JP2024065696A - Water treatment method - Google Patents

Water treatment method Download PDF

Info

Publication number
JP2024065696A
JP2024065696A JP2022174691A JP2022174691A JP2024065696A JP 2024065696 A JP2024065696 A JP 2024065696A JP 2022174691 A JP2022174691 A JP 2022174691A JP 2022174691 A JP2022174691 A JP 2022174691A JP 2024065696 A JP2024065696 A JP 2024065696A
Authority
JP
Japan
Prior art keywords
papermaking process
water
dissolved oxygen
orp
process water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022174691A
Other languages
Japanese (ja)
Other versions
JP7541304B2 (en
Inventor
亮 鈴木
Akira Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Katayama Chemical Inc
Original Assignee
Katayama Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Katayama Chemical Inc filed Critical Katayama Chemical Inc
Priority to JP2022174691A priority Critical patent/JP7541304B2/en
Publication of JP2024065696A publication Critical patent/JP2024065696A/en
Application granted granted Critical
Publication of JP7541304B2 publication Critical patent/JP7541304B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Paper (AREA)

Abstract

To provide a water treatment method which can effectively suppress slime formation in white water in a paper making step.SOLUTION: Disclosed is a water treatment method for suppressing slime formation by adding a medicament to papermaking process water, wherein the water treatment method is characterized by that an oxidation reduction potential (ORP) of the papermaking process water and a dissolved oxygen concentration change rate (DO change rate, %) represented by the following numerical expression (1) of the papermaking process water are measured, and an addition amount of the medicament to the papermaking process water is controlled corresponding to the ORP and a value of the DO change rate after adding the medicament. [numerical expression 1]. In the numerical expression (1), DO0 shows a dissolved oxygen density at a time when the dissolved oxygen density change of the papermaking process water becomes stable, and DOt shows dissolved oxygen density after passage of time t since DO0. DO0>0.SELECTED DRAWING: None

Description

本発明は水処理方法に関し、より詳しくは、製紙工程の製紙工程水中に薬剤を添加してスライムの発生を抑制する水処理方法に関する。 The present invention relates to a water treatment method, and more specifically, to a water treatment method that adds chemicals to the papermaking process water to suppress the generation of slime during the papermaking process.

従来から紙・パルプ工業における製造工程水や各種工業における冷却水系統には、澱粉、サイズ剤、ラテックス、カゼイン等の有機物を多く含むため、細菌類、真菌類等の微生物が繁殖しやすく、このような微生物に由来するスライムが循環水系中、或いは配管や設備表面に発生しやすく、生産品の品質低下や生産効率の低下などの障害があることが知られている。 It has long been known that process water in the paper and pulp industry and cooling water systems in various industries contain large amounts of organic matter such as starch, sizing agents, latex, and casein, making it easy for bacteria, fungi, and other microorganisms to grow. Slime derived from these microorganisms is likely to form in the circulating water system or on the surfaces of pipes and equipment, causing problems such as reduced product quality and reduced production efficiency.

これらの微生物による障害を防止するため、多くの殺菌剤が使用されてきた。古くは有機水銀化合物や塩素化フェノール化合物などが使用されていたが、これらの薬剤は人体や魚介類に対する毒性が強く、環境汚染をひき起こすため使用が規制されるようになり、最近では比較的低毒性のメチレンビスチオシアネート、1,2-ベンゾイソチアゾリン-3-オン、5-クロロ-2-メチル-4-イソチアゾリン-3-オンで代表される有機窒素硫黄系、2,2-ジブロモ-2-ニトロエタノール、2,2-ジブロモ-3-ニトリロプロピオンアミド、1,2-ビス(ブロモアセトキシ)エタン、1,4-ビス(ブロモアセトキシ)-2-ブテン、ビストリブロモメチルスルホンで代表される有機ブロム系及び4,5-ジクロロ-1,2-ジチオール-3-オンで代表される有機硫黄系等の有機化合物が工業用殺菌剤として汎用されている(非特許文献1参照)。 Many bactericides have been used to prevent damage caused by these microorganisms. In the past, organic mercury compounds and chlorinated phenol compounds were used, but these agents are highly toxic to humans and fish and shellfish, and their use has been restricted due to environmental pollution. Recently, organic compounds with relatively low toxicity, such as organic nitrogen-sulfur compounds represented by methylene bisthiocyanate, 1,2-benzisothiazolin-3-one, and 5-chloro-2-methyl-4-isothiazolin-3-one, organic bromine compounds represented by 2,2-dibromo-2-nitroethanol, 2,2-dibromo-3-nitrilopropionamide, 1,2-bis(bromoacetoxy)ethane, 1,4-bis(bromoacetoxy)-2-butene, and bistribromomethylsulfone, and organic sulfur compounds represented by 4,5-dichloro-1,2-dithiol-3-one, have been widely used as industrial bactericides (see Non-Patent Document 1).

また、次亜塩素酸ナトリウム等の塩素剤やクロラミン等の結合塩素等の無機化合物、これらの無機化合物と有機化合物との併用によるスライム防止方法も提案されている(特許文献1~6)。
しかしながら、最終製品である紙・パルプ製品をより高い品質で得るために、更にスライムを抑制可能な殺菌剤及び該殺菌剤を用いた殺菌方法が求められている。
In addition, methods for preventing slime have been proposed using inorganic compounds such as chlorine agents such as sodium hypochlorite and combined chlorine such as chloramine, as well as the combined use of these inorganic compounds with organic compounds (Patent Documents 1 to 6).
However, in order to obtain final paper and pulp products of higher quality, there is a demand for a disinfectant that can further suppress slime and a disinfection method using said disinfectant.

従来、最適なスライムコントロール処理をするために、白水中の生菌数測定を目安としていたが、一般生菌数測定は、結果がでるまでに1日~3日程所要していたため、生菌数の測定結果が判明した頃には系内の状況が変化しており、最適なタイミングでスライムコントロール処理をするのが難しかった。
このような問題に対し、例えば、特許文献7、8には製紙工程のスライムコントロール方法として酸化還元電位及び/又は溶存酸素濃度(DO値)を測定する工程を含む方法が開示されている。
しかしながら、溶存酸素濃度(DO値)を利用する方法は、水温の影響が大きいためスライムコントロールの目安とするには難しかった。
Conventionally, the measurement of the viable bacteria count in white water was used as a guide for optimal slime control treatment, but since it took about one to three days for the results of a general viable bacteria count measurement to become available, the situation within the system had changed by the time the viable bacteria count measurement results became available, making it difficult to perform slime control treatment at the optimal time.
To address such problems, for example, Patent Documents 7 and 8 disclose methods for controlling slime in the papermaking process, which include a step of measuring the oxidation-reduction potential and/or the dissolved oxygen concentration (DO value).
However, the method of using the dissolved oxygen concentration (DO value) is significantly affected by water temperature, making it difficult to use it as a guide for slime control.

特開平5-146785号公報Japanese Patent Application Laid-Open No. 5-146785 特開2000-256993号公報JP 2000-256993 A 特開2002-336867号公報JP 2002-336867 A 特開2003-105692号公報JP 2003-105692 A 特開2003-306893号公報JP 2003-306893 A 特開2008-43836号公報JP 2008-43836 A 特表2010-518823号公報JP 2010-518823 A 特開2017-110326号公報JP 2017-110326 A

昭和61年8月22日に日本防菌防黴学会から発行された書籍「防菌防黴剤事典」24~30頁"Encyclopedia of Antibacterial and Antifungal Agents" published by the Japan Society of Antibacterial and Antifungal Agents on August 22, 1986, pages 24-30

本発明は、このような従来技術に鑑み、製紙工程の白水にスライムの発生を効果的に抑制できる水処理方法を提供することを目的とする。 In view of the above-mentioned conventional techniques, the present invention aims to provide a water treatment method that can effectively suppress the generation of slime in white water during the papermaking process.

本発明の発明者は、上記の課題を解決するために鋭意研究を重ねた結果、製紙工程水中にスライムの発生を抑制する薬剤を添加した後の溶存酸素濃度変化率(DO変化率)に着目した。すなわち、DO変化率の値を0(ゼロ)に近くなるよう製紙工程水のスライムコントロールをすることで比較的適切にスライムコントロールができることを見出したが、DO変化率の値のみを指標として薬剤量を制御すると添加する薬剤が過剰となる恐れがあった。
そこで、本発明の発明者らは更に鋭意研究した結果、上記DO変化率の値に加えて製紙工程水の酸化還元電位(ORP)の値を確認しつつ薬剤を添加することで、効果的に製紙工程水のスライムコントロールが容易に可能となることを見出し、本発明を完成するに至った。
The inventor of the present invention has conducted extensive research to solve the above problems, and as a result, has focused on the rate of change in dissolved oxygen concentration (DO rate of change) after adding a chemical agent to suppress slime generation in the papermaking process water. That is, it has been found that slime can be relatively appropriately controlled by controlling the slime in the papermaking process water so that the DO rate of change value is close to 0 (zero). However, if the amount of chemical agent is controlled using only the DO rate of change value as an index, there is a risk that the chemical agent will be added in excess.
As a result of further intensive research, the inventors of the present invention discovered that by adding chemicals while checking the oxidation-reduction potential (ORP) value of the papermaking process water in addition to the DO conversion rate value, it is possible to easily and effectively control slime in the papermaking process water, and thus completed the present invention.

(1)本発明は、製紙工程水中に薬剤を添加してスライムの発生を抑制する水処理方法であって、上記製紙工程水の酸化還元電位(ORP)と、上記製紙工程水の下記数式(1)で表される溶存酸素濃度変化率(DO変化率、%)とを測定し、上記薬剤を添加した後の上記ORPと上記DO変化率の値に応じて上記薬剤の上記製紙工程水への添加量を制御することを特徴とする水処理方法である。

Figure 2024065696000001
なお、数式(1)中、DOは、前記製紙工程水の溶存酸素濃度変化が安定した時間における溶存酸素濃度を表し、DOは、DOから時間t経過後の溶存酸素濃度を表す。但し、DO>0である。 (1) The present invention is a water treatment method for suppressing the generation of slime by adding an agent to papermaking process water, characterized in that the oxidation-reduction potential (ORP) of the papermaking process water and the dissolved oxygen concentration change rate (DO change rate, %) of the papermaking process water, which is expressed by the following mathematical formula (1), are measured, and the amount of the agent to be added to the papermaking process water is controlled depending on the values of the ORP and the DO change rate after the agent is added.
Figure 2024065696000001
In formula (1), DO 0 represents the dissolved oxygen concentration at the time when the change in the dissolved oxygen concentration of the papermaking process water becomes stable, and DO t represents the dissolved oxygen concentration after a time t has elapsed since DO 0 , with the proviso that DO 0 >0.

(2)本発明は、前記薬剤を添加した後の上記DO変化率が、t≦30分のときに60%以下となるように薬剤の製紙工程水への添加量を制御する(1)に記載の水処理方法である。
(3)本発明は、薬剤がハロゲンを有する酸化剤及び/又は過酸化水素である、(1)又は(2)に記載の水処理方法である。
(2) The present invention is a water treatment method as described in (1), in which the amount of the chemical to be added to the papermaking process water is controlled so that the DO change rate after the addition of the chemical is 60% or less when t≦30 minutes.
(3) The present invention relates to a water treatment method according to (1) or (2), in which the chemical is an oxidizing agent having a halogen and/or hydrogen peroxide.

本発明によれば、DO値の利用方法として例えば白水サイロの上流と下流のDO値の差をとってDO変化率を算出した場合に、温度の影響、水流による溶存酸素量の増加があるため、好気性菌の呼吸に起因するDO変化率とはならない。本発明は、同一サンプリング水に対する密閉条件下における所定時間でのDO変化率を見ているため好気性菌の呼吸による酸素の消費量を正確に測定することができる。これにより、製紙工程水の状態をリアルタイムで確認ができるため製紙工程水にスライムが発生することを効果的に抑制できる水処理方法を提供できる。 According to the present invention, when the DO value is used to calculate the DO change rate by, for example, taking the difference between the DO values upstream and downstream of a white water silo, the DO change rate is not due to the respiration of aerobic bacteria because of the effects of temperature and the increase in dissolved oxygen due to water flow. The present invention looks at the DO change rate over a specified period of time under sealed conditions for the same sampled water, so it is possible to accurately measure the amount of oxygen consumed by aerobic bacteria respiration. This makes it possible to provide a water treatment method that can effectively prevent slime from occurring in papermaking process water by making it possible to check the state of the papermaking process water in real time.

図1は、試験例1のDO変化率とORPの測定結果を示すグラフである。FIG. 1 is a graph showing the measurement results of the DO change rate and ORP in Test Example 1. 図2は、試験例2のDO変化率とORPの測定結果を示すグラフである。FIG. 2 is a graph showing the measurement results of the DO change rate and ORP in Test Example 2. 図3は、試験例3のDO変化率とORPの測定結果を示すグラフである。FIG. 3 is a graph showing the measurement results of the DO change rate and ORP in Test Example 3. 図4は、試験例4のDO変化率とORPの測定結果を示すグラフである。FIG. 4 is a graph showing the measurement results of the DO change rate and ORP in Test Example 4. 図5は、製紙工程水から採取したサンプリング水の溶存酸素濃度の経時変化を模式的に示すグラフである。FIG. 5 is a graph showing a typical change over time in the dissolved oxygen concentration of sampled water collected from the papermaking process. 図6は、試験例5~8のDO変化率の測定結果を示すグラフである。FIG. 6 is a graph showing the measurement results of the DO change rate in Test Examples 5 to 8.

以下、本発明の実施形態を説明するが、以下に説明する実施形態は、本発明の代表的な実施形態の一例を示すものであり、これにより本発明の範囲が狭く解釈されることは無い。 The following describes an embodiment of the present invention. However, the embodiment described below is merely an example of a typical embodiment of the present invention, and the scope of the present invention should not be interpreted narrowly as a result.

本明細書中、「X~Y」は、「X以上、Y以下」を意味する。 In this specification, "X to Y" means "X or more and Y or less."

本発明は、上記製紙工程水中に薬剤を添加してスライムの発生を抑制する水処理方法である。
通常、製紙工程は、パルプと呼ばれる紙の原料を製造するパルプ化工程と、紙を抄く前にパルプ繊維を物理的に加工したり薬品を添加したりする調成工程と、パルプをシート状に広げ、脱水、乾燥、表面加工などを行う抄紙工程とを有する。
本発明における上記製紙工程水とは、上記パルプ化工程、調成工程及び抄紙工程に使用される白水、パルプスラリーを含む。上記製紙工程水は、製紙工程中の各工程を循環する水、及び製紙工程中の各工程を循環する水に供給される工業用水や再利用水を含み得る。
The present invention is a water treatment method for suppressing the generation of slime by adding an agent to the papermaking process water.
Typically, the papermaking process includes a pulping process in which the raw material for paper, called pulp, is produced; a preparation process in which the pulp fibers are physically processed and chemicals are added before paper is made; and a papermaking process in which the pulp is spread into a sheet and subjected to dehydration, drying, surface treatment, etc.
The papermaking process water in the present invention includes white water and pulp slurry used in the pulping process, the preparation process and the papermaking process. The papermaking process water may include water circulating through each process in the papermaking process, and industrial water or recycled water supplied to the water circulating through each process in the papermaking process.

本発明では、上記製紙工程水の酸化還元電位(ORP)と、下記数式(1)で表される上記製紙工程水の溶存酸素濃度変化率(DO変化率、%)とを測定する。

Figure 2024065696000002
なお、数式(1)中、DOは、上記製紙工程水の溶存酸素濃度変化が安定した時間における溶存酸素濃度を表し、DOは、DOから時間t経過後の溶存酸素濃度を表す。但し、DO>0である。
上記ORPは、上記DO測定時における製紙工程水のORP値であり、上記ОRPの測定方法としては特に限定されず、例えば、市販の酸化還元電位計(一例として、マイラナ社製ポータブル水質計P40)を用いて測定することができる。
また、上記数式(1)におけるDOは、上記薬剤を添加した製紙工程水の溶存酸素濃度変化が安定した時間における溶存酸素濃度であり、具体的には、任意の箇所で採取した上記製紙工程水(以下、サンプリング水)について、溶存酸素濃度変化が安定した時間における溶存酸素濃度を測定する。なお、上記製紙工程水から採取したサンプリング水の溶存酸素濃度は経時的に減少するが、図5に示したように、その減少の程度は一定ではなく採取後一定時間までは急激に減少し、その後緩やかな減少となる。上記「溶存酸素濃度が安定した時間」とは、溶存酸素濃度の急激な減少から緩やかな減少に変化した時間である。また、上記サンプリング水の溶存酸素濃度変化が安定する時間は対象系によって異なるため一義的に決定することはできないため、例えば、サンプリング水採取後3分や5分における溶存酸素濃度をDO0と決めて測定を行ってもよい。
そして、上記DO変化率とは、上述した規定したDOと、上記サンプリング水の所定時間(t)経過後の溶存酸素濃度(DO)の数値差を、DOで割って百分率で表示したものである。但し、DO>0である。なお、上記数式(1)における時間(t)としては特に限定されず適宜設定でき、例えば、10秒以上、30秒以上、1分以上、3分以上、5分以上、若しくは10分以上、及び、60分以下、45分以下、30分以下、若しくは20分以下の組合せから任意に設定できる。
上記溶存酸素濃度の測定方法としては特に限定されず、例えば、市販の溶存酸素計(一例として、HACH社製蛍光式溶存酸素計LDO2)を用いることができる。 In the present invention, the oxidation-reduction potential (ORP) of the papermaking process water and the rate of change in dissolved oxygen concentration of the papermaking process water (DO rate of change, %), which is represented by the following mathematical formula (1), are measured.
Figure 2024065696000002
In formula (1), DO 0 represents the dissolved oxygen concentration at the time when the change in the dissolved oxygen concentration of the papermaking process water becomes stable, and DO t represents the dissolved oxygen concentration after a time t has elapsed since DO 0 , with the proviso that DO 0 >0.
The ORP is the ORP value of the papermaking process water when the DO is measured at 0. The method for measuring the ORP is not particularly limited, and it can be measured, for example, using a commercially available oxidation-reduction potential meter (for example, the Mylana Portable Water Quality Meter P40).
DO 0 in the above formula (1) is the dissolved oxygen concentration at the time when the dissolved oxygen concentration change of the papermaking process water to which the agent has been added becomes stable. Specifically, the dissolved oxygen concentration of the papermaking process water (hereinafter, sampled water) collected at an arbitrary point is measured at the time when the dissolved oxygen concentration change becomes stable. The dissolved oxygen concentration of the sampled water collected from the papermaking process water decreases over time, but as shown in FIG. 5, the degree of decrease is not constant, and the dissolved oxygen concentration decreases rapidly for a certain time after collection, and then decreases gradually. The above "time when the dissolved oxygen concentration becomes stable" is the time when the dissolved oxygen concentration changes from a rapid decrease to a gradual decrease. The time when the dissolved oxygen concentration change of the sampled water becomes stable varies depending on the target system and cannot be determined uniquely, so for example, the dissolved oxygen concentration 3 minutes or 5 minutes after the sampled water is collected may be determined as DO 0 and measurement may be performed.
The DO change rate is the difference between the DO 0 defined above and the dissolved oxygen concentration (DO t ) of the sampled water after a predetermined time (t) has elapsed, divided by DO 0 and expressed as a percentage, where DO 0 > 0. Note that the time (t) in the above formula (1) is not particularly limited and can be set appropriately, and can be set arbitrarily from, for example, a combination of 10 seconds or more, 30 seconds or more, 1 minute or more, 3 minutes or more, 5 minutes or more, or 10 minutes or more, and 60 minutes or less, 45 minutes or less, 30 minutes or less, or 20 minutes or less.
The method for measuring the dissolved oxygen concentration is not particularly limited, and for example, a commercially available dissolved oxygen meter (for example, a fluorescent dissolved oxygen meter LDO2 manufactured by HACH) can be used.

本発明では、上記ORPとDO変化率の値に応じて上記薬剤の上記製紙工程水への添加量を制御する。
本発明では製紙工程で流れる製紙工程水の状態(ORP及びDO変化率の各値)をリアルタイムで確認をすることができるため、製紙工程水にスライムが発生するような状態になる前に適切な量の薬剤を上記製紙工程水に添加するように調整できる。
In the present invention, the amount of the chemicals added to the papermaking process water is controlled according to the ORP and DO change rates.
In the present invention, the state of the papermaking process water (the ORP and DO change rates) flowing during the papermaking process can be checked in real time, making it possible to adjust the amount of chemicals added to the papermaking process water before it reaches a state where slime is generated.

具体的には、上記ORPが-400mV~+600mVであることが好ましく、上記薬剤添加後の上記DO変化率が、t≦30分のときに60%以下となるように薬剤の製紙工程水への添加量を制御することが好ましい。このように調節することで、スライムの発生をより効果的に抑制することができる。
上記製紙工程水の微生物汚染が進行し、系内の酸素が消費されるとORPは低下し易いORPが+600mVを超えると系内設備の腐食性の問題が懸念される。上記ORPは-150mV以上であることがより好ましい。
また、製紙工程水の微生物汚染が進行し、系内の酸素が消費されるとDO変化率は上がりやすい。上記DO変化率は55%以下であることがより好ましい。t=20分のときDO変化率は50%以下であることが好ましい。また、t=10分のときDO変化率は30%以下であることが好ましい。
Specifically, the ORP is preferably -400 mV to +600 mV, and the amount of the agent added to the papermaking process water is preferably controlled so that the DO change rate after the addition of the agent is 60% or less when t≦30 minutes. By adjusting in this way, the generation of slime can be more effectively suppressed.
As microbial contamination of the water in the papermaking process progresses and oxygen in the system is consumed, the ORP is likely to decrease, and if the ORP exceeds +600 mV, there is concern that the equipment in the system may become corrosive. It is more preferable that the ORP is -150 mV or higher.
In addition, as microbial contamination of the papermaking process water progresses and oxygen in the system is consumed, the DO rate of change is likely to increase. It is more preferable that the DO rate of change is 55% or less. When t = 20 minutes, the DO rate of change is preferably 50% or less. Furthermore, when t = 10 minutes, the DO rate of change is preferably 30% or less.

本発明において、上記ORP及びDO変化率を測定する箇所は特に限定されないが、パルプ化工程、調成工程、又は、抄紙工程の薬剤添加点の下流等が好適に挙げられる。
上記パルプ化工程において上記ORP及びDO変化率を測定する具体的な箇所としては、例えば、原料タンク、ブロークチェスト等が挙げられる。
また、上記調整工程において上記ORP及びDO変化率を測定する具体的な箇所としては、例えば、調成白水ピット等が挙げられる。
また、上記抄紙工程において上記ORP及びDO変化率を測定する具体的な箇所としては、例えば、白水ピット等が挙げられる。
また、薬品(紙力増強剤、サイズ剤及び染料などの希釈を必要とする薬品)の希釈水ライン及びシャワー水ライン等で上記ORP及びDO変化率を測定してもよい。
In the present invention, the location where the ORP and DO change rates are measured is not particularly limited, but suitable locations include downstream of the chemical addition point in the pulping process, the preparation process, or the papermaking process.
Specific locations in the pulping process where the ORP and DO change rates are measured include, for example, a raw material tank and a blow chest.
In addition, a specific location where the ORP and DO change rates are measured in the adjustment step is, for example, a whitewater adjustment pit.
In addition, a specific location where the ORP and DO change rates are measured in the papermaking process is, for example, a white water pit.
The ORP and DO change rates may also be measured in a dilution water line for chemicals (chemicals requiring dilution such as paper strength agents, sizing agents, and dyes) and a shower water line.

上記製紙工程水における生菌数は特に限定されないが、上記薬剤添加直後において1×10CFU/mL以下であることが好ましく、より好ましくは1×10CFU/mL以下である。生菌数が上記上限を超えると、製紙工程水にスライムの発生を抑制できないことがある。上記薬剤添加直後を除く平常時は1×10CFU/mL以下であることが好ましく、より好ましくは1×10CFU/mL以下である。
なお、上記生菌数は公知の方法で測定できる。
The number of live bacteria in the papermaking process water is not particularly limited, but is preferably 1 x 10 5 CFU/mL or less immediately after the addition of the agent, and more preferably 1 x 10 4 CFU/mL or less. If the number of live bacteria exceeds the upper limit, the generation of slime in the papermaking process water may not be suppressed. Under normal conditions other than immediately after the addition of the agent, it is preferably 1 x 10 7 CFU/mL or less, and more preferably 1 x 10 6 CFU/mL or less.
The viable cell count can be measured by a known method.

上記薬剤は、上記製紙工程水にスライムが発生することを抑制できる殺菌剤として機能するものである。
このような薬剤としてはハロゲンを有する酸化剤及び/又は過酸化水素であることが好ましい。
上記ハロゲンを有する酸化剤としては結合ハロゲン及び/又は遊離ハロゲンが挙げられ、上記結合ハロゲンとしては結合塩素及び結合臭素等が挙げられ、上記遊離ハロゲンとしては、亜塩素酸塩、次亜塩素酸塩及び二酸化塩素等が挙げられる。
The chemical functions as a bactericide capable of suppressing the generation of slime in the papermaking process water.
Such an agent is preferably an oxidizing agent having a halogen and/or hydrogen peroxide.
The oxidizing agent having the halogen includes a bound halogen and/or a free halogen, the bound halogen includes a bound chlorine and a bound bromine, and the free halogen includes a chlorite, a hypochlorite, and a chlorine dioxide.

上記結合ハロゲンとしては、結合塩素及び結合臭素等が挙げられ、具体的には、モノクロラミン、モノブロマミン、クロロスルファマート、及び/又は、ブロモスルファマートであることが好ましい。
上記モノクロラミン及びモノブロマミンは、OCl(Br)+NH4+→NHCl(Br)+HOのような反応で生成される穏やかな酸化剤である。例えば、次亜塩素酸ナトリウムとアンモニウム化合物とを混合することによりモノクロラミンを生成でき、アンモニウム化合物としては、具体的に、硫酸アンモニウム、臭化アンモニウム、塩化アンモニウム、スルファミン酸アンモニウムが挙げられ、これらを単独で又は2種以上を組み合わせて用いることができる。
次亜塩素酸塩とアンモニウム化合物とのモル比は、一又は複数の実施形態において、残留塩素量と窒素とのモル比として1:1~1:2であることが好ましい。
The above-mentioned bound halogen includes bound chlorine and bound bromine, and specifically, monochloramine, monobromamine, chlorosulfamate, and/or bromosulfamate are preferable.
The monochloramine and monobromamine are mild oxidizing agents produced by a reaction such as OCl (Br ) + NH 4 + → NH 2 Cl (Br) + H 2 O. For example, monochloramine can be produced by mixing sodium hypochlorite with an ammonium compound, and specific examples of the ammonium compound include ammonium sulfate, ammonium bromide, ammonium chloride, and ammonium sulfamate, which can be used alone or in combination of two or more kinds.
In one or more embodiments, the molar ratio of the hypochlorite to the ammonium compound is preferably 1:1 to 1:2, calculated as the molar ratio of the residual chlorine amount to nitrogen.

上記クロロスルファマート及びブロモスルファマートは、塩素系酸化剤又は臭素系酸化剤と、スルファミン酸化合物又はその塩と、の反応生成物である。
上記塩素系酸化剤としては、一又は複数の実施形態において、次亜塩素酸又はその塩が挙げられ、中でも次亜塩素酸ナトリウムが好ましい。
上記臭素系酸化剤としては、一又は複数の実施形態において、次亜臭素酸又はその塩が挙げられ、中でも次亜臭素酸ナトリウムが好ましい。
上記スルファミン酸化合物としては、一又は複数の実施形態において、スルファミン酸、クロロスルファミン酸及びブロモスルファミン酸等が挙げられる。
上記クロロ/ブロモスルファマートとしては、特に限定されない一又は複数の実施形態において、「水酸化ナトリウム及びスルファミン酸の反応生成物」と「次亜塩素酸/次亜臭素酸ナトリウム」との反応生成物が挙げられ、当該クロロ/ブロモスルファマートは、一又は複数の実施形態において、水酸化ナトリウム、スルファミン酸、及び次亜塩素酸ナトリウム又は次亜臭素酸ナトリウムを配合して得ることができる。
The chlorosulfamates and bromosulfamates are reaction products of a chlorine-based or bromine-based oxidizing agent and a sulfamic acid compound or a salt thereof.
In one or a plurality of embodiments, the chlorine-based oxidizing agent includes hypochlorous acid or a salt thereof, and among these, sodium hypochlorite is preferable.
In one or a plurality of embodiments, the bromine-based oxidizing agent includes hypobromous acid or a salt thereof, and among these, sodium hypobromite is preferable.
In one or a plurality of embodiments, examples of the sulfamic acid compound include sulfamic acid, chlorosulfamic acid, and bromosulfamic acid.
In one or more embodiments, the chloro/bromosulfamate is, without being particularly limited thereto, a reaction product of "a reaction product of sodium hydroxide and sulfamic acid" and "hypochlorous acid/sodium hypobromite", and in one or more embodiments, the chloro/bromosulfamate can be obtained by blending sodium hydroxide, sulfamic acid, and sodium hypochlorite or sodium hypobromite.

上記遊離ハロゲンとしては、亜塩素酸塩、次亜塩素酸塩及び二酸化塩素等が挙げられ、上記亜塩素酸塩としては、具体的には、亜塩素酸ナトリウム、亜塩素酸カリウム及び亜塩素酸カルシウム等が挙げられ、本発明ではこれらの1種を単独で又は2種以上を組み合せて用いることができる。
上記次亜塩素酸塩としては、具体的には、次亜塩素酸ナトリウム、次亜塩素酸カリウム及び次亜塩素酸カルシウム等が挙げられ、本発明ではこれらの1種を単独で又は2種以上を組み合せて用いることができる。
The free halogens include chlorite, hypochlorite, chlorine dioxide, etc., and the chlorites specifically include sodium chlorite, potassium chlorite, calcium chlorite, etc., and in the present invention, these can be used alone or in combination of two or more.
Specific examples of the hypochlorite include sodium hypochlorite, potassium hypochlorite, and calcium hypochlorite. In the present invention, these can be used alone or in combination of two or more.

上記二酸化塩素は、極めて不安定な化学物質であるため、その貯蔵や輸送は非常に困難である。したがって、その場で公知の方法により二酸化塩素を製造(生成)し、添加濃度に調整して用いるのが好ましい。
例えば、次のような反応により二酸化塩素を製造することができ、市販の二酸化塩素発生器(装置)を用いることもできる。
(1)次亜塩素酸ナトリウムと塩酸と亜塩素酸ナトリウムとの反応
NaOCl+2HCl+2NaClO → 2ClO+3NaCl+H
(2)亜塩素酸ナトリウムと塩酸との反応
5NaClO+4HCl → 4ClO+5NaCl+2H
(3)塩素酸ナトリウム、過酸化水素および硫酸との反応
2NaClO+H+HSO → 2ClO+NaSO+O+2H
Since chlorine dioxide is an extremely unstable chemical substance, its storage and transportation are very difficult, and therefore it is preferable to produce (generate) chlorine dioxide on-site by a known method and adjust the concentration to be added before use.
For example, chlorine dioxide can be produced by the following reaction, and a commercially available chlorine dioxide generator (apparatus) can also be used.
(1) Reaction of sodium hypochlorite, hydrochloric acid, and sodium chlorite NaOCl + 2HCl + 2NaClO22ClO2 + 3NaCl + H2O
(2) Reaction of sodium chlorite with hydrochloric acid: 5NaClO2 + 4HCl → 4ClO2 + 5NaCl + 2H2O
(3) Reaction with sodium chlorate, hydrogen peroxide , and sulfuric acid : 2NaClO3 + H2O2 + H2SO4 → 2ClO2 + Na2SO4 + O2 + 2H2O

本発明に用いられるハロゲンを有する酸化剤は、次亜塩素酸塩であることがより好ましい。 The halogen-containing oxidizing agent used in the present invention is preferably a hypochlorite.

以下、実施例及び比較例に基づいて本発明を具体的に説明するが、本発明はこれらの実施例により限定されるものではない。 The present invention will be specifically described below based on examples and comparative examples, but the present invention is not limited to these examples.

(試験例1、2、及び3)
試験例1
某板紙原紙工場Aにおいて、抄紙工程における白水サイロに薬剤添加を行った。薬剤添加を行う前記白水サイロにおいて、ORPとDO変化率の測定を常時行った。水質測定には一般に市販している水質測定装置を使用した。
DO変化率は、白水サイロのサンプリング水の採取後3分のDO値をDOとし、10分経過後のDO値をDOとして算出した。ORPは、DO測定のために採取したサンプリング水について測定した。結果を図1に示した。なお、図1においてORP値は、薬剤添加直後を除いたピークのトップの値を読み取る。以下、図2から図4においても同様とする。
薬剤は結合ハロゲン(モノクロラミン)を使用した。薬剤添加後から次の薬剤添加までの間におけるORPが薬剤添加直後を除いて常時-50mVから+100mVになるように、DO変化率が略0になるように、上記薬剤の添加量を調整した。
図1に示したように試験を行った某板紙抄紙工場では、スライムに起因する欠点が発生していたが、本実施例では、1日に3回15分間薬剤を添加することで前記欠点の発生を抑制した。
DO変化率とORPを併用することで、薬剤の過不足を防ぎ、適切な量を添加してスライムの発生を抑制することができた。
なお、試験開始前の生菌数を測定したところ、1×10CFU/mL以上であった。他方、薬剤添加直後の生菌数は1×10CFU/mL以下であった。
(Test Examples 1, 2, and 3)
Test Example 1
Chemicals were added to the white water silo in the papermaking process at a certain paperboard mill A. In the white water silo where chemicals were added, the ORP and DO change rates were constantly measured. A commercially available water quality measuring device was used to measure the water quality.
The DO change rate was calculated by taking the DO value 3 minutes after sampling water from the white water silo as DO 0 and the DO value 10 minutes after sampling as DO t . ORP was measured for the sampled water collected for DO measurement. The results are shown in Figure 1. In Figure 1, the ORP value was read from the top of the peak excluding the value immediately after the addition of the agent. The same applies to Figures 2 to 4 below.
The chemical used was a bound halogen (monochloramine). The amount of chemical added was adjusted so that the ORP between the addition of the chemical and the next addition was always between -50 mV and +100 mV, except immediately after the chemical was added, and so that the DO change rate was approximately 0.
As shown in FIG. 1, at a certain paperboard mill where tests were conducted, defects due to slime were occurring, but in this embodiment, the occurrence of such defects was suppressed by adding the agent for 15 minutes three times a day.
By using the DO conversion rate and ORP in combination, it was possible to prevent excess or deficiency of chemicals and add an appropriate amount to suppress the occurrence of slime.
The viable cell count measured before the start of the test was 1×10 7 CFU/mL or more, whereas the viable cell count immediately after the addition of the agent was 1×10 5 CFU/mL or less.

試験例2
某板紙原紙工場Aにおいて、薬剤の添加量以外は試験例1と同様にして試験例2を行った。
DO変化率は、白水サイロのサンプリング水の採取直後3分のDO値をDOとし、10分経過後のDO値をDOとして算出した。ORPは、DO測定のために採取したサンプリング水について測定した。結果を図2に示した。
薬剤は結合ハロゲン(モノクロラミン)を使用した。薬剤添加後から次の薬剤添加までの間におけるORPが薬剤添加直後を除いて常時-50mVから+100mVになるように、DO変化率が略0以上10%以下になるように、前記薬剤の添加量を調整した。
図2に示したように、試験を行った某板紙抄紙工場では、スライムに起因する欠点が発生していたが、本実施例では、1日に3回15分間薬剤を添加することで前記欠点の発生を抑制した。
DO変化率とORPを併用することで、薬剤の過不足を防ぎ、適切な量を添加してスライムの発生を抑制することができた。
なお、試験開始前の生菌数を測定したところ、1×10CFU/mL以上であった。他方、薬剤添加直後の生菌数は1×10CFU/mL以下であった。
Test Example 2
Test Example 2 was carried out at a certain paperboard mill A in the same manner as Test Example 1 except for the amount of chemicals added.
The DO change rate was calculated by taking the DO value 3 minutes after sampling water from the white water silo as DO 0 and the DO value 10 minutes later as DO t . The ORP was measured for the water samples taken for DO measurement. The results are shown in Figure 2.
The chemical used was a bound halogen (monochloramine). The amount of chemical added was adjusted so that the ORP between the addition of the chemical and the next addition was always −50 mV to +100 mV, except immediately after the chemical was added, and the DO change rate was approximately 0 to 10%.
As shown in FIG. 2, defects caused by slime were observed in a certain paperboard mill where tests were conducted, but in this embodiment, the occurrence of such defects was suppressed by adding the agent for 15 minutes three times a day.
By using the DO conversion rate and ORP in combination, it was possible to prevent excess or deficiency of chemicals and add an appropriate amount to suppress the occurrence of slime.
The viable cell count measured before the start of the test was 1×10 7 CFU/mL or more, whereas the viable cell count immediately after the addition of the agent was 1×10 5 CFU/mL or less.

試験例3
某板紙原紙工場Aにおいて、薬剤の添加量以外は試験例1と同様にして試験例3を行った。結果を図3に示した。
試験例3では、薬剤添加後から次の薬剤添加までの間におけるORPが-30mVから+50mV、DO変化率が薬剤添加後を除いたときとほとんど同様の値であり、スライムの発生を抑制することができず、欠点の発生を抑制できなかった。
DO変化率とORPを併用することで、スライムの発生を抑制するには薬剤が不足していることを発見できた。
なお、試験開始前の生菌数を測定したところ、1×10CFU/mL以上であった。他方、薬剤添加直後の生菌数は1×10CFU/mL以上であった。
Test Example 3
Test Example 3 was carried out in a certain paperboard mill A in the same manner as Test Example 1, except for the amount of chemicals added. The results are shown in FIG.
In test example 3, the ORP between the addition of the chemical and the next addition of the chemical ranged from -30 mV to +50 mV, and the DO change rate was almost the same as when the rate was not after the addition of the chemical, so the occurrence of slime could not be suppressed and the occurrence of defects could not be suppressed.
By using DO conversion rate and ORP in combination, we discovered that the chemicals were insufficient to suppress the occurrence of slime.
The viable cell count measured before the start of the test was 1×10 7 CFU/mL or more, whereas the viable cell count immediately after the addition of the agent was 1×10 6 CFU/mL or more.

試験例4
某板紙原紙工場Bにおいて、抄紙工程における白水サイロに薬剤添加を行った。薬剤添加を行う前記白水サイロにおいて、ORPとDO変化率の測定を常時行った。水質測定には一般に市販している水質測定装置を使用した。結果を図4に示した。
薬剤は結合ハロゲン(モノクロラミン)を使用した。
試験期間1日~5日において、実施例1と同様にして測定したDO変化率が15%~55%になるように薬剤を添加した。このとき、ORPは、薬剤添加直後を除いて常時+0mV~+100mVであった。しかしながら、この試験期間中にスライムの発生抑制が十分ではなく、欠点の発生を抑制できなかった。
続いて、6日~12日において実施例1と同様に測定したDO変化率が略0になるように前記薬剤の添加量を調整した。なおかつ、過剰添加を避けるため、このときのORPが薬剤添加直後を除いて常時+100mV~+300mVに調整した。
本試験では、1日4回10分間薬剤を添加することで前記欠点の発生を抑制した。
なお、試験開始前の生菌数を測定したところ、1×10CFU/mL以上であった。他方、1日~5日における薬剤添加直後を除いた生菌数は1×10CFU/mLであり、薬剤添加直後の生菌数は1×10CFU/mLであった。また、6日~12日における薬剤添加直後を除いた生菌数は1×10CFU/mLであり、薬剤添加直後の生菌数は1×10CFU/mL以下であった。
Test Example 4
At a certain paperboard mill B, chemicals were added to the white water silo in the papermaking process. In the white water silo where chemicals were added, the ORP and DO change rates were constantly measured. A commercially available water quality measuring device was used to measure the water quality. The results are shown in Figure 4.
The drug used was a bound halogen (monochloramine).
During the test period from day 1 to day 5, the agent was added so that the DO change rate measured in the same manner as in Example 1 was 15% to 55%. At this time, the ORP was always +0 mV to +100 mV except immediately after the agent was added. However, during this test period, the suppression of slime generation was not sufficient, and the occurrence of defects could not be suppressed.
Subsequently, the amount of the agent added was adjusted so that the DO change rate measured in the same manner as in Example 1 from 6 to 12 days was approximately 0. Moreover, in order to avoid excessive addition, the ORP was constantly adjusted to +100 mV to +300 mV except immediately after the agent was added.
In this test, the occurrence of the above defects was suppressed by adding the agent for 10 minutes four times a day.
The viable cell count before the start of the test was 1 x 10 7 CFU/mL or more. On the other hand, the viable cell count excluding the time immediately after the drug addition on days 1 to 5 was 1 x 10 7 CFU/mL, and the viable cell count immediately after the drug addition was 1 x 10 5 CFU/mL. Furthermore, the viable cell count excluding the time immediately after the drug addition on days 6 to 12 was 1 x 10 6 CFU/mL, and the viable cell count immediately after the drug addition was 1 x 10 4 CFU/mL or less.

試験例5
国内某製紙工場から製紙工程水を採取してサンプリング水とし該サンプリング水に薬剤を20mg/L添加し、ORPとDO変化率の測定を行った。水質測定には一般に市販している水質測定装置を使用した。
DO変化率は、採取したサンプリング水に薬剤添加後3分のDO値をDOとし、DOから時間t(3分、5分、10分、15分、20分、30分、45分及び57分)経過後のDO値をDOとして算出した。ORPは、DO測定時のサンプリング水について測定した結果340mVであった。DO変化率の結果を図6に示した。
薬剤は結合ハロゲン(モノクロラミン)を使用した。ORPはサンプリング水採取後3分で測定した。
図6に示したように試験例5に係る製紙工程水は、DO変化率が急激に上昇しておりスライムに起因する欠点の抑制が不十分であることが判明した。
Test Example 5
Water from the papermaking process was collected from a domestic paper mill, and 20 mg/L of a chemical was added to the sampled water to measure the ORP and DO change rates. A commercially available water quality measuring device was used to measure the water quality.
The DO change rate was calculated by setting the DO value 3 minutes after the addition of the agent to the collected sample water as DO 0 , and the DO value after time t (3 minutes, 5 minutes, 10 minutes, 15 minutes, 20 minutes, 30 minutes, 45 minutes, and 57 minutes) from DO 0 as DO t . The ORP was 340 mV as a result of measuring the sample water at DO 0 measurement. The results of the DO change rate are shown in FIG. 6.
The agent used was a bound halogen (monochloramine). The ORP was measured 3 minutes after the sampling water was taken.
As shown in FIG. 6, the papermaking process water in Test Example 5 showed a rapid increase in DO change rate, indicating that defects caused by slime were not sufficiently suppressed.

試験例6~8
試験例5とは夫々異なる製紙工場から製紙工程水を採取してサンプリング水とし、該サンプリング水に薬剤を20mg/L(試験例6)、9mg/L(試験例7)、11mg/L(試験例8)添加した以外は、試験例5と同様にしてORPとDO変化率の測定を行った。ORPは、297mV(試験例6)、377mV(試験例7)、412mV(試験例8)であった。DO変化率の結果を図6に示した。
図6に示したように試験例6~8に係る製紙工程水は、上記数式(1)におけるt≦30分のときのDO変化率が60%以下であり、スライムに起因する欠点の抑制が十分であることが判明した。
なお、上記サンプリング水の試験後における生菌数を測定したところ、試験例5は1×10CFU/mLを超えていた。試験例6は1×10CFU/mL以下であった。試験例7及び8は1×10CFU/mL以下であった。
Test Examples 6 to 8
Papermaking process water was collected from different paper mills from those in Test Example 5 to prepare sample water, and the ORP and DO change rate were measured in the same manner as in Test Example 5, except that 20 mg/L (Test Example 6), 9 mg/L (Test Example 7), and 11 mg/L (Test Example 8) of a chemical were added to the sample water. The ORP was 297 mV (Test Example 6), 377 mV (Test Example 7), and 412 mV (Test Example 8). The results of the DO change rate are shown in FIG. 6.
As shown in FIG. 6, the papermaking process water of Test Examples 6 to 8 had a DO change rate of 60% or less when t≦30 minutes in the above formula (1), and it was found that defects caused by slime were sufficiently suppressed.
The viable cell count of the sampled water after the test was measured, and it exceeded 1×10 6 CFU/mL in Test Example 5, was 1×10 5 CFU/mL or less in Test Example 6, and was 1×10 4 CFU/mL or less in Test Examples 7 and 8.

Claims (3)

製紙工程水に薬剤を添加してスライムの発生を抑制する水処理方法であって、
前記製紙工程水の酸化還元電位(ORP)と、前記製紙工程水の下記数式(1)で表される溶存酸素濃度変化率(DO変化率、%)とを測定し、前記薬剤を添加した後の前記ORPと前記DO変化率の値に応じて前記薬剤の前記製紙工程水への添加量を制御する
ことを特徴とする水処理方法。
Figure 2024065696000003
なお、数式(1)中、DOは、製紙工程水の溶存酸素濃度変化が安定した時間における溶存酸素濃度を表し、DOは、DOから時間t経過後の溶存酸素濃度を表す。但し、DO>0である。
A water treatment method for suppressing the generation of slime by adding chemicals to papermaking process water,
the oxidation-reduction potential (ORP) of the papermaking process water and the dissolved oxygen concentration change rate (DO change rate, %) of the papermaking process water, which is expressed by the following mathematical formula (1), are measured, and the amount of the chemical to be added to the papermaking process water is controlled according to the values of the ORP and the DO change rate after the addition of the chemical.
Figure 2024065696000003
In formula (1), DO 0 represents the dissolved oxygen concentration at the time when the change in the dissolved oxygen concentration in the papermaking process water becomes stable, and DO t represents the dissolved oxygen concentration after a time t has elapsed since DO 0 , where DO 0 >0.
前記薬剤を添加した後のDO変化率が、t≦30分のときに60%以下となるように薬剤の製紙工程水への添加量を制御する請求項1に記載の水処理方法。 The water treatment method according to claim 1, in which the amount of the agent added to the papermaking process water is controlled so that the DO change rate after the agent is added is 60% or less when t≦30 minutes. 薬剤がハロゲンを有する酸化剤及び/又は過酸化水素である、請求項1又は2に記載の水処理方法。 The water treatment method according to claim 1 or 2, wherein the chemical is an oxidizing agent having a halogen and/or hydrogen peroxide.
JP2022174691A 2022-10-31 2022-10-31 Water Treatment Methods Active JP7541304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022174691A JP7541304B2 (en) 2022-10-31 2022-10-31 Water Treatment Methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022174691A JP7541304B2 (en) 2022-10-31 2022-10-31 Water Treatment Methods

Publications (2)

Publication Number Publication Date
JP2024065696A true JP2024065696A (en) 2024-05-15
JP7541304B2 JP7541304B2 (en) 2024-08-28

Family

ID=91064260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022174691A Active JP7541304B2 (en) 2022-10-31 2022-10-31 Water Treatment Methods

Country Status (1)

Country Link
JP (1) JP7541304B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009095742A (en) 2007-10-16 2009-05-07 Nisshin Kagaku Kenkyusho:Kk Method for preventing slime and system for adding halogen-based disinfectant
JP4884448B2 (en) 2008-10-20 2012-02-29 ソマール株式会社 Drug addition control management method and drug addition control management device
KR101543733B1 (en) 2010-11-25 2015-08-11 쿠리타 고교 가부시키가이샤 Method for producing paper
JP6809786B2 (en) 2015-12-14 2021-01-06 アクアス株式会社 Slime control method in the papermaking process
FI130064B (en) 2017-12-08 2023-01-13 Kemira Oyj Method for predicting or controlling microbial status of a paper or board making process

Also Published As

Publication number Publication date
JP7541304B2 (en) 2024-08-28

Similar Documents

Publication Publication Date Title
US7311878B2 (en) Method and apparatus for producing synergistic biocide
JP3903058B2 (en) Method for water disinfection
TWI630388B (en) Method for controlling the production of a biocide
KR101488681B1 (en) Method of slime control in paper pulp manufacturing process
WO2015029504A1 (en) Method for producing stabilized hypobromous acid composition, stabilized hypobromous acid composition, and slime inhibition method for separation membrane
JP4914146B2 (en) Papermaking process water sterilization method
EP2297046A1 (en) Chemistry for effective microbe control with reduced gas phase corrosiveness in pulp&paper processing systems
EP3284740A1 (en) Synergistic composition and method for inhibiting growth of microorganisms
JP7541304B2 (en) Water Treatment Methods
JP5480464B2 (en) How to add slime control agent
JP2018015679A (en) Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system
JP5958076B2 (en) Microbial control method in water system containing reducing substances
CN112119040B (en) System and method for monitoring biocide treated process water by oxygen sensor
JP2006083135A (en) Method for producing hypobromous acid in water system
EP1866253A1 (en) Electrochemical method for preparing microbiocidal solutions
US20210337801A1 (en) Method and apparatus for controlling the production of a haloamine biocide
JP6548870B2 (en) Method for controlling slime in papermaking process water
JP7008470B2 (en) Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system
WO2024048154A1 (en) Method for producing slime-suppressing auxiliary agent for reverse osmosis membrane, slime-suppressing auxiliary agent for reverse osmosis membrane, and water treatment method
JP5952230B2 (en) Slime control method
WO2020179789A1 (en) Water treatment method and water treatment device using reverse osmosis membrane
JP2023163855A (en) Bactericidal agent and water system sterilization method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240116

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20240116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240806

R150 Certificate of patent or registration of utility model

Ref document number: 7541304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150