JP2024055021A - Surface treatment agent for carbon steel material, carbon steel material having a surface treatment film and its manufacturing method - Google Patents

Surface treatment agent for carbon steel material, carbon steel material having a surface treatment film and its manufacturing method Download PDF

Info

Publication number
JP2024055021A
JP2024055021A JP2022161581A JP2022161581A JP2024055021A JP 2024055021 A JP2024055021 A JP 2024055021A JP 2022161581 A JP2022161581 A JP 2022161581A JP 2022161581 A JP2022161581 A JP 2022161581A JP 2024055021 A JP2024055021 A JP 2024055021A
Authority
JP
Japan
Prior art keywords
surface treatment
carbon steel
mass
steel material
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022161581A
Other languages
Japanese (ja)
Inventor
祐介 伊藤
隆行 萬
淳一 内田
直喜 相原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd filed Critical Nihon Parkerizing Co Ltd
Priority to JP2022161581A priority Critical patent/JP2024055021A/en
Priority to PCT/JP2023/034176 priority patent/WO2024075524A1/en
Publication of JP2024055021A publication Critical patent/JP2024055021A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00

Abstract

【課題】耐電食性に優れた表面処理被膜を形成できる表面処理剤を提供する。【解決手段】シリコーン樹脂(A)と、チタン化合物(B)と、バリウム化合物(C)と、芳香族炭化水素系溶剤(D)と、アミノ基を有するアルコキシシラン(E)と、を含有し、(I)前記シリコーン樹脂(A)の質量(AM)と、前記化合物(B)の質量(BM)との比(BM/AM)が0.05以上3.12以下の範囲内であり、(II)前記シリコーン樹脂(A)の質量(AM)と、前記化合物(C)の質量(CM)との比(CM/AM)が0.02以上0.55以下の範囲内であり、(III)前記シリコーン樹脂(A)の質量(AM)と、前記化合物(E)の質量(EM)との比(EM/AM)が0.01以上0.43以下の範囲内である、炭素鋼材料用表面処理剤により、課題を解決する。【選択図】なし[Problem] To provide a surface treatment agent capable of forming a surface treatment film having excellent resistance to electrolytic corrosion. [Solution] To solve the problem, a surface treatment agent for carbon steel materials is provided, which contains a silicone resin (A), a titanium compound (B), a barium compound (C), an aromatic hydrocarbon solvent (D), and an alkoxysilane (E) having an amino group, and in which (I) the ratio (BM/AM) of the mass (AM) of the silicone resin (A) to the mass (BM) of the compound (B) is in the range of 0.05 to 3.12, (II) the ratio (CM/AM) of the mass (AM) of the silicone resin (A) to the mass (CM) of the compound (C) is in the range of 0.02 to 0.55, and (III) the ratio (EM/AM) of the mass (AM) of the silicone resin (A) to the mass (EM) of the compound (E) is in the range of 0.01 to 0.43. [Selected Figure] None

Description

本発明は、自動車、家電、OA機器、医療機器等の製品に使用される機械要素部材の炭素鋼材料に対して好適に使用することができる表面処理剤、その表面処理剤を用いた表面処理被膜を有する炭素鋼材料の製造方法、およびその製造方法により得られる表面処理被膜を有する炭素鋼材料に関する。 The present invention relates to a surface treatment agent that can be suitably used for carbon steel materials of machine components used in products such as automobiles, home appliances, office automation equipment, and medical equipment, a method for manufacturing carbon steel materials having a surface treatment coating using the surface treatment agent, and a carbon steel material having a surface treatment coating obtained by the manufacturing method.

自動車、家電、OA機器、医療機器等の工業製品においては、その製品を構成する機械要素部材に金属材料が用いられている。これら工業製品は、様々な環境下で使用されるため、これら工業製品に用いられる金属材料には、様々な性能が求められている。それゆえ、近年においては、金属材料に様々な性能を付与するため、各種性能を有する表面処理被膜を金属材料の表面または表面上に設ける技術が開発されている。例えば、特許文献1には、所定のリン酸系化合物と、チタンやジルコニウム等の所定の元素を有するフルオロ酸と、少なくとも1個の活性水素含有アミノ基を有するシランカップリング剤と、少なくとも1個のエポキシ基を有するシランカップリング剤とを所定量配合して溶解もしくは分散させた金属材料表面処理用組成物を金属表面に塗布し、乾燥させて所定の被膜を形成させる技術が開示されている。 In industrial products such as automobiles, home appliances, office automation equipment, and medical equipment, metal materials are used in the machine components that make up the products. Since these industrial products are used in various environments, various performances are required for the metal materials used in these industrial products. Therefore, in recent years, in order to impart various performances to metal materials, techniques have been developed for providing surface treatment coatings with various performances on or on the surface of metal materials. For example, Patent Document 1 discloses a technique in which a metal material surface treatment composition in which a predetermined amount of a predetermined phosphoric acid compound, a fluoro acid having a predetermined element such as titanium or zirconium, a silane coupling agent having at least one active hydrogen-containing amino group, and a silane coupling agent having at least one epoxy group are mixed and dissolved or dispersed is applied to a metal surface, and then dried to form a predetermined coating.

特開2006-213958号公報JP 2006-213958 A

近年、機械要素部材に使用される炭素鋼材料においては、耐電食性に優れた表面処理被膜を形成できる技術の開発が求められている。そこで、本発明は、耐電食性に優れた表面処理被膜を形成できる表面処理剤、その表面処理剤を用いた表面処理被膜を有する炭素鋼材料の製造方法、及びその製造方法により得られる表面処理被膜を有する炭素鋼材料を提供することを目的とする。 In recent years, there has been a demand for the development of technology capable of forming a surface treatment coating with excellent resistance to electrolytic corrosion for carbon steel materials used in machine components. Therefore, the present invention aims to provide a surface treatment agent capable of forming a surface treatment coating with excellent resistance to electrolytic corrosion, a method for manufacturing a carbon steel material having a surface treatment coating using the surface treatment agent, and a carbon steel material having a surface treatment coating obtained by the manufacturing method.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、シリコーン樹脂と、所定の金属元素を含む化合物と、芳香族炭化水素系溶剤とを所定量含む表面処理剤を用いることにより、耐電食性に優れた表面処理被膜を炭素鋼材料の表面又は表面上に形成できることを見出し、本発明を完成するに至った。 As a result of intensive research into solving the above problems, the inventors discovered that a surface treatment coating with excellent resistance to electrolytic corrosion can be formed on or above the surface of a carbon steel material by using a surface treatment agent containing a silicone resin, a compound containing a specified metal element, and a specified amount of an aromatic hydrocarbon solvent, and thus completed the present invention.

すなわち、本発明は、
[1]シリコーン樹脂(A)と、チタン化合物(B)と、バリウム化合物(C)と、芳香族炭化水素系溶剤(D)と、アミノ基を有するアルコキシシラン(E)と、を含有し、
(I)前記シリコーン樹脂(A)の質量(A)と、前記化合物(B)の質量(B)との比(B/A)が0.05以上3.12以下の範囲内であり、
(II)前記シリコーン樹脂(A)の質量(A)と、前記化合物(C)の質量(C)との比(C/A)が0.02以上0.55以下の範囲内であり、
(III)前記シリコーン樹脂(A)の質量(A)と、前記化合物(E)の質量(E)との比(E/A)が0.01以上0.43以下の範囲内である、炭素鋼材料用表面処理剤;
[2]表面処理被膜を有する炭素鋼材料の製造方法であって、上記[1]に記載の表面処理剤を炭素鋼材料の表面または表面上に接触させる第1工程と、前記炭素鋼材料に接触させた表面処理剤を乾燥して表面処理被膜を形成する第2工程とを含む製造方法;
[3]前記第1工程の前に、炭素鋼材料の表面または表面上に、アミノ基を有するシランカップリング剤、該シランカップリング剤の重合物、該重合物との共重合物、又はリン酸を含有する下地処理剤を接触させ下地皮膜を形成する下地皮膜形成工程、をさらに含む、上記[2]に記載の製造方法;
[4]上記[2]又は[3]に記載の製造方法により得られる、表面処理被膜を有する炭素鋼材料であって、前記表面処理被膜の膜厚が3μm以上100μm以下の範囲内である、表面処理被膜を有する炭素鋼材料;
[5]炭素鋼材料の表面又は表面上に表面処理被膜を有し、
前記表面処理被膜が、シリコーン樹脂(A)と、チタン化合物(B)と、バリウム化合物(C)と、アミノ基を有するアルコキシシラン(E)由来の重合物と、を含有し、
(I)前記シリコーン樹脂(A)の質量(A)と、前記化合物(B)の質量(B)との比(B/A)が0.05以上3.12以下の範囲内であり、
(II)前記シリコーン樹脂(A)の質量(A)と、前記化合物(C)の質量(C)との比(C/A)が0.02以上0.55以下の範囲内である、表面処理被膜を有する炭素鋼材料;
[6]前記炭素鋼材料と前記表面処理被膜との間に下地皮膜を有し、
前記下地皮膜が、アミノ基を有するシランカップリング剤、該シランカップリング剤の重合物、該重合物との共重合物及びリン酸からなる群より選択される1種以上を含む、上記[5]に記載の表面処理被膜を有する炭素鋼材料;
[7]前記表面処理被膜の膜厚が3μm以上100μm以下の範囲内である、上記[5]又は[6]に記載の表面処理被膜を有する炭素鋼材料;
[8]前記炭素鋼材料が炭素を0.95質量%以上含有する高炭素鋼である、上記[5]~[7]のいずれかに記載の表面処理被膜を有する高炭素鋼材料;
などである。
That is, the present invention provides
[1] A silicone resin (A), a titanium compound (B), a barium compound (C), an aromatic hydrocarbon solvent (D), and an alkoxysilane having an amino group (E),
(I) the ratio (B M /A M ) of the mass (A M ) of the silicone resin (A) to the mass (B M ) of the compound (B) is within the range of 0.05 to 3.12,
(II) the ratio (C M /A M ) of the mass (A M ) of the silicone resin (A) to the mass (C M ) of the compound (C) is within the range of 0.02 or more and 0.55 or less;
(III) A surface treatment agent for carbon steel materials, in which the ratio (E M /A M ) of the mass (A M ) of the silicone resin (A) to the mass (E M ) of the compound (E) is within the range of 0.01 or more and 0.43 or less;
[2] A method for producing a carbon steel material having a surface treatment coating, comprising a first step of contacting the surface treatment agent described in [1] above with a surface or on a surface of a carbon steel material, and a second step of drying the surface treatment agent contacted with the carbon steel material to form a surface treatment coating;
[3] The manufacturing method according to the above [2], further comprising a base coating formation step of contacting a surface or a surface of the carbon steel material with a silane coupling agent having an amino group, a polymer of the silane coupling agent, a copolymer with the polymer, or a base treatment agent containing phosphoric acid to form a base coating before the first step;
[4] A carbon steel material having a surface treatment coating, obtained by the manufacturing method according to the above [2] or [3], wherein the film thickness of the surface treatment coating is within the range of 3 μm or more and 100 μm or less;
[5] A surface treatment coating is provided on or at the surface of a carbon steel material,
the surface treatment coating contains a silicone resin (A), a titanium compound (B), a barium compound (C), and a polymer derived from an alkoxysilane having an amino group (E);
(I) the ratio (B M /A M ) of the mass (A M ) of the silicone resin (A) to the mass (B M ) of the compound (B) is within the range of 0.05 to 3.12,
(II) A carbon steel material having a surface treatment coating, in which the ratio ( CM / AM ) of the mass ( AM ) of the silicone resin (A) to the mass ( CM ) of the compound (C) is within the range of 0.02 or more and 0.55 or less;
[6] A base coating is provided between the carbon steel material and the surface treatment coating,
A carbon steel material having a surface treatment coating according to the above-mentioned [5], wherein the undercoat coating contains at least one selected from the group consisting of a silane coupling agent having an amino group, a polymer of the silane coupling agent, a copolymer of the polymer and phosphoric acid;
[7] A carbon steel material having a surface treatment coating according to the above [5] or [6], wherein the thickness of the surface treatment coating is within the range of 3 μm or more and 100 μm or less;
[8] A high-carbon steel material having a surface treatment coating according to any one of [5] to [7] above, wherein the carbon steel material is a high-carbon steel containing 0.95 mass% or more of carbon;
And so on.

本発明によれば、耐電食性に優れた表面処理被膜を形成できる表面処理剤、その表面処理剤を用いた表面処理被膜を有する炭素鋼材料の製造方法、及びその製造方法により得られる表面処理被膜を有する炭素鋼材料を提供することができる。 The present invention provides a surface treatment agent capable of forming a surface treatment coating with excellent resistance to electrolytic corrosion, a method for producing a carbon steel material having a surface treatment coating using the surface treatment agent, and a carbon steel material having a surface treatment coating obtained by the method.

以下に、本発明に係る表面処理剤、表面処理被膜を有する炭素鋼材料及びその製造方法について説明する。
(表面処理剤)
本実施形態に係る表面処理剤は、シリコーン樹脂(A)と、チタン化合物(B)と、バリウム化合物(C)と、芳香族炭化水素系溶剤(D)と、アミノ基を有するアルコキシシラン(E)と、を含有する。この表面処理剤を用いることにより、炭素鋼材料に対して耐電食性(特に高温環境下での耐電食性)に優れた表面処理被膜を形成できる。なお、高温とは、少なくとも100℃以上を、好ましくは150℃以上を、より好ましくは200℃以上を意味する。このように、本実施形態に係る表面処理剤は、耐電食性に優れた表面処理被膜を形成できることから、本実施形態に係る表面処理剤は、耐電蝕性被膜形成剤として有用である。また、耐電蝕性に優れた表面処理被膜は、自動車、家電、OA機器、医療機器等の工業製品を構成する機械要素部材に使用されている炭素鋼材料等に有用である。
The surface treatment agent, the carbon steel material having a surface treatment film, and the method for producing the same according to the present invention will be described below.
(Surface treatment agent)
The surface treatment agent according to the present embodiment contains a silicone resin (A), a titanium compound (B), a barium compound (C), an aromatic hydrocarbon solvent (D), and an alkoxysilane (E) having an amino group. By using this surface treatment agent, a surface treatment film having excellent resistance to electrolytic corrosion (particularly resistance to electrolytic corrosion under high temperature environment) can be formed on a carbon steel material. Here, high temperature means at least 100°C or higher, preferably 150°C or higher, and more preferably 200°C or higher. Thus, since the surface treatment agent according to the present embodiment can form a surface treatment film having excellent resistance to electrolytic corrosion, the surface treatment agent according to the present embodiment is useful as an agent for forming an electrolytic corrosion-resistant film. In addition, the surface treatment film having excellent resistance to electrolytic corrosion is useful for carbon steel materials and the like used in machine element members constituting industrial products such as automobiles, home appliances, office automation equipment, and medical equipment.

<シリコーン樹脂(A)>
シリコーン樹脂(A)としては、複数のシロキサン結合を有し、ケイ素(Si)に有機基が結合したオルガノポリシロキサン構造を有するものであれば特に制限されるものでは
ないが、Siに結合した有機基を1分子中に少なくとも2個以上有するオルガノポリシロキサン構造を有するものが好ましい。なお、有機基が結合している位置については特に制限はなく、主鎖、側鎖又は末端に結合していてもよい。なお、シリコーン樹脂(A)は、上記オルガノポリシロキサン構造を有する単重合物であっても、上記オルガノポリシロキサン構造を有する単重合物とポリシロキサン構造を有する単重合物との混合物であっても、上記オルガノポリシロキサン構造とポリシロキサン構造とを有する共重合物(ブロック共重合物又はグラフト重合物)であってもよい。また、シリコーン樹脂(A)は、付加型であってもよいし、縮合型であってもよい。さらに、シリコーン樹脂(A)は、熱硬化型、室温硬化型(RVT)、UV硬化型の何れでもよい。
<Silicone resin (A)>
The silicone resin (A) is not particularly limited as long as it has a plurality of siloxane bonds and has an organopolysiloxane structure in which an organic group is bonded to silicon (Si), but is preferably an organopolysiloxane structure having at least two organic groups bonded to Si in one molecule. The position at which the organic group is bonded is not particularly limited, and it may be bonded to the main chain, side chain, or end. The silicone resin (A) may be a homopolymer having the above organopolysiloxane structure, a mixture of a homopolymer having the above organopolysiloxane structure and a homopolymer having a polysiloxane structure, or a copolymer (block copolymer or graft polymer) having the above organopolysiloxane structure and a polysiloxane structure. The silicone resin (A) may be an addition type or a condensation type. Furthermore, the silicone resin (A) may be any of a heat curing type, a room temperature curing type (RVT), and a UV curing type.

オルガノポリシロキサン構造におけるSiに結合した有機基としては、例えば、飽和炭化水素基、不飽和炭化水素基、ハロゲン化アルキル基、エポキシシクロヘキシル基等を挙げることができるが、これらに制限されるものではない。飽和炭化水素基としては、例えば、直鎖状又は分岐鎖状のアルキル基、シクロアルキル基等を挙げることができるがこれらに制限されるものではない。また、不飽和炭化水素基としては、例えば、直鎖状又は分岐鎖状のアルケニル基;シクロアルケニル基;シクロアルケニルアルキル基;アリール基等を挙げることができるがこれらに制限されるものではない。なお、Siに結合した有機基としては、不飽和炭化水素基であることが好ましく、アルケニル基であることがより好ましく、ビニル基又はヘキセニル基であることが特に好ましい。 The organic group bonded to Si in the organopolysiloxane structure may be, for example, a saturated hydrocarbon group, an unsaturated hydrocarbon group, a halogenated alkyl group, an epoxycyclohexyl group, etc., but is not limited thereto. The saturated hydrocarbon group may be, for example, a linear or branched alkyl group, a cycloalkyl group, etc., but is not limited thereto. The unsaturated hydrocarbon group may be, for example, a linear or branched alkenyl group, a cycloalkenyl group, a cycloalkenylalkyl group, an aryl group, etc., but is not limited thereto. The organic group bonded to Si is preferably an unsaturated hydrocarbon group, more preferably an alkenyl group, and particularly preferably a vinyl group or a hexenyl group.

ハロゲン化アルキル基としては、例えば、クロロメチル基、3-クロロプロピル基、1-クロロ-2-メチルプロピル基、3,3,3-トリフルオロプロピル基等を挙げることができる。アルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等を挙げることができる。シクロアルキル基としては、シクロペンチル基、シクロヘキシル基等を挙げることができる。直鎖状又は分岐鎖状のアルケニル基としては、例えば、ビニル基、1-プロペニル基、アリール基、イソプロペニル基、1-ブテニル、2-ブテニル基、ペンテニル基、ヘキセニル基等を挙げることができる。シクロアルケニル基としては、例えば、シクロペンテニル基、シクロヘキセニル基等を挙げることができる。シクロアルケニルアルキル基としては、例えば、シクロペンテニルエチル基、シクロヘキセニルエチル基、シクロヘキセニルプロピル基等が挙げられる。アリール基としては、例えば、フェニル基等を挙げることができる。 Examples of halogenated alkyl groups include chloromethyl, 3-chloropropyl, 1-chloro-2-methylpropyl, and 3,3,3-trifluoropropyl groups. Examples of alkyl groups include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, and decyl groups. Examples of cycloalkyl groups include cyclopentyl and cyclohexyl groups. Examples of linear or branched alkenyl groups include vinyl, 1-propenyl, aryl, isopropenyl, 1-butenyl, 2-butenyl, pentenyl, and hexenyl groups. Examples of cycloalkenyl groups include cyclopentenyl and cyclohexenyl groups. Examples of cycloalkenylalkyl groups include cyclopentenylethyl, cyclohexenylethyl, and cyclohexenylpropyl groups. Examples of aryl groups include phenyl groups.

ポリシロキサン構造としては、上記オルガノポリシロキサン構造とは異なるものであれば特に制限されるものではなく、例えば、Siに結合した水素原子を1分子中に少なくとも2個以上有するポリシロキサン構造、Siに結合したアルコキシ基を1分子中に少なくとも2個以上有するポリシロキサン構造等を挙げることができる。アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等を挙げることができる。なお、アルコキシ基は、直鎖状であっても、分岐鎖状であってもよい。 The polysiloxane structure is not particularly limited as long as it is different from the above-mentioned organopolysiloxane structure, and examples thereof include a polysiloxane structure having at least two hydrogen atoms bonded to Si in one molecule, and a polysiloxane structure having at least two alkoxy groups bonded to Si in one molecule. Examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, and a butoxy group. The alkoxy group may be linear or branched.

上記各種シリコーン樹脂は、表面処理剤の調製において1種を用いてもよいし、2種以上を併用してもよい。シリコーン樹脂(A)の好適な実施形態の一つとして、Siに結合した不飽和炭化水素基を1分子中に少なくとも2個以上有するオルガノポリシロキサン構造を有する単重合物と、Siに結合した水素原子を1分子中に少なくとも2個以上有するポリシロキサン構造を有する単重合物との混合物を挙げることができる。 The above-mentioned silicone resins may be used alone or in combination in the preparation of the surface treatment agent. One preferred embodiment of the silicone resin (A) is a mixture of a homopolymer having an organopolysiloxane structure having at least two unsaturated hydrocarbon groups bonded to Si in one molecule, and a homopolymer having a polysiloxane structure having at least two hydrogen atoms bonded to Si in one molecule.

Siに結合した不飽和炭化水素基を1分子中に少なくとも2個以上有するオルガノポリシロキサン構造を有する単重合物としては、例えば、分子鎖の両末端にジメチルビニルシロキシ基を有するジメチルポリシロキサン、分子鎖の両末端にジメチルビニルシロキシ基を有するジメチルシロキサン-メチルフェニルシロキサン共重合体、分子鎖の両末端にジ
メチルビニルシロキシ基を有するジメチルシロキサン-メチルビニルシロキサン共重合体、分子鎖の両末端にトリメチルシロキシ基を有するジメチルシロキサン-メチルビニルシロキサン共重合体、分子鎖の両末端にトリメチルシロキシ基を有するジメチルシロキサン-メチルビニルシロキサン-メチルフェニルシロキサン三元共重合体、分子鎖の両末端にシラノール基を有するジメチルシロキサン-メチルビニルシロキサン共重合体、分子鎖の両末端にシラノール基を有するメチルビニルポリシロキサン等が挙げられる。その他、各種重合体、共重合体及び三元共重合体のメチル基の一部が、エチル基、プロピル基等のメチル基以外のアルキル基;又は3,3,3-トリフルオロプロピル基、3,3,3-トリクロロプロピル基等のハロゲン化アルキル基;で置換された重合体も挙げられる。これらの重合体、共重合体及び三元共重合体の中から選択された2種以上の混合物を表面処理剤の調製に用いてもよい。
Examples of homopolymers having an organopolysiloxane structure having at least two or more unsaturated hydrocarbon groups bonded to Si per molecule include dimethylpolysiloxane having dimethylvinylsiloxy groups at both molecular chain terminals, dimethylsiloxane-methylphenylsiloxane copolymer having dimethylvinylsiloxy groups at both molecular chain terminals, dimethylsiloxane-methylvinylsiloxane copolymer having dimethylvinylsiloxy groups at both molecular chain terminals, dimethylsiloxane-methylvinylsiloxane copolymer having trimethylsiloxy groups at both molecular chain terminals, dimethylsiloxane-methylvinylsiloxane-methylphenylsiloxane terpolymer having trimethylsiloxy groups at both molecular chain terminals, dimethylsiloxane-methylvinylsiloxane copolymer having silanol groups at both molecular chain terminals, and methylvinylpolysiloxane having silanol groups at both molecular chain terminals. Other examples include polymers in which some of the methyl groups of various polymers, copolymers, and terpolymers have been substituted with alkyl groups other than methyl groups, such as ethyl groups, propyl groups, etc., or halogenated alkyl groups, such as 3,3,3-trifluoropropyl groups, 3,3,3-trichloropropyl groups, etc. A mixture of two or more selected from these polymers, copolymers, and terpolymers may be used to prepare the surface treatment agent.

Siに結合した水素原子を1分子中に少なくとも2個以上有するポリシロキサン構造を有する単重合物としては、特に限定されないが、例えば、水素原子がSiに結合したSiH基を1分子中に少なくとも2個以上有し、主鎖としてジオルガノシロキサン構造を繰り返し有し、分子鎖の両末端がトリオルガノシロキシ基で封鎖された直鎖状、環状、分岐鎖状、三次元網状構造のオルガノハイドロジェンポリシロキサン等が挙げられる。より具体的には、分子鎖の両末端にトリメチルシロキシ基を有するメチルハイドロジェンポリシロキサン、分子鎖の両末端にトリメチルシロキシ基を有するジメチルシロキサン-メチルハイドロジェンシロキサン共重合体、分子鎖の両末端にシラノール基を有するメチルハイドロジェンポリシロキサン、分子鎖の両末端にシラノール基を有するジメチルシロキサン-メチルハイドロジェンシロキサン共重合体、分子鎖の両末端にジメチルハイドロジェンシロキシ基を有するジメチルポリシロキサン、分子鎖の両末端にジメチルハイドロジェンシロキシ基を有するメチルハイドロジェンポリシロキサン、分子鎖の両末端にジメチルハイドロジェンシロキシ基を有するジメチルシロキサン-メチルハイドロジェンシロキサン共重合体等が挙げられる。これらの重合体及び共重合体の中から選択された2種以上の混合物を表面処理剤の調製に用いてもよい Examples of monopolymers having a polysiloxane structure with at least two hydrogen atoms bonded to Si in each molecule include, but are not limited to, organohydrogenpolysiloxanes having at least two SiH groups in which a hydrogen atom is bonded to Si in each molecule, repeating diorganosiloxane structures as the main chain, and linear, cyclic, branched, or three-dimensional network structures in which both ends of the molecular chain are blocked with triorganosiloxy groups. More specifically, examples of the polymers include methylhydrogenpolysiloxane having trimethylsiloxy groups at both ends of the molecular chain, dimethylsiloxane-methylhydrogensiloxane copolymer having trimethylsiloxy groups at both ends of the molecular chain, methylhydrogenpolysiloxane having silanol groups at both ends of the molecular chain, dimethylsiloxane-methylhydrogensiloxane copolymer having silanol groups at both ends of the molecular chain, dimethylpolysiloxane having dimethylhydrogensiloxy groups at both ends of the molecular chain, methylhydrogenpolysiloxane having dimethylhydrogensiloxy groups at both ends of the molecular chain, dimethylsiloxane-methylhydrogensiloxane copolymer having dimethylhydrogensiloxy groups at both ends of the molecular chain, etc. A mixture of two or more selected from these polymers and copolymers may be used to prepare the surface treatment agent.

シリコーン樹脂(A)の重量平均分子量は、特に限定されないが、通常6,000以上45,000以下の範囲内であり、好ましくは、6,500以上40,000以下の範囲内である。なお、重量平均分子量は、GPC(ゲル浸透カラムクロマトグラフィー)により測定し、ポリスチレンで換算した値である。 The weight average molecular weight of the silicone resin (A) is not particularly limited, but is usually in the range of 6,000 to 45,000, and preferably in the range of 6,500 to 40,000. The weight average molecular weight is measured by GPC (gel permeation column chromatography) and converted into polystyrene.

<化合物(B)>
化合物(B)としては、元素としてチタンを含むものであれば特に制限されるものではない。チタンを含む化合物としては、例えば、硫酸チタニル、硝酸チタニル、硝酸チタン、塩化チタニル、塩化チタン、チタニアゾル、酸化チタン、しゅう酸チタン酸カリウム、チタンラクテート、チタンテトライソプロポキシド、チタンアセチルアセトネート、ジイソプロピルチタニウムビスアセチルアセトン、チタンジイソプロポキシビス(アセチルアセトネート)などが挙げられる。中でも、酸化チタンを用いることが好ましい。
なお、これらの化合物は、表面処理剤の調製において、1種を用いてもよいし、2種以上を用いてもよい。
<Compound (B)>
Compound (B) is not particularly limited as long as it contains titanium as an element.Examples of the compound containing titanium include titanyl sulfate, titanyl nitrate, titanium nitrate, titanyl chloride, titanium chloride, titaniasol, titanium oxide, potassium oxalate titanate, titanium lactate, titanium tetraisopropoxide, titanium acetylacetonate, diisopropyltitanium bis(acetylacetonate), and titanium diisopropoxybis(acetylacetonate).Among them, it is preferable to use titanium oxide.
In addition, in preparing the surface treatment agent, one type of these compounds may be used, or two or more types may be used.

<化合物(C)>
化合物(C)としては、元素としてバリウムを含むものであれば特に制限されるものではない。バリウムを含む化合物としては、例えば、水酸化バリウム、酸化バリウム、フッ化バリウム、ヨウ化バリウム、硫酸バリウム、硫酸水素バリウム、亜硫酸バリウム、硝酸バリウム、リン酸バリウム、炭酸水素バリウム、酢酸バリウム、クロム酸バリウム等が挙げられる。中でも、硫酸バリウムを用いることが好ましい。
なお、これらの化合物は、表面処理剤の調製において、1種を用いてもよいし、2種以
上を用いてもよい。
<Compound (C)>
Compound (C) is not particularly limited as long as it contains barium as an element. Examples of compounds containing barium include barium hydroxide, barium oxide, barium fluoride, barium iodide, barium sulfate, barium hydrogen sulfate, barium sulfite, barium nitrate, barium phosphate, barium hydrogen carbonate, barium acetate, and barium chromate. Among them, it is preferable to use barium sulfate.
In addition, in preparing the surface treatment agent, one type of these compounds may be used, or two or more types may be used.

シリコーン樹脂(A)の含有量(複数のシリコーン樹脂を用いる場合には、合計含有量を意味する。)は、当該シリコーン樹脂(A)と化合物(B)と化合物(C)と化合物(E)の全質量に対して、20質量%以上90質量%以下の範囲内であり、54質量%以上80質量%以下の範囲内であることが好ましい。 The content of silicone resin (A) (meaning the total content when multiple silicone resins are used) is within the range of 20% by mass to 90% by mass, and preferably within the range of 54% by mass to 80% by mass, based on the total mass of the silicone resin (A), compound (B), compound (C), and compound (E).

表面処理剤において、シリコーン樹脂(A)の質量(A)[複数のシリコーン樹脂を用いる場合には、合計質量を意味する。]と、化合物(B)の質量(B)[複数の化合物を用いる場合には、合計質量を意味する。]との比(B/A)は0.05以上3.12以下の範囲内であることが好ましく、0.10以上0.61以下の範囲内であることがより好ましい。
シリコーン樹脂(A)の質量(A)と、化合物(C)の質量(C)[複数の化合物を用いる場合には、合計質量を意味する。]との比(C/A)は0.02以上0.55以下の範囲内であることが好ましく、0.04以上0.22以下の範囲内であることがより好ましい。
In the surface treatment agent, the ratio (B M /A M ) of the mass (A M ) of the silicone resin (A) [when multiple silicone resins are used, this refers to the total mass] to the mass (B M ) of the compound ( B ) [when multiple compounds are used, this refers to the total mass] is preferably in the range of 0.05 to 3.12, and more preferably in the range of 0.10 to 0.61.
The ratio ( CM /AM) of the mass ( AM ) of the silicone resin (A) to the mass ( CM ) of the compound (C) [when multiple compounds are used, this refers to the total mass ] is preferably in the range of 0.02 to 0.55, more preferably in the range of 0.04 to 0.22.

<芳香族炭化水素系溶剤(D)>
芳香族炭化水素系溶剤(D)は、単結合と二重結合が交互に並び、電子が非局在化した6つの炭素原子から成る単環あるいは複数の平面環をユニットとして構成される炭化水素が挙げられ、特にその種類は限定されない。
<Aromatic Hydrocarbon Solvent (D)>
The aromatic hydrocarbon solvent (D) may be a hydrocarbon having a unit of a single ring or multiple planar rings consisting of six carbon atoms in which single bonds and double bonds are arranged alternately and electrons are delocalized, and the type of the aromatic hydrocarbon solvent is not particularly limited.

芳香族炭化水素系溶剤(D)としては、上記ユニットを有するものであれば特に限定されないが、溶解度パラメーター(SP)値が8.5以上9.5以下の範囲内であるものが好ましく、8.8以上9.3以下の範囲内であるものがより好ましい。より具体的には、ベンゼン、トルエン、o-キシレン、p-キシレン、m-キシレン、エチルベンゼン、クメン等が挙げられる。なお、これらの有機溶剤は、表面処理剤の調製において、1種を用いてもよいし、2種以上を併用してもよい。 The aromatic hydrocarbon solvent (D) is not particularly limited as long as it has the above-mentioned unit, but is preferably one having a solubility parameter (SP) value in the range of 8.5 to 9.5, more preferably in the range of 8.8 to 9.3. More specifically, examples of the solvent include benzene, toluene, o-xylene, p-xylene, m-xylene, ethylbenzene, and cumene. These organic solvents may be used alone or in combination of two or more in the preparation of the surface treatment agent.

表面処理剤中における芳香族炭化水素系溶剤(D)の含有量は、特に限定されないが、質量割合で40質量%以上99質量%以下の範囲内であることが好ましく、45質量%以上95質量%以下の範囲内であることがより好ましい。 The content of aromatic hydrocarbon solvent (D) in the surface treatment agent is not particularly limited, but is preferably in the range of 40% by mass or more and 99% by mass or less, and more preferably in the range of 45% by mass or more and 95% by mass or less.

<アルコキシシラン(E)>
アミノ基を有するアルコキシシラン[以下、単に「アルコキシシラン(E)」と称する。]としては、アミノ基を有するものであれば特に限定されないが、例えば、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、該シランカップリング剤の重合物、該重合物との共重合物などが挙げられる。
<Alkoxysilane (E)>
The alkoxysilane having an amino group [hereinafter simply referred to as "alkoxysilane (E)"] is not particularly limited as long as it has an amino group, and examples thereof include N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, polymers of the silane coupling agents, and copolymers with the polymers.

表面処理剤の調製において、アルコキシシラン(E)を用いる場合には、シリコーン樹脂(A)の質量(A)[複数のシリコーン樹脂を用いる場合には、合計質量を意味する。]と、アルコキシシラン(E)の質量(E)[複数のアルコキシシランを用いる場合には、合計質量を意味する。]との比(E/A)が0.01以上0.43以下の範囲内であることが好ましく、0.17以上0.39以下の範囲内であることがより好ましいが、これらの範囲に制限されるものではない。 In preparing the surface treatment agent, when an alkoxysilane (E) is used, the ratio (E M /A M ) of the mass (A M ) of the silicone resin (A) [meaning the total mass when multiple silicone resins are used] to the mass (E M ) of the alkoxysilane ( E ) [meaning the total mass when multiple alkoxysilanes are used] is preferably in the range of 0.01 to 0.43, more preferably in the range of 0.17 to 0.39, but is not limited to these ranges.

<その他添加剤>
本実施形態に係る表面処理剤には、必要に応じて、各種添加剤が含まれていてもよい。添加剤としては、例えば、界面活性剤、消泡剤、レベリング剤、増粘剤、防菌防カビ剤、
着色剤、フッ素樹脂などを挙げることができるがこれらに制限されるものではない。これらの添加剤を表面処理剤に添加することにより、表面処理剤の貯蔵性や乾燥性を向上させたり、該表面処理剤を用いた表面処理被膜の製造における作業性を向上させたり、製造した表面処理被膜の外観(特に意匠性)を向上させたりすることができる。これらの添加剤は、本発明の効果を損なわない範囲内で添加してもよく、添加剤の含有量は、多くても表面処理剤の質量に対して数質量%である。
<Other additives>
The surface treatment agent according to the present embodiment may contain various additives as necessary. Examples of the additives include surfactants, antifoaming agents, leveling agents, thickening agents, antibacterial and antifungal agents,
Examples of additives include, but are not limited to, colorants, fluororesins, etc. By adding these additives to the surface treatment agent, it is possible to improve the storage property and drying property of the surface treatment agent, improve the workability in the production of a surface treatment film using the surface treatment agent, and improve the appearance (particularly the design) of the produced surface treatment film. These additives may be added within a range that does not impair the effects of the present invention, and the content of the additives is at most several mass % relative to the mass of the surface treatment agent.

(表面処理剤の製造方法)
本実施形態に係る表面処理剤は、シリコーン樹脂(A)と、チタン化合物(B)と、バリウム化合物(C)と、芳香族炭化水素系溶剤(D)と、アルコキシシラン(E)等とを混合することにより製造することができる。
(Method of manufacturing surface treatment agent)
The surface treatment agent according to the present embodiment can be produced by mixing a silicone resin (A), a titanium compound (B), a barium compound (C), an aromatic hydrocarbon solvent (D), an alkoxysilane (E), and the like.

(表面処理被膜を有する炭素鋼材料及びその製造方法)
本実施形態に係る、表面処理被膜を有する炭素鋼材料の製造方法は、上記表面処理剤を炭素鋼材料の表面または表面上に接触させる第1工程と、炭素鋼材料に接触させた表面処理剤を乾燥して表面処理被膜を形成する第2工程と、を含む。これらの工程を行うことにより、表面処理被膜を有する炭素鋼材料を製造することができる。
(Carbon steel material having a surface treatment coating and its manufacturing method)
The method for producing a carbon steel material having a surface treatment film according to this embodiment includes a first step of contacting the surface treatment agent with the surface or on the surface of a carbon steel material, and a second step of drying the surface treatment agent that has been in contact with the carbon steel material to form a surface treatment film. By carrying out these steps, a carbon steel material having a surface treatment film can be produced.

第1工程を行う前に、炭素鋼材料の表面に付着している油分や汚れを除去する目的で、金属材料に前処理を施してもよい。前処理の方法としては、特に限定されず、湯洗、溶剤洗浄、アルカリ脱脂洗浄などの方法が挙げられる。 Before carrying out the first step, the metal material may be pretreated in order to remove any oil or dirt adhering to the surface of the carbon steel material. The pretreatment method is not particularly limited, and examples include washing with hot water, cleaning with a solvent, and alkaline degreasing.

第1工程の接触方法としては、様々な接触方法を用いることができるが、処理される金属材料の形状などによって最適な方法を適宜選択することが好ましい。具体的には、浸漬処理法、スプレー処理法、流しかけ処理法、ロールコーター法、バーコート法、電解析出法等の塗装方法;スピンコーター、スリットコーター、ダイコーター、ブレードコーター、ディスペンサー等の塗布装置を1又は2以上用いて塗布する方法;等が挙げられるが、所定量の表面処理剤を安定的に塗布することができるディスペンサーを用いて塗布する方法が好ましい。 As the contact method in the first step, various contact methods can be used, but it is preferable to appropriately select the most suitable method depending on the shape of the metal material to be treated, etc. Specific examples include coating methods such as immersion treatment, spray treatment, pouring treatment, roll coater method, bar coating method, and electrolytic deposition; coating methods using one or more coating devices such as spin coaters, slit coaters, die coaters, blade coaters, and dispensers; and the like; but a coating method using a dispenser that can stably coat a predetermined amount of surface treatment agent is preferred.

第2工程の乾燥する際の温度(雰囲気温度)としては、特に限定されないが、40~250℃の範囲内であることが好ましく、60~180℃の範囲内であることがより好ましい。乾燥方法としては、特に限定されず、熱風やインダクションヒーター、赤外線、近赤外線などにより、炭素鋼材料に接触させた表面処理剤を加熱して、表面処理剤を乾燥する方法が挙げられる。また、加熱時間は、特に制限されるものではなく、使用される材料の種類、炭素鋼材料の表面または表面上に付着した表面処理剤の量などによって適宜最適な条件を設定すればよい。 The temperature (ambient temperature) during drying in the second step is not particularly limited, but is preferably in the range of 40 to 250°C, and more preferably in the range of 60 to 180°C. The drying method is not particularly limited, and examples include a method in which the surface treatment agent in contact with the carbon steel material is heated by hot air, an induction heater, infrared rays, near infrared rays, etc. to dry the surface treatment agent. In addition, there is no particular limit to the heating time, and the optimal conditions may be set appropriately depending on the type of material used, the surface of the carbon steel material, or the amount of surface treatment agent attached to the surface.

本実施形態に係る、表面処理被膜を有する炭素鋼材料の製造方法は、第1工程を行う前に(前処理を行う場合には前処理後に)、金属材料の表面または表面上に、アミノ基を有するシランカップリング剤、該シランカップリング剤の重合物、該重合物との共重合物等、及びリン酸からなる群より選択される1種以上を含有する下地処理剤を接触させる第3工程と、炭素鋼材料に接触させた下地処理剤を水洗または水洗なしに乾燥して下地皮膜を形成する第4工程と、をさらに含んでいてもよい。このように第3工程と第4工程を行った後、第1工程及び第2工程を行うことにより、表面処理被膜と下地皮膜とを有する金属材料を製造することができる。 The method for producing a carbon steel material having a surface treatment coating according to this embodiment may further include a third step of contacting the surface or surface of the metal material with a primer containing one or more selected from the group consisting of a silane coupling agent having an amino group, a polymer of the silane coupling agent, a copolymer with the polymer, and phosphoric acid before carrying out the first step (or after the pretreatment, if a pretreatment is carried out), and a fourth step of drying the primer that has been contacted with the carbon steel material with or without rinsing to form a primer coating. In this way, a metal material having a surface treatment coating and a primer coating can be produced by carrying out the first and second steps after carrying out the third and fourth steps.

下地処理剤は、アミノ基を有するシランカップリング剤、該シランカップリング剤の重合物、該重合物との共重合物、及びリン酸からなる群より選択される1種以上を含む。アミノ基を有するシランカップリング剤として、アミノ基を1個有するものであれば特に限
定されず、例えば、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシランなどが挙げられる。
また、リン酸を含有するものであれば特に限定されず、リン酸マンガン、リン酸鉄、リン酸亜鉛、リン酸亜鉛カルシウム等が挙げられ、これらの中でもリン酸マンガンを用いることが好ましい。
The surface treatment agent includes at least one selected from the group consisting of a silane coupling agent having an amino group, a polymer of the silane coupling agent, a copolymer with the polymer, and phosphoric acid. The silane coupling agent having an amino group is not particularly limited as long as it has one amino group, and examples thereof include N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, and 3-aminopropyltriethoxysilane.
There are no particular limitations on the phosphate phosphate as long as it contains phosphoric acid, and examples thereof include manganese phosphate, iron phosphate, zinc phosphate, and calcium zinc phosphate, with manganese phosphate being preferred among these.

下地処理剤に含まれる溶媒は特に限定されないが、溶媒は、アルコール、アセトン、アセトニトリル、ベンゼン、シクロヘキサン、酢酸メチル、酢酸エチル、メチルエチルケトン等の有機溶媒;これらの有機溶媒と水との混合物;などが挙げられる。有機溶媒としては、炭素数5以下のアルコールが好ましい。なお、混合物に含まれる水の質量割合は、5質量%未満であることが好ましい。また、下地処理剤には、金属材料に対する濡れ性を向上させるためのレベリング剤、造膜性を向上させるための造膜助剤、下地皮膜をより強固な皮膜とするための有機架橋剤や無機架橋剤、発泡を抑制するための消泡剤、粘性をコントロールするための増粘剤、防錆剤等の添加剤を含ませてもよく、これらの添加剤は、本発明の効果を損なわない範囲内で配合してもよい。 The solvent contained in the base treatment agent is not particularly limited, but examples of the solvent include organic solvents such as alcohol, acetone, acetonitrile, benzene, cyclohexane, methyl acetate, ethyl acetate, and methyl ethyl ketone; mixtures of these organic solvents and water; and the like. As the organic solvent, an alcohol having 5 or less carbon atoms is preferable. The mass ratio of water contained in the mixture is preferably less than 5 mass%. In addition, the base treatment agent may contain additives such as a leveling agent for improving wettability to metal materials, a film-forming assistant for improving film-forming properties, an organic crosslinking agent or an inorganic crosslinking agent for making the base coating stronger, a defoaming agent for suppressing foaming, a thickener for controlling viscosity, and a rust inhibitor, and these additives may be blended within a range that does not impair the effects of the present invention.

第3工程の接触方法としては、様々な接触方法を用いることができるが、処理される金属材料の形状などによって最適な方法を適宜選択することが好ましい。具体的には、上記塗布装置を用いて塗布する方法以外に、浸漬処理法、スプレー処理法、流しかけ処理法、ロールコーター法、バーコート法、電解析出法等の方法を挙げることができるがこれらの方法に制限されるものではない。また、第4工程の乾燥方法としては、熱風やインダクションヒーター、赤外線、近赤外線などを用いて加熱乾燥する方法、減圧留去により乾燥する方法等が挙げられるがこれらに制限されるものではない。加熱乾燥する際の温度としては、特に限定されないが、40~250℃(雰囲気温度)の範囲内であることが好ましく、60~180℃(雰囲気温度)の範囲内であることがより好ましい。また、加熱時間は、特に制限されるものではなく、使用される材料の種類、金属材料の表面または表面上に付着した下地処理剤の量などによって適宜最適な条件を設定すればよい。 As the contact method in the third step, various contact methods can be used, but it is preferable to select the most suitable method depending on the shape of the metal material to be treated. Specifically, in addition to the method of applying using the above-mentioned application device, methods such as immersion treatment, spray treatment, pouring treatment, roll coater method, bar coating method, and electrolytic deposition can be mentioned, but are not limited to these methods. In addition, as the drying method in the fourth step, methods of heating and drying using hot air, induction heater, infrared rays, near infrared rays, etc., and methods of drying by distillation under reduced pressure can be mentioned, but are not limited to these. The temperature during heating and drying is not particularly limited, but is preferably within the range of 40 to 250°C (ambient temperature), and more preferably within the range of 60 to 180°C (ambient temperature). In addition, there is no particular limit to the heating time, and the optimal conditions can be set appropriately depending on the type of material used, the surface of the metal material, or the amount of the primer attached to the surface.

<炭素鋼材料>
炭素鋼材料としては、特に限定されず、例えば鉄と炭素の合金で、炭素含有量が0.02質量%~2.14質量%までの鉄鋼材が挙げられるが、炭素を0.95質量%以上含有する高炭素鋼であることが好ましく、機械要素部材等に使用されている高炭素クロム軸受鋼鋼材であることがより好ましい。高炭素クロム軸受鋼鋼材は鋼に多く含まれる炭素にクロム、ニッケル、モリブデンなどを加え、各々特殊な性質を持つ炭素鋼材料である。なお、高炭素鋼の炭素量の上限は限定されず、3質量%以下であってよく、2.14質量%以下であってもよい。
尚、本明細書においては、表面処理剤を適用する対象材料として炭素鋼材料を例に挙げて説明するが、本実施形態に係る表面処理剤を適用する対象材料は金属材料に限定されず、耐電食性被膜を必要とするものであればどのようなものであってもよい。
<Carbon steel material>
The carbon steel material is not particularly limited, and examples thereof include steel materials that are alloys of iron and carbon and have a carbon content of 0.02% to 2.14% by mass, but high carbon steel containing 0.95% or more by mass is preferable, and high carbon chromium bearing steel used for machine element members and the like is more preferable. High carbon chromium bearing steel is a carbon steel material in which chromium, nickel, molybdenum, etc. are added to the carbon contained in steel in large amounts, each of which has special properties. The upper limit of the carbon content of high carbon steel is not limited, and may be 3% or less by mass, or 2.14% or less by mass.
In this specification, a carbon steel material will be described as an example of a material to which the surface treatment agent is applied. However, the material to which the surface treatment agent according to this embodiment is applied is not limited to metal materials, and may be any material that requires an electrolytic corrosion resistant coating.

(表面処理被膜を有する炭素鋼材料)
本実施形態に係る表面処理被膜を有する炭素鋼材料は、炭素鋼材料の表面又は表面上に上記表面処理被膜を有する。この表面処理被膜には、シリコーン樹脂(A)と化合物(B)と化合物(C)とアミノ基を有するアルコキシシラン(E)由来の重合物とが含まれている。表面処理被膜中のアミノ基を有するアルコキシシラン(E)由来の重合物は、シリコーン樹脂(A)と化合物(B)と化合物(C)とを安定して保持する役割(バインダー効果)を果たしていると考えられる。
また、シリコーン樹脂(A)の質量(A)と、前記化合物(B)の質量(B)との比(B/A)が0.05以上3.12以下の範囲内である。
また、シリコーン樹脂(A)の質量(A)と、前記化合物(C)の質量(C)との比(C/A)が0.02以上0.55以下の範囲内である。なお、表面処理剤に含まれるシリコーン樹脂(A)の質量(A)、化合物(B)の質量(B)、及び化合物(C)の質量(C)は、表面処理剤によって形成される表面処理被膜においても維持される。
(Carbon steel material with surface treatment coating)
The carbon steel material having a surface treatment coating according to this embodiment has the above-mentioned surface treatment coating on or at the surface of the carbon steel material. This surface treatment coating contains a silicone resin (A), a compound (B), a compound (C), and a polymer derived from an alkoxysilane (E) having an amino group. It is considered that the polymer derived from the alkoxysilane (E) having an amino group in the surface treatment coating plays a role of stably holding the silicone resin (A), the compound (B), and the compound (C) together (binder effect).
In addition, the ratio (B M /A M ) of the mass (A M ) of the silicone resin (A) to the mass (B M ) of the compound (B) is within the range of 0.05 or more and 3.12 or less.
The ratio ( CM / AM ) of the mass ( AM ) of the silicone resin (A) to the mass ( CM ) of the compound (C) is within a range of 0.02 to 0.55. The mass ( AM ) of the silicone resin (A), the mass ( BM ) of the compound (B), and the mass ( CM ) of the compound (C) contained in the surface treatment agent are maintained in the surface treatment coating formed by the surface treatment agent.

また、本実施形態に係る表面処理被膜を有する炭素鋼材料は、炭素鋼材料と表面処理被膜との間に下地皮膜を有していてもよい。この下地皮膜には、アミノ基を有するシランカップリング剤、該シランカップリング剤の重合物、該重合物との共重合物及びリン酸からなる群より選択される1種以上が含まれている。なお、下地皮膜を形成する下地処理剤に上記添加剤を配合した場合には、下地皮膜は、さらに当該添加剤を含んでいてもよい。 The carbon steel material having the surface treatment coating according to this embodiment may have a base coating between the carbon steel material and the surface treatment coating. This base coating contains one or more selected from the group consisting of a silane coupling agent having an amino group, a polymer of the silane coupling agent, a copolymer with the polymer, and phosphoric acid. When the above-mentioned additive is blended in the base treatment agent that forms the base coating, the base coating may further contain the additive.

上記表面処理被膜を有する炭素鋼材料は、上記製造方法により製造することができる。表面処理被膜の膜厚は、特に限定されないが、片面当たり3μm以上100μm以下の範囲内であることが好ましく、20μm以上80μm以下の範囲内であることがより好ましい。表面処理被膜の膜厚は、被膜の断面を電子顕微鏡で観察することで、計測することができる。
上記表面処理被膜を有する炭素鋼材料は、耐電食性に優れているので、軸受やモーターなどの自動車部品、家電用モーターやリアクトルなどの家電部品、プリント配線板やインダクタなどのOA機器部品、医療機器等の工業製品に好適である。
The carbon steel material having the surface treatment coating can be produced by the above-mentioned production method. The thickness of the surface treatment coating is not particularly limited, but is preferably in the range of 3 μm to 100 μm, and more preferably in the range of 20 μm to 80 μm, per side. The thickness of the surface treatment coating can be measured by observing a cross section of the coating with an electron microscope.
The carbon steel material having the above-mentioned surface treatment coating has excellent resistance to electric corrosion and is therefore suitable for industrial products such as automobile parts such as bearings and motors, home appliance parts such as home appliance motors and reactors, office automation equipment parts such as printed wiring boards and inductors, and medical equipment.

以下、実施例によって本発明の作用効果を具体的に示す。但し、下記実施例は本発明を限定するものではない。 The following examples concretely demonstrate the effects of the present invention. However, the following examples do not limit the present invention.

(1)供試材(素材)
以下の市販材料を供試材として使用した。
(M1)高炭素クロム軸受鋼鋼材 SUJ2:板厚1.0mm、炭素含有量1.0質量%
(1) Test material (material)
The following commercially available materials were used as test materials:
(M1) High carbon chromium bearing steel SUJ2: plate thickness 1.0 mm, carbon content 1.0 mass%

(2)前処理(アルカリ脱脂洗浄)
各種供試材の表面を、アルカリ脱脂剤(日本パーカライジング株式会社製のファインクリーナーE6406)の2%水溶液に60℃で30秒間浸漬して脱脂処理を行い、表面上の油分や汚れを取り除いた。次に、水道水で水洗し、更に純水を流しかけ、100℃で供試材の表面を乾燥した。
(2) Pretreatment (alkaline degreasing)
The surfaces of the various test materials were degreased by immersing them in a 2% aqueous solution of an alkaline degreaser (Fine Cleaner E6406 manufactured by Nippon Parkerizing Co., Ltd.) at 60°C for 30 seconds to remove oil and dirt from the surfaces. Next, the test materials were rinsed with tap water, and then poured with pure water, and the surfaces of the test materials were dried at 100°C.

(3)表面処理剤の調製
各成分を表1に示すように混合して、実施例1~19及び比較例1~5の表面処理剤を調製した。表1に示す各成分の種類を表2~表6に示す。なお、表1中に示すシリコーン樹脂(A)及びアルコキシシラン(E)の混合量は、溶剤等を除外した化合物としての質量である。
(3) Preparation of Surface Treatment Agent Surface treatment agents of Examples 1 to 19 and Comparative Examples 1 to 5 were prepared by mixing the components as shown in Table 1. The types of the components shown in Table 1 are shown in Tables 2 to 6. The mixed amounts of silicone resin (A) and alkoxysilane (E) shown in Table 1 are the masses of the compounds excluding the solvent and the like.

Figure 2024055021000001
Figure 2024055021000001

(4)表面処理被膜を有する金属材料
表7に示すように、前処理を行った各種供試材の表面に各種表面処理剤を接触させた。その後、水洗することなく、表7に示す乾燥温度(雰囲気温度)で供試材に接触させた表面処理剤を乾燥し、表7に示す膜厚の表面処理被膜を有する供試材(試験板)を作製した。なお、表面処理剤の接触は、塗布により行った。また、必要に応じて、表面処理剤を接触する前に、前処理を行った各種供試材を表7に示す下地処理剤に浸漬し、乾燥させることで下地皮膜を供試材の表面に形成させた。なお、表7に示す下地処理剤の種類ついては、表8に示す。
(4) Metallic material having a surface treatment film As shown in Table 7, various surface treatment agents were contacted with the surfaces of various pretreated test materials. Thereafter, without washing with water, the surface treatment agents contacted with the test materials were dried at the drying temperature (ambient temperature) shown in Table 7 to prepare test materials (test plates) having surface treatment films with the thicknesses shown in Table 7. The contact with the surface treatment agent was performed by coating. If necessary, before contacting with the surface treatment agent, the various pretreated test materials were immersed in the primer treatment agent shown in Table 7 and dried to form a primer film on the surface of the test materials. The types of primer treatment agents shown in Table 7 are shown in Table 8.

Figure 2024055021000007
Figure 2024055021000007

なお、表8の下地処理は、具体的には以下のように行った。
S1:3-アミノプロピルトリエトキシラン(信越化学工業株式会社製の「KBE-903」)をエタノールで10質量%に希釈した処理薬剤を常温のまま供試材に塗工した後、100℃(供試材温度)に到達するまで乾燥し、下地皮膜を形成させた。
S2:リン酸マンガン処理用表面処理調整剤(日本パーカライジング株式会社製の「プレパレン55」)を水道水で0.3質量%に希釈した表面調整剤中に、各種供試材を30秒間浸漬させた。次に、リン酸マンガン系表面処理薬剤(日本パーカライジング株式会社製の「パルフォスM1A」)を水道水で14質量%に希釈し、全酸度を50ポイント、遊離酸度を8.6ポイント、酸比(全酸度/遊離酸度)を5.8、鉄分濃度を1.5g/Lに調整し、更に97℃に加温した化成処理液中に、表面調整を行った鉄系金属材料を900秒間浸漬した。次に、水道水で水洗し、更に純水を流しかけ、100℃(雰囲気温度)で供試材の表面を10分間乾燥し、リン酸マンガン及びリン酸マンガン鉄を主成分とする下地皮膜を形成させた。
The surface preparation in Table 8 was carried out specifically as follows.
S1: A treatment agent prepared by diluting 3-aminopropyltriethoxylane ("KBE-903" manufactured by Shin-Etsu Chemical Co., Ltd.) with ethanol to 10% by mass was applied to the test material at room temperature, and then the test material was dried until it reached 100°C (test material temperature) to form a base coating.
S2: Various test materials were immersed for 30 seconds in a surface conditioner obtained by diluting a manganese phosphate treatment surface treatment adjuster ("Preparen 55" manufactured by Nippon Parkerizing Co., Ltd.) to 0.3% by mass with tap water. Next, a manganese phosphate-based surface treatment agent ("Palphos M1A" manufactured by Nippon Parkerizing Co., Ltd.) was diluted to 14% by mass with tap water, and the total acidity was adjusted to 50 points, the free acidity to 8.6 points, the acid ratio (total acidity/free acidity) to 5.8, and the iron concentration to 1.5 g/L. The iron-based metal material that had undergone surface adjustment was immersed for 900 seconds in a chemical conversion treatment solution that was further heated to 97 ° C. Next, the material was washed with tap water, further poured with pure water, and the surface of the test material was dried at 100 ° C. (ambient temperature) for 10 minutes to form a base film mainly composed of manganese phosphate and manganese iron phosphate.

(5)評価試験
各種試験板に対して以下の評価試験を実施した。各評価試験の結果を表9に示す。なお、実用上の観点から、表9に示す各評価項目において「×」がないものを合格とした。また、液安定性や塗工性が悪く評価できなかった水準は「-」とした。
(5) Evaluation Tests The following evaluation tests were carried out on the various test plates. The results of each evaluation test are shown in Table 9. From a practical standpoint, those without an "x" in each evaluation item shown in Table 9 were deemed to have passed. In addition, those whose liquid stability or coatability was poor and could not be evaluated were marked with a "-".

<加熱後の耐電食性>
各種試験板(No.1~No.34)を70×150mmのサイズで切断した後、オーブンにて200℃で10時間加熱し、続いて室温(25℃)で24時間放置した。次に、JIS C2110-1:2016に準じて、各種試験板に昇圧速度10V/sにて電圧を印加し、各種試験板に通電した際の最大電圧を測定し、以下の評価基準に基づいて加熱後の耐電食性を評価した。
(評価基準)
◎ :1000V以上
〇 :500以上~1000V未満
○△ :300V以上~500V未満
△ :200V以上~300V未満
× :200V未満
<Electric corrosion resistance after heating>
Each test plate (No. 1 to No. 34) was cut into a size of 70 × 150 mm, heated in an oven at 200 ° C. for 10 hours, and then left at room temperature (25 ° C.) for 24 hours. Next, in accordance with JIS C2110-1:2016, a voltage was applied to each test plate at a voltage increase rate of 10 V / s, the maximum voltage when electricity was passed through each test plate was measured, and the electrolytic corrosion resistance after heating was evaluated based on the following evaluation criteria.
(Evaluation criteria)
◎: 1000V or more 〇: 500V or more to less than 1000V ○△: 300V or more to less than 500V △: 200V or more to less than 300V ×: Less than 200V

<加熱後の密着性試験>
各種試験板を70×150mmのサイズで切断した後、オーブンにて200℃で10時間加熱し、続いて室温(25℃)で24時間放置した。次に、各種試験板に1mm間隔で縦横11本ずつ切れ目を入れて碁盤(10×10=100個のマス)目状のカット傷を施した。続いて、碁盤目状のカット傷にセロハンテープを貼り付けた後、セロハンテープを剥がして、100個のマス目のうち残存したマス目の数を計測した。計測結果から残存率を算出し、以下に評価基準に基づいて加熱後の密着性を評価した。
(評価基準)
◎ :残存率95%以上~100%
〇 :残存率90%以上~95%未満
○△ :残存率70%以上~90%未満
△ :残存率50%以上~70%未満
× :残存率 0%以上~50%未満
<Adhesion test after heating>
After cutting each test plate into a size of 70×150 mm, it was heated in an oven at 200° C. for 10 hours, and then left at room temperature (25° C.) for 24 hours. Next, each test plate was cut with 11 cuts vertically and horizontally at 1 mm intervals to create a checkerboard (10×10=100 squares)-like cut. Next, cellophane tape was applied to the checkerboard-like cut, and the cellophane tape was peeled off to count the number of remaining squares out of 100 squares. The remaining rate was calculated from the measurement results, and the adhesion after heating was evaluated based on the following evaluation criteria.
(Evaluation criteria)
◎: Residual rate 95% to 100%
○: Residual rate 90% or more but less than 95% ○△: Residual rate 70% or more but less than 90% △: Residual rate 50% or more but less than 70% ×: Residual rate 0% or more but less than 50%

<摺動後の耐電食性>
各種試験板を30×100mmのサイズで切断した後、ドロービード試験機を用いて、2枚の試験板の処理面同士(接触部位面積30mm×30mm)を重ね、圧着荷重200kg、面圧22.2kg/cmにて1回摺動させた。次に、JIS C2110-1:
2016に準じて、各種試験板の摺動面に昇圧速度10V/sにて電圧を印加し、各試験板に通電した際の最大電圧を測定し、以下の評価基準に基づいて加熱後の耐電食性を評価した。
(評価基準)
◎ :1000V以上
〇 :500以上~1000V未満
○△ :300V以上~500V未満
△ :200V以上~300V未満
× :200V未満
<Electric corrosion resistance after sliding>
After cutting each test plate into a size of 30×100 mm, two test plates were stacked on each other with their treated surfaces (contact area 30 mm×30 mm) using a drawbead tester, and slid once with a pressure load of 200 kg and a surface pressure of 22.2 kg/ cm2 . Next, according to JIS C2110-1:
In accordance with IEC 61015-2016, a voltage was applied to the sliding surfaces of various test plates at a voltage rise rate of 10 V/s, the maximum voltage when electricity was passed through each test plate was measured, and the resistance to electrolytic corrosion after heating was evaluated based on the following evaluation criteria.
(Evaluation criteria)
◎: 1000V or more 〇: 500V or more to less than 1000V ○△: 300V or more to less than 500V △: 200V or more to less than 300V ×: Less than 200V

Figure 2024055021000009
Figure 2024055021000009

Claims (8)

シリコーン樹脂(A)と、チタン化合物(B)と、バリウム化合物(C)と、芳香族炭化水素系溶剤(D)と、アミノ基を有するアルコキシシラン(E)と、を含有し、
(I)前記シリコーン樹脂(A)の質量(A)と、前記化合物(B)の質量(B)との比(B/A)が0.05以上3.12以下の範囲内であり、
(II)前記シリコーン樹脂(A)の質量(A)と、前記化合物(C)の質量(C)との比(C/A)が0.02以上0.55以下の範囲内であり、
(III)前記シリコーン樹脂(A)の質量(A)と、前記化合物(E)の質量(E)との比(E/A)が0.01以上0.43以下の範囲内である、炭素鋼材料用表面処理剤。
The composition contains a silicone resin (A), a titanium compound (B), a barium compound (C), an aromatic hydrocarbon solvent (D), and an alkoxysilane having an amino group (E),
(I) the ratio (B M /A M ) of the mass (A M ) of the silicone resin (A) to the mass (B M ) of the compound (B) is within the range of 0.05 to 3.12,
(II) the ratio (C M /A M ) of the mass (A M ) of the silicone resin (A) to the mass (C M ) of the compound (C) is within the range of 0.02 or more and 0.55 or less;
(III) A surface treatment agent for carbon steel materials, wherein the ratio (E M /A M ) of the mass (A M ) of the silicone resin (A) to the mass (E M ) of the compound (E) is within the range of 0.01 or more and 0.43 or less.
表面処理被膜を有する炭素鋼材料の製造方法であって、請求項1に記載の表面処理剤を炭素鋼材料の表面または表面上に接触させる第1工程と、前記炭素鋼材料に接触させた表面処理剤を乾燥して表面処理被膜を形成する第2工程とを含む、炭素鋼材料の製造方法。 A method for producing a carbon steel material having a surface treatment coating, comprising a first step of contacting the surface treatment agent according to claim 1 with the surface or on the surface of the carbon steel material, and a second step of drying the surface treatment agent that has been brought into contact with the carbon steel material to form a surface treatment coating. 前記第1工程の前に、炭素鋼材料の表面または表面上に、アミノ基を有するシランカップリング剤、該シランカップリング剤の重合物、該重合物との共重合物、又はリン酸を含有する下地処理剤を接触させ下地皮膜を形成する下地皮膜形成工程とをさらに含む、請求項2に記載の炭素鋼材料の製造方法。 The method for producing a carbon steel material according to claim 2, further comprising a base coating formation step, prior to the first step, of contacting the surface or the surface of the carbon steel material with a silane coupling agent having an amino group, a polymer of the silane coupling agent, a copolymer with the polymer, or a base treatment agent containing phosphoric acid to form a base coating. 請求項2又は請求項3に記載の製造方法により得られる、表面処理被膜を有する炭素鋼材料であって、前記表面処理被膜の膜厚が3μm以上100μm以下の範囲内である、表面処理被膜を有する炭素鋼材料。 A carbon steel material having a surface treatment coating obtained by the manufacturing method described in claim 2 or 3, wherein the thickness of the surface treatment coating is within the range of 3 μm to 100 μm. 炭素鋼材料の表面又は表面上に表面処理被膜を有し、
前記表面処理被膜が、シリコーン樹脂(A)と、チタン化合物(B)と、バリウム化合物(C)と、アミノ基を有するアルコキシシラン(E)由来の重合物と、を含有し、
(I)前記シリコーン樹脂(A)の質量(A)と、前記化合物(B)の質量(B)との比(B/A)が0.05以上3.12以下の範囲内であり、
(II)前記シリコーン樹脂(A)の質量(A)と、前記化合物(C)の質量(C)との比(C/A)が0.02以上0.55以下の範囲内である、表面処理被膜を有する炭素鋼材料。
A surface treatment coating is provided on or at the surface of a carbon steel material.
the surface treatment coating contains a silicone resin (A), a titanium compound (B), a barium compound (C), and a polymer derived from an alkoxysilane having an amino group (E);
(I) the ratio (B M /A M ) of the mass (A M ) of the silicone resin (A) to the mass (B M ) of the compound (B) is within the range of 0.05 to 3.12,
(II) A carbon steel material having a surface treatment coating, wherein the ratio ( CM / AM ) of the mass ( AM ) of the silicone resin (A) to the mass ( CM ) of the compound (C) is within the range of 0.02 or more and 0.55 or less.
前記炭素鋼材料と前記表面処理被膜との間に下地皮膜を有し、
前記下地皮膜が、アミノ基を有するシランカップリング剤、該シランカップリング剤の重合物、該重合物との共重合物及びリン酸からなる群から選択される1種以上を含む、請求項5に記載の表面処理被膜を有する炭素鋼材料。
a base coating between the carbon steel material and the surface treatment coating;
6. The carbon steel material having a surface treatment coating according to claim 5, wherein the undercoat coating comprises at least one selected from the group consisting of a silane coupling agent having an amino group, a polymer of the silane coupling agent, a copolymer of the polymer, and phosphoric acid.
前記表面処理被膜の膜厚が3μm以上100μm以下の範囲内である、請求項5に記載の表面処理被膜を有する炭素鋼材料。 A carbon steel material having a surface treatment coating according to claim 5, wherein the thickness of the surface treatment coating is in the range of 3 μm to 100 μm. 前記炭素鋼材料が炭素を0.95質量%以上含有する高炭素鋼である、請求項5~請求項7のいずれか1項に記載の表面処理被膜を有する高炭素鋼材料。

The high carbon steel material having the surface treatment coating according to any one of claims 5 to 7, wherein the carbon steel material is a high carbon steel containing 0.95 mass% or more of carbon.

JP2022161581A 2022-10-06 2022-10-06 Surface treatment agent for carbon steel material, carbon steel material having a surface treatment film and its manufacturing method Pending JP2024055021A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022161581A JP2024055021A (en) 2022-10-06 2022-10-06 Surface treatment agent for carbon steel material, carbon steel material having a surface treatment film and its manufacturing method
PCT/JP2023/034176 WO2024075524A1 (en) 2022-10-06 2023-09-21 Surface treatment agent for carbon steel material, and carbon steel material with surface treatment coating film and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022161581A JP2024055021A (en) 2022-10-06 2022-10-06 Surface treatment agent for carbon steel material, carbon steel material having a surface treatment film and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2024055021A true JP2024055021A (en) 2024-04-18

Family

ID=90608000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022161581A Pending JP2024055021A (en) 2022-10-06 2022-10-06 Surface treatment agent for carbon steel material, carbon steel material having a surface treatment film and its manufacturing method

Country Status (2)

Country Link
JP (1) JP2024055021A (en)
WO (1) WO2024075524A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001327914A (en) * 2000-05-24 2001-11-27 Nippon Paint Co Ltd Method for forming a coating film and soilproof coating film obtained by the method
JP2012041586A (en) * 2010-08-17 2012-03-01 Shin-Etsu Chemical Co Ltd Metal surface treatment agent, surface-treated steel, method for treating the same, coated steel, and method for producing the same
WO2019074037A1 (en) * 2017-10-12 2019-04-18 日本パーカライジング株式会社 Surface treatment agent, metal material having surface-treated coating film and method for producing same
KR102550287B1 (en) * 2018-08-03 2023-06-30 니혼 파커라이징 가부시키가이샤 Surgical Electrode with Surface Treatment Film
KR20220019109A (en) * 2019-07-03 2022-02-15 주고꾸 도료 가부시키가이샤 Heat-resistant coating composition, heat-resistant coating film, substrate with heat-resistant coating film, and manufacturing method thereof

Also Published As

Publication number Publication date
WO2024075524A1 (en) 2024-04-11

Similar Documents

Publication Publication Date Title
US20080113188A1 (en) Hydrophobic organic-inorganic hybrid silane coatings
JP6315750B2 (en) Aqueous metal surface treatment agent
JP5927787B2 (en) Surface treatment liquid for galvanized steel sheet, galvanized steel sheet and method for producing the same
TW201121784A (en) Thermal conductive silicone rubber composite sheet
EA020839B1 (en) Method for adjusting the friction coefficient of a metallic workpiece
CN109476128A (en) Heat conductivity silicone rubber composite sheet
CN117702097A (en) Improved method for the corrosion-protection pretreatment of metal surfaces comprising steel, galvanized steel, aluminum, magnesium and/or zinc-magnesium alloys
CN103596702A (en) Coating method and coating for a bearing component
JPH026556A (en) Baking device coating
JP6932198B2 (en) A surface treatment agent, a metal material having a surface treatment film, and a method for manufacturing the same.
EP2184310A1 (en) Gas barrier composition and laminate
JP2024055021A (en) Surface treatment agent for carbon steel material, carbon steel material having a surface treatment film and its manufacturing method
TW201245355A (en) Composition for coating film formation purposes
DE60011968T2 (en) Peel-off coating composition for baking appliances
KR20200050981A (en) Thermal conductive ice-phobic coating
RU2606447C2 (en) Coating with high resistance to corona discharge, as well as method for production thereof
JP5036924B2 (en) Water-based coating composition, coated metal molded article, and method for producing coated metal molded article
US3445282A (en) Insulated electrical conductors and the method for producing the same
CN116218366B (en) Polymer ceramic super-hydrophilic anti-corrosion coating material, and preparation method and application thereof
JP2007084812A (en) Coating composition for forming coating film having excellent falling behavior of water droplet, coated aluminum material coated with the coating composition, coated aluminum fin material, heat-exchanger incorporated with the coated fin material and method for producing heat-exchanger
GB2055621A (en) Metal containers with interior surfaces coated with an organosiloxane composition
JP7327754B2 (en) Hydrophilic water-sliding treatment agent and surface treatment method
JP2024032374A (en) Surface treatment method and method for manufacturing a base material using the surface treatment method
JPS61185563A (en) Primer composition
JPS6283071A (en) Electromagnetic steel plate excellent in seizure resistance and punching property