JP2024055335A - Method for producing positive electrode active material - Google Patents

Method for producing positive electrode active material Download PDF

Info

Publication number
JP2024055335A
JP2024055335A JP2022162170A JP2022162170A JP2024055335A JP 2024055335 A JP2024055335 A JP 2024055335A JP 2022162170 A JP2022162170 A JP 2022162170A JP 2022162170 A JP2022162170 A JP 2022162170A JP 2024055335 A JP2024055335 A JP 2024055335A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
compound
electrode mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022162170A
Other languages
Japanese (ja)
Inventor
友宏 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2022162170A priority Critical patent/JP2024055335A/en
Publication of JP2024055335A publication Critical patent/JP2024055335A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】正極合材から不純物等を取り除き、正極活物質を再生可能な方法を開示する。【解決手段】本開示の方法は、正極活物質の製造方法であって、LiとNaとを含む溶融化合物に正極合材を接触させて、前記正極活物質を含む中間材を得ること、前記中間材を水洗して、前記正極活物質を含む洗浄物を得ること、及び、前記洗浄物を乾燥させて、前記正極活物質を得ることを含む。【選択図】図1[Problem] A method for removing impurities from a positive electrode mixture and regenerating a positive electrode active material is disclosed. [Solution] The disclosed method is a method for producing a positive electrode active material, and includes the steps of contacting a positive electrode mixture with a molten compound containing Li and Na to obtain an intermediate material containing the positive electrode active material, washing the intermediate material with water to obtain a washed material containing the positive electrode active material, and drying the washed material to obtain the positive electrode active material. [Selected Figure] Figure 1

Description

本願は正極活物質の製造方法を開示する。 This application discloses a method for producing a positive electrode active material.

特許文献1には、非水電解質二次電池の電極板から正極活物質粒子を回収する方法が開示されている。特許文献1に開示された方法は、正極合材から正極活物質を製造する方法ともいえる。 Patent Document 1 discloses a method for recovering positive electrode active material particles from the electrode plate of a non-aqueous electrolyte secondary battery. The method disclosed in Patent Document 1 can also be said to be a method for producing a positive electrode active material from a positive electrode mixture.

特開2014-203567号公報JP 2014-203567 A

正極合材中の正極活物質は、その表面に不純物(例えば、電解液や添加材等に由来するもの)が付着している。また、正極合材には、正極活物質のほか、導電助剤、バインダー及び分散材等に由来する成分が含まれ得る。正極合材から正極活物質を製造する場合において、正極合材から正極活物質以外の成分を除去するための新たな技術が必要である。 The positive electrode active material in the positive electrode mixture has impurities (e.g., those derived from the electrolyte, additives, etc.) adhering to its surface. In addition to the positive electrode active material, the positive electrode mixture may also contain components derived from conductive additives, binders, dispersants, etc. When producing a positive electrode active material from the positive electrode mixture, a new technology is needed to remove components other than the positive electrode active material from the positive electrode mixture.

本願は上記課題を解決するための手段として、以下の複数の態様を開示する。
<態様1>
正極活物質の製造方法であって、
LiとNaとを含む溶融化合物に正極合材を接触させて、前記正極活物質を含む中間材を得ること、
前記中間材を水洗して、前記正極活物質を含む洗浄物を得ること、及び
前記洗浄物を乾燥させて、前記正極活物質を得ること、
を含む製造方法。
<態様2>
前記溶融化合物が、LiOHとNaOHとを含む、
態様1の製造方法。
<態様3>
前記溶融化合物の温度が、470℃以上800℃以下である、
態様1又は2の製造方法。
<態様4>
前記正極合材が、前記正極活物質と、前記正極活物質に付着したLi化合物と、炭素含有成分とを含む、
態様1~3のいずれかの製造方法。
<態様5>
前記溶融化合物に前記正極合材を接触させることで、前記Li化合物のLiの少なくとも一部をNaに置換し、前記炭素含有成分の少なくとも一部を酸化除去する、
態様4の製造方法。
The present application discloses the following aspects as means for solving the above problems.
<Aspect 1>
A method for producing a positive electrode active material, comprising:
contacting a positive electrode mixture with a molten compound containing Li and Na to obtain an intermediate material containing the positive electrode active material;
washing the intermediate material with water to obtain a washed product containing the positive electrode active material; and drying the washed product to obtain the positive electrode active material.
A manufacturing method comprising:
<Aspect 2>
The molten compound comprises LiOH and NaOH;
The method for producing embodiment 1.
<Aspect 3>
The temperature of the molten compound is 470° C. or more and 800° C. or less.
The method for producing aspect 1 or 2.
<Aspect 4>
The positive electrode mixture includes the positive electrode active material, a Li compound attached to the positive electrode active material, and a carbon-containing component.
The method for producing any one of Aspects 1 to 3.
<Aspect 5>
By bringing the positive electrode mixture into contact with the molten compound, at least a portion of the Li in the Li compound is replaced with Na, and at least a portion of the carbon-containing component is oxidized and removed.
The method for producing aspect 4.

本開示の方法によれば、正極合材から正極活物質を製造する際、正極合材に含まれる正極活物質以外の成分が除去され易い。例えば、電池から回収された正極合材から不純物等を取り除き、正極活物質を新品同等にまで再生することもできる。 According to the method disclosed herein, when producing a positive electrode active material from a positive electrode mixture, components other than the positive electrode active material contained in the positive electrode mixture are easily removed. For example, it is possible to remove impurities from a positive electrode mixture recovered from a battery and regenerate the positive electrode active material to the same quality as a new one.

本開示の製造方法の流れを概略的に示している。1 shows a schematic flow of the manufacturing method of the present disclosure. 溶融化合物と正極合材との接触形態の他の例を概略的に示している。10A and 10B are schematic diagrams illustrating other examples of contact forms between the molten compound and the positive electrode mixture. 電池をリサイクルする場合において、電池の解体から正極活物質を得るまでの流れの一例を示している。1 shows an example of a flow from dismantling a battery to obtaining a positive electrode active material in the case of recycling the battery.

1.正極活物質の製造方法
図1に一実施形態に係る正極活物質の製造方法の流れを概略的に示す。図1に示されるように、本開示の正極活物質の製造方法は、LiとNaとを含む溶融化合物10に正極合材20を接触させて、前記正極活物質1を含む中間材30を得ること(工程S1)、前記中間材30を水洗して、前記正極活物質1を含む洗浄物40を得ること(工程S2)、及び、前記洗浄物40を乾燥させて、前記正極活物質1を得ること(工程S3)、を含む。
1. Manufacturing method of the positive electrode active material Figure 1 shows a schematic flow of a manufacturing method of the positive electrode active material according to one embodiment. As shown in Figure 1, the manufacturing method of the positive electrode active material of the present disclosure includes contacting a positive electrode mixture 20 with a molten compound 10 containing Li and Na to obtain an intermediate material 30 containing the positive electrode active material 1 (step S1), washing the intermediate material 30 with water to obtain a washed material 40 containing the positive electrode active material 1 (step S2), and drying the washed material 40 to obtain the positive electrode active material 1 (step S3).

1.1 工程S1
工程S1においては、LiとNaとを含む溶融化合物10に正極合材20を接触させて、正極活物質1を含む中間材30を得る。工程S1により、例えば、正極合材20に含まれる正極活物質1以外の一部の成分(例えば、電解液や添加物等に由来するLi化合物等)が、水に溶解し易い化合物(例えば、Na化合物等)へと変わり得る。また、正極合材20に含まれる正極活物質1以外の一部の成分(例えば、導電助剤やバインダーに由来する炭素含有成分等)が、加熱により酸化除去され得る。
1.1 Step S1
In step S1, the positive electrode mixture 20 is brought into contact with a molten compound 10 containing Li and Na to obtain an intermediate material 30 containing a positive electrode active material 1. By step S1, for example, some components other than the positive electrode active material 1 contained in the positive electrode mixture 20 (e.g., Li compounds derived from an electrolyte solution, additives, etc.) can be converted into compounds that are easily dissolved in water (e.g., Na compounds, etc.). In addition, some components other than the positive electrode active material 1 contained in the positive electrode mixture 20 (e.g., carbon-containing components derived from a conductive assistant or binder, etc.) can be oxidized and removed by heating.

1.1.1 溶融化合物
溶融化合物10は、LiとNaとを含む。本願にいう「溶融化合物」とは、加熱によって溶融した状態にある化合物をいう。溶融化合物10において、LiやNaは、例えば、イオンの状態で存在していてもよいし、化合物の状態で存在していてもよい。溶融化合物10に含まれるLiとNaとのモル比は特に限定されるものではない。
1.1.1 Molten Compound The molten compound 10 contains Li and Na. The term "molten compound" as used herein refers to a compound that is in a molten state due to heating. In the molten compound 10, Li and Na may be present, for example, in the form of ions or in the form of a compound. The molar ratio of Li and Na contained in the molten compound 10 is not particularly limited.

溶融化合物10は、例えば、Li化合物とNa化合物との混合物を加熱して溶融させたものであってもよい。Li化合物やNa化合物としては、各種の塩や水酸化物等が挙げられる。溶融化合物10は、LiOHとNaOHとの混合物を加熱して溶融させたものであってもよい。溶融化合物10が、LiOHとNaOHとを含むものである場合、これと正極合材20とを接触させることで、正極合材20に含まれる不純物等を水溶性のNa化合物へと容易に変化させることができ、また、正極合材20に含まれる正極活物質1にLiを容易に供給することもできる。溶融化合物10の温度は、正極活物質1が焼結する温度よりも十分に低ければよい。例えば、溶融化合物10の温度は、470℃以上800℃以下であってもよい。このような温度であれば、水溶性のNa化合物の生成等をより効率的に生じさせることができ、また、正極合材20に含まれる炭素含有成分を酸化除去し易い。 The molten compound 10 may be, for example, a mixture of a Li compound and a Na compound that is heated and melted. Examples of the Li compound and the Na compound include various salts and hydroxides. The molten compound 10 may be a mixture of LiOH and NaOH that is heated and melted. When the molten compound 10 contains LiOH and NaOH, impurities contained in the positive electrode mixture 20 can be easily converted into water-soluble Na compounds by contacting the molten compound 10 with the positive electrode mixture 20, and Li can also be easily supplied to the positive electrode active material 1 contained in the positive electrode mixture 20. The temperature of the molten compound 10 may be sufficiently lower than the temperature at which the positive electrode active material 1 is sintered. For example, the temperature of the molten compound 10 may be 470°C or higher and 800°C or lower. At such a temperature, the generation of water-soluble Na compounds can be more efficiently generated, and the carbon-containing components contained in the positive electrode mixture 20 can be easily oxidized and removed.

1.1.2 正極合材
正極合材20は、例えば、電池から回収されたものであってもよい。当該電池は、使用済みの電池などのリサイクル用電池であってもよい。言い換えれば、本開示の製造方法は、工程S1の前に電池から正極合材を回収すること、を含んでいてもよい。電池から正極合材を回収する場合の具体例については後述する。
1.1.2 Positive Electrode Composite The positive electrode composite 20 may be, for example, recovered from a battery. The battery may be a battery for recycling, such as a used battery. In other words, the manufacturing method of the present disclosure may include recovering the positive electrode composite from the battery before step S1. A specific example of recovering the positive electrode composite from the battery will be described later.

正極合材20は、電池の正極活物質層を構成する一般的な材料を含み得る。正極合材20は、正極活物質1のほか、その他の成分を含む。その他の成分としては、例えば、電解液や添加物等に由来するLi化合物;導電助剤やバインダーに由来する炭素含有成分;等が挙げられる。その他の成分は、正極活物質1の表面に付着していてもよいし、正極活物質1とは独立して存在していてもよい。 The positive electrode mixture 20 may contain common materials that constitute the positive electrode active material layer of a battery. In addition to the positive electrode active material 1, the positive electrode mixture 20 contains other components. Examples of the other components include Li compounds derived from the electrolyte or additives, and carbon-containing components derived from conductive additives or binders. The other components may be attached to the surface of the positive electrode active material 1, or may exist independently of the positive electrode active material 1.

正極合材20に含まれる正極活物質1は、例えば、リチウム含有化合物であってもよい。正極活物質1としてのリチウム含有化合物は、コバルト酸リチウム、ニッケル酸リチウム、Li1±αNi1/3Co1/3Mn1/32±δ、マンガン酸リチウム、スピネル系リチウム化合物(Li1+xMn2-x-y(MはAl、Mg、Co、Fe、Ni及びZnから選ばれる一種以上)で表わされる組成の異種元素置換Li-Mnスピネル等)、チタン酸リチウム、リン酸金属リチウム(LiMPO等、MはFe、Mn、Co及びNiから選ばれる一種以上)等の各種のリチウム含有酸化物であってもよい。正極活物質1は1種の化合物からなるものであってもよいし、2種以上の化合物の組み合わせであってもよい。 The positive electrode active material 1 contained in the positive electrode mixture 20 may be, for example, a lithium-containing compound. The lithium-containing compound as the positive electrode active material 1 may be various lithium-containing oxides such as lithium cobalt oxide, lithium nickel oxide, Li 1±α Ni 1/3 Co 1/3 Mn 1/3 O 2±δ , lithium manganate, spinel-based lithium compounds (Li 1+x Mn 2-x-y M y O 4 (M is one or more selected from Al, Mg, Co, Fe, Ni, and Zn) substituted Li-Mn spinel having a composition represented by such), lithium titanate, and lithium metal phosphate (LiMPO 4 , M is one or more selected from Fe, Mn, Co, and Ni). The positive electrode active material 1 may be composed of one type of compound, or may be a combination of two or more types of compounds.

正極合材20中の正極活物質1は、その表面に、例えば、電解液や添加物等に由来する不純物が付着している。より具体的には、充放電を経た二次電池から回収された正極合材20においては、正極活物質1の表面に不純物の被膜(例えば、電解液や添加物由来のリン系化合物やフッ素系化合物や硫黄系化合物を含む被膜、より具体的には、LiF、LiPO及びLiSOから選ばれる少なくとも1種を一部に含有する炭化水素系の被膜であってもよい。)が形成されており、当該被膜は900℃以上の酸化雰囲気でも揮発せずに残存する。また、当該被膜は水に対する溶解性が低く、水洗によって除去することは困難である。さらに、仮に当該被膜を有機溶剤によって溶解除去しようとすると、多量の有機溶剤が必要となり、工業的に不向き(高コスト)である。 The positive electrode active material 1 in the positive electrode mixture 20 has impurities attached to its surface, for example, derived from an electrolyte or additives. More specifically, in the positive electrode mixture 20 recovered from a secondary battery that has undergone charging and discharging, a coating of impurities (for example, a coating containing a phosphorus-based compound, a fluorine-based compound, or a sulfur-based compound derived from an electrolyte or additive, more specifically, a hydrocarbon-based coating containing at least one selected from LiF, Li 3 PO 4 , and Li 2 SO 4 in a portion thereof) is formed on the surface of the positive electrode active material 1, and the coating remains without volatilizing even in an oxidizing atmosphere of 900 ° C. or higher. In addition, the coating has low solubility in water and is difficult to remove by washing with water. Furthermore, if the coating is to be dissolved and removed by an organic solvent, a large amount of organic solvent is required, which is industrially unsuitable (high cost).

これに対し、本開示の製造方法によれば、正極合材20を溶融化合物10に接触させることで、上記の不純物中のLiがNaに置換されるなどして、当該不純物を水溶性のNa化合物に変えることができる。一方で、正極合材20中の正極活物質1は、溶融化合物10に含まれるLiや、上記のNa置換によって不純物から分離したLiを吸蔵し得る一方、Naを実質的に吸蔵しない。すなわち、正極合材20に含まれる正極活物質1が、例えば、結晶構造的にLi不足となっている場合に、正極合材20を溶融化合物10に接触させることで、正極活物質1にLiを供給することができ、当該正極活物質1を活物質としてより適切なもの(例えば、合成直後の新品と同等の結晶性をもつもの)に変えることができる。 In contrast, according to the manufacturing method of the present disclosure, by bringing the positive electrode mixture 20 into contact with the molten compound 10, the Li in the impurities can be replaced with Na, and the impurities can be converted into water-soluble Na compounds. On the other hand, the positive electrode active material 1 in the positive electrode mixture 20 can occlude Li contained in the molten compound 10 and Li separated from the impurities by the above-mentioned Na replacement, but does not substantially occlude Na. That is, when the positive electrode active material 1 contained in the positive electrode mixture 20 is, for example, Li-deficient in terms of its crystal structure, by bringing the positive electrode mixture 20 into contact with the molten compound 10, Li can be supplied to the positive electrode active material 1, and the positive electrode active material 1 can be converted into one more suitable as an active material (for example, one having the same crystallinity as a new product immediately after synthesis).

また、正極合材20には、導電助剤やバインダー等に由来する炭素含有成分が含まれ得る。この場合にも、当該正極合材20を溶融化合物10に接触させることで、当該炭素含有成分が酸化除去され得る。この点、後述するように、炭素含有成分をより効率的に酸化除去するために、正極合材20と溶融化合物10との接触を酸素含有雰囲気で行ってもよい。 The positive electrode mixture 20 may also contain carbon-containing components derived from the conductive additive, binder, etc. In this case, the positive electrode mixture 20 may be brought into contact with the molten compound 10, thereby oxidizing and removing the carbon-containing components. In this regard, as described below, the positive electrode mixture 20 may be brought into contact with the molten compound 10 in an oxygen-containing atmosphere in order to more efficiently oxidize and remove the carbon-containing components.

このように、正極合材20は、正極活物質1と、前記正極活物質1に付着したLi化合物(例えば、電解液や添加物由来のリン系化合物やフッ素系化合物や硫黄系化合物、より具体的には、LiF、LiPO及びLiSO等から選ばれる少なくとも1種)と、炭素含有成分(例えば、導電助剤やバインダー等に由来するもの)とを含んでいてもよく、この場合、工程S1において、溶融化合物10に正極合材20を接触させることで、前記Li化合物のLiの少なくとも一部をNaに置換し、前記炭素含有成分の少なくとも一部を酸化除去してもよい。 In this manner, the positive electrode mixture 20 may include the positive electrode active material 1, a Li compound (e.g., a phosphorus-based compound, a fluorine-based compound, or a sulfur-based compound derived from an electrolyte or an additive, more specifically, at least one selected from LiF, Li3PO4 , Li2SO4 , etc. ) attached to the positive electrode active material 1, and a carbon-containing component (e.g., derived from a conductive assistant, a binder, etc.). In this case, in step S1, the positive electrode mixture 20 may be brought into contact with the molten compound 10 to replace at least a portion of the Li in the Li compound with Na, and at least a portion of the carbon-containing component may be oxidized and removed.

尚、正極合材20には、上記の各成分のほか、負極合材由来の成分や電解液由来のその他の成分が含まれていてもよい。例えば、負極合材由来の成分や電解液由来のその他の成分として、炭素含有成分が含まれていてもよい。 In addition to the above components, the positive electrode composite 20 may contain other components derived from the negative electrode composite or the electrolyte. For example, the negative electrode composite or the electrolyte may contain a carbon-containing component.

1.1.3 接触形態
溶融化合物10と正極合材20との接触の形態については、特に限定されるものではない。工程S1においては、例えば、溶融化合物10に正極合材20が浸漬されてもよい。具体的には、例えば、図1に示されるように、加熱炉102(例えば、スクリュー式加熱炉)の内部において溶融化合物10を加熱保持しつつ、容器101から加熱炉102の内部の溶融化合物10へと正極合材20を供給することで、溶融化合物10に正極合材20を浸漬してもよい。溶融化合物10に正極合材20を浸漬することで、正極合材20中の正極活物質1の表面に溶融化合物10をムラなく供給することができ、正極活物質1の表面に付着した不純物等を水溶性のNa化合物に効率的に変化させることができる。工程S1においては、溶融化合物10と正極合材20とを接触させた後、余分な溶融化合物を液切りしたうえで、中間材30を得てもよい。
1.1.3 Contact Form The form of contact between the molten compound 10 and the positive electrode mixture 20 is not particularly limited. In step S1, for example, the positive electrode mixture 20 may be immersed in the molten compound 10. Specifically, for example, as shown in FIG. 1, the molten compound 10 may be heated and held inside a heating furnace 102 (for example, a screw-type heating furnace), and the positive electrode mixture 20 may be supplied from a container 101 to the molten compound 10 inside the heating furnace 102, thereby immersing the positive electrode mixture 20 in the molten compound 10. By immersing the positive electrode mixture 20 in the molten compound 10, the molten compound 10 can be uniformly supplied to the surface of the positive electrode active material 1 in the positive electrode mixture 20, and impurities attached to the surface of the positive electrode active material 1 can be efficiently converted into water-soluble Na compounds. In step S1, after the molten compound 10 and the positive electrode mixture 20 are brought into contact with each other, the excess molten compound may be drained off to obtain an intermediate material 30.

或いは、図2に示されるように、工程S1においては、溶融化合物10を構成する成分(例えば、Li化合物及びNa化合物)であって未溶融状態のものと、正極合材20とを混合して混合物50を得たうえで、当該混合物50を容器101から、任意にスクリューフィーダー105等を介して、加熱炉106(例えば、キルン炉)へと供給したうえで、加熱炉106内で混合物50を加熱することによって、混合物50の一部(溶融化合物10を構成する成分)を溶融させて溶融化合物10とするとともに、溶融化合物10と正極合材20との接触がなされてもよい。 Alternatively, as shown in FIG. 2, in step S1, the components constituting the molten compound 10 (e.g., Li compound and Na compound) in an unmelted state are mixed with the positive electrode composite material 20 to obtain a mixture 50, and the mixture 50 is fed from the container 101 to a heating furnace 106 (e.g., a kiln furnace) optionally via a screw feeder 105 or the like, and the mixture 50 is heated in the heating furnace 106 to melt a part of the mixture 50 (the components constituting the molten compound 10) to form the molten compound 10, and the molten compound 10 may come into contact with the positive electrode composite material 20.

1.1.4 接触温度
溶融化合物10と正極合材20との接触温度は、上述のように溶融化合物10を溶融させ得る温度で、且つ、正極活物質1が焼結する温度よりも十分に低ければよい。例えば、上述の通り、470℃以上800℃以下であってもよい。このような温度であれば、正極合材20に含まれる炭素含有成分の少なくとも一部を酸化除去することも可能である。
1.1.4 Contact Temperature The contact temperature between the molten compound 10 and the positive electrode composite material 20 may be a temperature at which the molten compound 10 can be melted as described above, and is sufficiently lower than the temperature at which the positive electrode active material 1 is sintered. For example, as described above, the contact temperature may be 470° C. or higher and 800° C. or lower. At such a temperature, it is also possible to oxidize and remove at least a portion of the carbon-containing component contained in the positive electrode composite material 20.

1.1.5 接触雰囲気
溶融化合物10と正極合材20との接触雰囲気は、上述のように、炭素含有成分の酸化除去を促進できる雰囲気であってもよいし、これ以外の雰囲気であってもよい。例えば、大気雰囲気や空気雰囲気や酸素雰囲気といった酸素含有雰囲気であってもよい。正極活物質1がLi含有酸化物である場合において、溶融化合物10と正極合材20とを酸素含有雰囲気で接触させることで、当該Li含有酸化物の結晶構造が維持され易い。尚、接触時の圧力は特に限定されるものではない。
1.1.5 Contact Atmosphere The contact atmosphere between the molten compound 10 and the positive electrode composite material 20 may be an atmosphere capable of promoting the oxidative removal of the carbon-containing component as described above, or may be another atmosphere. For example, it may be an oxygen-containing atmosphere such as an air atmosphere, an air atmosphere, or an oxygen atmosphere. When the positive electrode active material 1 is a Li-containing oxide, the crystal structure of the Li-containing oxide is easily maintained by contacting the molten compound 10 with the positive electrode composite material 20 in an oxygen-containing atmosphere. The pressure during contact is not particularly limited.

1.1.6 中間材
上記の工程S1により、正極活物質1を含む中間材30が得られる。中間材30には、正極活物質1の他、Na化合物(例えば、炭酸ナトリウム、フッ化ナトリウム、リン酸ナトリウム、硫酸ナトリウム、及び、水酸化ナトリウムのうちの少なくとも1種)や、リチウム化合物(例えば、水酸化リチウム)等が含まれ得る。当該Na化合物には、上述の溶融化合物10を構成するNa化合物のほか、正極活物質1の表面に付着していた不純物のNa置換物(不純物に含まれるLiがNaに置換されてNa化合物となったもの)が含まれ得る。また、中間材30には、炭素含有成分が残存していてもよい。工程S1において炭素含有成分を酸化除去できなかったとしても、後工程で炭素含有成分の酸化除去が可能である。例えば、工程S3(乾燥)の後に、炭素含有成分の酸化除去が行われてもよい。
1.1.6 Intermediate material The intermediate material 30 containing the positive electrode active material 1 is obtained by the above-mentioned step S1. The intermediate material 30 may contain, in addition to the positive electrode active material 1, a Na compound (for example, at least one of sodium carbonate, sodium fluoride, sodium phosphate, sodium sulfate, and sodium hydroxide), a lithium compound (for example, lithium hydroxide), and the like. The Na compound may include, in addition to the Na compound constituting the above-mentioned molten compound 10, a Na substitute of an impurity attached to the surface of the positive electrode active material 1 (a Na compound in which Li contained in the impurity is substituted with Na). In addition, the intermediate material 30 may contain a carbon-containing component remaining. Even if the carbon-containing component cannot be oxidized and removed in step S1, the carbon-containing component can be oxidized and removed in a subsequent step. For example, the carbon-containing component may be oxidized and removed after step S3 (drying).

1.2 工程S2
工程S2においては、工程S1によって得られた中間材30を水洗して、正極活物質1を含む洗浄物40を得る。工程S2により、例えば、中間材30に含まれる水溶性成分(例えば、上記のNa化合物)が溶解除去され得る。
1.2 Step S2
In step S2, the intermediate material 30 obtained in step S1 is washed with water to obtain a washed object 40 including the positive electrode active material 1. In step S2, for example, water-soluble components (e.g., the above-mentioned Na compound) included in the intermediate material 30 can be dissolved and removed.

1.2.1 水洗の形態
中間材30は、公知の手段によって水洗されればよい。水洗時の温度や時間も特に限定されるものではなく、中間材30に含まれる水溶性成分を十分に溶解除去可能な温度及び時間であればよい。図1に示されるように、水洗の際は撹拌容器103を用いて中間材30を撹拌しつつ洗浄してもよい。また、水洗の際は、図1に示されるように、濾過装置104等を用いて、固液分離を行ってもよい。さらに、水洗の際は、洗浄水量を調整することで、余剰Li量を制御してもよい。
1.2.1 Form of Water Washing The intermediate material 30 may be washed with water by a known means. The temperature and time during water washing are not particularly limited, and may be any temperature and time that can sufficiently dissolve and remove the water-soluble components contained in the intermediate material 30. As shown in FIG. 1, during water washing, the intermediate material 30 may be washed while being stirred using a stirring vessel 103. Furthermore, during water washing, solid-liquid separation may be performed using a filtration device 104 or the like, as shown in FIG. Furthermore, during water washing, the amount of surplus Li may be controlled by adjusting the amount of washing water.

1.2.2 洗浄物
上記の工程S2により、正極活物質1を含む洗浄物40が得られる。洗浄物40には、固形分としての正極活物質1のほか、水が含まれ得る。水は水和物等の形態で含まれていてもよい。
1.2.2 Washed object By the above-mentioned step S2, a washed object 40 including the positive electrode active material 1 is obtained. The washed object 40 may contain water in addition to the positive electrode active material 1 as a solid content. The water may be contained in the form of a hydrate or the like.

1.3 工程S3
工程S3においては、工程S2によって得られた洗浄物40を乾燥させて、正極活物質1を得る。上述の通り、洗浄物40には水が含まれており、これが乾燥除去されることで、より性能の高い正極活物質1が得られる。洗浄物40は、公知の手段によって乾燥されればよい。乾燥時の温度や時間も特に限定されるものではなく、洗浄物40に含まれる水を十分に除去可能な温度及び時間であればよい。例えば、130℃以上の温度で乾燥することで、水和物の少ない正極活物質1が得られる。温度の上限は、正極活物質1が焼結しない温度であればよい。
1.3 Step S3
In step S3, the washed object 40 obtained in step S2 is dried to obtain the positive electrode active material 1. As described above, the washed object 40 contains water, and by drying and removing the water, a positive electrode active material 1 with higher performance is obtained. The washed object 40 may be dried by a known means. The temperature and time during drying are not particularly limited, and may be any temperature and time that can sufficiently remove the water contained in the washed object 40. For example, by drying at a temperature of 130° C. or higher, a positive electrode active material 1 with a small amount of hydrates is obtained. The upper limit of the temperature may be any temperature at which the positive electrode active material 1 does not sinter.

1.4 その他の工程
本開示の製造方法は、少なくとも上記の工程S1~S3を備えるものであればよく、これら以外の工程をさらに備えていてもよい。例えば、電池材料をリサイクルする際の各種の工程(電池の破砕、液回収等)を備えていてもよい。また、工程S1~S3とは別に、炭素含有成分等を酸化除去する工程等を備えていてもよい。
1.4 Other Steps The manufacturing method of the present disclosure may include at least the above steps S1 to S3, and may further include other steps. For example, the manufacturing method may include various steps for recycling battery materials (such as crushing batteries and recovering liquid). In addition to steps S1 to S3, the manufacturing method may include a step of oxidizing and removing carbon-containing components, etc.

2.電池材料のリサイクル方法
本開示の技術は、電池材料のリサイクル方法としての側面も有する。例えば、図3に示されるように、本開示の電池材料のリサイクル方法は、電池を破砕して解体すること(破砕工程)、破砕した電池をさらに破砕して、電極から合材を剥離させること(2次破砕工程)、破砕物に含まれる電解液成分を蒸発させること(液回収工程)、破砕物に含まれる材料のうち、合材以外の材料の少なくとも一部を分離すること(分離工程)、及び、上記の工程S1~S3を備えるものであってもよい。
2. Recycling method for battery materials The technology of the present disclosure also has an aspect of a recycling method for battery materials. For example, as shown in Fig. 3, the recycling method for battery materials of the present disclosure may include crushing and dismantling the battery (crushing step), further crushing the crushed battery to peel off the composite material from the electrode (secondary crushing step), evaporating the electrolyte component contained in the crushed material (liquid recovery step), separating at least a part of the materials other than the composite material from the materials contained in the crushed material (separation step), and the above steps S1 to S3.

2.1 破砕工程
破砕工程においては、公知の破砕機によって、電池を破砕すればよい。この場合の破砕機としては、例えば、シュレッダー等が挙げられる。破砕工程において破砕される電池は、正極及び負極の双方を備えるものであってもよいし、正極のみを備えるものであってもよい(端材であれば、正極のみでの破砕も容易である)。
2.1 Crushing Process In the crushing process, the batteries may be crushed by a known crusher. Examples of the crusher include a shredder. The batteries to be crushed in the crushing process may include both a positive electrode and a negative electrode, or may include only a positive electrode (if the batteries are scraps, it is easy to crush only the positive electrode).

2.2 2次破砕工程
2次破砕工程においては、公知の破砕機によって、電極から合材を剥離させればよい。この場合の破砕機としては、例えば、チェーンミル等が挙げられる。2次破砕工程により、例えば、電極を合材(ブラックマス)と集電箔とに分離することができる。尚、上記の破砕工程と2次破砕工程とが同時に行われてもよい。
2.2 Secondary Crushing Process In the secondary crushing process, the composite material may be peeled off from the electrodes by a known crusher. Examples of the crusher in this case include a chain mill. In the secondary crushing process, for example, the electrodes can be separated into the composite material (black mass) and the current collector foil. The above-mentioned crushing process and the secondary crushing process may be performed simultaneously.

2.3 液回収工程
液回収工程においては、公知の乾燥機によって、破砕物に含まれる電解液成分を蒸発させればよい。液回収工程においては、破砕物の減圧乾燥を行ってもよい。
2.3 Liquid recovery step In the liquid recovery step, the electrolyte component contained in the crushed material may be evaporated using a known dryer. In the liquid recovery step, the crushed material may be dried under reduced pressure.

2.4 分離工程
分離工程においては、例えば、合材よりも相対的に重い材料(外装ケース・集電端子等)や軽い材料(セパレータ・絶縁フィルム)、金属箔(アルミニウム箔・銅箔)等を分離除去し、合材(ブラックマス)を得る。上記の破砕工程において正極のみを破砕した場合、分離工程によって実質的に正極合材のみが得られる。分離工程においては、気流分離等の乾式分離によって、比重の大きな材料と小さな材料とを分離してもよい。
2.4 Separation Step In the separation step, for example, materials that are relatively heavier than the composite material (exterior case, current collector terminal, etc.), lighter materials (separator, insulating film), metal foils (aluminum foil, copper foil), etc. are separated and removed to obtain a composite material (black mass). If only the positive electrode is crushed in the above crushing step, substantially only the positive electrode composite material is obtained by the separation step. In the separation step, materials with a large specific gravity and materials with a small specific gravity may be separated by dry separation such as air flow separation.

2.5 工程S1~S3
工程S1~S3については上述の通りである。
2.5 Steps S1 to S3
Steps S1 to S3 are as described above.

3.効果
以上の通り、本開示の技術によれば、例えば、電池のリサイクルの際、正極活物質を原材料に戻すことなく再生することができる。具体的には、電極から集電箔等を分離した後の正極合材(ブラックマス)から、不純物を容易に水洗除去しつつ、量産的に正極活物質のみを分離し、当該正極活物質を新品同等にまで再生することができる。本開示の技術は、安価な溶融化合物(例えば、NaOH等)を用いるもので、有機溶剤は不要であり、低コスト且つ二酸化炭素排出量の少ない技術といえる。
3. Effects As described above, according to the technology of the present disclosure, for example, when recycling a battery, the positive electrode active material can be regenerated without returning it to the raw material. Specifically, from the positive electrode mixture (black mass) obtained after separating the current collector foil from the electrode, impurities can be easily washed away with water, and only the positive electrode active material can be separated in a mass production manner, and the positive electrode active material can be regenerated to the same quality as a new product. The technology of the present disclosure uses an inexpensive molten compound (e.g., NaOH, etc.), does not require an organic solvent, and can be said to be a low-cost technology with low carbon dioxide emissions.

1 正極活物質
10 溶融化合物
20 正極合材
30 中間材
40 洗浄物
50 混合物
101 容器
102 加熱炉(スクリュー式加熱炉)
103 撹拌容器
104 濾過装置
105 スクリューフィーダー
106 加熱炉(キルン炉)
Reference Signs List 1 Positive electrode active material 10 Molten compound 20 Positive electrode mixture 30 Intermediate material 40 Washed material 50 Mixture 101 Container 102 Heating furnace (screw type heating furnace)
103 Stirring vessel 104 Filtration device 105 Screw feeder 106 Heating furnace (kiln furnace)

Claims (5)

正極活物質の製造方法であって、
LiとNaとを含む溶融化合物に正極合材を接触させて、前記正極活物質を含む中間材を得ること、
前記中間材を水洗して、前記正極活物質を含む洗浄物を得ること、及び
前記洗浄物を乾燥させて、前記正極活物質を得ること、
を含む製造方法。
A method for producing a positive electrode active material, comprising:
contacting a positive electrode mixture with a molten compound containing Li and Na to obtain an intermediate material containing the positive electrode active material;
washing the intermediate material with water to obtain a washed product containing the positive electrode active material; and drying the washed product to obtain the positive electrode active material.
A manufacturing method comprising:
前記溶融化合物が、LiOHとNaOHとを含む、
請求項1に記載の製造方法。
The molten compound comprises LiOH and NaOH;
The method of claim 1 .
前記溶融化合物の温度が、470℃以上800℃以下である、
請求項2に記載の製造方法。
The temperature of the molten compound is 470° C. or more and 800° C. or less.
The method according to claim 2 .
前記正極合材が、前記正極活物質と、前記正極活物質に付着したLi化合物と、炭素含有成分とを含む、
請求項1~3のいずれか1項に記載の製造方法。
The positive electrode mixture includes the positive electrode active material, a Li compound attached to the positive electrode active material, and a carbon-containing component.
The method according to any one of claims 1 to 3.
前記溶融化合物に前記正極合材を接触させることで、前記Li化合物のLiの少なくとも一部をNaに置換し、前記炭素含有成分の少なくとも一部を酸化除去する、
請求項4に記載の製造方法。
By bringing the positive electrode mixture into contact with the molten compound, at least a portion of the Li in the Li compound is replaced with Na, and at least a portion of the carbon-containing component is oxidized and removed.
The method according to claim 4.
JP2022162170A 2022-10-07 2022-10-07 Method for producing positive electrode active material Pending JP2024055335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022162170A JP2024055335A (en) 2022-10-07 2022-10-07 Method for producing positive electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022162170A JP2024055335A (en) 2022-10-07 2022-10-07 Method for producing positive electrode active material

Publications (1)

Publication Number Publication Date
JP2024055335A true JP2024055335A (en) 2024-04-18

Family

ID=90716516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022162170A Pending JP2024055335A (en) 2022-10-07 2022-10-07 Method for producing positive electrode active material

Country Status (1)

Country Link
JP (1) JP2024055335A (en)

Similar Documents

Publication Publication Date Title
CN101519726B (en) Method for directly roasting and treating waste lithium ion battery and recycling valuable metal
KR101992715B1 (en) Method for recovering positive electrode active material from lithium secondary battery
JP7371263B2 (en) How to reuse active materials using cathode scraps
WO2010106618A1 (en) Method for treating battery member
JP2010034021A (en) Method of recycling oxide-containing battery material from waste battery material
CN110364748B (en) Regeneration method of waste lithium ion battery anode material
CA2762469A1 (en) Methods of making lithium vanadium oxide powders and uses of the powders
CN115210182A (en) Method for producing lithium hydroxide
EP4030534A1 (en) Method for reusing active material by using positive electrode scrap
CN110808430A (en) Separation and purification method of lithium ion battery anode material and obtained lithium ion battery anode material
US20230062492A1 (en) Method for reusing active material by using positive electrode scrap
US20230139010A1 (en) Apparatus for recovering active material and method for reusing active material by using same
CN116706050B (en) Medium-low nickel monocrystal ternary positive electrode material, preparation method thereof and battery
KR20210145456A (en) Reuse method of active material of positive electrode scrap
JP2024055335A (en) Method for producing positive electrode active material
CN114420921B (en) Method for regenerating lithium ion battery anode material by microwave
JP7451683B2 (en) How to reuse active materials using cathode scraps
CN106564917A (en) Method for recovering lithium carbonate from waste lithium manganate cathode material
Aziam Recovery of Nanomaterials for Battery Applications
JP7357801B2 (en) How to reuse active materials using cathode scraps
US20240106020A1 (en) Method for reusing active material using positive electrode scrap
US20230013498A1 (en) Methods for preparing cathode active material precursor material and cathode active material for lithium secondary battery, and cathode active material for lithium secondary battery prepared according to same
JP2024515170A (en) Method for reusing positive electrode active material
CN116404283A (en) Method for recovering positive electrode active material
JP2023535946A (en) Method for reusing active material using positive electrode scrap