圧中間回路(208)から前記規定値に対応する電圧まで前記高電圧中間回路(202)がプリチャージされるまで、前記第1のDC/DCコンバータ(206)を作動させること(118)とを更に含む、請求項1又は2に記載の方法(100)。
activating (116) a second DC/DC converter (214) connecting a low voltage electrical system (212) of the vehicle to the constant voltage intermediate circuit (208) for powering the constant voltage intermediate circuit (208);
3. The method (100) of claim 1 or 2, further comprising: operating (118) the first DC/DC converter (206) until the high voltage intermediate circuit (202) is precharged from the constant voltage intermediate circuit (208) to a voltage corresponding to the specified value.
高電圧中間回路(202)に切り替え可能に接続された高電圧バッテリ(204)と、双方向の第1のDC/DCコンバータ(206)を介して前記高電圧中間回路(202)に接続された定電圧中間回路(208)とを有する電気自動車又はハイブリッド自動車である車両の電気システム(200)であって、高電圧ヒータ(210)が、前記定電圧中間回路(208)から電力供給され、低電圧電気システム(212)が、双方向の第2のDC/DCコンバータ(214)を介して前記定電圧中間回路(208)に接続され、制御ユニット(300)が、前記第1のDC/DCコンバータ(206)及び前記第2のDC/DCコンバータ(214)並びに前記高電圧ヒータ(210)を制御するために追加的に提供され、前記制御ユニット(300)が、請求項1に記載の方法に従って前記制御ユニット(300)によって制御される構成要素を作動させるように構成されている、電気システム(200)。 A vehicle electrical system (200) that is an electric or hybrid vehicle having a high-voltage battery (204) switchably connected to a high-voltage intermediate circuit (202) and a constant voltage intermediate circuit (208) connected to the high-voltage intermediate circuit (202) via a bidirectional first DC/DC converter (206), a high-voltage heater (210) is powered from the constant voltage intermediate circuit (208) and a low-voltage electrical system (212) is connected to the constant voltage intermediate circuit (208) via a bidirectional second DC/DC converter (214), a control unit (300) is additionally provided for controlling the first DC/DC converter (206) and the second DC/DC converter (214) and the high-voltage heater (210), the control unit (300) being configured to operate components controlled by the control unit (300) according to the method of claim 1. 少なくとも前記第1のDC/DCコンバータ(206)及び前記第2のDC/DCコンバータ(214)並びに前記高電圧ヒータ(210)が、前記車両側に設けられた電源ユニット(222)に統合された、請求項4に記載の電気システム(200)。 The electrical system (200) of claim 4, wherein at least the first DC/DC converter (206) and the second DC/DC converter (214) and the high voltage heater (210) are integrated into a power supply unit (222) provided on the vehicle side. 1つ又は複数のマイクロプロセッサ(302)と、それらマイクロプロセッサに関連付けられた揮発性メモリ(304)及び不揮発性メモリ(306)と、高電圧中間回路(202)と定電圧中間回路(208)の電圧値を表す少なくとも信号のための信号入力部(308)、並びに前記定電圧中間回路(208)に接続された少なくとも1つの高電圧ヒータ(210)と、前記定電圧中間回路(208)と低電圧バッテリ(216)に接続された第2の双方向のDC/DCコンバータ(214)と、前記高電圧中間回路(202)を高電圧バッテリ(204)に接続するための1つ以上のスイッチ(218)とを制御するための制御出力部(310)と、を備える制御ユニット(300)であって、前記の各要素が、1つ以上のデータライン及び/又はバス(312)を介して互いに通信可能に接続され、前記不揮発性メモリ(306)は、前記マイクロプロセッサ(302)によって前記揮発性メモリ(304)において実行されたときに、請求項1に記載の方法(100)を実行するように、前記制御ユニット(300)を設定するコンピュータプログラムコマンドを含む、制御ユニット(300)。 The system includes one or more microprocessors (302), volatile memories (304) and non-volatile memories (306) associated with the microprocessors, signal inputs (308) for at least signals representative of voltage values of a high-voltage intermediate circuit (202) and a constant-voltage intermediate circuit (208), as well as at least one high-voltage heater (210) connected to the constant-voltage intermediate circuit (208), a second bidirectional DC/DC converter (214) connected to the constant-voltage intermediate circuit (208) and a low-voltage battery (216), and a power supply for connecting the high-voltage intermediate circuit (202) to a high-voltage battery (217). 04), and a control output (310) for controlling one or more switches (218) for connecting the elements to one or more of the switches (218) and the non-volatile memory (306), the non-volatile memory (306) includes computer program commands that, when executed in the volatile memory (304) by the microprocessor (302), configure the control unit (300) to perform the method (100) of claim 1. 請求項6に記載の制御ユニット(300)のマイクロプロセッサによって実行されるときに、前記制御ユニットに、制御出力部(310)及び前記制御ユニット(300)の信号入力部(308)に接続された、電気自動車又はハイブリッド自動車である車両の電気システム(200)の構成要素を作動させ、請求項1に従って前記方法(100)を実行するコマンドを含む、コンピュータプログラム製品。 A computer program product comprising commands, which when executed by a microprocessor of a control unit (300) according to claim 6, cause the control unit to operate components of a vehicle electrical system (200) connected to a control output (310) and a signal input (308) of the control unit (300), the vehicle being an electric or hybrid vehicle, and to perform the method (100) according to claim 1. 請求項7に記載のコンピュータプログラム製品が記憶されるコンピュータ可読媒体。 A computer-readable medium on which the computer program product of claim 7 is stored. 請求項4又は5に記載の電気システム(200)を有する電気自動車又はハイブリッド自動車。 An electric or hybrid vehicle having an electrical system (200) according to claim 4 or 5.
JP2023178568A 2022-11-03 2023-10-17 Method for regulating the voltage of a high-voltage electrical system of a vehicle as a function of the switching and/or operating conditions of the vehicle - Patents.com Pending JP2024068123A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022129047.6 2022-11-03
DE102022129047.6A DE102022129047A1 (en) 2022-11-03 2022-11-03 Method for adapting the voltage of a motor vehicle high-voltage electrical system to switching and/or operating states of the vehicle

Publications (1)

Publication Number Publication Date
JP2024068123A true JP2024068123A (en) 2024-05-17

Family

ID=89073460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023178568A Pending JP2024068123A (en) 2022-11-03 2023-10-17 Method for regulating the voltage of a high-voltage electrical system of a vehicle as a function of the switching and/or operating conditions of the vehicle - Patents.com

Country Status (4)

Country Link
JP (1) JP2024068123A (en)
KR (1) KR20240063781A (en)
DE (1) DE102022129047A1 (en)
GB (1) GB202316717D0 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014201440A1 (en) 2014-01-27 2015-07-30 Volkswagen Aktiengesellschaft Motor vehicle electrical system with optimized switching function
EP2949500B1 (en) 2014-05-27 2017-05-17 Brusa Elektronik AG Drive circuit and fuel cell compressor energy supply and regulation unit
DE102020202468A1 (en) 2020-02-26 2021-08-26 Volkswagen Aktiengesellschaft Method for operating an on-board network for an electric vehicle and electric vehicle

Also Published As

Publication number Publication date
GB202316717D0 (en) 2023-12-13
DE102022129047A1 (en) 2024-05-08
KR20240063781A (en) 2024-05-10

Similar Documents

Publication Publication Date Title
CN110014996B (en) Electric vehicle and method for controlling electric vehicle
US8823206B2 (en) Power-supply control device
CN105270295B (en) Onboard electrical system for a motor vehicle
CN109756014B (en) Power supply system for vehicle
US9694692B2 (en) Vehicle controlling system
US11230201B2 (en) System of charging battery of vehicle and method for controlling the same
CN107662562B (en) Electrical system on board a motor vehicle, comprising a converter and a high-load consumer
US11673485B2 (en) Method for controlling an electrical system of an electrically drivable motor vehicle having a plurality of batteries, and electrical system of an electrically drivable motor vehicle having a plurality of batteries
CN111746308B (en) Electric power system and control method thereof
WO2019244606A1 (en) Vehicle power supply device
CN111864823A (en) System and method for controlling low voltage DC-DC converter of vehicle
JP2019004595A (en) Power unit of vehicle
CN107921916B (en) Vehicle-mounted power supply device
JP2019088141A (en) Electric power system for vehicle
JP2020100259A (en) Power supply device for vehicle
CN110654251B (en) Method for charging a high-voltage battery in a traction power grid and traction power grid
CN109747437B (en) Power supply system for vehicle
JP2024068123A (en) Method for regulating the voltage of a high-voltage electrical system of a vehicle as a function of the switching and/or operating conditions of the vehicle - Patents.com
US20220024514A1 (en) Auxiliary power supply apparatus and electric power steering system
JP6677088B2 (en) Power supply system for electric vehicles
KR200182212Y1 (en) Power supply for an electric vehicle
JP2016146699A (en) Power supply
US20230318445A1 (en) Automotive dc-dc power converter with flyback converter for input capacitor charging
US20240051412A1 (en) Method for operating a transportation vehicle
WO2024116754A1 (en) Vehicle power supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231017