JP2024064038A - CURABLE EPOXY RESIN COMPOSITION AND FIBER-REINFORCED COMPOSITE MATERIAL USING SAME - Google Patents

CURABLE EPOXY RESIN COMPOSITION AND FIBER-REINFORCED COMPOSITE MATERIAL USING SAME Download PDF

Info

Publication number
JP2024064038A
JP2024064038A JP2022172332A JP2022172332A JP2024064038A JP 2024064038 A JP2024064038 A JP 2024064038A JP 2022172332 A JP2022172332 A JP 2022172332A JP 2022172332 A JP2022172332 A JP 2022172332A JP 2024064038 A JP2024064038 A JP 2024064038A
Authority
JP
Japan
Prior art keywords
fiber
epoxy resin
urethane
reinforced composite
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022172332A
Other languages
Japanese (ja)
Inventor
裕一 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical and Materials Co Ltd
Filing date
Publication date
Application filed by Nippon Steel Chemical and Materials Co Ltd filed Critical Nippon Steel Chemical and Materials Co Ltd
Publication of JP2024064038A publication Critical patent/JP2024064038A/en
Pending legal-status Critical Current

Links

Images

Abstract

【課題】
低粘度で速硬化性に優れ、かつ硬化時に得られる成形物の靱性が高く、それによって、生産性と強度に優れた繊維強化複合材料のマトリクス樹脂として好適に用いられる樹脂組成物を提供すること。
【解決手段】
非ウレタン変性エポキシ樹脂(A)、ウレタン変性エポキシ樹脂(B)、酸無水物系硬化剤(C)、硬化促進剤(D)を必須成分とし、E型粘度計により測定した25℃における粘度が50~800mPa・sの範囲であって、かつ前記ウレタン変性エポキシ樹脂(B)のゲルパーミッションクロマトグラフィーで測定した重量平均分子量Mwが5,000~50,000であり、ウレタン変性エポキシ樹脂(B)の内、ポリエーテルポリオールに由来する構造の比率が20~50重量%であることを特徴とする繊維強化複合材料用樹脂組成物。
【選択図】なし
【assignment】
The present invention provides a resin composition which has low viscosity, excellent fast curing properties, and high toughness in molded products obtained upon curing, and is therefore suitable for use as a matrix resin for fiber-reinforced composite materials which are excellent in productivity and strength.
SOLUTION
A resin composition for fiber-reinforced composite materials, comprising as essential components a non-urethane-modified epoxy resin (A), a urethane-modified epoxy resin (B), an acid anhydride-based curing agent (C), and a curing accelerator (D), characterized in that the viscosity at 25°C measured with an E-type viscometer is in the range of 50 to 800 mPa·s, the weight average molecular weight Mw of the urethane-modified epoxy resin (B) is 5,000 to 50,000 measured with gel permeation chromatography, and the proportion of structures derived from polyether polyol in the urethane-modified epoxy resin (B) is 20 to 50% by weight.
[Selection diagram] None

Description

本発明は、繊維強化複合材料用樹脂組成物、及びそれを用いた繊維強化複合材料に関する。 The present invention relates to a resin composition for fiber-reinforced composite materials and a fiber-reinforced composite material using the same.

繊維強化複合材料はガラス繊維、アラミド繊維や炭素繊維等の強化繊維と、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、フェノール樹脂、ベンゾオキサジン樹脂、シアネート樹脂、ビスマレイミド樹脂等の熱硬化性マトリクス樹脂から構成され、軽量かつ、強度、耐食性や耐疲労性等の機械物性に優れることから、航空機、自動車、土木建築およびスポーツ用品等の構造材料として幅広く適応されている。 Fiber-reinforced composite materials are composed of reinforcing fibers such as glass fibers, aramid fibers, and carbon fibers, and thermosetting matrix resins such as unsaturated polyester resins, vinyl ester resins, epoxy resins, phenolic resins, benzoxazine resins, cyanate resins, and bismaleimide resins. They are lightweight and have excellent mechanical properties such as strength, corrosion resistance, and fatigue resistance, and are therefore widely used as structural materials for aircraft, automobiles, civil engineering and construction, sporting goods, and other applications.

繊維強化複合材料の製造方法には、熱硬化性のマトリクス樹脂が予め強化繊維へ含浸されたプリプレグを用いた、オートクレーブ成形法、プレス成形法や、強化繊維へ液状のマトリクス樹脂を含浸させる工程と熱硬化による成形工程を含む、ウェットレイアップ成形法、引き抜き成形法、フィラメントワインディング成形法、RTM法等の手法によって実施される。この中でウェットレイアップ成形法、引き抜き成形法、フィラメントワインディング成形法やRTM法では樹脂を速やかに強化繊維に含浸させるため、低粘度のマトリクス樹脂が用いられる。 Manufacturing methods for fiber-reinforced composite materials include autoclave molding and press molding, which use prepregs in which the reinforcing fibers have already been impregnated with a thermosetting matrix resin, and wet layup molding, pultrusion molding, filament winding molding, and RTM methods, which include a process of impregnating the reinforcing fibers with liquid matrix resin and a molding process by thermosetting. Among these, the wet layup molding, pultrusion molding, filament winding molding, and RTM methods use low-viscosity matrix resins in order to quickly impregnate the reinforcing fibers with the resin.

従来、ウェットレイアップ成形法、引き抜き成形法、フィラメントワインディング成形法では、不飽和ポリエステル樹脂、ビニルエステル樹脂やエポキシ樹脂等の熱硬化性樹脂が用いられてきた。ラジカル重合性を有する不飽和ポリエステル樹脂、ビニルエステル樹脂は低粘度であり速硬化性に優れるものの、成形時の硬化収縮率が大きく成形物の引張り伸びや靱性等の機械物性が相対的に低いという課題がある。一方、エポキシ樹脂は耐熱性や強度の高い成形物が得られるものの、樹脂粘度が相対的に高いという課題がある。 Conventionally, thermosetting resins such as unsaturated polyester resin, vinyl ester resin, and epoxy resin have been used in the wet lay-up molding method, pultrusion molding method, and filament winding molding method. Unsaturated polyester resin and vinyl ester resin, which have radical polymerization properties, have low viscosity and excellent fast curing properties, but have the problem that they have a large cure shrinkage rate during molding and the mechanical properties of the molded product, such as tensile elongation and toughness, are relatively low. On the other hand, epoxy resin can produce molded products with high heat resistance and strength, but has the problem that the resin viscosity is relatively high.

繊維強化複合材料に用いられる強化繊維の引張り破断伸度は、ガラス繊維であれば3.0~6.0%、アラミド繊維であれば2.0~5.0%、炭素繊維であれば1.5~2.0%の値を一般的に示すため、マトリクス樹脂には強化繊維よりも引張り破断伸度の高い材料を適応することが、強度に優れる繊維強化複合材料を得る上で望ましい。 The tensile breaking elongation of the reinforcing fibers used in fiber-reinforced composite materials generally ranges from 3.0 to 6.0% for glass fibers, 2.0 to 5.0% for aramid fibers, and 1.5 to 2.0% for carbon fibers. Therefore, in order to obtain a fiber-reinforced composite material with excellent strength, it is desirable to use a matrix resin with a higher tensile breaking elongation than the reinforcing fibers.

引き抜き成形法に用いるマトリクス樹脂として、特許文献1、2にはエポキシ樹脂と酸無水物系硬化剤からなる樹脂組成物を用いたが適応例が提案されている。低粘度なエポキシ樹脂の使用による強化繊維への含浸性向上や内部離型剤の添加による引き抜き成形性の向上が図られている。エポキシ樹脂と酸無水物からなる樹脂組成物を硬化させることで高い強度と耐熱性に優れた硬化物が得られるが、靭性が低く脆いという課題がある。 Patent Documents 1 and 2 propose examples of applications in which a resin composition consisting of an epoxy resin and an acid anhydride curing agent is used as the matrix resin for the pultrusion molding method. The use of a low-viscosity epoxy resin improves impregnation of reinforcing fibers, and the addition of an internal mold release agent improves pultrusion moldability. By curing a resin composition consisting of an epoxy resin and an acid anhydride, a cured product with high strength and excellent heat resistance can be obtained, but there is an issue of low toughness and brittleness.

硬化物に靭性を付与する手法としてエポキシ樹脂と酸無水物系硬化剤からなる樹脂組成物にコアシェルゴムを添加することが特許文献3、4に記されている。コアシェルゴム粒子を添加することによって耐熱性を低下させることなく靭性を付与させているものの、ゴム粒子の柔軟な化学構造に起因して成形物としての弾性率が低下する。弾性率の低下は繊維強化複合材料としての強度低下を招くため望ましくない。 Patent documents 3 and 4 describe the addition of core-shell rubber to a resin composition consisting of an epoxy resin and an acid anhydride curing agent as a method for imparting toughness to the cured product. Although the addition of core-shell rubber particles imparts toughness without reducing heat resistance, the elastic modulus of the molded product decreases due to the flexible chemical structure of the rubber particles. The decrease in elastic modulus is undesirable because it leads to a decrease in strength as a fiber-reinforced composite material.

エポキシ樹脂と酸無水物系硬化剤からなる樹脂組成物にウレタン変性エポキシ樹脂を添加することによる靭性の付与が試みられている(特許文献5~7)。いずれもポリオール、ポリイソシアネート、エポキシ樹脂を原料にウレタン変性エポキシ樹脂が合成されている。引き抜き成形用の樹脂組成物として好適に用いられるためには、硬化前に低粘度で硬化速度が速いことによる生産性の担保と、硬化後の弾性率と靭性が高いことによる成形された繊維強化複合材料の強度が優れることが求められる。よってウレタン変性エポキシ樹脂には前述の物性を満たすために各原料の構成比率に着目する必要がある。 Attempts have been made to impart toughness by adding a urethane-modified epoxy resin to a resin composition consisting of an epoxy resin and an acid anhydride curing agent (Patent Documents 5 to 7). In all cases, the urethane-modified epoxy resin is synthesized using polyol, polyisocyanate, and epoxy resin as raw materials. To be suitably used as a resin composition for pultrusion molding, it is required that the resin composition has a low viscosity and a fast curing speed before curing to ensure productivity, and that the molded fiber-reinforced composite material has excellent strength due to a high elastic modulus and toughness after curing. Therefore, in order to satisfy the above-mentioned physical properties, it is necessary to pay attention to the composition ratio of each raw material when making a urethane-modified epoxy resin.

ウレタン変性エポキシ樹脂は構造中にウレタン結合を有しており、ウレタン結合同士が水素結合によって凝集したハードセグメントを形成させると同時に、ポリオール等のゴム弾性を示す化合物を構造中に組み込むことによりソフトセグメントを形成させることができる。さらにウレタン変性エポキシ樹脂と硬化剤との反応によって架橋構造を形成することでハードセグメントとソフトセグメントを含む硬化物が得られる。硬化物として高弾性率と靭性を両立させるためにはハードセグメントとソフトセグメントの割合、すなわちウレタン変性エポキシ樹脂の原料に用いるエポキシ樹脂、ポリイソシアネート、ポリオール等の成種類や構成、および分子量に着目する必要がある。 Urethane-modified epoxy resins have urethane bonds in their structure, and the urethane bonds aggregate together through hydrogen bonds to form hard segments, while soft segments can be formed by incorporating compounds that exhibit rubber elasticity, such as polyols, into the structure. Furthermore, a crosslinked structure is formed by reacting the urethane-modified epoxy resin with a curing agent, resulting in a cured product that contains hard and soft segments. In order to achieve both a high elastic modulus and toughness in the cured product, it is necessary to pay attention to the ratio of hard and soft segments, that is, the type and composition, and molecular weight of the epoxy resin, polyisocyanate, polyol, etc. used as raw materials for the urethane-modified epoxy resin.

特許第5028903号公報Patent No. 5028903 特許第5263120号公報Japanese Patent No. 5263120 特開2018-35210号公報JP 2018-35210 A 特許第5403184号公報Japanese Patent No. 5403184 特許第6593573号公報Patent No. 6593573 特許第6739921号公報Patent No. 6739921 特許第6958751号公報Patent No. 6958751

繊維強化複合材料を工業的に製造する際、特に引き抜き成形法では、生産性を高めるため、金型を高温にして連続的に成形することが一般的である。そのため、用いられるマトリクス樹脂として硬化速度の速い樹脂組成物が望ましい。加えて、硬化成形物には、高温での短時間硬化においても樹脂の硬化ひずみによって割れ等が生じないという、破壊強靭性に優れることが求められる。 When manufacturing fiber-reinforced composite materials industrially, particularly in the pultrusion molding method, it is common to continuously mold the material at high temperatures in order to increase productivity. For this reason, it is desirable to use a resin composition with a fast curing rate as the matrix resin used. In addition, the cured molded product is required to have excellent fracture toughness, so that cracks do not occur due to curing strain of the resin even when cured for a short time at high temperatures.

本発明は、低粘度で速硬化性に優れ、かつ硬化時に得られる成形物の靱性が高く、それによって、生産性と強度に優れた繊維強化複合材料のマトリクス樹脂として好適に用いられる樹脂組成物の提供を目的とする。 The present invention aims to provide a resin composition that has low viscosity, excellent fast curing properties, and high toughness in the molded products obtained upon curing, and is therefore suitable for use as a matrix resin for fiber-reinforced composite materials that are excellent in productivity and strength.

本発明者らは前述の課題を解決するため検討を行った結果、ウレタン変性エポキシ樹脂の構成成分の比率と分子量に着目し、樹脂組成物として低粘度を維持しながら硬化時に高い弾性率と靱性を有する成形物が得られ、前記課題を解決することを見出し本発明の完成に至った。 As a result of investigations to solve the above-mentioned problems, the inventors focused on the ratio and molecular weight of the constituent components of the urethane-modified epoxy resin, and discovered that the resin composition maintains a low viscosity while producing a molded product that has a high elastic modulus and toughness upon curing, thereby solving the above-mentioned problems, leading to the completion of the present invention.

すなわち本発明は、非ウレタン変性エポキシ樹脂(A)、ウレタン変性エポキシ樹脂(B)、酸無水物系硬化剤(C)、硬化促進剤(D)を必須成分とし、E型粘度計により測定した25℃における粘度が200~20,000mPa・sの範囲であって、かつ前記ウレタン変性エポキシ樹脂(B)のゲルパーミッションクロマトグラフィーで測定した重量平均分子量Mwが5,000~50,000であり、前記ウレタン変性エポキシ樹脂(B)の内、ポリエーテルポリオールに由来する構造の比率が20~50重量%であることを特徴とする繊維強化複合材料用樹脂組成物である。 That is, the present invention is a resin composition for fiber-reinforced composite materials, which contains non-urethane-modified epoxy resin (A), urethane-modified epoxy resin (B), acid anhydride-based curing agent (C), and curing accelerator (D) as essential components, has a viscosity at 25°C measured with an E-type viscometer in the range of 200 to 20,000 mPa·s, the weight-average molecular weight Mw of the urethane-modified epoxy resin (B) measured by gel permeation chromatography is 5,000 to 50,000, and the ratio of structures derived from polyether polyol in the urethane-modified epoxy resin (B) is 20 to 50% by weight.

本発明の樹脂組成物においては、非ウレタン変性エポキシ樹脂(A)100重量部の内、ビスフェノールF型エポキシ樹脂が40重量部以上含まれることが好ましい。 In the resin composition of the present invention, it is preferable that bisphenol F type epoxy resin is contained in an amount of 40 parts by weight or more out of 100 parts by weight of the non-urethane modified epoxy resin (A).

本発明の樹脂組成物においては、ウレタン変性エポキシ樹脂(B)の配合量が、(A)成分、(B)成分、(C)成分、(D)成分の合計量100重量部に対し、8~32重量部であることが好ましい。 In the resin composition of the present invention, the amount of urethane-modified epoxy resin (B) is preferably 8 to 32 parts by weight per 100 parts by weight of the total amount of components (A), (B), (C), and (D).

ウレタン変性エポキシ樹脂(B)の内、ウレタン結合が占める重量比率が3.0~10.0重量%であることが好ましい。 It is preferable that the weight ratio of urethane bonds in the urethane-modified epoxy resin (B) is 3.0 to 10.0% by weight.

ウレタン変性エポキシ樹脂(B)のエポキシ当量が300~500g/eqであることが好ましい。 The epoxy equivalent of the urethane-modified epoxy resin (B) is preferably 300 to 500 g/eq.

本発明の樹脂組成物においては、硬化促進剤(D)が、25℃で液状のイミダゾールであり、かつ(D)成分の配合量が(A)成分、(B)成分、(C)成分、(D)成分の合計量100重量部に対し、0.5~3.0重量部であることが好ましい。 In the resin composition of the present invention, it is preferable that the curing accelerator (D) is an imidazole that is liquid at 25°C, and that the amount of component (D) is 0.5 to 3.0 parts by weight per 100 parts by weight of the total amount of components (A), (B), (C), and (D).

本発明の繊維強化複合材料における好ましい強化繊維の体積含有率は、55~75体積%である。 The preferred volume content of reinforcing fibers in the fiber-reinforced composite material of the present invention is 55 to 75 volume percent.

強化繊維に連続的に本発明の繊維強化複合材料用樹脂組成物を含浸し、加熱硬化する引き抜き成形法で成形することにより、繊維強化複合材料が好適に得られる。
A fiber-reinforced composite material can be suitably obtained by continuously impregnating reinforcing fibers with the resin composition for a fiber-reinforced composite material of the present invention and molding the same by a pultrusion molding method in which the composition is cured by heating.

本発明の繊維強化複合材料用樹脂組成物は、低粘度なため強化繊維への含浸性に優れた樹脂組成物であり、かつ、迅速に硬化して高い強度と靱性を有する成形物を生成する。本発明の繊維強化複合材料用樹脂組成物は、特に、引き抜き成形法に適し、引き抜き成形法を行うことによって繊維強化複合材料を好適に製造することができる。 The resin composition for fiber-reinforced composite materials of the present invention is a resin composition that has excellent impregnation into reinforcing fibers due to its low viscosity, and cures quickly to produce molded products with high strength and toughness. The resin composition for fiber-reinforced composite materials of the present invention is particularly suitable for pultrusion molding, and fiber-reinforced composite materials can be suitably produced by carrying out the pultrusion molding method.

合成例1のウレタン変性エポキシ樹脂のGPCチャートを示す。1 shows a GPC chart of the urethane-modified epoxy resin of Synthesis Example 1.

以下、本発明の実施の形態について詳細に説明する。
本発明の繊維強化複合材料用樹脂組成物は、非ウレタン変性エポキシ樹脂(A)、ウレタン変性エポキシ樹脂(B)、酸無水物系硬化剤(C)、硬化促進剤(D)を必須成分とする。以下、非ウレタン変性エポキシ樹脂(A)、ウレタン変性エポキシ樹脂(B)、酸無水物系硬化剤(C)、硬化促進剤(D)を、それぞれ(A)成分、(B)成分、(C)成分、(D)成分ともいう。
Hereinafter, an embodiment of the present invention will be described in detail.
The resin composition for fiber-reinforced composite materials of the present invention contains as essential components a non-urethane-modified epoxy resin (A), a urethane-modified epoxy resin (B), an acid anhydride-based curing agent (C), and a curing accelerator (D). Hereinafter, the non-urethane-modified epoxy resin (A), the urethane-modified epoxy resin (B), the acid anhydride-based curing agent (C), and the curing accelerator (D) will also be referred to as component (A), component (B), component (C), and component (D), respectively.

本発明で使用する非ウレタン変性エポキシ樹脂(A)としては、1分子中に2つ以上のエポキシ基を有し、ウレタン変性されていないエポキシ化合物を使用することができる。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂、イソホロンビスフェノール型エポキシ樹脂等のビスフェノール型エポキシ樹脂や、もしくはこれらビスフェノールのハロゲン、アルキル置換体、水添品、単量体に限らず複数の繰り返し単位を有する高分子量体、アルキレンオキサイド付加物のグリシジルエーテルや、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂や、 As the non-urethane-modified epoxy resin (A) used in the present invention, an epoxy compound having two or more epoxy groups in one molecule and not modified with urethane can be used. For example, bisphenol-type epoxy resins such as bisphenol A-type epoxy resin, bisphenol E-type epoxy resin, bisphenol S-type epoxy resin, bisphenol Z-type epoxy resin, and isophorone bisphenol-type epoxy resin, or halogenated, alkyl-substituted, hydrogenated, or monomeric, high molecular weight compounds having multiple repeating units, glycidyl ethers of alkylene oxide adducts of these bisphenols, novolac-type epoxy resins such as phenol novolac-type epoxy resin, cresol novolac-type epoxy resin, and bisphenol A novolac-type epoxy resin,

3,4-エポキシ-6-メチルシクロヘキシルメチル-3,4-エポキシ-6-メチルシクロヘキサンカルボキシレ-ト、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、1-エポキシエチル-3,4-エポキシシクロヘキサン等の脂環式エポキシ樹脂や、トリメチロールプロパンポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ポリオキシアルキレンジグリシジルエーテル等の脂肪族エポキシ樹脂や、フタル酸ジグリシジルエステルや、テトラヒドロフタル酸ジグリシジルエステルや、ダイマー酸グリシジルエステル等のグリシジルエステルや、テトラグリシジルジアミノジフェニルメタン、テトラグリシジルジアミノジフェニルスルホン、トリグリシジルアミノフェノール、トリグリシジルアミノクレゾール、テトラグリシジルキシリレンジアミン等のグリシジルアミン類等を用いることができる。これらのエポキシ樹脂中、低粘度化の観点から25℃で液状のエポキシ樹脂が好ましく、25℃で半固形または固形のエポキシ樹脂は好ましくない。これらは1種を単独で用いても2種以上を組み合わせて用いてもよい。 Alicyclic epoxy resins such as 3,4-epoxy-6-methylcyclohexylmethyl-3,4-epoxy-6-methylcyclohexanecarboxylate, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, and 1-epoxyethyl-3,4-epoxycyclohexane, aliphatic epoxy resins such as trimethylolpropane polyglycidyl ether, pentaerythritol polyglycidyl ether, and polyoxyalkylene diglycidyl ether, glycidyl esters such as phthalic acid diglycidyl ester, tetrahydrophthalic acid diglycidyl ester, and dimer acid glycidyl ester, and glycidyl amines such as tetraglycidyldiaminodiphenylmethane, tetraglycidyldiaminodiphenylsulfone, triglycidylaminophenol, triglycidylaminocresol, and tetraglycidylxylylenediamine can be used. Among these epoxy resins, from the viewpoint of low viscosity, epoxy resins that are liquid at 25°C are preferred, and epoxy resins that are semi-solid or solid at 25°C are not preferred. These may be used alone or in combination of two or more.

本発明の効果を得るための好ましい形態は、非ウレタン変性エポキシ樹脂(A)100重量部の内、ビスフェノールF型エポキシ樹脂を40重量部以上、好ましくは45~85重量部、より好ましくは50~70重量部含むことである。ビスフェノールF型エポキシ樹脂を40重量部以上含むことで、樹脂組成物を低粘度化することができ、強化繊維への含浸性を向上することができる。 A preferred embodiment for achieving the effects of the present invention is to contain 40 parts by weight or more, preferably 45 to 85 parts by weight, and more preferably 50 to 70 parts by weight, of 100 parts by weight of non-urethane modified epoxy resin (A). By containing 40 parts by weight or more of bisphenol F type epoxy resin, the viscosity of the resin composition can be reduced and the impregnation of reinforcing fibers can be improved.

本発明の繊維強化複合材料用樹脂組成物に使用される非ウレタン変性エポキシ樹脂(A)の配合量は(A)成分、(B)成分、(C)成分、(D)成分の合計量100重量部に対し、好ましくは25~50重量部、より好ましくは30~50重量部である。 The amount of non-urethane modified epoxy resin (A) used in the resin composition for fiber reinforced composite materials of the present invention is preferably 25 to 50 parts by weight, more preferably 30 to 50 parts by weight, per 100 parts by weight of the total amount of components (A), (B), (C), and (D).

本発明で使用するウレタン変性エポキシ樹脂(B)は、ゲルパーミッションクロマトグラフィー(Gel Permeation Chromatography;GPC)で測定した重量平均分子量Mwが5,000~50,000であり、好ましくは8,000~40,000であり、より好ましくは12,000~30,000である。Mwが5,000未満であると、樹脂組成物を硬化させた時に靭性を高められず、Mwが50,000を超えると(B)成分の粘度が著しく高くなるため、繊維への含浸性を損なう。 The urethane-modified epoxy resin (B) used in the present invention has a weight-average molecular weight Mw measured by gel permeation chromatography (GPC) of 5,000 to 50,000, preferably 8,000 to 40,000, and more preferably 12,000 to 30,000. If the Mw is less than 5,000, the toughness of the resin composition cannot be increased when cured, and if the Mw exceeds 50,000, the viscosity of component (B) becomes significantly high, impairing the ability to impregnate fibers.

加えて、本発明で使用するウレタン変性エポキシ樹脂(B)の内、ポリエーテルポリオールに由来する構造の比率(ポリエーテルポリオール構造比率)は、20~50重量%であり、好ましくは25~45重量%であり、より好ましくは27~40重量%である。(B)成分の内、ポリエーテルポリオールに由来する構造の比率がこの範囲であることによって、(B)成分としての低粘度を維持しつつ、樹脂組成物を硬化させた時に高い弾性率と靭性を両立させることができる。 In addition, the ratio of structures derived from polyether polyol (polyether polyol structure ratio) in the urethane-modified epoxy resin (B) used in the present invention is 20 to 50% by weight, preferably 25 to 45% by weight, and more preferably 27 to 40% by weight. By having the ratio of structures derived from polyether polyol in component (B) within this range, it is possible to achieve both high elastic modulus and toughness when the resin composition is cured while maintaining the low viscosity of component (B).

本発明の繊維強化複合材料用樹脂組成物に用いられるウレタン変性エポキシ樹脂(B)の内、ウレタン結合が占める比率は、3.0~10.0重量%であることが好ましく、4.0~7.0重量%であることがより好ましい。3.0重量%未満であると樹脂組成物を硬化させた時の弾性率と靭性が不足し、10.0重量%を超えるとウレタン結合に起因した水素結合による凝集によって樹脂組成物が高粘度となり強化繊維への含浸性を損なうことがある。 The proportion of urethane bonds in the urethane-modified epoxy resin (B) used in the resin composition for fiber-reinforced composite materials of the present invention is preferably 3.0 to 10.0% by weight, and more preferably 4.0 to 7.0% by weight. If it is less than 3.0% by weight, the elastic modulus and toughness of the resin composition when cured will be insufficient, and if it exceeds 10.0% by weight, aggregation due to hydrogen bonds caused by the urethane bonds will cause the resin composition to become highly viscous, which may impair its ability to impregnate reinforcing fibers.

ここで、繊維強化複合材料用樹脂組成物において用いられるウレタン変性エポキシ樹脂(B)のウレタン結合が占める比率(重量%)は、下記式で求められる。
ウレタン結合が占める比率=100×(ウレタン変性エポキシ樹脂の合成に用いたポリイソシアネートの重量×(47/ウレタン変性エポキシ樹脂の合成に用いたポリイソシアネートのイソシアネート当量))/ウレタン変性エポキシ樹脂の合成に用いた原料の総重量
Here, the ratio (% by weight) of the urethane bonds in the urethane-modified epoxy resin (B) used in the resin composition for a fiber-reinforced composite material can be calculated by the following formula.
Proportion of urethane bonds=100×(weight of polyisocyanate used in synthesis of urethane-modified epoxy resin×(47/isocyanate equivalent of polyisocyanate used in synthesis of urethane-modified epoxy resin))/total weight of raw materials used in synthesis of urethane-modified epoxy resin

本発明で用いるウレタン変性エポキシ樹脂(B)のエポキシ当量は、好ましくは300~500g/eq、より好ましくは300~400g/eqである。この範囲であると、得られる硬化物の弾性率と靭性を高められる。すなわち、エポキシ当量が300g/eq未満であると硬化時に架橋密度が高くなり靭性の低下を招き、500g/eqを超えると高い靭性を示すものの弾性率の低下を招く。 The epoxy equivalent of the urethane-modified epoxy resin (B) used in the present invention is preferably 300 to 500 g/eq, more preferably 300 to 400 g/eq. Within this range, the elastic modulus and toughness of the resulting cured product can be increased. That is, if the epoxy equivalent is less than 300 g/eq, the crosslink density increases during curing, resulting in reduced toughness, and if it exceeds 500 g/eq, high toughness is exhibited but the elastic modulus decreases.

ウレタン変性エポキシ樹脂(B)は、分子内に水酸基を有するエポキシ樹脂と、ポリエーテルポリオール等のポリオール化合物と、ポリイソシアナート化合物とを、加熱反応させることによって得られる。なお、ウレタン変性エポキシ樹脂にはポリウレタンと結合されていない未変性エポキシ樹脂が含有されていてもよい。 The urethane-modified epoxy resin (B) is obtained by reacting an epoxy resin having a hydroxyl group in the molecule with a polyol compound such as polyether polyol, and a polyisocyanate compound under heat. The urethane-modified epoxy resin may contain unmodified epoxy resin that is not bonded to polyurethane.

ウレタン変性エポキシ樹脂(B)の原料である分子内に水酸基を有するエポキシ樹脂(以下、原料エポキシ樹脂ともいう)としては、分子内に水酸基を有するビスフェノール型エポキシ樹脂が好ましい。これを用いると、硬化物の耐熱性を低下させること無しに靭性を高められる。原料エポキシ樹脂の水酸基当量は、好ましくは500~10000g/eq、より好ましくは1000~5000g/eqである。水酸基当量が500g/eqより低い場合、ウレタン変性エポキシ樹脂(B)の粘度が高くなってしまい、10000g/eqより高い場合、硬化物の靭性の低下を招く。原料エポキシ樹脂のエポキシ当量は、好ましくは100~300g/eq、より好ましくは160~260g/eqである。 As the epoxy resin having a hydroxyl group in the molecule (hereinafter also referred to as raw epoxy resin) which is the raw material of the urethane-modified epoxy resin (B), a bisphenol-type epoxy resin having a hydroxyl group in the molecule is preferred. By using this, the toughness of the cured product can be increased without decreasing the heat resistance. The hydroxyl equivalent of the raw epoxy resin is preferably 500 to 10,000 g/eq, more preferably 1,000 to 5,000 g/eq. If the hydroxyl equivalent is less than 500 g/eq, the viscosity of the urethane-modified epoxy resin (B) will increase, and if it is more than 10,000 g/eq, the toughness of the cured product will decrease. The epoxy equivalent of the raw epoxy resin is preferably 100 to 300 g/eq, more preferably 160 to 260 g/eq.

ウレタン変性エポキシ樹脂(B)の原料であるポリオール化合物、及びポリイソシアナート化合物(以下、それぞれ原料ポリオール化合物、原料ポリイソシアナート化合物ともいう)については、所望のウレタン変性エポキシ樹脂(B)を得られる限り、特に限定されず各種のものを使用できる。 The polyol compound and polyisocyanate compound (hereinafter also referred to as raw polyol compound and raw polyisocyanate compound, respectively) that are the raw materials of the urethane-modified epoxy resin (B) are not particularly limited and various types can be used as long as the desired urethane-modified epoxy resin (B) can be obtained.

原料ポリオール化合物としては、好ましくは、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリエステルポリオール、ポリカーボネートポリオール等の水酸基当量240~2000g/eqの中高分子ポリオール、エチレングリコール、プロパンジオール、ブタンジオール、ヘキサンジオール、グリセリン等の水酸基当量30~120g/eqの低分子ポリオールからなる群から選ばれた一種以上のポリオール化合物が使用できる。また、原料ポリオール化合物として、中高分子ポリオールと低分子ポリオールを併用すると、ウレタン変性エポキシ樹脂中にソフトセグメントとハードセグメントを形成させることができ、硬化物の弾性率と靭性を高められるため望ましい。 As the raw polyol compound, preferably, one or more polyol compounds selected from the group consisting of medium molecular weight polyols with a hydroxyl group equivalent of 240 to 2000 g/eq, such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyester polyol, polycarbonate polyol, etc., and low molecular weight polyols with a hydroxyl group equivalent of 30 to 120 g/eq, such as ethylene glycol, propanediol, butanediol, hexanediol, glycerin, etc., can be used. In addition, it is desirable to use a combination of a medium molecular weight polyol and a low molecular weight polyol as the raw polyol compound, since it is possible to form soft segments and hard segments in the urethane-modified epoxy resin, thereby increasing the elastic modulus and toughness of the cured product.

原料ポリイソシアナート化合物しては、トリレンジイソシアネート、ジフェニルメタンジイソシアネートからなる群から選ばれた一種以上のポリイソシアネート化合物が使用できる。 As the raw material polyisocyanate compound, one or more polyisocyanate compounds selected from the group consisting of tolylene diisocyanate and diphenylmethane diisocyanate can be used.

本発明の繊維強化複合材料用樹脂組成物に使用されるウレタン変性エポキシ樹脂(B)の配合量は(A)成分、(B)成分、(C)成分、(D)成分の合計量100重量部に対し、8~32重量部であることが望ましい。8重量部未満であると樹脂組成物を硬化させた時の靭性が不足し、32重量部を超えると樹脂組成物が高粘度となり強化繊維への含浸性を損なう。また樹脂組成物を硬化させた時に硬化物の弾性率が低くなってしまう。 The amount of the urethane-modified epoxy resin (B) used in the resin composition for fiber-reinforced composite materials of the present invention is desirably 8 to 32 parts by weight per 100 parts by weight of the total amount of components (A), (B), (C), and (D). If it is less than 8 parts by weight, the toughness of the resin composition when cured will be insufficient, and if it exceeds 32 parts by weight, the resin composition will become highly viscous and will be unable to impregnate the reinforcing fibers. In addition, the elastic modulus of the cured product will be low when the resin composition is cured.

本発明の繊維強化複合材料用樹脂組成物には、酸無水物系硬化剤(C)が配合される。酸無水物系硬化剤(C)としてカルボン酸無水物を用いることができる。酸無水物系硬化剤(C)の配合量は、非ウレタン変性エポキシ樹脂(A)とウレタン変性エポキシ樹脂(B)の合計エポキシ基1当量に対して、0.8当量以上1.2当量以下が好ましい。酸無水物系硬化剤(C)の比率が0.8当量より小さい場合は硬化不良が起こりやすく、酸無水物が1.2当量より大きい場合は硬化不良が起こりやすい上に硬化後に酸無水物が残存するため加水分解等の影響が出るおそれがある。ただし、硬化の過程で酸無水物やエポキシ樹脂が揮発するおそれがある場合にはその限りではなく、0.5当量以上1.5当量以下で使用してもよい。 The resin composition for fiber-reinforced composite materials of the present invention contains an acid anhydride-based curing agent (C). A carboxylic acid anhydride can be used as the acid anhydride-based curing agent (C). The amount of the acid anhydride-based curing agent (C) is preferably 0.8 equivalents or more and 1.2 equivalents or less per equivalent of the total epoxy group of the non-urethane-modified epoxy resin (A) and the urethane-modified epoxy resin (B). If the ratio of the acid anhydride-based curing agent (C) is less than 0.8 equivalents, poor curing is likely to occur, and if the acid anhydride is more than 1.2 equivalents, poor curing is likely to occur and the acid anhydride remains after curing, which may cause effects such as hydrolysis. However, this is not the case when there is a risk of the acid anhydride or epoxy resin volatilizing during the curing process, and it may be used in an amount of 0.5 equivalents or more and 1.5 equivalents or less.

本発明の繊維強化複合材料用樹脂組成物には、硬化促進剤(D)が配合される。硬化促進剤としては、イミダゾール化合物又はリン系化合物が好ましい。 The resin composition for fiber-reinforced composite materials of the present invention contains a curing accelerator (D). The curing accelerator is preferably an imidazole compound or a phosphorus-based compound.

本発明の繊維強化複合材料用樹脂組成物に含まれるイミダゾール系の硬化促進剤(D)の含有量は、酸無水物系硬化剤(C)の量100重量部に対し、0.1~10重量部、好ましくは0.5~5.0重量部、特に0.8~2.4重量部とすることが好ましい。この範囲内にイミダゾール系の硬化促進剤が含有される時、短時間での硬化性に優れ、かつ加熱硬化時に耐熱性が高い成形物が得られる。 The content of the imidazole curing accelerator (D) contained in the resin composition for fiber-reinforced composite materials of the present invention is preferably 0.1 to 10 parts by weight, preferably 0.5 to 5.0 parts by weight, and particularly preferably 0.8 to 2.4 parts by weight, per 100 parts by weight of the acid anhydride curing agent (C). When the imidazole curing accelerator is contained within this range, a molded product that has excellent short-term curing properties and high heat resistance when heated and cured can be obtained.

イミダゾール系の硬化促進剤(D)として、本発明における加熱硬化時の速硬化性、硬化時における耐熱性をより満足させるためには、硬化促進剤に、2-メチルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-フェニル6-4′,5′-ジヒドロキシメチルイミダゾール、及び1-シアノエチル-2-エチル-4メチルイミダゾールからなる群から選ばれる一種以上のイミダゾール化合物を用いることが好ましい。硬化促進剤(D)として、25℃で液状のイミダゾール化合物が特に好ましい。 As the imidazole-based curing accelerator (D), in order to more satisfactorily achieve the fast curing property during heat curing and the heat resistance during curing in the present invention, it is preferable to use one or more imidazole compounds selected from the group consisting of 2-methylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-phenyl-6-4',5'-dihydroxymethylimidazole, and 1-cyanoethyl-2-ethyl-4-methylimidazole. As the curing accelerator (D), imidazole compounds that are liquid at 25°C are particularly preferable.

本発明の繊維強化複合材料用樹脂組成物に含まれるリン系の硬化促進剤(D)の含有量は、酸無水物系硬化剤(C)の量100重量部に対し、0.2~12重量部、好ましくは0.4~4.0重量部、特に0.6~2.0重量部とすることが好ましい。この範囲内にリン系の硬化促進剤が含有される時、短時間での硬化性に優れ、かつ加熱硬化時に弾性率と耐熱性の高い成形物が得られる。 The content of the phosphorus-based curing accelerator (D) contained in the resin composition for fiber-reinforced composite materials of the present invention is preferably 0.2 to 12 parts by weight, preferably 0.4 to 4.0 parts by weight, and particularly preferably 0.6 to 2.0 parts by weight, per 100 parts by weight of the acid anhydride-based curing agent (C). When the phosphorus-based curing accelerator is contained within this range, a molded product is obtained that has excellent curing properties in a short time and has high elasticity and heat resistance when cured by heating.

リン系の硬化促進剤(D)として、本発明における加熱硬化時の速硬化性、硬化時における耐熱性をより満足させるためには、硬化促進剤に、テトラブチルホスホニウムブロマイド、テトラブチルホスホニウムクロライド、テトラブチルホスホニウムアセテート、メチルトリフェニルホスホニウムブロマイド、エチルトリフェニルホスホニウムブロマイド、プロピルトリフェニルホスホニウムブロマイド、ブチルトリフェニルホスホニウムブロマイド、ベンジルトリフェニルホスホニウムクロライド、テトラフェニルホスホニウムブロマイド、テトラフェニルホスホニウムテトラフェニルボレート、テトラフェニルホスホニウムテトラp―トリルボレート、トリフェニルエチルホスホニウムテトラフェニルボレート、トリス(3-メチルフェニル)エチルホスホニウムテトラフェニルボレート、トリス(2-メトキシフェニル)エチルホスホニウムテトラフェニルボレート、(4-メチルフェニル)トリフェニルホスホニウムチオシアネート、トリフェニルホスフィン、トリブチルホスフィン、トリ-tert-ブチルホスフィン、トリオクチルホスフィン、ジ-tert-ブチル(3-メチル-2-ブテニル)ホスフィン、ジブチルフェニルホスフィン、ジ-tert-ブチルフェニルホスフィン、メチルジフェニルホスフィン、エチルジフェニルホスフィン、ブチルジフェニルホスフィン、 In order to more satisfactorily achieve the rapid curing property during heat curing and the heat resistance during curing in the present invention as the phosphorus-based curing accelerator (D), the curing accelerator may be selected from the group consisting of tetrabutylphosphonium bromide, tetrabutylphosphonium chloride, tetrabutylphosphonium acetate, methyltriphenylphosphonium bromide, ethyltriphenylphosphonium bromide, propyltriphenylphosphonium bromide, butyltriphenylphosphonium bromide, benzyltriphenylphosphonium chloride, tetraphenylphosphonium bromide, tetraphenylphosphonium tetraphenylborate, and tetraphenylphosphonium tetra-p-tolylborate. ester, triphenylethylphosphonium tetraphenylborate, tris(3-methylphenyl)ethylphosphonium tetraphenylborate, tris(2-methoxyphenyl)ethylphosphonium tetraphenylborate, (4-methylphenyl)triphenylphosphonium thiocyanate, triphenylphosphine, tributylphosphine, tri-tert-butylphosphine, trioctylphosphine, di-tert-butyl(3-methyl-2-butenyl)phosphine, dibutylphenylphosphine, di-tert-butylphenylphosphine, methyldiphenylphosphine, ethyldiphenylphosphine, butyldiphenylphosphine,

ジフェニルシクロヘキシルホスフィン、トリフェニルホスフィン、トリ-o-トリルホスフィン、トリ-m-トリルホスフィン、トリ-p-トリルホスフィン、トリス(4-エチルフェニル)ホスフィン、トリス(4-プロピルフェニル)ホスフィン、トリス(4-イソプロピルフェニル)ホスフィン、トリス(4-ブチルフェニル)ホスフィン、トリス(4-tert-ブチルフェニル)ホスフィン、トリス(2,4-ジメチルフェニル)ホスフィン、トリス(2,5-ジメチルフェニル)ホスフィン、トリス(2,6-ジメチルフェニル)ホスフィン、トリス(3,5-ジメチルフェニル)ホスフィン、トリス(2,4,6-トリメチルフェニル)ホスフィン、トリス(2,6-ジメチル-4-エトキシフェニル)ホスフィン、トリス(2-メトキシフェニル)ホスフィン、トリス(4-メトキシフェニル)ホスフィン、トリス(4-エトキシフェニル)ホスフィン、トリス(4-tert-ブトキシフェニル)ホスフィン、ジフェニル-2-ピリジルホスフィン、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、1,4-ビス(ジフェニルホスフィノ)ブタン、及び2,2’-ビス(ジフェニルホスフィノ)ジフェニルエーテルからなる群から選ばれる一種以上のリン系化合物を用いることが好ましい。 Diphenylcyclohexylphosphine, triphenylphosphine, tri-o-tolylphosphine, tri-m-tolylphosphine, tri-p-tolylphosphine, tris(4-ethylphenyl)phosphine, tris(4-propylphenyl)phosphine, tris(4-isopropylphenyl)phosphine, tris(4-butylphenyl)phosphine, tris(4-tert-butylphenyl)phosphine, tris(2,4-dimethylphenyl)phosphine, tris(2,5-dimethylphenyl)phosphine, tris(2,6-dimethylphenyl)phosphine, tris(3,5-dimethylphenyl)phosphine, tris(2,4,6- It is preferable to use one or more phosphorus compounds selected from the group consisting of 1,2-bis(diphenylphosphino)ethane, 1,3-bis(diphenylphosphino)propane, 1,4-bis(diphenylphosphino)butane, and 2,2'-bis(diphenylphosphino)diphenyl ether.

また、本発明の繊維強化複合材料用樹脂組成物には、他の硬化性樹脂を追加して配合することもできる。このような硬化性樹脂としては、不飽和ポリエステル樹脂、硬化性アクリル樹脂、硬化性アミノ樹脂、硬化性メラミン樹脂、硬化性ウレア樹脂、硬化性シアネートエステル樹脂、硬化性ウレタン樹脂、硬化性オキセタン樹脂、硬化性エポキシ/オキセタン複合樹脂等が挙げられるがこれらに限定されない。 The resin composition for fiber-reinforced composite materials of the present invention can also be blended with other curable resins. Such curable resins include, but are not limited to, unsaturated polyester resins, curable acrylic resins, curable amino resins, curable melamine resins, curable urea resins, curable cyanate ester resins, curable urethane resins, curable oxetane resins, and curable epoxy/oxetane composite resins.

本発明の繊維強化複合材料用樹脂組成物は、少なくとも上記の(A)成分、(B)成分、(C)成分、(D)成分を均一に混合することにより製造される。
本発明の繊維強化複合材料用樹脂組成物は、25℃におけるE型粘度計コーンプレートタイプを使用して測定した粘度が200~20,000mPa・s、好ましくは1,000~17,000mPa・s、より好ましくは2,000~15,000mPa・sの範囲である。粘度がこの範囲にある場合、良好な強化繊維への含浸性を有し、含浸作業時において繊維から樹脂の液垂れが起きにくい。
The resin composition for fiber-reinforced composite materials of the present invention is produced by uniformly mixing at least the above-mentioned components (A), (B), (C) and (D).
The resin composition for fiber reinforced composite materials of the present invention has a viscosity in the range of 200 to 20,000 mPa·s, preferably 1,000 to 17,000 mPa·s, and more preferably 2,000 to 15,000 mPa·s, as measured using a cone-plate type E-type viscometer at 25° C. When the viscosity is within this range, the resin composition has good impregnation properties into reinforcing fibers, and the resin is less likely to drip from the fibers during the impregnation process.

本発明の繊維強化複合材料用樹脂組成物から繊維強化複合材料を作製する方法には、強化繊維のファブリックを成形型へ配置、積層させ、樹脂組成物を塗布した後、加熱成形によって硬化成形体を得るウェットレイアップ法、強化繊維を硬化性樹脂組成物が満たされた含浸層へ連続的に通過させた後、加熱しつつ金型を通し、棒状の成形体を連続的に得る引き抜き成形法、強化繊維を硬化性樹脂組成物が満たされた含浸層へ連続的に通過させた後、マンドレルに巻き付けて加熱成形し、円形断面の成形体を得るフィラメントワインディング法、トランスファー成形機に投入し加熱成形するトランスファーモールド法が含まれる。これらの方法により、空隙の少ない、強度の高い繊維強化複合材料が成形される。 Methods for producing fiber-reinforced composite materials from the resin composition for fiber-reinforced composite materials of the present invention include the wet lay-up method, in which a fabric of reinforcing fibers is arranged and laminated in a mold, coated with a resin composition, and then heated and molded to obtain a cured molded body; the pultrusion method, in which reinforcing fibers are continuously passed through an impregnation layer filled with a curable resin composition, then heated and passed through a mold to continuously obtain a rod-shaped molded body; the filament winding method, in which reinforcing fibers are continuously passed through an impregnation layer filled with a curable resin composition, then wound around a mandrel and heated and molded to obtain a molded body with a circular cross section; and the transfer molding method, in which the fibers are placed in a transfer molding machine and heated and molded. These methods allow the molding of fiber-reinforced composite materials with few voids and high strength.

本発明の繊維強化複合材料用樹脂組成物は、中でも、ウェットレイアップ成形法、引き抜き成形法、またはフィラメントワインディング成形法、トランスファーモールド成形法によって繊維強化複合材料が良好に得られる。特に好ましくは、引き抜き成形法が好適に用いられる。ここで、引き抜き成形法とは、プルコム又は連続引抜成形法とも称し、繊維強化複合材料用樹脂組成物を強化繊維に塗布し、これを連続的に加熱硬化して繊維強化複合材料を製造する方法である。 The resin composition for fiber-reinforced composite materials of the present invention can be used to obtain fiber-reinforced composite materials by wet layup molding, pultrusion molding, filament winding molding, or transfer molding. Pultrusion molding is particularly preferred. The pultrusion molding method is also called the pull-com or continuous pultrusion molding method, and is a method for producing fiber-reinforced composite materials by applying the resin composition for fiber-reinforced composite materials to reinforcing fibers and continuously heating and curing the applied materials.

具体的には、帯状の強化繊維を送って本発明の繊維強化複合材料用樹脂組成物を満たした樹脂槽に通し、余分な樹脂を拭い、脱泡した後、加熱装置を設けた金型の一端に導入し、加熱する。金型内で所定時間加熱した後、この強化繊維を金型の他端から引き抜く。この操作を連続的に行い、帯状の繊維強化複合材料を得る。引き抜かれた帯状の繊維強化複合材料を所望のサイズ及び形状に切断する。この引き抜き成形法によって、繊維強化複合材料の成形体が生産性高く得られる。 Specifically, a strip of reinforcing fiber is fed through a resin tank filled with the resin composition for fiber-reinforced composite materials of the present invention, the excess resin is wiped off, the fiber is degassed, and the fiber is introduced into one end of a mold equipped with a heating device and heated. After heating for a predetermined time in the mold, the reinforcing fiber is pulled out from the other end of the mold. This operation is carried out continuously to obtain a strip of fiber-reinforced composite material. The pulled-out strip of fiber-reinforced composite material is cut into the desired size and shape. This pultrusion molding method allows for highly productive production of molded bodies of fiber-reinforced composite material.

本発明の繊維強化複合材料に用いられる強化繊維としては、ガラス繊維、アラミド繊維、炭素繊維、ボロン繊維等から選ばれるが、強度に優れた繊維強化複合材料を得るためには、特に炭素繊維を使用するのが好ましい。 The reinforcing fibers used in the fiber-reinforced composite material of the present invention are selected from glass fibers, aramid fibers, carbon fibers, boron fibers, etc., but in order to obtain a fiber-reinforced composite material with excellent strength, it is particularly preferable to use carbon fibers.

本発明の繊維強化複合材料用樹脂組成物と強化繊維より構成された繊維強化複合材料における、強化繊維の体積含有率は、好ましくは55~75%の範囲であり、より好ましくは60~70%の範囲である。強化繊維の体積含有率がこの範囲にあると、空隙が少なく、かつ強化繊維の体積含有率が高い成形体が得られるため、優れた強度の繊維強化複合材料成形体が得られる。 In a fiber-reinforced composite material composed of the resin composition for fiber-reinforced composite materials of the present invention and reinforcing fibers, the volume content of the reinforcing fibers is preferably in the range of 55 to 75%, and more preferably in the range of 60 to 70%. When the volume content of the reinforcing fibers is in this range, a molded product with few voids and a high volume content of the reinforcing fibers can be obtained, resulting in a fiber-reinforced composite material molded product with excellent strength.

本発明の繊維強化複合材料用樹脂組成物は、低粘度であるため、強化繊維への含浸性に優れ、かつ、加熱時の速硬化性並びに成形物の高い弾性率と靭性に優れることから、特に引き抜き成形法に好適に用いられる。すなわち、本発明の好適な実施態様は、連続的に強化繊維に本発明の繊維強化複合材料用樹脂組成物を含浸し、加熱硬化する繊維強化複合材料の製造方法である。 The resin composition for fiber-reinforced composite materials of the present invention has low viscosity, and therefore has excellent impregnation properties into reinforcing fibers, and also has rapid curing properties when heated, as well as high elastic modulus and toughness of molded products, and is therefore particularly suitable for use in pultrusion molding. In other words, a preferred embodiment of the present invention is a method for producing a fiber-reinforced composite material in which reinforcing fibers are continuously impregnated with the resin composition for fiber-reinforced composite materials of the present invention and cured by heating.

次に、本発明を実施例に基づいて具体的に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。配合量を示す部は、特に断りがない限り重量部である。またエポキシ当量の単位はg/eqである。 Next, the present invention will be specifically described based on examples, but the present invention is not limited to the following examples as long as it does not deviate from the gist of the invention. Parts indicating the blend amount are parts by weight unless otherwise specified. The unit of epoxy equivalent is g/eq.

実施例で使用した各成分の略号は下記の通りである。
YD-128:ビスフェノールA型エポキシ樹脂(日鉄ケミカル&マテリアル株式会社製、エポキシ当量187g/q)
YDF-170:ビスフェノールF型エポキシ樹脂(日鉄ケミカル&マテリアル株式会社製、エポキシ当量168g/q)
PG30:平均分子量3000のポリプロピレングリコール、水酸基当量1509g/eq
TMG30:平均分子量3000のポリテトラメチレングリコール、水酸基当量1497g/eq
BD:1,4-ブタンジオール、水酸基当量45g/eq
TDI:トルエンジイソシアネート
MDI:ジフェニルメタンジイソシアネート
MTH:メチルテトラヒドロ無水フタル酸(酸無水物基当量166、粘度25℃ 53mPa・s)
MHH:メチルヘキサヒドロ無水フタル酸(酸無水物基当量168、粘度25℃ 61mPa・s)
DMZ:1,2-ジメチルイミダゾール
TBBr:トリブチルメチルアンモニウムブロミド
The abbreviations for each component used in the examples are as follows.
YD-128: Bisphenol A type epoxy resin (manufactured by Nippon Steel Chemical & Material Co., Ltd., epoxy equivalent 187 g/q)
YDF-170: Bisphenol F type epoxy resin (manufactured by Nippon Steel Chemical & Material Co., Ltd., epoxy equivalent 168 g/q)
PG30: Polypropylene glycol having an average molecular weight of 3000 and a hydroxyl equivalent of 1509 g/eq
TMG30: Polytetramethylene glycol having an average molecular weight of 3000 and a hydroxyl equivalent of 1497 g/eq
BD: 1,4-butanediol, hydroxyl equivalent 45 g/eq
TDI: toluene diisocyanate MDI: diphenylmethane diisocyanate MTH: methyltetrahydrophthalic anhydride (acid anhydride equivalent: 166, viscosity: 53 mPa·s at 25° C.)
MHH: Methylhexahydrophthalic anhydride (acid anhydride equivalent: 168, viscosity at 25°C: 61 mPa·s)
DMZ: 1,2-dimethylimidazole TBBr: Tributylmethylammonium bromide

合成例1
攪拌装置、温度計、還流管、窒素ガス導入装置、仕込み口を備えたガラス製セパラブルフラスコに、YD-128 120部、PG30 70.9部を仕込み、攪拌しながら110℃まで昇温した。次に仕込み口よりTDI 23.1部を入れて1時間経過した後にBD 6.2部を仕込み、更に反応温度を130℃に保ち2時間反応を行い、重量平均分子量Mw18,400、ポリエーテルポリオール構造比率32重量%、ウレタン結合重量比率5.7重量%、エポキシ当量339のウレタン変性エポキシ樹脂を209部得た。このウレタン変性エポキシ樹脂をEPU1と称する。
Synthesis Example 1
A glass separable flask equipped with a stirrer, a thermometer, a reflux tube, a nitrogen gas inlet, was charged with 120 parts of YD-128 and 70.9 parts of PG30, and the temperature was raised to 110 ° C. while stirring. Next, 23.1 parts of TDI were added from the inlet, and after 1 hour, 6.2 parts of BD were added, and the reaction temperature was kept at 130 ° C. and reacted for 2 hours, to obtain 209 parts of a urethane-modified epoxy resin having a weight average molecular weight Mw of 18,400, a polyether polyol structure ratio of 32 wt%, a urethane bond weight ratio of 5.7 wt%, and an epoxy equivalent of 339. This urethane-modified epoxy resin is referred to as EPU1.

合成例2
合成例1と同様な装置に、YD-128 120部、PG30 87.2部を仕込み、攪拌しながら110℃まで昇温した。次に仕込み口よりMDI 23.1部を入れて1時間経過した後にBD 5.3部を仕込み、更に反応温度を130℃に保ち2時間反応を行い、重量平均分子量Mw23,700、ポリエーテルポリオール構造比率37重量%、ウレタン結合重量比率4.9重量%、エポキシ当量350のウレタン変性エポキシ樹脂を228部得た。このウレタン変性エポキシ樹脂をEPU2と称する。
Synthesis Example 2
In a similar apparatus to that of Synthesis Example 1, 120 parts of YD-128 and 87.2 parts of PG30 were charged, and the temperature was raised to 110°C while stirring. Next, 23.1 parts of MDI were charged from the charging port, and after 1 hour had elapsed, 5.3 parts of BD were charged, and the reaction temperature was further maintained at 130°C and reacted for 2 hours, obtaining 228 parts of a urethane-modified epoxy resin having a weight average molecular weight Mw of 23,700, a polyether polyol structure ratio of 37% by weight, a urethane bond weight ratio of 4.9% by weight, and an epoxy equivalent of 350. This urethane-modified epoxy resin is referred to as EPU2.

合成例3
合成例1と同様な装置に、YD-128 117部、TMG30 55.0部を仕込み、攪拌しながら110℃まで昇温した。次に仕込み口よりMDI 23.1部を入れて1時間経過した後にBD 5.3部を仕込み、更に反応温度を130℃に保ち2時間反応を行い、重量平均分子量Mw15,700、ポリエーテルポリオール構造比率37重量%、ウレタン結合重量比率5.7重量%、エポキシ当量319のウレタン変性エポキシ樹脂を190部得た。このウレタン変性エポキシ樹脂をEPU3と称する。
Synthesis Example 3
Into an apparatus similar to that of Synthesis Example 1, 117 parts of YD-128 and 55.0 parts of TMG30 were charged, and the temperature was raised to 110°C while stirring. Next, 23.1 parts of MDI were charged from the charging port, and after 1 hour had elapsed, 5.3 parts of BD were charged, and the reaction temperature was further maintained at 130°C and reacted for 2 hours, obtaining 190 parts of a urethane-modified epoxy resin having a weight average molecular weight Mw of 15,700, a polyether polyol structure ratio of 37% by weight, a urethane bond weight ratio of 5.7% by weight, and an epoxy equivalent of 319. This urethane-modified epoxy resin is referred to as EPU3.

合成例4
合成例1と同様な装置に、YD-128 133部、PG30 24.1部を仕込み、攪拌しながら110℃まで昇温した。次に仕込み口よりTDI 9.1部を入れて1時間経過した後にBD 2.3部を仕込み、更に反応温度を130℃に保ち2時間反応を行い、重量平均分子量Mw5,900、ポリエーテルポリオール構造比率14重量%、ウレタン結合重量比率2.9重量%、エポキシ当量235のウレタン変性エポキシ樹脂を163部得た。このウレタン変性エポキシ樹脂をEPU4と称する。
Synthesis Example 4
Into an apparatus similar to that of Synthesis Example 1, 133 parts of YD-128 and 24.1 parts of PG30 were charged, and the temperature was raised to 110°C while stirring. Next, 9.1 parts of TDI were charged from the charging port, and after 1 hour had elapsed, 2.3 parts of BD were charged, and the reaction temperature was further maintained at 130°C and reacted for 2 hours, obtaining 163 parts of a urethane-modified epoxy resin having a weight average molecular weight Mw of 5,900, a polyether polyol structure ratio of 14% by weight, a urethane bond weight ratio of 2.9% by weight, and an epoxy equivalent of 235. This urethane-modified epoxy resin is referred to as EPU4.

合成例5
合成例1と同様な装置に、YD-128 88部、PG30 132部を仕込み、攪拌しながら110℃まで昇温した。次に仕込み口よりMDI 18.0部を入れて1時間経過した後にBD 1.6部を仕込み、更に反応温度を130℃に保ち2時間反応を行い、重量平均分子量Mw32,300、ポリエーテルポリオール構造比率55重量%、ウレタン結合重量比率2.8重量%、エポキシ当量511のウレタン変性エポキシ樹脂を232部得た。このウレタン変性エポキシ樹脂をEPU5と称する。
Synthesis Example 5
In an apparatus similar to that of Synthesis Example 1, 88 parts of YD-128 and 132 parts of PG30 were charged, and the temperature was raised to 110°C while stirring. Next, 18.0 parts of MDI were charged from the charging port, and after 1 hour had passed, 1.6 parts of BD were charged, and the reaction temperature was further maintained at 130°C and the reaction was carried out for 2 hours, obtaining 232 parts of a urethane-modified epoxy resin having a weight average molecular weight Mw of 32,300, a polyether polyol structure ratio of 55% by weight, a urethane bond weight ratio of 2.8% by weight, and an epoxy equivalent of 511. This urethane-modified epoxy resin is referred to as EPU5.

(重量平均分子量Mwの測定)
東ソー株式会社製ゲル浸透クロマトグラフィーHLC-8420GPC、カラムに東ソー株式会社製 TSKgelG4000HXL、TSKgelG3000HXL、TSKgelG2000HXLを直列に備えたものを使用して、ウレタン変性エポキシ(B)の重量平均分子量Mwを測定した。カラム温度を40℃にし、溶離液にはテトラヒドロフランを用い、1ml/minの流速とし、検出器にRI(示差屈折計)検出器を用いてゲルパーミッションクロマトグラフィー測定を行い、原料に用いたエポキシ樹脂のn=0体のピークのみを除外し、その他の全てのピークを総計して重量平均分子量Mwをポリスチレン基準で求めた。
(Measurement of weight average molecular weight Mw)
The weight average molecular weight Mw of the urethane modified epoxy (B) was measured using a gel permeation chromatography HLC-8420GPC manufactured by Tosoh Corporation, equipped with columns TSKgel G4000HXL, TSKgel G3000HXL, and TSKgel G2000HXL manufactured by Tosoh Corporation in series. Gel permeation chromatography was performed at a column temperature of 40°C, tetrahydrofuran was used as the eluent, the flow rate was 1 ml/min, and an RI (differential refractometer) detector was used as the detector. Only the peak of the n=0 body of the epoxy resin used as the raw material was excluded, and the weight average molecular weight Mw was calculated based on polystyrene standards by adding up all other peaks.

実施例1
(繊維強化複合材料用樹脂組成物の製造)
(A)成分としてYD-128を39部、(B)成分として合成例1で得られたEPU1を21部、(C)成分としてMTHを39部、(D)成分としてDMZを1.2部、150mLのポリ容器へ入れ、真空ミキサー「あわとり練太郎」(商品名;株式会社シンキー製)を用いて、室温下で5分間攪拌しながら混合し、繊維強化複合材料用樹脂組成物を得た。
Example 1
(Production of resin composition for fiber reinforced composite material)
39 parts of YD-128 as the component (A), 21 parts of EPU1 obtained in Synthesis Example 1 as the component (B), 39 parts of MTH as the component (C), and 1.2 parts of DMZ as the component (D) were placed in a 150 mL plastic container and mixed with stirring at room temperature for 5 minutes using a vacuum mixer “Awatori Rentaro” (product name; manufactured by Thinky Corporation) to obtain a resin composition for fiber-reinforced composite materials.

(粘度の測定)
25℃における粘度の値をE型粘度計コーンプレートタイプを用いて測定した。繊維強化複合材料用樹脂組成物を調製し、直ちにその内0.8mLを測定に供し、調製から60秒経過後の測定値を繊維強化複合材料用樹脂組成物の粘度の値とした。
(Viscosity Measurement)
The viscosity value at 25° C. was measured using a cone-plate type E-type viscometer. The resin composition for fiber-reinforced composite materials was prepared, and 0.8 mL of it was immediately subjected to measurement. The measurement value 60 seconds after preparation was regarded as the viscosity value of the resin composition for fiber-reinforced composite materials.

(ゲルタイムの測定)
150℃に加熱しておいたゲル化試験機(日新科学株式会社製)のプレート上に硬化性樹脂組成物を添加し、フッ素樹脂棒を用いて一秒間に2回転の速度で攪拌し、硬化性樹脂組成物の硬化が進行し可塑性を失うまでに要した時間をゲル化時間とした。
(Gel Time Measurement)
The curable resin composition was added onto the plate of a gelation tester (manufactured by Nisshin Scientific Co., Ltd.) that had been heated to 150°C, and the mixture was stirred at a speed of two rotations per second using a fluororesin rod. The time required for the curing of the curable resin composition to progress and lose its plasticity was recorded as the gelation time.

(曲げ弾性率、曲げ強度の測定)
繊維強化複合材料用樹脂組成物を、平板形状にくり抜かれた4mm厚のスペーサーを設けた縦60mm×横240mmの金型へ流し込み、140℃で4時間硬化させて測定用成形板とし、曲げ弾性率と曲げ強度の測定に用いた。
得られた成形板を卓上バンドソーにより80mm×10mmの大きさに切削し、曲げ試験片をJIS7171に準拠する手法にて23℃の温度条件で万能材料試験機(株式会社島津製作所製 オートグラフAGS-H)を使用して曲げ試験を行い、曲げ弾性率と曲げ強度を算出した。
(Measurement of bending modulus and bending strength)
The resin composition for fiber-reinforced composite materials was poured into a mold having a length of 60 mm and a width of 240 mm and having a 4 mm-thick spacer cut into a flat plate shape, and cured at 140°C for 4 hours to prepare a molded plate for measurement, which was used to measure the flexural modulus and flexural strength.
The obtained molded plate was cut into a size of 80 mm × 10 mm using a benchtop band saw, and a bending test was performed on the bending test piece using a universal material testing machine (Autograph AGS-H manufactured by Shimadzu Corporation) at a temperature condition of 23 ° C. in accordance with a method conforming to JIS 7171, and the bending modulus and bending strength were calculated.

(破壊靭性の測定)
繊維強化複合材料用樹脂組成物を、平板形状にくり抜かれた2mm厚のスペーサーを設けた縦60mm×横240mmの金型へ流し込み、140℃で4時間硬化させて測定用成形板とし、破壊靱性の測定に用いた。
得られた成形板を卓上バンドソーにより50mm×10mmの大きさに切削し、ASTM E399に準じた亀裂を入れて23℃の温度条件で万能材料試験機(株式会社島津製作所製 オートグラフAGS-H)を使用して破壊靱性を測定した。
(Measurement of fracture toughness)
The resin composition for fiber-reinforced composite materials was poured into a mold measuring 60 mm in length and 240 mm in width and equipped with a 2 mm-thick spacer cut into a flat plate shape, and cured at 140°C for 4 hours to prepare a measurement molded plate, which was used for measuring fracture toughness.
The obtained molded plate was cut into a size of 50 mm x 10 mm using a bench band saw, and a crack was made in accordance with ASTM E399 to measure the fracture toughness at a temperature of 23°C using a universal material testing machine (Autograph AGS-H manufactured by Shimadzu Corporation).

(ガラス転移温度測定用試験片の作製)
繊維強化複合材料用樹脂組成物を、平板形状にくり抜かれた4mm厚のスペーサーを設けた縦80mm×横80mmの金型へ流し込み140℃で4時間硬化した後、得られた成形板を卓上バンドソーを用いて50mm×10mmの大きさに切削し、後述するガラス転移温度の測定に用いた。
(Preparation of test pieces for measuring glass transition temperature)
The resin composition for fiber-reinforced composite materials was poured into a mold having a length of 80 mm and a width of 80 mm and having a 4 mm-thick spacer cut into a flat plate shape, and cured at 140°C for 4 hours. The obtained molded plate was then cut into a size of 50 mm x 10 mm using a bench band saw, and used for measuring the glass transition temperature described below.

(ガラス転移温度の測定)
上記成形板を卓上バンドソーにより2.5mm×2.5mmの大きさに切削し、さらにベルトディスクサンダーを用いておよそ0.8mmの厚さまで研磨加工した。示差走査熱量測定装置(株式会社日立ハイテクサイエンス製 DSC7000X)を用い、窒素雰囲気下にて昇温速度10℃/分の条件で測定し、DSC曲線の変曲点での接線と、変曲の開始が見られる温度、すなわち変曲点から15~30℃低い温度領域における接線との交点を求め、その温度をガラス転移温度Tgとした。
(Measurement of Glass Transition Temperature)
The molded plate was cut to a size of 2.5 mm x 2.5 mm using a benchtop band saw, and further polished to a thickness of approximately 0.8 mm using a belt disk sander. Measurement was performed using a differential scanning calorimeter (DSC7000X, Hitachi High-Tech Science Co., Ltd.) under a nitrogen atmosphere at a temperature rise rate of 10°C/min, and the intersection point between the tangent at the inflection point of the DSC curve and the temperature at which the inflection begins, i.e., the tangent in the temperature range 15 to 30°C lower than the inflection point, was determined, and this temperature was taken as the glass transition temperature Tg.

(引き抜き成形板の作製)
得られた繊維強化複合材料用樹脂組成物を樹脂バスに注ぎ込み40℃に保温した。クリールスタンドより炭素繊維(東レ株式会社製 トレカT700SC-24K)37本を束ねて前記の樹脂バスに導き、牽引装置を用いて0.2m/minで引き出しながら、繊維強化複合材料用樹脂組成物を含浸させ、次に、スリットに通すことで過剰に付着した樹脂組成物を絞り出し、得られた帯状の炭素繊維の樹脂組成物含浸体を断面寸法50mm×1.0mm、長さ400mmの140℃に加熱された金型に通し、さらに断面寸法50mm×1.0mm、長さ400mmの160℃に加熱された金型に通すことにより、長さ2m、幅50mm、厚さ1.0mmの炭素繊維強化複合材料の板を引き抜き成形した。作成された板は、炭素繊維の体積含有率が66%で、一方向に配向が揃った炭素繊維を含む繊維強化複合材料であった。
(Preparation of pultrusion plate)
The obtained resin composition for fiber reinforced composite materials was poured into a resin bath and kept at 40 ° C. 37 carbon fibers (Toray Industries, Inc., Torayca T700SC-24K) were bundled from a creel stand and introduced into the resin bath, and while pulling out at 0.2 m / min using a pulling device, the resin composition for fiber reinforced composite materials was impregnated, and then the excess resin composition was squeezed out by passing through a slit, and the obtained band-shaped carbon fiber impregnated with the resin composition was passed through a mold heated to 140 ° C. with a cross-sectional dimension of 50 mm × 1.0 mm and a length of 400 mm, and further passed through a mold heated to 160 ° C. with a cross-sectional dimension of 50 mm × 1.0 mm and a length of 400 mm, to obtain a plate of carbon fiber reinforced composite material with a length of 2 m, a width of 50 mm, and a thickness of 1.0 mm by drawing. The plate produced was a fiber reinforced composite material containing carbon fibers with a volume content of 66% and aligned in one direction.

(引き抜き成形板の外観評価)
前記の引き抜き成形工程により作製された炭素繊維強化複合材料の板を目視して、表面に炭素繊維の解れが無いか評価した。成形板表面から炭素繊維の長さ20mm以上の剥離が見られた部位を解れとして数えた。解れの合計数が4ヶ所以下であれば〇、4ヶ所を超える板を×と評価した。
(Appearance evaluation of pultrusion molded plates)
The carbon fiber reinforced composite plate produced by the above-mentioned pultrusion molding process was visually inspected to evaluate whether there was any fraying of the carbon fiber on the surface. The area where the carbon fiber was peeled off from the surface of the molded plate by a length of 20 mm or more was counted as fraying. If the total number of fraying was 4 or less, the plate was evaluated as ◯, and if the total number of fraying was more than 4, the plate was evaluated as ×.

(0°曲げ強度、90°曲げ強度の測定)
前記の成形工程により得られた炭素繊維強化複合材料の板を、フライス盤を用いて繊維平行方向長さ60mm、繊維垂直方向長さ15mmの大きさに切削し、0°曲げ強度の測定に用いた。また同様に炭素繊維強化複合材料の板から繊維平行方向長さ15mm、繊維垂直方向長さ50mmの大きさに切削し、90°曲げ強度の測定に用いた。JISK7074に準拠する手法にて、23℃の温度条件、支点間距離40mmで3点曲げ試験を実施し、0°曲げ強度と90°曲げ強度を測定した。
(Measurement of 0° bending strength and 90° bending strength)
The plate of the carbon fiber reinforced composite material obtained by the molding process was cut using a milling machine to a size of 60 mm in the fiber parallel direction and 15 mm in the fiber perpendicular direction, and used for measuring the 0° bending strength. Similarly, the plate of the carbon fiber reinforced composite material was cut to a size of 15 mm in the fiber parallel direction and 50 mm in the fiber perpendicular direction, and used for measuring the 90° bending strength. A three-point bending test was performed at a temperature of 23°C and a support distance of 40 mm according to a method in accordance with JIS K7074, and the 0° bending strength and the 90° bending strength were measured.

実施例2~12、比較例1~4
(A)~(D)成分として表1および表2に記載された組成にて各原料を使用した以外は、実施例1と同様の混合条件にて繊維強化複合材料用樹脂組成物を作製し、実施例1と同様の手法にて粘度測定、ゲルタイム測定、曲げ試験、破壊靭性試験、ガラス転移温度測定を実施した。加えて実施例1と同様の手法にて引き抜き成形板の作製、外観評価、および0°と90°の曲げ強度評価を実施した。
Examples 2 to 12, Comparative Examples 1 to 4
A resin composition for a fiber-reinforced composite material was prepared under the same mixing conditions as in Example 1, except that the raw materials were used in the compositions shown in Tables 1 and 2 as components (A) to (D), and viscosity measurement, gel time measurement, bending test, fracture toughness test, and glass transition temperature measurement were carried out in the same manner as in Example 1. In addition, preparation of a pultrusion molded plate, evaluation of appearance, and evaluation of 0° and 90° bending strength were carried out in the same manner as in Example 1.

実施例1~12及び比較例1~4の試験の結果をそれぞれ表1、表2に示す。 The test results for Examples 1 to 12 and Comparative Examples 1 to 4 are shown in Tables 1 and 2, respectively.

Figure 2024064038000001
Figure 2024064038000001

Figure 2024064038000002
Figure 2024064038000002

本発明の繊維強化複合材料用樹脂組成物を用いて成形してなる繊維強化複合材料は、航空機、宇宙機、船舶、自動車、土木建築及びスポーツ用品等の構造材料として好適に利用できる。 The fiber-reinforced composite material molded using the resin composition for fiber-reinforced composite materials of the present invention can be suitably used as a structural material for aircraft, spacecraft, ships, automobiles, civil engineering and construction, sporting goods, etc.

Claims (9)

非ウレタン変性エポキシ樹脂(A)、ウレタン変性エポキシ樹脂(B)、酸無水物系硬化剤(C)、硬化促進剤(D)を必須成分とし、E型粘度計により測定した25℃における粘度が200~20,000mPa・sの範囲であって、
かつ前記ウレタン変性エポキシ樹脂(B)のゲルパーミッションクロマトグラフィーで測定した重量平均分子量Mwが5,000~50,000であり、前記ウレタン変性エポキシ樹脂(B)の内、ポリエーテルポリオールに由来する構造の比率が20~50重量%であることを特徴とする繊維強化複合材料用樹脂組成物。
The epoxy resin composition comprises, as essential components, a non-urethane-modified epoxy resin (A), a urethane-modified epoxy resin (B), an acid anhydride-based curing agent (C), and a curing accelerator (D), and has a viscosity at 25°C measured by an E-type viscometer in the range of 200 to 20,000 mPa s,
and wherein the urethane-modified epoxy resin (B) has a weight average molecular weight Mw of 5,000 to 50,000 as measured by gel permeation chromatography, and the ratio of structures derived from polyether polyol in the urethane-modified epoxy resin (B) is 20 to 50% by weight.
非ウレタン変性エポキシ樹脂(A)100重量部の内、ビスフェノールF型エポキシ樹脂が40重量部以上含むことを特徴とする請求項1に記載の繊維強化複合材料用樹脂組成物。 The resin composition for fiber-reinforced composite materials according to claim 1, characterized in that, out of 100 parts by weight of the non-urethane modified epoxy resin (A), 40 parts by weight or more of bisphenol F type epoxy resin is contained. ウレタン変性エポキシ樹脂(B)の配合量が(A)成分、(B)成分、(C)成分、(D)成分の合計量100重量部に対し、8~32重量部であることを特徴とする請求項1に記載の繊維強化複合材料用樹脂組成物。 The resin composition for fiber-reinforced composite materials according to claim 1, characterized in that the amount of urethane-modified epoxy resin (B) is 8 to 32 parts by weight per 100 parts by weight of the total amount of components (A), (B), (C), and (D). ウレタン変性エポキシ樹脂(B)100重量部の内、ウレタン結合が占める重量比率が3.0~10.0重量部であることを特徴とする請求項1に記載の繊維強化複合材料用樹脂組成物。 The resin composition for fiber-reinforced composite materials according to claim 1, characterized in that the weight ratio of urethane bonds to 100 parts by weight of the urethane-modified epoxy resin (B) is 3.0 to 10.0 parts by weight. ウレタン変性エポキシ樹脂(B)のエポキシ当量が300~500g/eqであることを特徴とする請求項1に記載の繊維強化複合材料用樹脂組成物。 The resin composition for fiber-reinforced composite materials according to claim 1, characterized in that the epoxy equivalent of the urethane-modified epoxy resin (B) is 300 to 500 g/eq. 硬化促進剤(D)が、25℃で液状のイミダゾール化合物であり、かつ(D)成分の配合量が(A)成分、(B)成分、(C)成分、(D)成分の合計量100重量部に対し、0.5~3.0重量部であることを特徴とする請求項1に記載の繊維強化複合材料用樹脂組成物。 The resin composition for fiber-reinforced composite materials according to claim 1, characterized in that the curing accelerator (D) is an imidazole compound that is liquid at 25°C, and the amount of component (D) is 0.5 to 3.0 parts by weight per 100 parts by weight of the total amount of components (A), (B), (C), and (D). 請求項1~6のいずれかに記載の繊維強化複合材料用樹脂組成物に、強化繊維を配合して硬化してなることを特徴とする繊維強化複合材料。 A fiber-reinforced composite material obtained by blending reinforcing fibers with the resin composition for fiber-reinforced composite materials according to any one of claims 1 to 6 and curing the blend. 強化繊維の体積含有率が55~75体積%である請求項7に記載の繊維強化複合材料。 The fiber-reinforced composite material according to claim 7, in which the volume content of the reinforcing fibers is 55 to 75 volume %. 強化繊維に、連続的に請求項1~6のいずれかに記載の繊維強化複合材料用樹脂組成物を含浸し、加熱硬化する繊維強化複合材料の製造方法。 A method for producing a fiber-reinforced composite material, comprising continuously impregnating reinforcing fibers with the resin composition for fiber-reinforced composite materials described in any one of claims 1 to 6 and then heat-curing the material.
JP2022172332A 2022-10-27 CURABLE EPOXY RESIN COMPOSITION AND FIBER-REINFORCED COMPOSITE MATERIAL USING SAME Pending JP2024064038A (en)

Publications (1)

Publication Number Publication Date
JP2024064038A true JP2024064038A (en) 2024-05-14

Family

ID=

Similar Documents

Publication Publication Date Title
US10920027B2 (en) Epoxy resin composition, molding material, and fiber-reinforced composite material
EP2787028A1 (en) Prepreg, fiber-reinforced composite material, method for producing same, and epoxy resin composition
JP6439901B1 (en) Epoxy resin composition for fiber reinforced composite material and fiber reinforced composite material
EP1806376A1 (en) Heat-resistant composite material
US11339243B2 (en) Epoxy resin composition, molding material for fiber-reinforced composite material, and fiber-reinforced composite material
JPWO2019065663A1 (en) Curable resin composition and prepreg using it
JPWO2018123454A1 (en) Curable epoxy resin composition and fiber reinforced composite material using the same
TWI803586B (en) Resin composition for fiber-reinforced composite material, fiber-reinforced composite material, cured product, and method for producing molded body
TWI780182B (en) Epoxy resin compositions, prepregs and fiber reinforced composites
JP2024064038A (en) CURABLE EPOXY RESIN COMPOSITION AND FIBER-REINFORCED COMPOSITE MATERIAL USING SAME
JP6737410B1 (en) Sheet molding compound and fiber reinforced composite material
US11427707B2 (en) Curable epoxy resin composition and fiber-reinforced composite material using same
JP5297607B2 (en) RESIN COMPOSITION FOR FIBER-REINFORCED COMPOSITE MATERIAL, PROCESS FOR PRODUCING THE SAME AND COMPOSITE MATERIAL INTERMEDIATE
JP7235557B2 (en) Curable resin composition and Tuprepreg using the same
WO2021112111A1 (en) Epoxy resin composition, molding material for fiber-reinforced composite material, and fiber-reinforced composite material
WO2021024893A1 (en) Curable composition, cured product, fiber-reinforced composite material, and molded article
JP7160219B1 (en) Thermosetting epoxy resin composition and molded article thereof, fiber-reinforced composite material, molding material for fiber-reinforced composite material, and method for producing fiber-reinforced composite material
JP6421897B1 (en) Epoxy resin composition, prepreg, fiber reinforced composite material and method for producing the same
WO2024024677A1 (en) Prepreg, fiber-reinforced composite material, and fiber-reinforced composite material manufacturing method
JP2021161239A (en) Method for curing epoxy resin composition, and method for manufacturing molding using the same