JP2024046614A - Triarylmethane dye, coloring composition containing the dye, colorant for color filter, and color filter - Google Patents

Triarylmethane dye, coloring composition containing the dye, colorant for color filter, and color filter Download PDF

Info

Publication number
JP2024046614A
JP2024046614A JP2023148351A JP2023148351A JP2024046614A JP 2024046614 A JP2024046614 A JP 2024046614A JP 2023148351 A JP2023148351 A JP 2023148351A JP 2023148351 A JP2023148351 A JP 2023148351A JP 2024046614 A JP2024046614 A JP 2024046614A
Authority
JP
Japan
Prior art keywords
group
carbon atoms
substituent
reduced pressure
under reduced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023148351A
Other languages
Japanese (ja)
Inventor
寛史 大熊
眞姫 朴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hodogaya Chemical Co Ltd
Original Assignee
Hodogaya Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hodogaya Chemical Co Ltd filed Critical Hodogaya Chemical Co Ltd
Publication of JP2024046614A publication Critical patent/JP2024046614A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)

Abstract

【課題】従来のトリアリールメタン色素に比べて溶解性および耐熱性に優れる色素を提供すること。【解決手段】下記一般式(1)で表されるトリアリールメタン色素。TIFF2024046614000055.tif71165【選択図】なしThe present invention provides a dye having superior solubility and heat resistance compared to conventional triarylmethane dyes. The present invention provides a triarylmethane dye represented by the following general formula (1): TIFF2024046614000055.tif71165 [Selected Figure] None

Description

本発明は、トリアリールメタン色素、該色素を含有する着色組成物、該色素または該着色組成物を含有するカラーフィルター用着色剤および該着色剤を用いるカラーフィルターに関する。 The present invention relates to a triarylmethane dye, a coloring composition containing the dye, a coloring agent for a color filter containing the dye or the coloring composition, and a color filter using the colorant.

液晶表示装置や有機電界発光(有機EL)表示装置には、カラーフィルターが使用されており、赤色画素(R)、緑色画素(G)、青色画素(B)を有している。カラーフィルターに用いられる着色剤としては顔料や染料などがあるが、カラーフィルター製造時において、200℃以上の高温や紫外線照射などの条件下にさらされることから、染料より耐熱性や耐光性などに優れる顔料が一般に使用されてきた。例えば、青色画素部を形成するための青色顔料としては、一般に、ε型銅フタロシアニン顔料(C.I.ピグメントブルー15:6)が用いられており、必要に応じて調色のため、これに紫色のジオキサジンバイオレット顔料(C.I.ピグメントバイオレット23)が少量併用されている。 A color filter is used in a liquid crystal display device or an organic electroluminescence (organic EL) display device, and includes a red pixel (R), a green pixel (G), and a blue pixel (B). Coloring agents used in color filters include pigments and dyes, but because they are exposed to conditions such as high temperatures of 200°C or higher and ultraviolet irradiation during the production of color filters, they have better heat resistance and light resistance than dyes. Superior pigments have generally been used. For example, an ε-type copper phthalocyanine pigment (C.I. Pigment Blue 15:6) is generally used as a blue pigment for forming a blue pixel portion, and if necessary, it may be added to this for toning. A small amount of purple dioxazine violet pigment (C.I. Pigment Violet 23) is also used.

近年の傾向として、画像表示装置の省電力化が求められたり、バックライトの利用効率を向上させるためにカラーフィルターの高輝度化が求められている。特に青色画素部は赤や緑色画素部に比べ相対的にバックライトの利用効率が低く、改善が望まれている。 In recent years, there has been a demand for lower power consumption in image display devices, and a demand for higher brightness in color filters in order to improve the utilization efficiency of backlights. In particular, the backlight usage efficiency of the blue pixel section is relatively low compared to the red and green pixel sections, and improvements are desired.

顔料は一般的に溶剤に不溶なため、樹脂などを含むカラーフィルター中では微粒子状で存在している。そのため、顔料を用いたカラーフィルターは、顔料粒子表面で透過光が反射・散乱することにより、輝度の低下や色純度に影響し、また、反射による消偏作用のためにカラー表示装置のコントラスト比が低下することが知られている。 Pigments are generally insoluble in solvents, so they exist in the form of fine particles in color filters that contain resins, etc. For this reason, color filters that use pigments are known to reduce brightness and affect color purity due to the reflected and scattered light on the pigment particle surfaces, and to reduce the contrast ratio of color display devices due to the depolarizing effect caused by reflection.

輝度やコントラスト比の低下の問題を改善するため、着色剤として染料のみを用いる方法または染料と顔料を併用する方法などが提案されている。染料は溶剤に可溶であるため、染料を使用したカラーフィルターは、顔料のみを着色剤として使用した場合に比べ消偏作用が抑えられ、分光特性に優れており、輝度やコントラストなどの向上が期待されている。このため、特に青色画素部のカラーフィルターに対しては、一般的に顔料より溶解性に優れる染料の使用が注目されている。 To improve the problem of reduced brightness and contrast ratio, methods have been proposed that use only dyes as colorants or a combination of dyes and pigments. Since dyes are soluble in solvents, color filters that use dyes have less depolarizing effect and have superior spectral characteristics compared to when only pigments are used as colorants, and it is expected that they will improve brightness and contrast. For this reason, the use of dyes, which generally have better solubility than pigments, has attracted attention, especially for color filters in the blue pixel area.

特に、トリアリールメタン系染料はその分光特性から青色着色剤として良好な色素の候補であり、例えば特許文献1~3には、トリアリールメタン系染料の使用例が提案されている。 In particular, triarylmethane dyes are good candidates for use as blue colorants due to their spectral characteristics, and examples of the use of triarylmethane dyes are proposed in Patent Documents 1 to 3, for example.

特開2008-304766号公報Japanese Patent Application Publication No. 2008-304766 国際公開第2012/128318号International Publication No. 2012/128318 特開2015-28121号公報JP2015-28121A 特開2017-83852号公報JP2017-83852A 特開2012-83652号公報JP2012-83652A

しかしながら、特許文献1~3に記載の染料は、カラーフィルター用着色剤に好適な有機溶剤への溶解性や耐熱性が不十分である。染料が高い耐熱性を備えることは、カラーフィルターの製造過程において要求される特性であり、高い溶解性は均一な系を形成し、高輝度なカラーフィルターを提供するために重要な特性である。このため、高い耐熱性、溶解性を備えた染料に対する需要は常に存在する。本発明は、従来のトリアリールメタン色素に比べて溶解性および耐熱性に優れる色素を提供することを課題とする。 However, the dyes described in Patent Documents 1 to 3 have insufficient solubility in organic solvents and heat resistance suitable for use as colorants for color filters. High heat resistance is a required characteristic in the manufacturing process of color filters, and high solubility is an important characteristic for forming a uniform system and providing a high-brightness color filter. For this reason, there is always a demand for dyes with high heat resistance and solubility. An object of the present invention is to provide a dye that has superior solubility and heat resistance compared to conventional triarylmethane dyes.

本発明者らは、前記課題を解決するため鋭意検討した結果、従来のトリアリールメタン色素に比べて溶解性および耐熱性に優れるトリアリールメタン色素を見出した。すなわち本発明は、以下を要旨とする。 As a result of intensive research to solve the above problems, the present inventors have discovered a triarylmethane dye that is superior in solubility and heat resistance to conventional triarylmethane dyes. That is, the gist of the present invention is as follows.

1.下記一般式(1)で表されるトリアリールメタン色素。 1. A triarylmethane dye represented by the following general formula (1).

Figure 2024046614000001
Figure 2024046614000001

[式(1)中、RおよびRは、それぞれ独立に、
置換基を有していてもよい炭素原子数1~20の直鎖状、分岐状もしくは環状のアルキル基、または、置換基を有していてもよい炭素原子数6~20の芳香族炭化水素基を表し、
およびRは、それぞれ独立に、
置換基を有していてもよい炭素原子数1~20の直鎖状、分岐状もしくは環状のアルキル基、置換基を有していてもよい炭素原子数6~20の芳香族炭化水素基、または、置換基を有していてもよい環形成原子数5~20の複素環基を表し、
~R12は、それぞれ独立に、水素原子、ハロゲン原子、ニトロ基、シアノ基、
置換基を有していてもよい炭素原子数1~20の直鎖状、分岐状もしくは環状のアルキル基、置換基を有していてもよい炭素原子数6~20の芳香族炭化水素基、置換基を有していてもよい炭素原子数1~20の直鎖状、分岐状もしくは環状のアルコキシ基、または、置換基を有していてもよい炭素原子数0~20のアミノ基を表し、
13~R16は、それぞれ独立に、水素原子、ハロゲン原子、
置換基を有していてもよい炭素原子数1~20の直鎖状、分岐状もしくは環状のアルキル基、置換基を有していてもよい炭素原子数6~20の芳香族炭化水素基、または、置換基を有していてもよい炭素原子数1~20の直鎖状、分岐状もしくは環状のアルコキシ基を表し、
17およびR18は、それぞれ独立に、水素原子、
置換基を有していてもよい炭素原子数1~20の直鎖状、分岐状もしくは環状のアルキル基、または、置換基を有していてもよい炭素原子数6~20の芳香族炭化水素基を表し、
13~18は、単結合、置換もしくは無置換のメチレン基もしくはビニレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよく、
Anはアニオンを表す。]
[In formula (1), R 1 and R 2 each independently represent
represents a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms which may have a substituent, or an aromatic hydrocarbon group having 6 to 20 carbon atoms which may have a substituent,
R3 and R4 are each independently
represents a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms which may have a substituent, an aromatic hydrocarbon group having 6 to 20 carbon atoms which may have a substituent, or a heterocyclic group having 5 to 20 ring atoms which may have a substituent,
R 5 to R 12 each independently represent a hydrogen atom, a halogen atom, a nitro group, a cyano group,
represents a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms which may have a substituent, an aromatic hydrocarbon group having 6 to 20 carbon atoms which may have a substituent, a linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms which may have a substituent, or an amino group having 0 to 20 carbon atoms which may have a substituent,
R 13 to R 16 each independently represent a hydrogen atom, a halogen atom,
represents a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms which may have a substituent, an aromatic hydrocarbon group having 6 to 20 carbon atoms which may have a substituent, or a linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms which may have a substituent,
R 17 and R 18 each independently represent a hydrogen atom,
represents a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms which may have a substituent, or an aromatic hydrocarbon group having 6 to 20 carbon atoms which may have a substituent,
R 13 to R 18 may be bonded to each other via a single bond, a substituted or unsubstituted methylene group, a vinylene group, an oxygen atom, or a sulfur atom to form a ring;
An represents an anion.

2.前記一般式(1)において、RおよびRが置換基を有していてもよい炭素原子数6~12の芳香族炭化水素基であるトリアリールメタン色素。 2. A triarylmethane dye represented by the general formula (1), wherein R 3 and R 4 are aromatic hydrocarbon groups having 6 to 12 carbon atoms which may have a substituent.

3.前記一般式(1)において、R13~R16が水素原子であるトリアリールメタン色素。 3. A triarylmethane dye in which R 13 to R 16 in the general formula (1) are hydrogen atoms.

4.前記一般式(1)において、Anがハロゲン化物イオン、ビス(トリフルオロメタンスルホニル)イミドアニオン、スルホニルイミドアニオン、トリス(トリフルオロメタンスルホニル)メチドアニオン、またはスルホン酸アニオンであるトリアリールメタン色素。 4. A triarylmethane dye in which An is a halide ion, a bis(trifluoromethanesulfonyl)imide anion, a sulfonylimide anion, a tris(trifluoromethanesulfonyl)methide anion, or a sulfonate anion in the general formula (1).

5.前記(1.~3.のいずれかに記載)トリアリールメタン色素を含有する着色組成物。 5. A coloring composition containing the triarylmethane dye (described in any one of 1. to 3.).

6.前記(4.に記載)トリアリールメタン色素を含有する着色組成物。 6. A coloring composition containing the triarylmethane dye (described in 4.).

7.前記着色組成物を含有するカラーフィルター用着色剤。 7. A colorant for a color filter containing the coloring composition.

8.前記カラーフィルター用着色剤を用いるカラーフィルター。 8. A color filter using the colorant for color filters.

本発明のトリアリールメタン色素は、溶解性および耐熱性に優れており、該色素を含有する着色組成物はカラーフィルター用着色剤として有用である。 The triarylmethane dye of the present invention has excellent solubility and heat resistance, and the coloring composition containing the dye is useful as a colorant for color filters.

以下に、本発明の実施の形態について詳細に説明する。なお、本発明は、以下の実施形態に限定されず、その要旨の範囲内で種々変形して実施することができる。まず、前記一般式(1)で表されるトリアリールメタン色素について説明する。 Embodiments of the present invention will be described in detail below. Note that the present invention is not limited to the following embodiments, and can be implemented with various modifications within the scope of the gist. First, the triarylmethane dye represented by the general formula (1) will be explained.

一般式(1)において、R~R18で表される、「置換基を有していてもよい炭素原子数1~20の直鎖状、分岐状もしくは環状のアルキル基」における「炭素原子数1~20の直鎖状、分岐状もしくは環状のアルキル基」としては、具体的に、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基などの直鎖状のアルキル基;イソプロピル基、イソブチル基、s-ブチル基、t-ブチル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1-エチルプロピル基、1,1-ジメチルプロピル基、1,2-ジメチルプロピル基、2,2-ジメチルプロピル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、1,3-ジメチルブチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、3,3-ジメチルブチル基、1-エチル-1-メチルプロピル基、イソオクチル基、2-エチルヘキシル基などの分岐状のアルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、2-メチルシクロヘキシル基、2-エチルシクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基などの環状のアルキル基(シクロアルキル基)、ノルボルニル基、1-アダマンチル基、2-アダマンチル基などがあげられる。ここで、「分岐状または環状のアルキル基」については、その炭素数の下限は、分岐状または環状の構造をとることが可能な炭素数(すなわち、炭素数3)であることが当業者には理解される。 In the general formula (1), specific examples of the " straight - chain , branched or cyclic alkyl group having 1 to 20 carbon atoms" in the "straight-chain, branched or cyclic alkyl group having 1 to 20 carbon atoms which may have a substituent" represented by R 1 to R 18 include straight-chain alkyl groups such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group and dodecyl group; isopropyl group, isobutyl group, s-butyl group, t-butyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 1-ethylpropyl group, 1,1-dimethylpropyl group, 1,2-dimethylpropyl group, 2,2-dimethylpropyl group, 1-methylpentyl group, 2-methylpentyl ... branched alkyl groups such as ethyl, 3-methylpentyl, 4-methylpentyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1-ethyl-1-methylpropyl, isooctyl, and 2-ethylhexyl; cyclic alkyl groups (cycloalkyl groups) such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, 2-methylcyclohexyl, 2-ethylcyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, and cyclodecyl; norbornyl, 1-adamantyl, and 2-adamantyl. Here, it will be understood by those skilled in the art that the lower limit of the carbon number of a "branched or cyclic alkyl group" is the number of carbons that allows the group to have a branched or cyclic structure (i.e., 3 carbons).

一般式(1)において、R~R18で表される、「置換基を有していてもよい炭素原子数6~20の芳香族炭化水素基」における「炭素原子数6~20の芳香族炭化水素基」としては、具体的に、フェニル基、ビフェニリル基、テルフェニリル基、ナフチル基、アズレニル基、アントリル基、フェナントリル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基などの芳香族炭化水素基があげられる(本発明における「芳香族炭化水素基」とは、アリール基または縮合多環芳香族基も含む)。 In general formula (1), specific examples of the "aromatic hydrocarbon group having 6 to 20 carbon atoms" in the "aromatic hydrocarbon group having 6 to 20 carbon atoms which may have a substituent" represented by R 1 to R 18 include aromatic hydrocarbon groups such as a phenyl group, a biphenylyl group, a terphenylyl group, a naphthyl group, an azulenyl group, an anthryl group, a phenanthryl group, a fluorenyl group, an indenyl group, a pyrenyl group, a perylenyl group, a fluoranthenyl group, and a triphenylenyl group (the "aromatic hydrocarbon group" in the present invention also includes an aryl group or a condensed polycyclic aromatic group).

一般式(1)において、RおよびRで表される「置換基を有していてもよい環形成原子数5~20の複素環基」における「環形成原子数5~20の複素環基」としては、具体的に、ピリジル基、ピリミジニル基、キノリル基、イソキノリル基、ピラジニル基、トリアジニル基、ナフチリジニル基、アクリジニル基、フェナントロリニル基、カルボリニル基、プリニル基、ナフチリジニル基、フタラジニル基、キノキサリニル基、キナゾリニル基、シンノリニル基、プテリジニル基、フェナントリジニル基、ペリミジニル基、アンチリジニル基、ピロリル基、ピラゾリル基、イミダゾリル基、トリアゾリル基、テトラゾリル基、ジヒドロピロロピロリル基、インドリル基、イソインドリル基、インドリジニル基、インダゾリル基、ベンゾイミダゾリル基、ベンゾトリアゾリル基、カルバゾリル基、アザインドリル基、アザインダゾリル基、ピラゾロピリミジニル基、アデニル基、グアニジニル基、フェナジニル基、フリル基、チエニル基、ベンゾフラニル基、イソベンゾフラニル基、ベンゾチエニル基、イソベンゾチオフェニル基、ジベンゾフラニル基、ジベンゾチエニル基、オキサゾリル基、イソオキサゾリル基、チアゾリル基、イソチアゾリル基、オキサジアゾリル基、チアジアゾリル基、フロピロリル基、チエノピロリル基、ベンゾオキサゾリル基、ベンゾイソキサゾリル基、ベンゾチアゾリル基、ベンゾイソチアゾリル基、ベンゾチアジアゾリル基、フェノキサチイニル基、ベンゾ[1,2-b:4,5-b’]ジチオフェニル基、ビピリジニル基などの複素環基(または複素芳香族炭化水素基)があげられる。 In the general formula (1), specific examples of the "heterocyclic group having 5 to 20 ring atoms" in the "heterocyclic group having 5 to 20 ring atoms which may have a substituent" represented by R 3 and R 4 include a pyridyl group, a pyrimidinyl group, a quinolyl group, an isoquinolyl group, a pyrazinyl group, a triazinyl group, a naphthyridinyl group, an acridinyl group, a phenanthrolinyl group, a carbolinyl group, a purinyl group, a naphthyridinyl group, a phthalazinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a pteridinyl group, a phenanthridinyl group, a perimidinyl group, an anthyridinyl group, a pyrrolyl group, a pyrazolyl group, an imidazolyl group, a triazolyl group, a tetrazolyl group, a dihydropyrrolopyrrolyl group, an indolyl group, an isoindolyl group, an indolizinyl group, an indazolyl group, a benzimidazolyl group, a benzotriazolyl group, Examples of heterocyclic groups (or heteroaromatic hydrocarbon groups) include a carbazolyl group, an azaindolyl group, an azaindazolyl group, a pyrazolopyrimidinyl group, an adenyl group, a guanidinyl group, a phenazinyl group, a furyl group, a thienyl group, a benzofuranyl group, an isobenzofuranyl group, a benzothienyl group, an isobenzothiophenyl group, a dibenzofuranyl group, a dibenzothienyl group, an oxazolyl group, an isoxazolyl group, a thiazolyl group, an isothiazolyl group, an oxadiazolyl group, a thiadiazolyl group, a furopyrrolyl group, a thienopyrrolyl group, a benzoxazolyl group, a benzoisoxazolyl group, a benzothiazolyl group, a benzoisothiazolyl group, a benzothiadiazolyl group, a phenoxathiinyl group, a benzo[1,2-b:4,5-b']dithiophenyl group, and a bipyridinyl group.

一般式(1)において、R~R16で表される「ハロゲン原子」としては、フッ素原子、塩素原子、臭素原子またはヨウ素原子などがあげられる。「ハロゲン原子」としては、フッ素原子または塩素原子が好ましい。 In the general formula (1), the "halogen atom" represented by R 5 to R 16 includes a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc. The "halogen atom" is preferably a fluorine atom or a chlorine atom.

一般式(1)において、R~R16で表される「置換基を有していてもよい炭素原子数1~20の直鎖状、分岐状もしくは環状のアルコキシ基」における「炭素原子数1~20の直鎖状、分岐状もしくは環状のアルコキシ基」としては、具体的に、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基などの直鎖状のアルコキシ基;イソプロポキシ基、イソブトキシ基、s-ブトキシ基、t-ブトキシ基、イソオクチルオキシ基などの分岐状のアルコキシ基;シクロプロポキシ基、シクロブトキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基、シクロオクチルオキシ基、シクロノニルオキシ基、シクロデシルオキシ基などの環状のアルコキシ基(シクロアルコキシ基);1-アダマンチルオキシ基、2-アダマンチルオキシ基などがあげられる。 In general formula (1), specific examples of the "straight - chain, branched or cyclic alkoxy group having 1 to 20 carbon atoms" in the "straight-chain, branched or cyclic alkoxy group having 1 to 20 carbon atoms which may have a substituent" represented by R 5 to R 16 include straight-chain alkoxy groups such as methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group, nonyloxy group and decyloxy group; branched alkoxy groups such as isopropoxy group, isobutoxy group, s-butoxy group, t-butoxy group and isooctyloxy group; cyclic alkoxy groups (cycloalkoxy groups) such as cyclopropoxy group, cyclobutoxy group, cyclopentyloxy group, cyclohexyloxy group, cycloheptyloxy group, cyclooctyloxy group, cyclononyloxy group and cyclodecyloxy group; 1-adamantyloxy group and 2-adamantyloxy group.

一般式(1)において、R~R12で表される「置換基を有していてもよい炭素原子数0~20のアミノ基」における「炭素原子数0~20のアミノ基」は、置換基を有していても有していなくてもよく、置換基を有する場合は「―NR100101」と表される「置換基R100およびR101を有するアミノ基」を含み、無置換アミノ基(―NH)、一置換アミノ基(―NHR100)、二置換アミノ基(―NR100101)などがあげられる。したがって、基R100およびR101は、各々独立して、水素原子および後述する「置換基」から選択される。一置換アミノ基または二置換アミノ基における炭素原子数は、例えば、1~20であり、1~10であってよい。「置換基を有していてもよい炭素原子数0~20のアミノ基」は、―NH―、―N<または―N=CH―を介して、前述の「炭素原子数1~20の直鎖状、分岐状もしくは環状のアルキル基」、「炭素原子数6~20の芳香族炭化水素基」、「環形成原子数5~20の複素環基」が結合した基であってもよい。一置換アミノ基としては、エチルアミノ基、ブチルアミノ基、アセチルアミノ基、フェニルアミノ基などがあげられる。二置換アミノ基としては、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、ジへキシルアミノ基などの炭素原子数2~20のジアルキルアミノ基;ジアリルアミノ基などの炭素原子数4~20のジアルケニルアミノ基;ジフェニルアミノ基、N-アセチル-N-フェニルアミノ基、N-ブチル-N-フェニルアミノ基などがあげられる。 In the general formula (1), the "amino group having 0 to 20 carbon atoms" in the "amino group having 0 to 20 carbon atoms which may have a substituent" represented by R 5 to R 12 may or may not have a substituent, and when it has a substituent, it includes an "amino group having substituents R 100 and R 101 " represented as "-NR 100 R 101 ", and examples thereof include an unsubstituted amino group (-NH 2 ), a monosubstituted amino group (-NHR 100 ), and a disubstituted amino group (-NR 100 R 101 ). Thus, the groups R 100 and R 101 are each independently selected from a hydrogen atom and a "substituent" described below. The number of carbon atoms in the monosubstituted amino group or disubstituted amino group is, for example, 1 to 20, and may be 1 to 10. The "amino group having 0 to 20 carbon atoms which may have a substituent" may be a group to which the above-mentioned "linear, branched or cyclic alkyl group having 1 to 20 carbon atoms", "aromatic hydrocarbon group having 6 to 20 carbon atoms", or "heterocyclic group having 5 to 20 ring atoms" is bonded via -NH-, -N< or -N=CH-. Examples of the mono-substituted amino group include an ethylamino group, a butylamino group, an acetylamino group, and a phenylamino group. Examples of the di-substituted amino group include a dialkylamino group having 2 to 20 carbon atoms such as a dimethylamino group, a diethylamino group, a dipropylamino group, a dibutylamino group, and a dihexylamino group; a dialkenylamino group having 4 to 20 carbon atoms such as a diallylamino group; a diphenylamino group, an N-acetyl-N-phenylamino group, and an N-butyl-N-phenylamino group.

一般式(1)において、R~R18のいずれかで表される
「置換基を有していてもよい炭素原子数1~20の直鎖状、分岐状もしくは環状のアルキル基」、
「置換基を有していてもよい炭素原子数6~20の芳香族炭化水素基」、
「置換基を有していてもよい環形成原子数5~20の複素環基」、
「置換基を有していてもよい炭素原子数1~20の直鎖状、分岐状もしくは環状のアルコキシ基」、または、
「置換基を有していてもよい炭素原子数0~20のアミノ基」における「置換基」としては、具体的に
重水素原子、水酸基、チオール基、シアノ基、ニトロ基;
フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;
炭素原子数0~20のアミノ基;
炭素原子数0~20のスルホニル基;
炭素原子数1~20の直鎖状、分岐状もしくは環状のアルキル基;
炭素原子数2~20の直鎖状、分岐状もしくは環状のアルケニル基;
炭素原子数1~20の直鎖状、分岐状もしくは環状のアルコキシ基;
炭素原子数1~20のアシル基;
炭素原子数1~20のエーテル基;
炭素原子数6~20の芳香族炭化水素基もしくは縮合多環芳香族基;
環形成原子数5~20の複素環基;などがあげられる。なお「置換基」が炭素原子を含む場合、その炭素原子は上記の「炭素原子数0~20」、「炭素原子数1~20」、「炭素原子数6~20」に算入されない。これらの「置換基」は1つのみ含まれてもよく、複数含まれてもよく、複数含まれる場合は互いに同一でも異なっていてもよい。また、これら「置換基」を有する基において、「置換基」が結合する位置が、例えばn-ブチル基における4つの炭素のいずれか、フェニル基におけるパラ位、メタ位、オルト位のように複数考えられる場合、そのいずれの位置で置換されていてもよく、「置換基」がピリジル基やナフチル基のように結合手となる位置が複数考えられる場合、そのいずれの位置で結合していてもよい。また、これら「置換基」はさらに、前記例示した置換基を有していてもよい。また、これらの置換基同士が単結合、置換もしくは無置換のメチレン基もしくはビニレン基、酸素原子(―O―)または硫黄原子(―S―)を介して互いに結合して環を形成していてもよい。置換基同士が環を形成する場合、例えばRとRの組、R13とR14の組のように、隣接する置換基同士で環を形成することもでき、例えばRとRの組、RとRの組、R13とR17の組のように、異なる環または窒素上の置換基を連結することで環を形成することもできる。分子設計の観点からは、RとRの組、RとRの組のように隣接する置換基同士、または、R13とR17の組、並びに/もしくは、R16とR18の組で環を形成していることが好ましい。ただし、上記のR~R18で表される各基における「置換基」の数は最大10個とし、各基における最大の炭素原子数は100とする。
In the general formula (1), a "linear, branched or cyclic alkyl group having 1 to 20 carbon atoms which may have a substituent" represented by any one of R 1 to R 18 ,
"An aromatic hydrocarbon group having 6 to 20 carbon atoms which may have a substituent",
"A heterocyclic group having 5 to 20 ring atoms which may be substituted",
"A linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms which may have a substituent," or
Specific examples of the "substituent" in the "amino group having 0 to 20 carbon atoms which may have a substituent" include a deuterium atom, a hydroxyl group, a thiol group, a cyano group, and a nitro group;
Halogen atoms such as fluorine atoms, chlorine atoms, bromine atoms, and iodine atoms;
An amino group having 0 to 20 carbon atoms;
A sulfonyl group having 0 to 20 carbon atoms;
A linear, branched or cyclic alkyl group having 1 to 20 carbon atoms;
a linear, branched, or cyclic alkenyl group having 2 to 20 carbon atoms;
a linear, branched, or cyclic alkoxy group having 1 to 20 carbon atoms;
An acyl group having 1 to 20 carbon atoms;
an ether group having 1 to 20 carbon atoms;
an aromatic hydrocarbon group or a condensed polycyclic aromatic group having 6 to 20 carbon atoms;
Heterocyclic groups having 5 to 20 ring atoms; and the like. When the "substituent" contains a carbon atom, the carbon atom is not included in the above "0 to 20 carbon atoms", "1 to 20 carbon atoms", or "6 to 20 carbon atoms". Only one of these "substituents" may be contained, or multiple "substituents" may be contained, and when multiple "substituents" are contained, they may be the same or different. In addition, in groups having these "substituents", when the position at which the "substituent" is bonded is multiple, such as any of the four carbons in an n-butyl group, or the para, meta, or ortho positions in a phenyl group, the "substituent" may be substituted at any of the positions, or when the "substituent" has multiple positions as a bond such as a pyridyl group or naphthyl group, the "substituent" may be bonded at any of the positions. In addition, these "substituents" may further have the substituents exemplified above. In addition, these substituents may be bonded to each other via a single bond, a substituted or unsubstituted methylene group or vinylene group, an oxygen atom (-O-), or a sulfur atom (-S-) to form a ring. When the substituents form a ring, adjacent substituents may form a ring, for example, R 1 and R 3 , or R 13 and R 14 , or different rings or substituents on nitrogen may be linked to form a ring, for example, R 1 and R 8 , R 5 and R 9 , or R 13 and R 17. From the viewpoint of molecular design, it is preferable that adjacent substituents form a ring, such as R 1 and R 3 , R 7 and R 8 , or R 13 and R 17 , and/or R 16 and R 18. However, the number of "substituents" in each group represented by R 1 to R 18 is up to 10, and the maximum number of carbon atoms in each group is 100.

なお、一般式(1)において、R~R18のいずれかで表される「置換基」を有する上記の各基において、「置換基」としてあげられている、
「炭素原子数0~20のアミノ基」、
「炭素原子数0~20のスルホニル基」、
「炭素原子数1~20の直鎖状、分岐状もしくは環状のアルキル基」、
「炭素原子数2~20の直鎖状、分岐状もしくは環状のアルケニル基」、
「炭素原子数1~20の直鎖状、分岐状もしくは環状のアルコキシ基」、
「炭素原子数1~20のアシル基」、
「炭素原子数1~20のエーテル基」、
「炭素原子数6~20の芳香族炭化水素基もしくは縮合多環芳香族基」、または
「環形成原子数5~20の複素環基」としては、具体的に、
アミノ基;メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、エチルメチルアミノ基、ジプロピルアミノ基、ジ-t-ブチルアミノ基、ジフェニルアミノ基などの、炭素原子数1~20の直鎖状もしくは分岐状のアルキル基、または、炭素原子数6~20の芳香族炭化水素基を有する一置換もしくは二置換アミノ基;
スルホンアミド基(―S(=O)―NH)、メシル基、トシル基などの炭素原子数0~20のスルホニル基(―S(=O)―)を有する基;―SO 、―SOH、―SOM(Mはアルカリ金属原子);
メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、n-ヘキシル基、2-エチルヘキシル基、ヘプチル基、オクチル基、イソオクチル基、ノニル基、デシル基などの炭素原子数1~20の直鎖状もしくは分岐状のアルキル基;シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基、シクロノニル基、シクロデシル基などの炭素原子数3~20の環状のアルキル基(シクロアルキル基);ノルボルニル基、1-アダマンチル基、2-アダマンチル基;
ビニル基、1-プロペニル基、アリル基、1-ブテニル基、2-ブテニル基、1-ペンテニル基、1-ヘキセニル基、イソプロペニル基、イソブテニル基、またはこれらのアルケニル基が複数結合した炭素原子数2~20の直鎖状もしくは分岐状のアルケニル基;シクロプロペニル基、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基、シクロヘプテニル基などの炭素原子数2~20の環状のアルケニル基(シクロアルケニル基);
メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基、イソプロポキシ基、イソブトキシ基、s-ブトキシ基、t-ブトキシ基、イソオクチルオキシ基などの炭素原子数1~20の直鎖状もしくは分岐状のアルコキシ基;シクロプロポキシ基、シクロブトキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロノニルオキシ基、シクロデシルオキシ基などの炭素原子数3~20の環状のアルコキシ基(シクロアルコキシ基);1-アダマンチルオキシ基、2-アダマンチルオキシ基;
ホルミル基、アセチル基、プロピオニル基、アクリリル基、ベンゾイル基などの炭素原子数1~20のアシル基;
エーテル基(―O―)、アミノオキシ基、「―O―(C=O)―R」で表されるエステル基(Rは任意のアルキル基または芳香族炭化水素基など)、リン酸基、リン酸エステル基などの炭素原子数0~20のエーテル基(―O―)を含有する基;
フェニル基、ビフェニリル基、テルフェニリル基、ナフチル基、アントリル基、フェナントリル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基などの炭素原子数6~20の芳香族炭化水素基もしくは縮合多環芳香族基;
ピリジル基、ピリミジリニル基、トリアジニル基、チエニル基、フリル基、ピロリル基、イミダゾリル基、ピラゾリル基、トリアゾリル基、キノリル基、イソキノリル基、ナフチリジニル基、アクリジニル基、フェナントロリニル基、ベンゾフラニル基、ベンゾチエニル基、オキサゾリル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、チアゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルボリニル基などの炭素原子数2~20の複素環基;
フェニルオキシ基、トリルオキシ基、ビフェニリルオキシ基、ナフチルオキシ基、アントラセニルオキシ基、フェナントレニルオキシ基などの炭素原子数6~19のアリールオキシ基;などがあげられる。
In addition, in the general formula (1), in each of the above groups having a "substituent" represented by any one of R 1 to R 18 , the "substituent" is listed as,
"Amino group having 0 to 20 carbon atoms",
"Sulfonyl group having 0 to 20 carbon atoms",
"A linear, branched or cyclic alkyl group having 1 to 20 carbon atoms",
"Light chain, branched or cyclic alkenyl group having 2 to 20 carbon atoms",
"Light chain, branched or cyclic alkoxy group having 1 to 20 carbon atoms",
"Acyl group having 1 to 20 carbon atoms",
"ether group having 1 to 20 carbon atoms",
"Aromatic hydrocarbon group or fused polycyclic aromatic group having 6 to 20 carbon atoms" or "heterocyclic group having 5 to 20 ring atoms" specifically includes:
Amino group: a straight chain or branched group having 1 to 20 carbon atoms, such as methylamino group, dimethylamino group, diethylamino group, ethylmethylamino group, dipropylamino group, di-t-butylamino group, diphenylamino group, etc. an alkyl group, or a mono- or di-substituted amino group having an aromatic hydrocarbon group having 6 to 20 carbon atoms;
A group having a sulfonyl group (-S(=O) 2 -) having 0 to 20 carbon atoms, such as a sulfonamide group (-S(=O) 2 -NH 2 ), a mesyl group, and a tosyl group; -SO 3 - , -SO 3 H, -SO 3 M (M is an alkali metal atom);
Methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, n-pentyl group, isopentyl group, n-hexyl group, 2-ethylhexyl group, Straight-chain or branched alkyl groups having 1 to 20 carbon atoms such as heptyl group, octyl group, isooctyl group, nonyl group, decyl group; cyclopropyl group, cyclopentyl group, cyclohexyl group, cyclooctyl group, cyclononyl group, A cyclic alkyl group having 3 to 20 carbon atoms (cycloalkyl group) such as a cyclodecyl group; norbornyl group, 1-adamantyl group, 2-adamantyl group;
Number of carbon atoms to which vinyl group, 1-propenyl group, allyl group, 1-butenyl group, 2-butenyl group, 1-pentenyl group, 1-hexenyl group, isopropenyl group, isobutenyl group, or multiple of these alkenyl groups are bonded A linear or branched alkenyl group having 2 to 20 carbon atoms; a cyclic alkenyl group having 2 to 20 carbon atoms (cycloalkenyl group) such as a cyclopropenyl group, a cyclobutenyl group, a cyclopentenyl group, a cyclohexenyl group, and a cycloheptenyl group;
Methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group, nonyloxy group, decyloxy group, isopropoxy group, isobutoxy group, s-butoxy group, t-butoxy group , a linear or branched alkoxy group having 1 to 20 carbon atoms such as isooctyloxy group; cyclopropoxy group, cyclobutoxy group, cyclopentyloxy group, cyclohexyloxy group, cyclononyloxy group, cyclodecyloxy group, etc. cyclic alkoxy group (cycloalkoxy group) having 3 to 20 carbon atoms; 1-adamantyloxy group, 2-adamantyloxy group;
Acyl groups having 1 to 20 carbon atoms such as formyl group, acetyl group, propionyl group, acrylyl group, benzoyl group;
Ether group (-O-), aminooxy group, ester group represented by "-O-(C=O)-R" (R is any alkyl group or aromatic hydrocarbon group, etc.), phosphoric acid group, A group containing an ether group (-O-) having 0 to 20 carbon atoms, such as a phosphoric acid ester group;
Aromatic hydrocarbons having 6 to 20 carbon atoms such as phenyl group, biphenylyl group, terphenylyl group, naphthyl group, anthryl group, phenanthryl group, fluorenyl group, indenyl group, pyrenyl group, perylenyl group, fluoranthenyl group, triphenylenyl group group or fused polycyclic aromatic group;
Pyridyl group, pyrimidilinyl group, triazinyl group, thienyl group, furyl group, pyrrolyl group, imidazolyl group, pyrazolyl group, triazolyl group, quinolyl group, isoquinolyl group, naphthyridinyl group, acridinyl group, phenanthrolinyl group, benzofuranyl group, benzothienyl group oxazolyl group, indolyl group, carbazolyl group, benzoxazolyl group, thiazolyl group, benzothiazolyl group, quinoxalinyl group, benzimidazolyl group, pyrazolyl group, dibenzofuranyl group, dibenzothienyl group, carbon atom number 2 or more 20 heterocyclic groups;
Examples include aryloxy groups having 6 to 19 carbon atoms, such as phenyloxy, tolyloxy, biphenylyloxy, naphthyloxy, anthracenyloxy, and phenanthrenyloxy groups.

一般式(1)において、RおよびRは、置換基を有していてもよい炭素原子数1~8の直鎖状、分岐状もしくは環状のアルキル基、または、置換基を有していてもよい炭素原子数6~10の芳香族炭化水素基が好ましい。好ましいRおよびRの例としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、シクロヘキシル基、フェニル基、メチルフェニル基、メトキシフェニル基があげられる。なお、RおよびRにおいて「置換基」が炭素原子を含む場合、前記「炭素原子数1~8」および「炭素原子数6~10」に算入されず「置換基」の数は最大5個が好ましく、各基における最大の炭素原子数は「20」が好ましく、「12」がより好ましい。RおよびRは、各々同じであっても異なっていてもよい。分子設計の観点からは、RおよびRは同じ基であることが好ましい。 In the general formula (1), R 1 and R 2 are linear, branched or cyclic alkyl groups having 1 to 8 carbon atoms which may have a substituent, or have a substituent. An aromatic hydrocarbon group having 6 to 10 carbon atoms is preferred. Preferred examples of R 1 and R 2 include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, cyclohexyl group, phenyl group, methylphenyl group, and methoxyphenyl group. In addition, when the "substituents" in R 1 and R 2 contain carbon atoms, they are not included in the "number of carbon atoms 1 to 8" and "number of carbon atoms 6 to 10", and the number of "substituents" is at most 5. The maximum number of carbon atoms in each group is preferably "20" and more preferably "12". R 1 and R 2 may be the same or different. From the viewpoint of molecular design, it is preferable that R 1 and R 2 are the same group.

一般式(1)において、RおよびRは、置換基を有していてもよい炭素原子数1~20の直鎖状、分岐状もしくは環状のアルキル基、置換基を有していてもよい炭素原子数6~20の芳香族炭化水素基、または、置換基を有していてもよい環形成原子数5~10の複素環基が好ましく、置換基を有していてもよい炭素原子数1~6の直鎖状、分岐状もしくは環状のアルキル基、または、置換基を有していてもよい炭素原子数6~10の芳香族炭化水素基がより好ましい。好ましいRおよびRの例としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、tert-ブチル基、シクロヘキシル基、フェニル基、メチルフェニル基、メトキシフェニル基、フルオロフェニル基、ナフチル基、ピリジル基、チエニル基、チアゾリル基があげられる。なお、RおよびRにおいて「置換基」が炭素原子を含む場合、前記「炭素原子数1~20」、「炭素原子数1~6」、「炭素原子数6~20」および「炭素原子数6~10」に算入されず、「置換基」の数は最大5個が好ましく、各基における最大の炭素原子数は「20」が好ましく、「12」がより好ましい。RおよびRは、各々同じであっても異なっていてもよい。分子設計の観点からは、RおよびRは同じ基であることが好ましい。 In the general formula (1), R 3 and R 4 are linear, branched or cyclic alkyl groups having 1 to 20 carbon atoms which may have a substituent, or a linear, branched or cyclic alkyl group which may have a substituent. An aromatic hydrocarbon group having 6 to 20 carbon atoms or a heterocyclic group having 5 to 10 ring atoms which may have a substituent is preferable, and a carbon atom which may have a substituent. A linear, branched or cyclic alkyl group having 1 to 6 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms which may have a substituent is more preferable. Preferred examples of R 3 and R 4 include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, tert-butyl group, cyclohexyl group, phenyl group, methylphenyl group, methoxyphenyl group. , fluorophenyl group, naphthyl group, pyridyl group, thienyl group, and thiazolyl group. In addition, when the "substituent" in R 3 and R 4 contains a carbon atom, the above "number of carbon atoms 1 to 20", "number of carbon atoms 1 to 6", "number of carbon atoms 6 to 20" and "carbon atom The number of "substituents" is preferably 5 at most, and the maximum number of carbon atoms in each group is preferably "20", more preferably "12". R 3 and R 4 may be the same or different. From the viewpoint of molecular design, R 3 and R 4 are preferably the same group.

一般式(1)において、R~R12は、水素原子、ハロゲン原子、ニトロ基、シアノ基、置換基を有していてもよい炭素原子数1~20の直鎖状、分岐状もしくは環状のアルキル基、置換基を有していてもよい炭素原子数6~20の芳香族炭化水素基、置換基を有していてもよい炭素原子数1~20の直鎖状、分岐状もしくは環状のアルコキシ基、または、置換基を有していてもよい炭素原子数0~20のアミノ基が好ましく、水素原子、ハロゲン原子、ニトロ基、シアノ基、置換基を有していてもよい炭素原子数1~10の直鎖状、分岐状もしくは環状のアルキル基、置換基を有していてもよい炭素原子数6~10の芳香族炭化水素基、置換基を有していてもよい炭素原子数1~10の直鎖状、分岐状もしくは環状のアルコキシ基がより好ましい。水素原子以外で好ましいR~R12の例としては、フッ素原子、塩素原子、ニトロ基、シアノ基、メトキシ基、エトキシ基、ジメチルアミノ基、ジエチルアミノ基、メチル基、エチル基、フェニル基があげられる。なお、R~R12において「置換基」が炭素原子を含む場合、前記「炭素原子数1~20」、「炭素原子数1~10」、「炭素原子数6~20」および「炭素原子数6~10」に算入されず、「置換基」の数は最大5個が好ましく、各基における最大の炭素原子数は「20」が好ましく、「12」がより好ましい。R~R12のうちどの基が水素原子以外の基であるかは特に制限されず、R~R12は各々同じであっても異なっていてもよい。分子設計の観点からは、分子が対称形となるような位置関係にある基どうし、すなわち、RとRの組、RとR10の組、RとR11の組、RとR12の組が同じ基であることが好ましい。 In the general formula (1), R 5 to R 12 are a hydrogen atom, a halogen atom, a nitro group, a cyano group, a linear, branched or cyclic group having 1 to 20 carbon atoms which may have a substituent. Alkyl group, aromatic hydrocarbon group having 6 to 20 carbon atoms which may have a substituent, linear, branched or cyclic having 1 to 20 carbon atoms which may have a substituent An alkoxy group, or an amino group having 0 to 20 carbon atoms which may have a substituent is preferable, such as a hydrogen atom, a halogen atom, a nitro group, a cyano group, or a carbon atom which may have a substituent. A linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, an aromatic hydrocarbon group having 6 to 10 carbon atoms which may have a substituent, and a carbon atom which may have a substituent. More preferred are linear, branched or cyclic alkoxy groups having numbers 1 to 10. Preferred examples of R 5 to R 12 other than a hydrogen atom include a fluorine atom, a chlorine atom, a nitro group, a cyano group, a methoxy group, an ethoxy group, a dimethylamino group, a diethylamino group, a methyl group, an ethyl group, and a phenyl group. It will be done. In addition, when the "substituent" in R 5 to R 12 contains a carbon atom, the above "number of carbon atoms 1 to 20", "number of carbon atoms 1 to 10", "number of carbon atoms 6 to 20" and "carbon atom The number of "substituents" is preferably 5 at most, and the maximum number of carbon atoms in each group is preferably "20", more preferably "12". There is no particular restriction as to which group among R 5 to R 12 is a group other than a hydrogen atom, and R 5 to R 12 may be the same or different. From the viewpoint of molecular design, groups that have a positional relationship such that the molecule is symmetrical, that is, the set of R 5 and R 9 , the set of R 6 and R 10 , the set of R 7 and R 11 , and the set of R 8 and R 12 are preferably the same group.

一般式(1)において、R13~R16は、水素原子、置換基を有していてもよい炭素原子数1~20の直鎖状、分岐状もしくは環状のアルキル基、または、置換基を有していてもよい炭素原子数1~20の直鎖状、分岐状もしくは環状のアルコキシ基が好ましく、水素原子、置換基を有していてもよい炭素原子数1~6の直鎖状、分岐状もしくは環状のアルキル基、または、置換基を有していてもよい炭素原子数1~6の直鎖状、分岐状もしくは環状のアルコキシ基がより好ましい。なお、R13~R16において「置換基」が炭素原子を含む場合、前記「炭素原子数1~20」、「炭素原子数1~6」、「炭素原子数6~20」および「炭素原子数6~10」に算入されず、「置換基」の数は最大5個が好ましく、各基における最大の炭素原子数は「20」が好ましく、「12」がより好ましい。また、R13~R16は、隣接する基または後記R17もしくはR18と環を形成していてもよい。 In the general formula (1), R 13 to R 16 are a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms which may have a substituent, or a substituent. A linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms which may have a hydrogen atom, a straight chain having 1 to 6 carbon atoms which may have a substituent, More preferred are branched or cyclic alkyl groups, or linear, branched or cyclic alkoxy groups having 1 to 6 carbon atoms which may have a substituent. In addition, when the "substituent" in R 13 to R 16 contains a carbon atom, the above-mentioned "number of carbon atoms 1 to 20", "number of carbon atoms 1 to 6", "number of carbon atoms 6 to 20" and "carbon atom The number of "substituents" is preferably 5 at most, and the maximum number of carbon atoms in each group is preferably "20", more preferably "12". Further, R 13 to R 16 may form a ring with an adjacent group or with R 17 or R 18 described below.

一般式(1)において、R17およびR18は、水素原子、置換基を有していてもよい炭素原子数1~8、より好ましくは炭素原子数1~6の直鎖状、分岐状もしくは環状のアルキル基、または、置換基を有していてもよい炭素原子数6~10の芳香族炭化水素基が好ましい。好ましいR17およびR18の例としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、シクロヘキシル基、フェニル基、メチルフェニル基、メトキシフェニル基があげられる。また、R13およびR17の組ならびに/またはR16およびR18の組は、互いに結合して、キノリンまたはテトラヒドロキノリンのような環を形成してもよいが、R17およびR18は、互いに結合して環を形成しないことが好ましい。なお、R17およびR18において「置換基」が炭素原子を含む場合、前記「炭素原子数1~8」および「炭素原子数6~10」に算入されず、「置換基」の数は最大5個が好ましく、各基における最大の炭素原子数は「20」が好ましく、「12」がより好ましい。 In the general formula (1), R 17 and R 18 are preferably a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 8 carbon atoms, more preferably 1 to 6 carbon atoms, which may have a substituent, or an aromatic hydrocarbon group having 6 to 10 carbon atoms, which may have a substituent. Preferred examples of R 17 and R 18 include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, a cyclohexyl group, a phenyl group, a methylphenyl group, and a methoxyphenyl group. In addition, a pair of R 13 and R 17 and/or a pair of R 16 and R 18 may bond together to form a ring such as quinoline or tetrahydroquinoline, but it is preferable that R 17 and R 18 do not bond together to form a ring. In addition, when the "substituents" in R 17 and R 18 contain carbon atoms, they are not included in the above-mentioned "1 to 8 carbon atoms" and "6 to 10 carbon atoms", and the maximum number of the "substituents" is preferably 5, and the maximum number of carbon atoms in each group is preferably "20", and more preferably "12".

一般式(1)において、「An」は特に限定されず、例えば、ハロゲン化物イオンなどの無機アニオン、または有機アニオンがあげられる。具体的には、
Cl、Br、I;(CFSO(またはNTf)、
(CFSO(またはCTf)、
(CSO、(CSO、(CSO
(CN)、(CN)、NC―S-、(C
(CSO )O(C(C1225)(SO ))、
(C1225)(SO )、PF 、BF 、(PW1240
または、下記式(Z-1)~(Z-16)の構造式で示すアニオンなどがあげられる。
In general formula (1), "An" is not particularly limited, and examples include inorganic anions such as halide ions, or organic anions. in particular,
Cl , Br , I ; (CF 3 SO 2 ) 2 N (or N Tf 2 ),
(CF 3 SO 2 ) 3 C - (or C - Tf 3 ),
(C 2 F 5 SO 2 ) 2 N - , (C 4 F 9 SO 2 ) 2 N - , (C 6 F 5 SO 2 ) 2 N - ,
(CN) 2 N - , (CN) 3 C - , NC-S-, (C 2 F 5 ) 3 F 3 P - ,
(C 6 H 4 SO 3 )O(C 6 H 3 (C 12 H 25 )(SO 3 )),
C 6 H 4 (C 12 H 25 ) (SO 3 - ), PF 6 - , BF 4 - , (PW 12 O 40 ) 3 - ,
Alternatively, examples include anions represented by the structural formulas (Z-1) to (Z-16) below.

一般式(1)において、Anは単一でも異なる2以上の組み合わせでもよく、前記例示したアニオンから選ばれる単一または2もしくは3の任意の組み合わせであることが好ましく、ハロゲン化物イオン、ビス(トリフルオロメタンスルホニル)イミドアニオン、スルホニルイミドアニオン、トリス(トリフルオロメタンスルホニル)メチドアニオン、または、スルホン酸アニオンのいずれかから選ばれる単一または2もしくは3の任意の組み合わせであることがより好ましい。 In the general formula (1), An may be a single anion or a combination of two or more different anions, and is preferably a single anion or an arbitrary combination of two or three selected from the above-mentioned anions, including halide ions, bis(trifluoride), More preferably, it is a single or any combination of two or three selected from the group consisting of lomethanesulfonyl)imide anion, sulfonylimide anion, tris(trifluoromethanesulfonyl)methide anion, and sulfonic acid anion.

一般式(1)で表されるトリアリールメタン色素である化合物の製造方法は、公知の方法を応用し、一般式(1)の各種の相当する基を有する試薬やその他の適当な試薬を用いて製造することができる。以下、本発明の化合物の製造方法の一態様を記載するが、本発明の製造方法はこれらに限定されない。 The compound which is a triarylmethane dye represented by the general formula (1) can be produced by applying a known method and using a reagent having various corresponding groups of the general formula (1) or other appropriate reagents. One embodiment of the method for producing the compound of the present invention is described below, but the production method of the present invention is not limited to this.

一般式(1)で表されるトリアリールメタン色素は、相当する置換基を有する芳香族アルデヒドと、相当する置換基を有するインドールを酸触媒存在下で縮合した後、酸化剤を用いて酸化することにより得られる。さらに、必要に応じて相当する構造を有する塩と塩交換することで、一般式(1)で表されるトリアリールメタン色素を製造することができる。この製造における化学反応は、有機溶媒の存在下で行ってもよいし、無溶媒で行ってもよい。 The triarylmethane dye represented by general formula (1) can be obtained by condensing an aromatic aldehyde having a corresponding substituent with an indole having a corresponding substituent in the presence of an acid catalyst, followed by oxidation using an oxidizing agent. Furthermore, the triarylmethane dye represented by general formula (1) can be produced by salt exchange with a salt having a corresponding structure, if necessary. The chemical reaction in this production may be carried out in the presence of an organic solvent or without a solvent.

本発明のトリアリールメタン色素の製造方法において、縮合反応で使用されるインドール化合物は、芳香族アルデヒド1molに対して、1mol以上、5mol以下が好ましく、1.5mol以上、3mol以下がより好ましい。また、本発明のトリアリールメタン色素の製造方法において、縮合反応で用いる酸触媒としては、例えば、塩酸、リン酸、硫酸などの無機酸や酢酸、トリフルオロ酢酸、パラトルエンスルホン酸、メタンスルホン酸などの有機酸をあげることができる。酸触媒の使用量は芳香族アルデヒド1モルに対して、0.01mol以上、10mol以下が好ましく、0.1mol以上、5mol以下がより好ましい。 In the method for producing a triarylmethane dye of the present invention, the indole compound used in the condensation reaction is preferably 1 mol or more and 5 mol or less, more preferably 1.5 mol or more and 3 mol or less, per 1 mol of aromatic aldehyde. In addition, in the method for producing a triarylmethane dye of the present invention, examples of the acid catalyst used in the condensation reaction include inorganic acids such as hydrochloric acid, phosphoric acid, and sulfuric acid, and organic acids such as acetic acid, trifluoroacetic acid, paratoluenesulfonic acid, and methanesulfonic acid. The amount of the acid catalyst used is preferably 0.01 mol or more and 10 mol or less, more preferably 0.1 mol or more and 5 mol or less, per 1 mol of aromatic aldehyde.

本発明のトリアリールメタン色素の製造方法において、酸化反応で使用する酸化剤としては、例えば、過酸化水素、三塩化鉄、二酸化マンガン、二酸化鉛、三酸化クロム、過硫酸アンモニウム、硝酸セリウム(IV)アンモニウム、クロラニル(2,3,5,6-テトラクロロ-p-ベンゾキノン)、DDQ(2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン)などをあげることができる。酸化剤の使用量は前工程で得られた縮合体1molに対して、0.5mol以上、20mol以下が好ましく、1mol以上、10mol以下がより好ましい。 In the method for producing a triarylmethane dye of the present invention, examples of the oxidizing agent used in the oxidation reaction include hydrogen peroxide, iron trichloride, manganese dioxide, lead dioxide, chromium trioxide, ammonium persulfate, and cerium (IV) nitrate. Examples include ammonium, chloranil (2,3,5,6-tetrachloro-p-benzoquinone), and DDQ (2,3-dichloro-5,6-dicyano-p-benzoquinone). The amount of the oxidizing agent used is preferably 0.5 mol or more and 20 mol or less, more preferably 1 mol or more and 10 mol or less, per 1 mol of the condensate obtained in the previous step.

本発明の製造方法における各生成物の単離や精製は、通常の有機合成で用いられる方法、例えば、カラムクロマトグラフィーによる精製;シリカゲル、活性炭、活性白土などによる吸着精製;溶媒による再結晶や晶析法などの公知の方法を適宜組み合わせて行うことができる。また、これらの化合物の同定、分析、光学特性、熱物性、その他物性の評価には、核磁気共鳴分析(NMR)、分光光度計による吸光度測定や紫外可視吸収スペクトル(UV-Vis)測定、熱重量測定-示差熱分析(TG-DTA)などを行うことができる。これらの分析方法は、得られた化合物の溶解性、色彩評価や耐熱性評価にも用いることができる。 The isolation and purification of each product in the manufacturing method of the present invention can be carried out by appropriately combining known methods used in ordinary organic synthesis, such as purification by column chromatography; adsorption purification using silica gel, activated carbon, activated clay, etc.; and recrystallization or crystallization using a solvent. In addition, nuclear magnetic resonance analysis (NMR), absorbance measurement using a spectrophotometer, ultraviolet-visible absorption spectrum (UV-Vis) measurement, thermogravimetry-differential thermal analysis (TG-DTA), etc. can be used to identify, analyze, and evaluate the optical properties, thermal properties, and other physical properties of these compounds. These analytical methods can also be used to evaluate the solubility, color, and heat resistance of the obtained compounds.

一般式(1)で表される本発明のトリアリールメタン色素として好ましい化合物の具体例を下記式(B-1)~(B-38)に示すが、本発明は、これらの化合物に限定されない。なお、前記一般式(1)中、トリアリールメタン色素の部分を示しており、Anで表されるアニオン部は省略している。下記構造式では、水素原子を一部省略しており、生じ得るすべての立体異性体、互変異性体を包含しており、平面構造式を記載している。 Specific examples of compounds that are preferred as the triarylmethane dye of the present invention represented by general formula (1) are shown in the following formulas (B-1) to (B-38), but the present invention is not limited to these compounds. Note that in the general formula (1), the triarylmethane dye portion is shown, and the anion portion represented by An is omitted. In the structural formula below, some hydrogen atoms are omitted, and all possible stereoisomers and tautomers are included, and a planar structural formula is shown.

Figure 2024046614000006
Figure 2024046614000006

Figure 2024046614000007
Figure 2024046614000007

Figure 2024046614000008
Figure 2024046614000008

Figure 2024046614000009
Figure 2024046614000009

Figure 2024046614000010
Figure 2024046614000010

Figure 2024046614000011
Figure 2024046614000011

Figure 2024046614000012
Figure 2024046614000012

Figure 2024046614000013
Figure 2024046614000013

Figure 2024046614000014
Figure 2024046614000014

Figure 2024046614000015
Figure 2024046614000015

本発明のトリアリールメタン色素は、1種または分子構造の異なる2種以上を組み合わせて使用(例えば混合)してもよい。当該2種以上を使用する際は、トリアリールメタン色素全体に占める質量濃度比において、最も少ない方の1種のトリアリールメタン色素の質量濃度比は0.1~50質量%である。トリアリールメタン色素の種類は1種または2種であるのが好ましい。 The triarylmethane dyes of the present invention may be used alone or in combination (for example, mixed) of two or more with different molecular structures. When two or more of these types are used, the mass concentration ratio of the least triarylmethane dye to the total weight of the triarylmethane dye is 0.1 to 50% by weight. The number of types of triarylmethane dyes is preferably one or two types.

本発明のトリアリールメタン色素、該色素を含有する着色組成物、該色素または該着色組成物を含有するカラーフィルター用着色剤は、着色剤およびカラーフィルターの製造工程において、樹脂などを含有する有機溶媒に良好に溶解または分散させる必要があるため、有機溶媒に対する溶解度や分散性が高いことが好ましい。有機溶媒としては、特に限定されないが、具体的には、トルエン、キシレンなどの芳香族炭化水素類;プロピレングリコールモノメチルエーテルアセテート(PGMEA)、メチルセロソルブアセテート、エチルセロソルブアセテート、プロピレングリコールモノメチルエーテル(PGME)などのエーテル類;メチルエチルケトン、アセトン、シクロヘキサノン、2-ヘプタノン、3-ヘプタノンなどのケトン類;メタノール、エタノール、2-プロパノールなどのアルコール類;3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、乳酸エチル、酢酸エチル、酢酸ブチル、3-メトキシプロピオン酸メチルなどのエステル類;ジアセトンアルコール(DAA)など;N,N-ジメチルホルムアミド(DMF)、N-メチルピロリドン(NMP)などのアミド類;ジメチルスルホキシド(DMSO);エーテルルム(トリクロロメタン)、などがあげられ、PGME、PGMEA、シクロヘキサノンまたはDAAが好ましく、樹脂の溶解性とトリアリールメタン色素の溶解性の両立の観点からはPGMEまたはPGMEAが特に好ましい。これらの溶剤は、単独で用いても2種類以上混合して用いてもよい。 The triarylmethane dye of the present invention, the coloring composition containing the dye, and the coloring agent for color filters containing the dye or the coloring composition are used in the manufacturing process of the colorant and the color filter. Since it is necessary to dissolve or disperse well in a solvent, it is preferable that the solubility and dispersibility in an organic solvent are high. The organic solvent is not particularly limited, but specifically, aromatic hydrocarbons such as toluene and xylene; propylene glycol monomethyl ether acetate (PGMEA), methyl cellosolve acetate, ethyl cellosolve acetate, propylene glycol monomethyl ether (PGME) ethers such as methyl ethyl ketone, acetone, cyclohexanone, 2-heptanone, 3-heptanone; alcohols such as methanol, ethanol, 2-propanol; methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, lactic acid Esters such as ethyl, ethyl acetate, butyl acetate, methyl 3-methoxypropionate; diacetone alcohol (DAA), etc.; amides such as N,N-dimethylformamide (DMF), N-methylpyrrolidone (NMP); dimethyl Examples include sulfoxide (DMSO); etherlum (trichloromethane), etc., PGME, PGMEA, cyclohexanone or DAA are preferred, and PGME or PGMEA is particularly preferred from the viewpoint of achieving both solubility of the resin and solubility of the triarylmethane dye. . These solvents may be used alone or in combination of two or more.

本発明のトリアリールメタン色素の有機溶媒への溶解度は、例えば次のように測定することができる。トリアリールメタン色素と有機溶媒を適当な比率で混合し、超音波処理した後、室温(25℃)下、不溶分の有無を目視で確認することにより、溶解度を評価することができる。溶解度の測定に用いる有機溶媒としては、特に限定されず、前記有機溶媒を用いることができるが、PGME、PGMEA、シクロヘキサノンまたはDAAが好ましく、PGMEまたはPGMEAがより好ましい。 The solubility of the triarylmethane dye of the present invention in an organic solvent can be measured, for example, as follows. Solubility can be evaluated by mixing a triarylmethane dye and an organic solvent in an appropriate ratio, treating the mixture with ultrasonic waves, and then visually checking the presence or absence of insoluble matter at room temperature (25° C.). The organic solvent used for measuring solubility is not particularly limited and any of the organic solvents described above can be used, but PGME, PGMEA, cyclohexanone, or DAA is preferable, and PGME or PGMEA is more preferable.

本発明のトリアリールメタン色素は、有機溶媒への溶解性、特にPGMEAへの溶解性に優れ、PGMEAに対する溶解度は、1質量%以上であることが好ましく、3質量%以上であることがより好ましく、5質量%以上であることが特に好ましい。高コントラスト比のカラーフィルターへの応用を考えた場合、溶解度は高いほど好ましい。 The triarylmethane dye of the present invention has excellent solubility in organic solvents, particularly in PGMEA, and the solubility in PGMEA is preferably 1% by mass or more, more preferably 3% by mass or more, and particularly preferably 5% by mass or more. When considering application to color filters with a high contrast ratio, the higher the solubility, the more preferable.

本発明のトリアリールメタン色素は、有機溶媒に溶解して調製した溶液を用いて、室温付近(例えば23~27℃)で測定する紫外可視吸収スペクトルの可視光領域(例えば、350~800nmの波長範囲)において最大の吸光度を示す、極大吸収波長が観測される。本発明においては、PGME溶液における極大吸収波長が、550~650nmの波長範囲にあることが好ましい。なお、色素濃度は、0.005~0.02mmol/Lが好ましい。溶媒は、色素を溶解するものであれば限定されないが、溶解条件により紫外可視吸収スペクトルの吸収波長が大きくシフトしないものが好ましく、PGMEが好ましい。 The triarylmethane dye of the present invention can be used in the visible light region of the ultraviolet-visible absorption spectrum (for example, wavelengths of 350 to 800 nm) measured at around room temperature (for example, 23 to 27°C) using a solution prepared by dissolving it in an organic solvent. The maximum absorption wavelength is observed, which shows the maximum absorbance in the range). In the present invention, the maximum absorption wavelength in the PGME solution is preferably in the wavelength range of 550 to 650 nm. Note that the dye concentration is preferably 0.005 to 0.02 mmol/L. The solvent is not limited as long as it dissolves the dye, but it is preferable that the absorption wavelength of the ultraviolet-visible absorption spectrum does not shift significantly depending on the dissolution conditions, and PGME is preferable.

本発明のトリアリールメタン色素を各種樹脂溶液と混合し、ガラス基板上に塗布することにより塗膜を作製できる。得られた塗膜について、分光測色計を用いて測色し、塗膜の色彩値を得ることで色彩評価を行うことができる。色彩値はCIE L表色系などが一般的に用いられる。具体的には、膜試料の色彩値L、a、bを測定し、適当な温度での加熱前後の色彩値の色差(ΔE ab)より、耐熱性を判断することができる。カラーフィルターに応用する場合、230℃前後の温度での色差を耐熱性の指標として用いることができる。ΔE abは、その値が小さいほど、熱分解による色の変色が少なく、耐熱性が高いことを意味し、10以下が好ましく、5以下がより好ましい。 The triarylmethane dye of the present invention can be mixed with various resin solutions and applied onto a glass substrate to prepare a coating film. The obtained coating film can be measured using a spectrophotometer to obtain the color value of the coating film, thereby performing color evaluation. The CIE L * a * b * color system is generally used for the color value. Specifically, the color values L * , a * , and b * of a film sample are measured, and the heat resistance can be judged from the color difference (ΔE * ab ) of the color value before and after heating at an appropriate temperature. When applied to a color filter, the color difference at a temperature of about 230° C. can be used as an index of heat resistance. The smaller the value of ΔE * ab , the less the color discoloration due to thermal decomposition and the higher the heat resistance, and 10 or less is preferable, and 5 or less is more preferable.

本発明のカラーフィルター用着色剤は、一般式(1)で表されるトリアリールメタン色素、または該トリアリールメタン色素を少なくとも1種含有する着色組成物と、カラーフィルターの製造に一般的に使用される成分とを含む。一般的なカラーフィルターは、例えば、フォトリソグラフィー工程を利用した方法の場合、染料や顔料などの色素を樹脂成分(モノマー、オリゴマーを含む)や溶媒と混合して調製した液体を、ガラスや樹脂などの基板の上に塗布し、フォトマスクを用いて光重合させ、溶媒に可溶/不溶な色素-樹脂複合膜の着色パターンを作製し、洗浄後、加熱することにより得られる。また電着法や印刷法においても、色素を樹脂やその他の成分と混合したものを用いて着色パターンを作製する。よって、本発明のカラーフィルター用着色剤における具体的な成分としては、少なくとも1種の一般式(1)で表されるトリアリールメタン色素、その他の染料や顔料などの色素、樹脂成分、有機溶媒、および光重合開始剤などその他の添加剤があげられる。また、これらの成分から取捨選択してもよく、必要に応じて他の成分を追加してもよい。 The colorant for color filters of the present invention includes a triarylmethane dye represented by general formula (1) or a coloring composition containing at least one of the triarylmethane dyes, and components commonly used in the manufacture of color filters. In the case of a method using a photolithography process, for example, a liquid prepared by mixing a dye such as a dye or pigment with a resin component (including a monomer and an oligomer) and a solvent is applied onto a substrate such as glass or resin, photopolymerized using a photomask, a colored pattern of a dye-resin composite film soluble/insoluble in the solvent is produced, and the resulting product is heated after washing. In the electrodeposition method and printing method, a colored pattern is produced using a mixture of a dye with a resin and other components. Thus, specific components in the colorant for color filters of the present invention include at least one triarylmethane dye represented by general formula (1), other dyes such as dyes and pigments, resin components, organic solvents, and other additives such as photopolymerization initiators. In addition, these components may be selected from among them, and other components may be added as necessary.

本発明のトリアリールメタン色素または該トリアリールメタン色素を含有する着色組成物をカラーフィルター用着色剤として用いる場合、各色用カラーフィルターに用いてもよいが、青色または、緑色カラーフィルター用着色剤として用いるのが好ましい。 When the triarylmethane dye of the present invention or a coloring composition containing the triarylmethane dye is used as a colorant for a color filter, it may be used for a color filter of each color, but is preferably used as a colorant for a blue or green color filter.

本発明のカラーフィルター用着色剤は、1種または2種以上のトリアリールメタン色素を単独で使用してもよく、色調の調整のために、すなわち分光特性を調整するために、さらに下記のような他の染料または顔料などの公知の色素を混合してもよい。 The colorant for color filters of the present invention may be one or more triarylmethane dyes used alone, or may further be mixed with other known dyes such as other dyes or pigments as described below in order to adjust the color tone, i.e., to adjust the spectral characteristics.

青色カラーフィルター用着色剤に用いる場合、特に限定されないが、C.I.ベーシックブルー3、7、9、54、65、75、77、99、129、C.I.ベーシックバイオレット10などの塩基性染料;C.I.アシッドブルー9、74、C.I.アシッドレッド52、289などの酸性染料;ディスパースブルー3、7、377などの分散染料;スピロン染料;シアニン系、インディゴ系、フタロシアニン系、アントラキノン系、メチン系、本発明に属さないトリアリールメタン系、インダンスレン系、オキサジン系、ジオキサジン系、アゾ系、キサンテン系色素;その他の青色系レーキ顔料、などの青色系または赤色系の染料または顔料があげられる。
緑色カラーフィルター用着色剤に用いる場合、特に限定されないが、C.I.ピグメントグリーン7、10、36、47、58、59,62、63などの緑色顔料;C.I.ピグメントイエロー83、138、139、150、180、185などの黄色顔料;スピロン染料;シアニン系、インディゴ系、フタロシアニン系、アントラキノン系、メチン系、本発明に属さないトリアリールメタン系、インダンスレン系、オキサジン系、ジオキサジン系、アゾ系、キサンテン系、イソインドリン系、キノフタロン系色素;その他のレーキ顔料、などの青色系、黄色系または緑色系の染料または顔料があげられる。
When used as a colorant for a blue color filter, C.I. I. Basic Blue 3, 7, 9, 54, 65, 75, 77, 99, 129, C. I. Basic dyes such as Basic Violet 10; C.I. I. Acid Blue 9, 74, C. I. Acidic dyes such as Acid Red 52 and 289; Disperse dyes such as Disperse Blue 3, 7, and 377; Spiron dyes; cyanine-based, indigo-based, phthalocyanine-based, anthraquinone-based, methine-based, triarylmethane-based which does not belong to the present invention , indanthrene-based, oxazine-based, dioxazine-based, azo-based, xanthene-based dyes; and other blue-based lake pigments.
When used as a colorant for a green color filter, although not particularly limited, C.I. I. Pigment Green 7, 10, 36, 47, 58, 59, 62, 63 and other green pigments; C.I. I. Yellow pigments such as Pigment Yellow 83, 138, 139, 150, 180, and 185; Spiron dyes; cyanine-based, indigo-based, phthalocyanine-based, anthraquinone-based, methine-based, triarylmethane-based, indanthrene-based, which do not belong to the present invention , oxazine-based, dioxazine-based, azo-based, xanthene-based, isoindoline-based, and quinophthalone-based dyes; other lake pigments; and other blue, yellow, or green dyes or pigments.

本発明において、色調の調整のために混合する色素としては、青色カラーフィルター用着色剤に用いる場合、C.I.ベーシックブルー7などの本発明に属さないトリアリールメタン系色素、または、C.I.ベーシックバイオレット10、C.I.アシッドレッド52、289などのキサンテン系色素が好ましい。緑色カラーフィルター用着色剤に用いる場合、C.I.ピグメントイエロー138などのキノフタロン系色素、C.I.ピグメントイエロー139などのイソインドリン系色素、またはアゾ色素が好ましい。これらの色素と本発明に属するトリアリールメタン色素を用いることにより、明度やコントラスト比に優れた青色または緑色カラーフィルターを得ることができる。 In the present invention, when used as a coloring agent for a blue color filter, as a pigment to be mixed for color tone adjustment, C.I. I. Triarylmethane dyes that do not belong to the present invention, such as Basic Blue 7, or C.I. I. Basic Violet 10, C. I. Xanthene dyes such as Acid Red 52 and 289 are preferred. When used as a colorant for green color filters, C.I. I. Quinophthalone pigments such as Pigment Yellow 138, C.I. I. Isoindoline dyes such as Pigment Yellow 139, or azo dyes are preferred. By using these dyes and the triarylmethane dye belonging to the present invention, a blue or green color filter with excellent brightness and contrast ratio can be obtained.

本発明のカラーフィルター用着色剤における他の色素の混合比は、トリアリールメタン色素(2種以上の場合にはそれらの合計)に対して5~2000質量%であるのが好ましく、10~1000質量%がより好ましい。液状のカラーフィルター用着色剤中における染料などの色素成分の混合比は、着色剤全体に対して0.5~70質量%が好ましく、1~50質量%がより好ましい。 The mixing ratio of the other dyes in the colorant for color filters of the present invention is preferably 5 to 2000% by mass, more preferably 10 to 1000% by mass, based on the triarylmethane dye (the total of the triarylmethane dyes when two or more types are used). The mixing ratio of the dye or other dye components in the liquid colorant for color filters is preferably 0.5 to 70% by mass, more preferably 1 to 50% by mass, based on the total colorant.

本発明のカラーフィルター用着色剤における樹脂成分としては、これらを使用して形成されるカラーフィルター樹脂膜の製造方式や使用時に必要な性質を有するものであれば、公知のもの(例えば特許文献4(特開2017-83852号公報)、段落[0229]合成例23に記載の「バインダー樹脂(B1)」など)を使用することができる。具体的には、例えば、アクリル樹脂、オレフィン樹脂、スチレン樹脂、ポリイミド樹脂、ウレタン樹脂、ポリエステル樹脂、エポキシ樹脂、ビニルエーテル樹脂、フェノール(ノボラック)樹脂、その他の透明樹脂、光硬化性樹脂または熱硬化性樹脂があげられ、これらのモノマーまたはオリゴマー成分とを適宜組み合わせて使用することができる。また、これらの樹脂の共重合体を組み合わせて使用することもできる。これらのカラーフィルター用着色剤における樹脂の含有量は、液状の着色剤の場合、5~95質量%が好ましく、10~50質量%がより好ましい。 The resin component in the coloring agent for color filters of the present invention may be any known resin component (for example, Patent Document 4 (Japanese Unexamined Patent Publication No. 2017-83852), "binder resin (B1)" described in paragraph [0229] Synthesis Example 23, etc.) can be used. Specifically, for example, acrylic resin, olefin resin, styrene resin, polyimide resin, urethane resin, polyester resin, epoxy resin, vinyl ether resin, phenol (novolak) resin, other transparent resin, photocurable resin, or thermosetting resin. Examples include resins, and these monomers or oligomer components can be used in appropriate combinations. Moreover, copolymers of these resins can also be used in combination. The resin content in these color filter colorants is preferably 5 to 95% by mass, more preferably 10 to 50% by mass in the case of liquid colorants.

本発明の着色組成物は、カラーフィルター用着色剤としての性能を高めるために、化合物の他の成分として、界面活性剤、分散剤、消泡剤、レベリング剤、酸化防止剤、紫外線吸収剤、その他のカラーフィルター用着色剤の製造時に混合する添加剤、などの物質を添加することができる。ただし、着色組成物におけるこれらの添加剤の含有率は適量であることが好ましく、本発明の着色組成物の溶媒中の溶解性を低下させたり、もしくは必要以上に向上させたり、また、カラーフィルター製造時に用いる他の同種の添加剤の効果に影響を及ぼすことのない範囲の含有率であることが好ましい。これらの添加物は、着色組成物の調製の任意のタイミングで投入することができる。 In order to improve the performance as a coloring agent for color filters, the coloring composition of the present invention contains surfactants, dispersants, antifoaming agents, leveling agents, antioxidants, ultraviolet absorbers, Other substances such as additives mixed during the production of colorants for color filters can be added. However, it is preferable that the content of these additives in the coloring composition is in an appropriate amount. The content is preferably within a range that does not affect the effects of other similar additives used during production. These additives can be added at any timing during the preparation of the coloring composition.

本発明のカラーフィルター用着色剤におけるその他の添加剤としては、光重合開始剤や架橋剤などの樹脂の重合や硬化に必要な成分があげられ、また、液状のカラーフィルター用着色剤中の成分の性質を安定させるために必要な界面活性剤や分散剤などがあげられる。これらはいずれも、カラーフィルター製造用の公知のものを使用することができ、特に限定されない。カラーフィルター用着色剤の固形分全体におけるこれらの添加剤の総量の混合比は、5~60質量%が好ましく、10~40質量%がより好ましい。 Other additives in the coloring agent for color filters of the present invention include components necessary for polymerization and curing of the resin, such as photopolymerization initiators and crosslinking agents, and components in the liquid coloring agent for color filters. Examples include surfactants and dispersants that are necessary to stabilize the properties of For any of these, known ones for producing color filters can be used, and there are no particular limitations. The mixing ratio of the total amount of these additives in the entire solid content of the colorant for color filters is preferably 5 to 60% by mass, more preferably 10 to 40% by mass.

以下、本発明の実施の形態について、実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。合成実施例で記載した試薬は東京化成工業株式会社製、シグマアルドリッチ社製、Alfa Aesar社製等のものを使用した。また、合成実施例における反応はすべて、冷却管、撹拌装置、温度計を備えた反応容器を用いて行った。なお、下記合成実施例における化合物の同定は、H-NMR分析(ブルカー社製核磁気共鳴装置、型式:AscendTM 400MHz)により行った。 Hereinafter, embodiments of the present invention will be specifically described with reference to Examples, but the present invention is not limited to the following Examples. The reagents described in the synthesis examples were those manufactured by Tokyo Chemical Industry Co., Ltd., Sigma-Aldrich, Alfa Aesar, etc. Furthermore, all reactions in the synthesis examples were carried out using a reaction vessel equipped with a cooling tube, a stirring device, and a thermometer. The compounds in the following synthesis examples were identified by 1 H-NMR analysis (Bruker nuclear magnetic resonance apparatus, model: Ascend TM 400 MHz).

[合成実施例1]化合物(C-1)の合成
以下の反応は、窒素気流下で行った。反応容器に、4-ジエチルアミノベンズアルデヒド5.00g(28.2mmol)、2-フェニルインドール12.5g(64.9mmol)、メタノール55mL、テトラヒドロフラン(THF)5.5mL、濃塩酸5.0mLを入れ、室温(23~28℃)で5時間撹拌した。反応液を水150mLに加え、減圧ろ過した。得られた固体に5%炭酸水素ナトリウム水溶液150mLと酢酸エチル100mLを加え、室温(23~28℃)で撹拌後、ろ過した。ろ液の有機層を抽出し、水200mLで2回洗浄後、再度有機層を抽出した。無水硫酸マグネシウムで乾燥した後、減圧ろ過し、ろ液の溶媒を減圧留去した。残渣にメタノール150mLを加え、室温(23~28℃)で1時間撹拌後、ろ過した。得られた固体を60℃で減圧乾燥することで、下記(中間体100)を得た(14.9g、収率97%)。
[Synthesis Example 1] Synthesis of Compound (C-1) The following reaction was carried out under a nitrogen stream. 5.00 g (28.2 mmol) of 4-diethylaminobenzaldehyde, 12.5 g (64.9 mmol) of 2-phenylindole, 55 mL of methanol, 5.5 mL of tetrahydrofuran (THF), and 5.0 mL of concentrated hydrochloric acid were placed in a reaction vessel and stirred at room temperature (23-28°C) for 5 hours. The reaction liquid was added to 150 mL of water and filtered under reduced pressure. 150 mL of 5% aqueous sodium hydrogen carbonate solution and 100 mL of ethyl acetate were added to the obtained solid, stirred at room temperature (23-28°C), and then filtered. The organic layer of the filtrate was extracted and washed twice with 200 mL of water, and the organic layer was extracted again. After drying with anhydrous magnesium sulfate, it was filtered under reduced pressure, and the solvent of the filtrate was distilled off under reduced pressure. 150 mL of methanol was added to the residue, stirred at room temperature (23-28°C) for 1 hour, and then filtered. The obtained solid was dried under reduced pressure at 60° C. to obtain the following (Intermediate 100) (14.9 g, yield 97%).

Figure 2024046614000016
Figure 2024046614000016

続いて、以下の反応は、窒素雰囲気下で行った。反応容器に、前記(中間体100)5.00g(9.16mmol)と水酸化カリウム2.57g(27.5mmol)、N,N-ジメチルホルムアミド(DMF)25mLを入れ、室温(23~28℃)で30分撹拌した。この溶液に1-ブロモブタン3.77g(27.5mmol)を滴下した後、同温で4時間撹拌した。反応液に酢酸エチル100mLおよびヘプタン50mLを加え、減圧ろ過し、ろ液を水100mLで3回洗浄した。有機層を抽出し、無水硫酸マグネシウムで乾燥した後、減圧ろ過し、ろ液の溶媒を減圧留去した。残渣をジクロロメタン100mLに溶解した後、2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン(DDQ)2.50g(11.0mmol)を加え、室温(23~28℃)で1時間撹拌した。この溶液に濃塩酸2mLを加え、室温(23~28℃)で1時間撹拌した後、減圧ろ過した。ろ液を水100mL、飽和食塩水100mLで順次洗浄し、有機層を抽出した。無水硫酸マグネシウムで乾燥した後、減圧ろ過し、ろ液の溶媒を減圧留去した。残渣をカラムクロマトグラフィー(担体:シリカゲル、溶媒:ジクロロメタン/メタノール=100/1~10/1(体積比))で精製し、溶媒を減圧留去した。残渣を60℃で減圧乾燥し、下記(中間体101)を得た(3.12g,収率52%)。 The following reaction was then carried out under a nitrogen atmosphere. 5.00 g (9.16 mmol) of the above (intermediate 100), 2.57 g (27.5 mmol) of potassium hydroxide, and 25 mL of N,N-dimethylformamide (DMF) were placed in a reaction vessel and stirred at room temperature (23-28°C) for 30 minutes. 3.77 g (27.5 mmol) of 1-bromobutane was added dropwise to this solution, and the mixture was stirred at the same temperature for 4 hours. 100 mL of ethyl acetate and 50 mL of heptane were added to the reaction solution, which was then filtered under reduced pressure, and the filtrate was washed three times with 100 mL of water. The organic layer was extracted and dried over anhydrous magnesium sulfate, then filtered under reduced pressure, and the solvent of the filtrate was distilled off under reduced pressure. The residue was dissolved in 100 mL of dichloromethane, and 2.50 g (11.0 mmol) of 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) was added and the mixture was stirred at room temperature (23-28°C) for 1 hour. To this solution, 2 mL of concentrated hydrochloric acid was added, and the mixture was stirred at room temperature (23-28°C) for 1 hour, and then filtered under reduced pressure. The filtrate was washed with 100 mL of water and 100 mL of saturated saline solution in that order, and the organic layer was extracted. After drying over anhydrous magnesium sulfate, the mixture was filtered under reduced pressure, and the solvent in the filtrate was distilled off under reduced pressure. The residue was purified by column chromatography (carrier: silica gel, solvent: dichloromethane/methanol = 100/1 to 10/1 (volume ratio)), and the solvent was distilled off under reduced pressure. The residue was dried under reduced pressure at 60°C, and the following (Intermediate 101) was obtained (3.12 g, yield 52%).

Figure 2024046614000017
Figure 2024046614000017

続いて、反応容器に、前記(中間体101)3.00g(4.33mmol)、リチウムビス(トリフルオロメタンスルホニル)イミド(LiN(SOCF)1.24g(4.33mmol)、メタノール30mLを入れ、50℃で1時間撹拌した。反応液の溶媒を20mL減圧留去した後、減圧ろ過した。得られた固体に水30mLを加え60℃で1時間撹拌した後、減圧ろ過した。得られた固体を80℃で減圧乾燥し、目的の化合物(C-1)を茶色固体として得た(3.3g,収率82%)。 Next, 3.00 g (4.33 mmol) of the (intermediate 101), 1.24 g (4.33 mmol) of lithium bis(trifluoromethanesulfonyl)imide (LiN(SO 2 CF 3 ) 2 ), and 30 mL of methanol were placed in a reaction vessel and stirred at 50° C. for 1 hour. 20 mL of the solvent was removed by vacuum distillation, and then the mixture was filtered under reduced pressure. 30 mL of water was added to the obtained solid, and the mixture was stirred at 60° C. for 1 hour, and then filtered under reduced pressure. The obtained solid was dried under reduced pressure at 80° C. to obtain the target compound (C-1) as a brown solid (3.3 g, yield 82%).

得られた茶色固体のNMR測定を行い、以下の50個の水素のシグナルを検出し、下記式(C-1)で表される化合物の構造と同定した。 The obtained brown solid was subjected to NMR measurement, and the following 50 hydrogen signals were detected, and the structure was identified as that of a compound represented by the following formula (C-1).

H-NMR(400MHz、DMSO-d):δ(ppm)=8.30-6.14(22H)、4.16(4H)、3.54(4H)、1.61(4H)、1.16(10H)、0.74(6H)。 1H -NMR (400 MHz, DMSO- d6 ): δ (ppm) = 8.30-6.14 (22H), 4.16 (4H), 3.54 (4H), 1.61 (4H), 1.16 (10H), 0.74 (6H).

Figure 2024046614000018
Figure 2024046614000018

[合成実施例2]化合物(C-2)の合成
以下の反応は、窒素気流下で行った。反応容器に、2-フェニルインドール20.0g(104mmol)、水酸化カリウム19.4g(207mmol)、N,N-ジメチルホルムアミド(DMF)100mLを入れ、室温(23~28℃)で30分撹拌した。この溶液に1-ブロモブタン15.6g(114mmol)を滴下した後、同温で4時間撹拌した。反応液に酢酸エチル100mLとヘプタン100mLを加え、減圧ろ過し、ろ液を水200mLで3回洗浄した。有機層を抽出し、無水硫酸マグネシウムで乾燥した後、減圧ろ過し、ろ液の溶媒を減圧留去した。残渣をヘプタンに溶解し、シリカゲル50gを加え、室温で30分撹拌した。この溶液を減圧ろ過し、ろ液の溶媒を減圧留去することで下記(中間体102)を得た(17.3g、収率67%)。
[Synthesis Example 2] Synthesis of Compound (C-2) The following reaction was carried out under a nitrogen stream. 20.0 g (104 mmol) of 2-phenylindole, 19.4 g (207 mmol) of potassium hydroxide, and 100 mL of N,N-dimethylformamide (DMF) were placed in a reaction container, and the mixture was stirred at room temperature (23 to 28°C) for 30 minutes. . 15.6 g (114 mmol) of 1-bromobutane was added dropwise to this solution, and the mixture was stirred at the same temperature for 4 hours. 100 mL of ethyl acetate and 100 mL of heptane were added to the reaction solution, which was filtered under reduced pressure, and the filtrate was washed three times with 200 mL of water. The organic layer was extracted, dried over anhydrous magnesium sulfate, filtered under reduced pressure, and the solvent of the filtrate was distilled off under reduced pressure. The residue was dissolved in heptane, 50 g of silica gel was added, and the mixture was stirred at room temperature for 30 minutes. This solution was filtered under reduced pressure, and the solvent of the filtrate was distilled off under reduced pressure to obtain the following (intermediate 102) (17.3 g, yield 67%).

Figure 2024046614000019
Figure 2024046614000019

以下の反応は、窒素雰囲気下で行った。反応容器に、4-メチルジフェニルアミン9.16g(50.0mmol)、水酸化カリウム8.42g(150.0mmol)、ジメチルスルホキシド(DMSO)50mLを入れ、室温(23~28℃)で30分撹拌した。この溶液にヨードエタン23.4g(150mmol)を滴下した後、同温で24時間撹拌した。反応液に酢酸エチル150mLおよびヘプタン50mLを加え、減圧ろ過し、ろ液を水100mLで3回洗浄した。有機層を抽出し、無水硫酸マグネシウムで乾燥した後、減圧ろ過し、ろ液の溶媒を減圧留去した。残渣をヘプタンに溶解し、シリカゲル20gを加え室温で30分撹拌した。この溶液を減圧ろ過し、ろ液の溶媒を減圧留去することで下記(中間体103)を得た(3.10g、収率29%)。 The following reaction was carried out under a nitrogen atmosphere. 9.16 g (50.0 mmol) of 4-methyldiphenylamine, 8.42 g (150.0 mmol) of potassium hydroxide, and 50 mL of dimethyl sulfoxide (DMSO) were placed in a reaction vessel and stirred at room temperature (23-28°C) for 30 minutes. 23.4 g (150 mmol) of iodoethane was added dropwise to this solution, and the mixture was stirred at the same temperature for 24 hours. 150 mL of ethyl acetate and 50 mL of heptane were added to the reaction solution, which was then filtered under reduced pressure. The filtrate was washed three times with 100 mL of water. The organic layer was extracted, dried over anhydrous magnesium sulfate, filtered under reduced pressure, and the solvent in the filtrate was distilled off under reduced pressure. The residue was dissolved in heptane, 20 g of silica gel was added, and the mixture was stirred at room temperature for 30 minutes. This solution was filtered under reduced pressure, and the solvent in the filtrate was distilled off under reduced pressure to obtain the following (intermediate 103) (3.10 g, yield 29%).

Figure 2024046614000020
Figure 2024046614000020

続いて、以下の反応は、窒素雰囲気下で行った。反応容器に、DMF10mLを入れ、室温(23~28℃)で撹拌しながらオキシ塩化リン3.33g(21.8mmol)を滴下した。この溶液に、前記(中間体103)3.06g(14.5mmol)とDMF4.5mLの溶液を滴下した。同室温で3時間撹拌した後、反応液に水100mLを加えた。この溶液に水酸化ナトリウムを加え中和した後、酢酸エチル75mLおよびヘプタン25mLを加えた。有機層を抽出し、水100mLで3回洗浄し、再度有機層を抽出し、無水硫酸マグネシウムを加え乾燥した。この溶液を減圧ろ過し、溶媒を減圧留去した後、80℃で減圧乾燥することで下記(中間体104)を得た(3.20g、収率92%)。 Subsequently, the following reactions were performed under a nitrogen atmosphere. 10 mL of DMF was placed in a reaction vessel, and 3.33 g (21.8 mmol) of phosphorus oxychloride was added dropwise while stirring at room temperature (23 to 28°C). A solution of 3.06 g (14.5 mmol) of the above (Intermediate 103) and 4.5 mL of DMF was added dropwise to this solution. After stirring at the same room temperature for 3 hours, 100 mL of water was added to the reaction solution. After neutralizing this solution by adding sodium hydroxide, 75 mL of ethyl acetate and 25 mL of heptane were added. The organic layer was extracted, washed three times with 100 mL of water, and the organic layer was extracted again and dried by adding anhydrous magnesium sulfate. This solution was filtered under reduced pressure, the solvent was distilled off under reduced pressure, and then dried under reduced pressure at 80°C to obtain the following (intermediate 104) (3.20 g, yield 92%).

Figure 2024046614000021
Figure 2024046614000021

続いて、以下の反応は、窒素気流下で行った。反応容器に、前記(中間体104)3.20g(13.4mmol)、前記(中間体102)8.35g(33.5mmol)、メタノール27mL、濃塩酸6.70g(67.0mmol)を入れ、室温(23~28℃)で16時間撹拌した。反応液にジクロロメタン100mLおよび水100mLを加え、有機層を抽出した。水100mLで2回洗浄した後、有機層を再度抽出し、無水硫酸マグネシウムで乾燥した。この溶液を減圧ろ過し、ろ液の溶媒を減圧留去した。残渣にクロロホルム54mLを加え溶解した後、2,3,5,6-テトラクロロ-p-ベンゾキノン(p-クロラニル)6.59g(26.8mmol)を加え、60℃で3時間撹拌した。反応液を冷却後、減圧ろ過し、ろ液の溶媒を減圧留去した。残渣をカラムクロマトグラフィー(担体:シリカゲル、溶媒:ジクロロメタン/メタノール=100/1~10/1(体積比))で精製し、溶媒を減圧留去した。残渣を60℃で減圧乾燥し、下記(中間体105)を得た(7.29g,収率72%)。 Subsequently, the following reactions were performed under a nitrogen stream. Into a reaction container, put 3.20 g (13.4 mmol) of the above (Intermediate 104), 8.35 g (33.5 mmol) of the above (Intermediate 102), 27 mL of methanol, and 6.70 g (67.0 mmol) of concentrated hydrochloric acid, Stirred at room temperature (23-28°C) for 16 hours. 100 mL of dichloromethane and 100 mL of water were added to the reaction solution, and the organic layer was extracted. After washing twice with 100 mL of water, the organic layer was extracted again and dried over anhydrous magnesium sulfate. This solution was filtered under reduced pressure, and the solvent of the filtrate was distilled off under reduced pressure. After adding and dissolving 54 mL of chloroform to the residue, 6.59 g (26.8 mmol) of 2,3,5,6-tetrachloro-p-benzoquinone (p-chloranil) was added and stirred at 60° C. for 3 hours. After cooling the reaction solution, it was filtered under reduced pressure, and the solvent of the filtrate was distilled off under reduced pressure. The residue was purified by column chromatography (carrier: silica gel, solvent: dichloromethane/methanol = 100/1 to 10/1 (volume ratio)), and the solvent was distilled off under reduced pressure. The residue was dried under reduced pressure at 60°C to obtain the following (intermediate 105) (7.29 g, yield 72%).

Figure 2024046614000022
Figure 2024046614000022

続いて、反応容器に、前記(中間体105)7.20g(9.54mmol)、LiN(SOCF 2.74g(9.54mmol)、メタノール72mLを入れ、室温(23~28℃)で1時間撹拌した。反応液の溶媒を35mL減圧留去した後、水300mLを加え、室温(23~28℃)で1時間撹拌した後、減圧ろ過した。得られた固体を80℃で減圧乾燥し、目的の化合物(C-2)を紫色固体として得た(8.71g,収率91%)。 Subsequently, 7.20 g (9.54 mmol) of the above (intermediate 105), 2.74 g (9.54 mmol) of LiN(SO 2 CF 3 ) 2 and 72 mL of methanol were placed in a reaction container, and the mixture was heated to room temperature (23 to 28°C). ) for 1 hour. After 35 mL of the solvent in the reaction solution was distilled off under reduced pressure, 300 mL of water was added, the mixture was stirred at room temperature (23 to 28° C.) for 1 hour, and then filtered under reduced pressure. The obtained solid was dried under reduced pressure at 80° C. to obtain the target compound (C-2) as a purple solid (8.71 g, yield 91%).

得られた紫色固体のNMR測定を行い、以下の52個の水素のシグナルを検出し、下記式(C-2)で表される化合物の構造と同定した。 The obtained purple solid was subjected to NMR measurement, and the following 52 hydrogen signals were detected, which were identified as the structure of a compound represented by the following formula (C-2).

H-NMR(400MHz、DMSO-d):δ(ppm)=8.24-5.86(26H)、4.68-3.99(4H)、3.98-3.42(2H)、2.35(3H)、1.87-1.37(4H)、1.37-0.95(7H)、0.74(6H)。 1H -NMR (400MHz, DMSO- d6 ): δ(ppm) = 8.24-5.86 (26H), 4.68-3.99 (4H), 3.98-3.42 (2H), 2.35 (3H), 1.87-1.37 (4H), 1.37-0.95 (7H), 0.74 (6H).

Figure 2024046614000023
Figure 2024046614000023

[合成実施例3]化合物(C-3)の合成
以下の反応は、窒素気流下で行った。反応容器に、4-フルオロベンズアルデヒド4.96g(40.0mmol)、1-エチル-2-フェニルインドール19.5g(88.0mmol)、メタノール80mL、THF80mL、濃塩酸20.0g(200mmol)を入れ、室温(23~28℃)で16時間撹拌した。反応液の溶媒を減圧留去した後、残渣をジクロロメタン20mLに溶解した。この溶液にメタノール200mLを加え、減圧ろ過した。得られた固体にメタノール100mLを加え、室温(23~28℃)で1時間撹拌した後、減圧ろ過した。得られた固体を60℃減圧乾燥することで、下記(中間体106)を得た(21.5g、収率98%)。
[Synthesis Example 3] Synthesis of Compound (C-3) The following reaction was carried out under a nitrogen stream. 4.96 g (40.0 mmol) of 4-fluorobenzaldehyde, 19.5 g (88.0 mmol) of 1-ethyl-2-phenylindole, 80 mL of methanol, 80 mL of THF, and 20.0 g (200 mmol) of concentrated hydrochloric acid were placed in a reaction vessel and stirred at room temperature (23 to 28°C) for 16 hours. The solvent of the reaction solution was distilled off under reduced pressure, and the residue was dissolved in 20 mL of dichloromethane. 200 mL of methanol was added to this solution and filtered under reduced pressure. 100 mL of methanol was added to the obtained solid, and the mixture was stirred at room temperature (23 to 28°C) for 1 hour, and then filtered under reduced pressure. The obtained solid was dried under reduced pressure at 60°C to obtain the following (intermediate 106) (21.5 g, yield 98%).

Figure 2024046614000024
Figure 2024046614000024

続いて、反応容器に、前記中間体(106)21.5g(39.2mmol)、クロロホルム128mL、DDQ 14.2g(62.7mmol)を加え、室温(23~28℃)で1時間撹拌した後、減圧ろ過した。ろ液に1%アスコルビン酸水溶液100mLを加え、室温(23~28℃)で30分撹拌した後、有機層を抽出した。水100mLで2回洗浄した後、有機層を再度抽出し、無水硫酸マグネシウムで乾燥した。この溶液を減圧ろ過し、ろ液の溶媒を減圧留去した。残渣をカラムクロマトグラフィー(担体:シリカゲル、溶媒:ジクロロメタン/メタノール=100/1~10/1(体積比))で精製し、溶媒を減圧留去した。残渣を60℃で減圧乾燥し、下記(中間体107)を得た(6.58g,収率29%)。 Next, 21.5 g (39.2 mmol) of the intermediate (106), 128 mL of chloroform, and 14.2 g (62.7 mmol) of DDQ were added to the reaction vessel, and the mixture was stirred at room temperature (23 to 28°C) for 1 hour, and then filtered under reduced pressure. 100 mL of 1% aqueous ascorbic acid solution was added to the filtrate, and the mixture was stirred at room temperature (23 to 28°C) for 30 minutes, and the organic layer was extracted. After washing twice with 100 mL of water, the organic layer was extracted again and dried over anhydrous magnesium sulfate. This solution was filtered under reduced pressure, and the solvent of the filtrate was distilled off under reduced pressure. The residue was purified by column chromatography (carrier: silica gel, solvent: dichloromethane/methanol = 100/1 to 10/1 (volume ratio)), and the solvent was distilled off under reduced pressure. The residue was dried under reduced pressure at 60°C to obtain the following (intermediate 107) (6.58 g, yield 29%).

Figure 2024046614000025
Figure 2024046614000025

続いて、以下の反応は、窒素気流下で行った。反応容器に、前記(中間体107)1.98g(3.40mmol)、1-ブタノール30mLを入れ、室温(23~28℃)で撹拌した。この溶液にp-フェネチジン0.93g(6.80mmol)を滴下した後、105℃で3時間撹拌した。反応液を冷却後、酢酸エチル100mLおよび1M塩酸水溶液100mLを加え、有機層を抽出した。さらに1M塩酸水溶液100mL、飽和食塩水100mLで順次洗浄した後、有機層を再度抽出し、無水硫酸マグネシウムで乾燥した。この溶液を減圧ろ過し、ろ液の溶媒を減圧留去した。残渣をメタノール100mLに溶解した後、1M塩酸水溶液300mLを加え、室温(23~28℃)で1時間撹拌した後、減圧ろ過した。得られた固体をジエチルエーテル30mLに溶解した後、ヘプタン30mLを加え、室温(23~28℃)で1時間撹拌した後、上澄み液を除去した。残渣を60℃で減圧乾燥し、下記(中間体108)を得た(1.63g,収率68%)。 The following reaction was then carried out under a nitrogen stream. 1.98 g (3.40 mmol) of the above (intermediate 107) and 30 mL of 1-butanol were placed in a reaction vessel and stirred at room temperature (23-28°C). 0.93 g (6.80 mmol) of p-phenetidine was added dropwise to this solution, and the solution was stirred at 105°C for 3 hours. After cooling the reaction solution, 100 mL of ethyl acetate and 100 mL of 1M aqueous hydrochloric acid were added to extract the organic layer. After washing with 100 mL of 1M aqueous hydrochloric acid and 100 mL of saturated saline in sequence, the organic layer was extracted again and dried over anhydrous magnesium sulfate. This solution was filtered under reduced pressure, and the solvent of the filtrate was distilled off under reduced pressure. The residue was dissolved in 100 mL of methanol, and then 300 mL of 1M aqueous hydrochloric acid was added, stirred at room temperature (23-28°C) for 1 hour, and then filtered under reduced pressure. The resulting solid was dissolved in 30 mL of diethyl ether, then 30 mL of heptane was added and stirred at room temperature (23-28°C) for 1 hour, after which the supernatant was removed. The residue was dried under reduced pressure at 60°C to obtain the following (Intermediate 108) (1.63 g, yield 68%).

Figure 2024046614000026
Figure 2024046614000026

続いて、反応容器に、前記(中間体108)1.60g(2.28mmol)、LiN(SOCF 0.66g(2.28mmol)、メタノール16mLを入れ、室温(23~28℃)で1時間撹拌した。反応液に水200mLを加え、室温(23~28℃)で1時間撹拌した後、減圧ろ過した。得られた固体を80℃で減圧乾燥し、目的の化合物(C-3)を茶色固体として得た(2.01g,収率93%)。 Subsequently, 1.60 g (2.28 mmol) of the above (intermediate 108), 0.66 g (2.28 mmol) of LiN(SO 2 CF 3 ) 2 and 16 mL of methanol were placed in a reaction vessel, and the mixture was heated to room temperature (23 to 28°C). ) for 1 hour. 200 mL of water was added to the reaction solution, stirred at room temperature (23-28°C) for 1 hour, and then filtered under reduced pressure. The obtained solid was dried under reduced pressure at 80° C. to obtain the target compound (C-3) as a brown solid (2.01 g, yield 93%).

得られた茶色固体のNMR測定を行い、以下の42個の水素のシグナルを検出し、下記式(C-3)で表される化合物の構造と同定した。 NMR measurement of the obtained brown solid was performed, and the following 42 hydrogen signals were detected, identifying the structure as the compound represented by the following formula (C-3).

H-NMR(400MHz、DMSO-d):δ(ppm)=8.34-6.11(27H)、4.59-3.80(6H)、1.64-1.02(9H)。 1 H-NMR (400 MHz, DMSO-d 6 ): δ (ppm) = 8.34-6.11 (27H), 4.59-3.80 (6H), 1.64-1.02 (9H) .

Figure 2024046614000027
Figure 2024046614000027

[合成実施例4]化合物(C-4)の合成
以下の反応は、窒素気流下で行った。反応容器に、2-フェニルインドール19.3g(100mmol)、4-ブロモトルエン20.5g(120mmol)、リン酸三カリウム42.5g(200mmol)、ヨウ化銅(I)1.90g(10.0mmol)、trans-1,2-ジアミノシクロヘキサン2.28g(20.0mmol)、トルエン100mLを入れ、110℃で40時間撹拌した。反応液に0.5M塩酸水溶液100mLおよび酢酸エチル100mLを加え、有機層を抽出した。無水硫酸マグネシウムで乾燥した後、ろ過し、ろ液を減圧濃縮した。残渣にジクロロメタン165mLとヘプタン335mLの混合溶液を加え、室温(23~28℃)で30分撹拌した後、減圧ろ過した。ろ液の溶媒を減圧留去した後、80℃で減圧乾燥することで下記(中間体109)を得た(22.7g、収率80%)。
[Synthesis Example 4] Synthesis of Compound (C-4) The following reaction was carried out under a nitrogen stream. 19.3 g (100 mmol) of 2-phenylindole, 20.5 g (120 mmol) of 4-bromotoluene, 42.5 g (200 mmol) of tripotassium phosphate, 1.90 g (10.0 mmol) of copper (I) iodide, 2.28 g (20.0 mmol) of trans-1,2-diaminocyclohexane, and 100 mL of toluene were placed in a reaction vessel and stirred at 110°C for 40 hours. 100 mL of 0.5 M aqueous hydrochloric acid solution and 100 mL of ethyl acetate were added to the reaction solution, and the organic layer was extracted. After drying with anhydrous magnesium sulfate, the solution was filtered, and the filtrate was concentrated under reduced pressure. A mixed solution of 165 mL of dichloromethane and 335 mL of heptane was added to the residue, and the mixture was stirred at room temperature (23 to 28°C) for 30 minutes, and then filtered under reduced pressure. The solvent in the filtrate was distilled off under reduced pressure, and the residue was dried under reduced pressure at 80° C. to obtain the following (Intermediate 109) (22.7 g, yield 80%).

Figure 2024046614000028
Figure 2024046614000028

続いて、以下の反応は、窒素気流下で行った。反応容器に、4-フルオロベンズアルデヒド0.62g(5.00mmol)、前記(中間体109)2.83g(10.0mmol)、メタノール6.7mL、テトラヒドロフラン(THF)3.3mL、濃塩酸2.00g(20.0mmol)を入れ、室温(23~28℃)で2時間撹拌した。反応液を減圧ろ過後、得られた固体をメタノール100mLで分散洗浄した。この溶液を減圧ろ過し、得られた固体を60℃で減圧乾燥することで、下記(中間体110)を得た(2.89g,収率86%)。 Then, the following reaction was carried out under a nitrogen stream. 0.62 g (5.00 mmol) of 4-fluorobenzaldehyde, 2.83 g (10.0 mmol) of the above (Intermediate 109), 6.7 mL of methanol, 3.3 mL of tetrahydrofuran (THF), and 2.00 g (20.0 mmol) of concentrated hydrochloric acid were placed in a reaction vessel and stirred at room temperature (23-28°C) for 2 hours. After the reaction solution was filtered under reduced pressure, the obtained solid was dispersed and washed with 100 mL of methanol. This solution was filtered under reduced pressure, and the obtained solid was dried under reduced pressure at 60°C to obtain the following (Intermediate 110) (2.89 g, yield 86%).

Figure 2024046614000029
Figure 2024046614000029

続いて、反応容器に、前記(中間体110)2.89g(4.30mmol)、クロロホルム10.3mLを入れ溶解後、DDQ 1.17g(5.16mmol)を加え、室温(23~28℃)で1時間撹拌した。反応液を減圧ろ過し、ろ液に水100mLを加え、室温(23~28℃)で30分撹拌した。有機層を抽出した後、無水硫酸マグネシウムを加え乾燥し、減圧ろ過した。ろ液の溶媒を減圧留去した後、60℃で減圧乾燥することで、下記(中間体111)を得た(3.50g,収率99%)。 Next, 2.89 g (4.30 mmol) of the (Intermediate 110) and 10.3 mL of chloroform were placed in a reaction vessel and dissolved, after which 1.17 g (5.16 mmol) of DDQ was added and stirred at room temperature (23-28°C) for 1 hour. The reaction solution was filtered under reduced pressure, and 100 mL of water was added to the filtrate and stirred at room temperature (23-28°C) for 30 minutes. The organic layer was extracted, dried with anhydrous magnesium sulfate, and filtered under reduced pressure. The solvent in the filtrate was distilled off under reduced pressure, and then dried at 60°C under reduced pressure to obtain the following (Intermediate 111) (3.50 g, yield 99%).

Figure 2024046614000030
Figure 2024046614000030

続いて、以下の反応は、窒素気流下で行った。反応容器に、前記(中間体111)3.54g(5.00mmol)、p-フェネチジン1.37g(10.0mmol)、1-ブタノール50.0mLを入れ、105℃で16時間撹拌した。反応液を室温(23~28℃)まで冷却後、酢酸エチル100mLおよびLiN(SOCF 2.87g(10.0mmol)を加え20分撹拌した。この溶液に水100mLを加え、有機層を抽出した。無水硫酸マグネシウムで乾燥した。この溶液を減圧ろ過し、ろ液の溶媒を減圧留去した。残渣をカラムクロマトグラフィー(担体:シリカゲル、溶媒:ジクロロメタン/メタノール=100/0~99/1(体積比))で精製し、溶媒を減圧留去した。残渣を60℃で減圧乾燥し、目的の化合物(C-4)を茶色固体として得た(1.64g,収率31%)。 Subsequently, the following reactions were performed under a nitrogen stream. 3.54 g (5.00 mmol) of the above (Intermediate 111), 1.37 g (10.0 mmol) of p-phenetidine, and 50.0 mL of 1-butanol were placed in a reaction container, and the mixture was stirred at 105° C. for 16 hours. After cooling the reaction solution to room temperature (23 to 28°C), 100 mL of ethyl acetate and 2.87 g (10.0 mmol) of LiN(SO 2 CF 3 ) 2 were added and stirred for 20 minutes. 100 mL of water was added to this solution, and the organic layer was extracted. It was dried with anhydrous magnesium sulfate. This solution was filtered under reduced pressure, and the solvent of the filtrate was distilled off under reduced pressure. The residue was purified by column chromatography (carrier: silica gel, solvent: dichloromethane/methanol = 100/0 to 99/1 (volume ratio)), and the solvent was distilled off under reduced pressure. The residue was dried under reduced pressure at 60° C. to obtain the target compound (C-4) as a brown solid (1.64 g, yield 31%).

得られた茶色固体のNMR測定を行い、以下の46個の水素のシグナルを検出し、下記式(C-4)で表される化合物の構造と同定した。 NMR measurement of the obtained brown solid was performed, and the following 46 hydrogen signals were detected, identifying the structure as the compound represented by the following formula (C-4).

H-NMR(400MHz、DMSO-d):δ(ppm)=10.57(1H)、7.67-6.10(34H)、4.08(2H)、2.35(6H)、1.35(3H)。 1 H-NMR (400 MHz, DMSO-d 6 ): δ (ppm) = 10.57 (1H), 7.67-6.10 (34H), 4.08 (2H), 2.35 (6H), 1.35 (3H).

Figure 2024046614000031
Figure 2024046614000031

[合成実施例5]化合物(C-5)の合成
以下の反応は、窒素気流下で行った。反応容器に、4-ジエチルアミノベンズアルデヒド1.17g(10.0mmol)、前記(中間体109)5.67g(20.0mmol)、尿素0.30g(5.00mmol)、エチルセロソルブ20.0mLを入れ、撹拌した。この溶液に濃塩酸5.00g(50.0mmol)を加え、この溶液を105℃で16時間撹拌した。反応液を室温(23~28℃)まで冷却後、酢酸エチル100mLを加え、水100mLで2回、飽和食塩水100mLで1回洗浄した。有機層を抽出し、無水硫酸マグネシウムを加え乾燥後、ろ過した。ろ液を減圧濃縮した後、60℃で減圧乾燥することで下記(中間体112)を得た(7.20g,収率100%)。
[Synthesis Example 5] Synthesis of Compound (C-5) The following reaction was carried out under a nitrogen stream. 1.17 g (10.0 mmol) of 4-diethylaminobenzaldehyde, 5.67 g (20.0 mmol) of the above (Intermediate 109), 0.30 g (5.00 mmol) of urea, and 20.0 mL of ethyl cellosolve were placed in a reaction vessel and stirred. 5.00 g (50.0 mmol) of concentrated hydrochloric acid was added to this solution, and this solution was stirred at 105°C for 16 hours. After cooling the reaction solution to room temperature (23 to 28°C), 100 mL of ethyl acetate was added, and the solution was washed twice with 100 mL of water and once with 100 mL of saturated saline. The organic layer was extracted, dried by adding anhydrous magnesium sulfate, and filtered. The filtrate was concentrated under reduced pressure and then dried under reduced pressure at 60°C to obtain the following (Intermediate 112) (7.20 g, yield 100%).

Figure 2024046614000032
Figure 2024046614000032

続いて以下の反応は、窒素気流下で行った。反応容器に、前記(中間体112)7.20g(10.0mmol)、クロロホルム20.0mLを入れ溶解し、DDQ2.27g(10.0mmol)を加え、60℃で3時間撹拌した。反応液を室温(23~28℃)まで冷却後、反応液を減圧ろ過し、ろ液を減圧濃縮した。残渣をメタノール100mLに溶解し、減圧ろ過した。ろ液にLiN(SOCF 5.74g(20.0mmol)を加え、室温(23~28℃)で20分撹拌した。この溶液に水200mLを加え、減圧ろ過した。得られた固体をカラムクロマトグラフィー(担体:シリカゲル、溶媒:ジクロロメタン/ヘプタン=50/50~100/0(体積比))で精製し、溶媒を減圧留去した。残渣を60℃で減圧乾燥し、目的の化合物(C-5)を青紫色固体として得た(3.60g,収率35.8%)。 Subsequently, the following reactions were performed under a nitrogen stream. 7.20 g (10.0 mmol) of the above (intermediate 112) and 20.0 mL of chloroform were placed in a reaction container and dissolved therein, and 2.27 g (10.0 mmol) of DDQ was added thereto, followed by stirring at 60° C. for 3 hours. After cooling the reaction solution to room temperature (23-28°C), the reaction solution was filtered under reduced pressure, and the filtrate was concentrated under reduced pressure. The residue was dissolved in 100 mL of methanol and filtered under reduced pressure. 5.74 g (20.0 mmol) of LiN(SO 2 CF 3 ) 2 was added to the filtrate, and the mixture was stirred at room temperature (23 to 28° C.) for 20 minutes. 200 mL of water was added to this solution and filtered under reduced pressure. The obtained solid was purified by column chromatography (carrier: silica gel, solvent: dichloromethane/heptane = 50/50 to 100/0 (volume ratio)), and the solvent was distilled off under reduced pressure. The residue was dried under reduced pressure at 60° C. to obtain the target compound (C-5) as a blue-purple solid (3.60 g, yield 35.8%).

得られた青紫色固体のNMR測定を行い、以下の46個の水素のシグナルを検出し、下記式(C-5)で表される化合物の構造と同定した。 NMR measurement of the obtained blue-purple solid was performed, and the following 46 hydrogen signals were detected, identifying the structure as the compound represented by the following formula (C-5).

H-NMR(400MHz、DMSO-d):δ(ppm)=8.25-6.62(30H)、4.04-3.37(4H)、2.34(6H)、1.57-0.65(6H)。 1 H-NMR (400 MHz, DMSO-d 6 ): δ (ppm) = 8.25-6.62 (30H), 4.04-3.37 (4H), 2.34 (6H), 1.57-0.65 (6H).

Figure 2024046614000033
Figure 2024046614000033

[合成実施例6]化合物(C-6)の合成
以下の反応は、窒素気流下で行った。反応容器に、前記(中間体111)10.6g(15.0mmol)、4-アミノベンゾトリフルオリド4.83g(30.0mmol)、1-ブタノール150mLを入れ、105℃で16時間撹拌した。反応液を減圧濃縮した後、残渣にジクロロメタン200mLおよび水200mLを加え有機層を抽出した。有機層を減圧濃縮した後、残渣をメタノール100mLに溶解し、LiN(SOCF 8.61g(30.0mmol)を加え、室温(23~28℃)で20分撹拌した。この溶液を減圧濃縮し、残渣をカラムクロマトグラフィー(担体:シリカゲル、溶媒:ヘプタン/ジクロロメタン=25/75~100/0(体積比))で精製し、溶媒を減圧留去した。残渣を60℃で減圧乾燥し、目的の化合物(C-6)を茶色固体として得た(3.60g,収率22%)。
[Synthesis Example 6] Synthesis of Compound (C-6) The following reaction was carried out under a nitrogen stream. 10.6 g (15.0 mmol) of the above (intermediate 111), 4.83 g (30.0 mmol) of 4-aminobenzotrifluoride, and 150 mL of 1-butanol were placed in a reaction vessel, and the mixture was stirred at 105° C. for 16 hours. After the reaction solution was concentrated under reduced pressure, 200 mL of dichloromethane and 200 mL of water were added to the residue to extract the organic layer. After concentrating the organic layer under reduced pressure, the residue was dissolved in 100 mL of methanol, 8.61 g (30.0 mmol) of LiN(SO 2 CF 3 ) 2 was added, and the mixture was stirred at room temperature (23 to 28° C.) for 20 minutes. This solution was concentrated under reduced pressure, and the residue was purified by column chromatography (carrier: silica gel, solvent: heptane/dichloromethane = 25/75 to 100/0 (volume ratio)), and the solvent was distilled off under reduced pressure. The residue was dried under reduced pressure at 60° C. to obtain the target compound (C-6) as a brown solid (3.60 g, yield 22%).

得られた茶色固体のNMR測定を行い、以下の41個の水素のシグナルを検出し、下記式(C-6)で表される化合物の構造と同定した。 NMR measurement of the obtained brown solid was performed, and the following 41 hydrogen signals were detected, identifying the structure as the compound represented by the following formula (C-6).

H-NMR(400MHz、DMSO-d):δ(ppm)=10.14(1H)、8.60-5.96(34H)、2.36(6H)。 1 H-NMR (400 MHz, DMSO-d 6 ): δ (ppm) = 10.14 (1H), 8.60-5.96 (34H), 2.36 (6H).

Figure 2024046614000034
Figure 2024046614000034

[合成実施例7]化合物(C-7)の合成
以下の反応は、窒素気流下で行った。反応容器に、前記(中間体111)10.6g(15.0mmol)、N-メチルアニリン3.54g(33.0mmol)、1-ブタノール150mLを入れ、105℃で16時間撹拌した。反応液を減圧濃縮した後、残渣にジクロロメタン200mLおよび水200mLを加え有機層を抽出した。有機層を減圧濃縮した後、残渣をメタノール100mLに溶解し、LiN(SOCF 8.61g(30.0mmol)を加え、室温(23~28℃)で20分撹拌した。この溶液を減圧濃縮し、残渣をカラムクロマトグラフィー(担体:シリカゲル、溶媒:ヘプタン/ジクロロメタン=50/50~100/0(体積比))で精製し、溶媒を減圧留去した。残渣を60℃で減圧乾燥し、目的の化合物(C-7)を茶色固体として得た(6.00g,収率38%)。
[Synthesis Example 7] Synthesis of Compound (C-7) The following reaction was carried out under a nitrogen stream. 10.6 g (15.0 mmol) of the (intermediate 111), 3.54 g (33.0 mmol) of N-methylaniline, and 150 mL of 1-butanol were placed in a reaction vessel and stirred at 105° C. for 16 hours. The reaction solution was concentrated under reduced pressure, and then 200 mL of dichloromethane and 200 mL of water were added to the residue to extract the organic layer. The organic layer was concentrated under reduced pressure, and then the residue was dissolved in 100 mL of methanol, and 8.61 g (30.0 mmol) of LiN(SO 2 CF 3 ) 2 was added, and the mixture was stirred at room temperature (23 to 28° C.) for 20 minutes. The solution was concentrated under reduced pressure, and the residue was purified by column chromatography (carrier: silica gel, solvent: heptane/dichloromethane=50/50 to 100/0 (volume ratio)), and the solvent was distilled off under reduced pressure. The residue was dried under reduced pressure at 60° C. to obtain the desired compound (C-7) as a brown solid (6.00 g, yield 38%).

得られた茶色固体のNMR測定を行い、以下の44個の水素のシグナルを検出し、下記式(C-7)で表される化合物の構造と同定した。 The obtained brown solid was subjected to NMR measurement, and the following 44 hydrogen signals were detected and identified as the structure of a compound represented by the following formula (C-7).

H-NMR(400MHz、DMSO-d):δ(ppm)=8.29-5.77(35H)、3.69(3H)、2.35(6H)。 1 H-NMR (400 MHz, DMSO-d 6 ): δ (ppm) = 8.29-5.77 (35H), 3.69 (3H), 2.35 (6H).

Figure 2024046614000035
Figure 2024046614000035

[合成実施例8]化合物(C-8)の合成
以下の反応は、窒素気流下で行った。反応容器に、前記(中間体111)17.0g(24.0mmol)、N-メチル-p-アニシジン4.94g(36.0mmol)、1-ブタノール240mLを入れ、105℃で16時間撹拌した。反応液を減圧濃縮した後、残渣にジクロロメタン200mLおよび水200mLを加え有機層を抽出した。有機層を減圧濃縮した後、残渣をメタノール100mLに溶解し、LiN(SOCF 10.3g(36.0mmol)を加え、室温(23~28℃)で20分撹拌した。この溶液を減圧濃縮し、残渣をカラムクロマトグラフィー(担体:シリカゲル、溶媒:ヘプタン/ジクロロメタン=50/50~100/0(体積比))で精製し、溶媒を減圧留去した。残渣を60℃で減圧乾燥し、目的の化合物(C-8)を茶色固体として得た(7.00g,収率27%)。
[Synthesis Example 8] Synthesis of Compound (C-8) The following reaction was carried out under a nitrogen stream. 17.0 g (24.0 mmol) of the above (Intermediate 111), 4.94 g (36.0 mmol) of N-methyl-p-anisidine, and 240 mL of 1-butanol were placed in a reaction vessel, and the mixture was stirred at 105° C. for 16 hours. After the reaction solution was concentrated under reduced pressure, 200 mL of dichloromethane and 200 mL of water were added to the residue to extract the organic layer. After concentrating the organic layer under reduced pressure, the residue was dissolved in 100 mL of methanol, 10.3 g (36.0 mmol) of LiN(SO 2 CF 3 ) 2 was added, and the mixture was stirred at room temperature (23 to 28° C.) for 20 minutes. This solution was concentrated under reduced pressure, and the residue was purified by column chromatography (carrier: silica gel, solvent: heptane/dichloromethane = 50/50 to 100/0 (volume ratio)), and the solvent was distilled off under reduced pressure. The residue was dried under reduced pressure at 60° C. to obtain the target compound (C-8) as a brown solid (7.00 g, yield 27%).

得られた茶色固体のNMR測定を行い、以下の46個の水素のシグナルを検出し、下記式(C-8)で表される化合物の構造と同定した。 The obtained brown solid was subjected to NMR measurement, and the following 46 hydrogen signals were detected and identified as the structure of a compound represented by the following formula (C-8).

H-NMR(400MHz、DMSO-d):δ(ppm)=8.36-5.73(34H)、3.85(3H)、3.51(3H)、2.35(6H)。 1 H-NMR (400 MHz, DMSO-d 6 ): δ (ppm) = 8.36-5.73 (34H), 3.85 (3H), 3.51 (3H), 2.35 (6H).

Figure 2024046614000036
Figure 2024046614000036

[合成実施例9]化合物(C-9)の合成
以下の反応は、窒素気流下で行った。反応容器に、フェノール12.8g(136mmol)、炭酸カリウム46.9g(339mmol)、DMF113mLを入れ、室温(23~28℃)で10分間、撹拌した。反応液に2-クロロ-4-フルオロベンジルブロミド25.3g(113mmol)を加え、室温(23~28℃)で18時間撹拌した。反応液に酢酸エチル150mLを加えた後、この溶液を水200mL、0.5M炭酸カリウム水溶液200mL、飽和食塩水200mLで順次洗浄した。有機層を抽出した後、無水硫酸マグネシウムで乾燥し、ろ過した。ろ液を減圧濃縮し、残渣にジクロロメタン100mL、ヘプタン100mL、活性白土30gを加え、室温(23~28℃)で20分撹拌した後、ろ過した。ろ液の溶媒を減圧留去することで下記(中間体113)を得た(25.8g、収率96%)。
[Synthesis Example 9] Synthesis of Compound (C-9) The following reaction was carried out under a nitrogen stream. 12.8 g (136 mmol) of phenol, 46.9 g (339 mmol) of potassium carbonate, and 113 mL of DMF were placed in a reaction vessel and stirred at room temperature (23 to 28°C) for 10 minutes. 25.3 g (113 mmol) of 2-chloro-4-fluorobenzyl bromide was added to the reaction solution and stirred at room temperature (23 to 28°C) for 18 hours. 150 mL of ethyl acetate was added to the reaction solution, and the solution was washed with 200 mL of water, 200 mL of 0.5 M aqueous potassium carbonate solution, and 200 mL of saturated saline solution in that order. The organic layer was extracted, dried over anhydrous magnesium sulfate, and filtered. The filtrate was concentrated under reduced pressure, and 100 mL of dichloromethane, 100 mL of heptane, and 30 g of activated clay were added to the residue, and the mixture was stirred at room temperature (23 to 28°C) for 20 minutes and then filtered. The solvent in the filtrate was distilled off under reduced pressure to obtain the following (Intermediate 113) (25.8 g, yield 96%).

続いて、以下の反応は、窒素気流下で行った。反応容器に、前記(中間体113)25.8g(109mmol)、ベンジリデンアニリン24.6g(136mmol)、カリウムt-ブトキシド30.4g(271mmol)、DMF110mLを入れ、60℃で16時間撹拌した。反応液を室温まで冷却した後、酢酸エチル200mLを加え、この溶液を水200mL、0.5M炭酸カリウム水溶液200mL、1M塩酸水溶液200mL、飽和食塩水200mLで順次洗浄した。有機層を抽出した後、無水硫酸マグネシウムで乾燥し、ろ過した。ろ液を減圧濃縮し、残渣をカラムクロマトグラフィー(担体:シリカゲル、溶媒:ヘプタン/ジクロロメタン=85/15(体積比))で精製した。溶媒を減圧留去することで下記(中間体114)を得た(16.8g,収率54%)。 Subsequently, the following reactions were performed under a nitrogen stream. 25.8 g (109 mmol) of the above (Intermediate 113), 24.6 g (136 mmol) of benzylidene aniline, 30.4 g (271 mmol) of potassium t-butoxide, and 110 mL of DMF were placed in a reaction vessel and stirred at 60° C. for 16 hours. After cooling the reaction solution to room temperature, 200 mL of ethyl acetate was added, and this solution was washed successively with 200 mL of water, 200 mL of 0.5M aqueous potassium carbonate, 200 mL of 1M aqueous hydrochloric acid, and 200 mL of saturated brine. After extracting the organic layer, it was dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated under reduced pressure, and the residue was purified by column chromatography (carrier: silica gel, solvent: heptane/dichloromethane = 85/15 (volume ratio)). By distilling off the solvent under reduced pressure, the following (intermediate 114) was obtained (16.8 g, yield 54%).

続いて、以下の反応は、窒素気流下で行った。反応容器に、前記(中間体114)16.8g(58.5mmol)、4-フルオロベンズアルデヒド3.63g(29.3mmol)、尿素0.88g(14.6mmol)、エチルセロソルブ292mL、濃塩酸5.85g(58.5mmol)を入れ、135℃で16時間撹拌した。反応液を室温まで冷却した後、酢酸エチル200mLを加え、この溶液を水400mL、1M塩酸水溶液400mL、飽和食塩水100mLで順次洗浄した。有機層を抽出した後、無水硫酸マグネシウムで乾燥し、ろ過した。ろ液を減圧濃縮し、残渣にジクロロメタン100mLとメタノール100mLを加え溶解した。この溶液を減圧濃縮し、ジクロロメタンを留去した後、析出した固体をろ取した。得られた固体をメタノール100mLで分散洗浄した。この溶液をろ過し、得られた固体を60℃で減圧乾燥することで下記(中間体115)を得た(15.0g,収率75%)。 The following reaction was then carried out under a nitrogen stream. 16.8 g (58.5 mmol) of the above (intermediate 114), 3.63 g (29.3 mmol) of 4-fluorobenzaldehyde, 0.88 g (14.6 mmol) of urea, 292 mL of ethyl cellosolve, and 5.85 g (58.5 mmol) of concentrated hydrochloric acid were placed in a reaction vessel and stirred at 135°C for 16 hours. After cooling the reaction solution to room temperature, 200 mL of ethyl acetate was added, and the solution was washed successively with 400 mL of water, 400 mL of 1M aqueous hydrochloric acid, and 100 mL of saturated saline. The organic layer was extracted, dried over anhydrous magnesium sulfate, and filtered. The filtrate was concentrated under reduced pressure, and 100 mL of dichloromethane and 100 mL of methanol were added to the residue to dissolve it. The solution was concentrated under reduced pressure, dichloromethane was distilled off, and the precipitated solid was collected by filtration. The obtained solid was dispersed and washed with 100 mL of methanol. This solution was filtered, and the resulting solid was dried under reduced pressure at 60°C to obtain the following (Intermediate 115) (15.0 g, yield 75%).

続いて、反応容器に、前記(中間体115)15.0g(22.0mmol)、ジクロロメタン80mL、DDQ8.99g(39.6mmol)を加え、室温(23~28℃)で18時間撹拌した後、ろ過した。ろ液に0.5M炭酸カリウム水溶液100mLを加え、室温(23~28℃)で30分間撹拌した。この溶液に1M塩酸水溶液を加え、pHを1にした後、有機層を抽出した。有機層を1M塩酸水溶液100mLで2回洗浄した後、有機層を再度抽出し、無水硫酸マグネシウムで乾燥した。この溶液をろ過し、ろ液にヘプタン200mLを加え、析出した固体をろ取した。得られた固体にヘプタン180mLとジクロロメタン20mLの混合溶媒を加え、室温(23~28℃)で分散洗浄した後、ろ過した。得られた固体を60℃で減圧乾燥し、下記(中間体116)を得た(9.60g,収率61%)。 Next, 15.0 g (22.0 mmol) of the (intermediate 115), 80 mL of dichloromethane, and 8.99 g (39.6 mmol) of DDQ were added to a reaction vessel, stirred at room temperature (23-28°C) for 18 hours, and then filtered. 100 mL of 0.5 M potassium carbonate aqueous solution was added to the filtrate, and stirred at room temperature (23-28°C) for 30 minutes. 1 M hydrochloric acid aqueous solution was added to this solution to adjust the pH to 1, and the organic layer was extracted. The organic layer was washed twice with 100 mL of 1 M hydrochloric acid aqueous solution, and then the organic layer was extracted again and dried with anhydrous magnesium sulfate. This solution was filtered, 200 mL of heptane was added to the filtrate, and the precipitated solid was filtered. A mixed solvent of 180 mL of heptane and 20 mL of dichloromethane was added to the obtained solid, dispersed and washed at room temperature (23-28°C), and then filtered. The resulting solid was dried under reduced pressure at 60°C to obtain the following (Intermediate 116) (9.60 g, yield 61%).

続いて、以下の反応は、窒素気流下で行った。反応容器に、前記(中間体116)1.43g(2.00mmol)、N-メチルアニリン1.71g(16.0mmol)、1-ブタノール20mLを入れ、105℃で2時間撹拌した。反応液を減圧濃縮した後、残渣にジクロロメタン50mLを加え、溶解した。この溶液にヘプタン200mLを加え、減圧濃縮によりジクロロメタンを留去した。上澄み液を廃棄した後、残渣にジクロロメタン50mLとメタノール50mLを加え、溶解した後にLiN(SOCF 0.86g(3.00mmol)を加え30分撹拌した。この溶液を減圧濃縮した後、残渣をカラムクロマトグラフィー(担体:シリカゲル、溶媒:ジクロロメタン)で精製し、溶媒を減圧留去した。残渣を60℃で減圧乾燥し、目的の化合物(C-9)を茶色固体として得た(0.50g,収率24%)。 The following reaction was carried out under a nitrogen stream. 1.43 g (2.00 mmol) of the above (intermediate 116), 1.71 g (16.0 mmol) of N-methylaniline, and 20 mL of 1-butanol were placed in a reaction vessel and stirred at 105° C. for 2 hours. The reaction solution was concentrated under reduced pressure, and 50 mL of dichloromethane was added to the residue and dissolved. 200 mL of heptane was added to this solution, and dichloromethane was distilled off by vacuum concentration. After discarding the supernatant, 50 mL of dichloromethane and 50 mL of methanol were added to the residue and dissolved, and then 0.86 g (3.00 mmol) of LiN(SO 2 CF 3 ) 2 was added and stirred for 30 minutes. After concentrating this solution under reduced pressure, the residue was purified by column chromatography (carrier: silica gel, solvent: dichloromethane), and the solvent was distilled off under reduced pressure. The residue was dried under reduced pressure at 60° C., and the target compound (C-9) was obtained as a brown solid (0.50 g, yield 24%).

得られた茶色固体のNMR測定を行い、以下の38個の水素のシグナルを検出し、下記式(C-9)で表される化合物の構造と同定した。 NMR measurement of the obtained brown solid was performed, and the following 38 hydrogen signals were detected, identifying the structure as the compound represented by the following formula (C-9).

H-NMR(400MHz、DMSO-d):δ(ppm)=8.00-6.48(35H)、3.58(3H)。 1 H-NMR (400 MHz, DMSO-d 6 ): δ (ppm) = 8.00-6.48 (35H), 3.58 (3H).

[合成実施例10]化合物(C-10)の合成
以下の反応は、窒素気流下で行った。反応容器に、フェノール23.7g(252mmol)、炭酸カリウム87.1g(630mmol)、DMF210mLを入れ、室温(23~28℃)で10分間、撹拌した。反応液に2,5-ジクロロベンジルブロミド50.4g(210mmol)を加え、室温(23~28℃)で18時間撹拌した。反応液にジクロロメタン500mLを加えた後、この溶液を水500mLで3回洗浄した。有機層を抽出した後、無水硫酸マグネシウムで乾燥し、ろ過した。ろ液を減圧濃縮し、残渣を反応容器に移し、ベンジリデンアニリン45.7g(252mmol)、カリウムt-ブトキシド56.6g(504mmol)、DMF210mLを入れ、80℃で16時間撹拌した。反応液を室温まで冷却した後、ジクロロメタン600mLを加え、この溶液を水500mL、1M塩酸水溶液500mL、飽和食塩水500mLで順次洗浄した。有機層を抽出した後、無水硫酸マグネシウムで乾燥し、ろ過した。ろ液を減圧濃縮し、残渣をカラムクロマトグラフィー(担体:シリカゲル、溶媒:ヘプタン/ジクロロメタン=90/10(体積比))で精製した。溶媒を減圧留去することで下記(中間体117)を得た(14.3g,収率22%)。
[Synthesis Example 10] Synthesis of Compound (C-10) The following reaction was carried out under a nitrogen stream. 23.7 g (252 mmol) of phenol, 87.1 g (630 mmol) of potassium carbonate, and 210 mL of DMF were placed in a reaction vessel and stirred at room temperature (23 to 28°C) for 10 minutes. 50.4 g (210 mmol) of 2,5-dichlorobenzyl bromide was added to the reaction solution and stirred at room temperature (23 to 28°C) for 18 hours. 500 mL of dichloromethane was added to the reaction solution, and the solution was washed three times with 500 mL of water. The organic layer was extracted, dried over anhydrous magnesium sulfate, and filtered. The filtrate was concentrated under reduced pressure, and the residue was transferred to a reaction vessel, and 45.7 g (252 mmol) of benzylideneaniline, 56.6 g (504 mmol) of potassium t-butoxide, and 210 mL of DMF were placed in the reaction vessel and stirred at 80°C for 16 hours. After cooling the reaction solution to room temperature, 600 mL of dichloromethane was added, and the solution was washed successively with 500 mL of water, 500 mL of 1M aqueous hydrochloric acid, and 500 mL of saturated saline. The organic layer was extracted, dried over anhydrous magnesium sulfate, and filtered. The filtrate was concentrated under reduced pressure, and the residue was purified by column chromatography (carrier: silica gel, solvent: heptane/dichloromethane = 90/10 (volume ratio)). The solvent was distilled off under reduced pressure to obtain the following (intermediate 117) (14.3 g, yield 22%).

続いて、以下の反応は、窒素気流下で行った。反応容器に、前記(中間体117)12.2g(40.0mmol)、4-フルオロベンズアルデヒド2.48g(20.0mmol)、尿素0.60g(10.0mmol)、エチルセロソルブ200mL、濃塩酸4.00g(40.0mmol)を入れ、135℃で16時間撹拌した。反応液を室温まで冷却した後、酢酸エチル200mLを加え、この溶液を水300mLで洗浄し、有機層を抽出した。無水硫酸マグネシウムを加え乾燥後、ろ過した。ろ液を減圧濃縮した後、残渣を反応容器に移し、ジクロロメタン56mL、DDQ6.36g(28.0mmol)を加え、室温(23~28℃)で18時間撹拌した後、ろ過した。ろ液に0.5M炭酸カリウム水溶液50mLを加え、室温(23~28℃)で30分間撹拌した。有機層を抽出した後、有機層を1M塩酸水溶液250mLで洗浄した。有機層を再度抽出し、無水硫酸マグネシウムで乾燥した。この溶液をろ過し、ろ液にジクロロメタン200mLとヘプタン200mLを加えた後、ろ過した。ろ液を減圧濃縮によりジクロロメタンを留去した後、上澄み液を除去した。残渣をジクロロメタン80mLに溶解させた後、ジエチルエーテル400mLを加え、析出した固体をろ取した。得られた固体を60℃で減圧乾燥し、下記(中間体118)を得た(6.60g,収率44%)。 The following reaction was then carried out under a nitrogen stream. 12.2 g (40.0 mmol) of the above (intermediate 117), 2.48 g (20.0 mmol) of 4-fluorobenzaldehyde, 0.60 g (10.0 mmol) of urea, 200 mL of ethyl cellosolve, and 4.00 g (40.0 mmol) of concentrated hydrochloric acid were placed in a reaction vessel and stirred at 135°C for 16 hours. After cooling the reaction solution to room temperature, 200 mL of ethyl acetate was added, and the solution was washed with 300 mL of water to extract the organic layer. Anhydrous magnesium sulfate was added, dried, and then filtered. The filtrate was concentrated under reduced pressure, and the residue was transferred to a reaction vessel, and 56 mL of dichloromethane and 6.36 g (28.0 mmol) of DDQ were added, stirred at room temperature (23-28°C) for 18 hours, and then filtered. 50 mL of 0.5 M potassium carbonate aqueous solution was added to the filtrate and stirred at room temperature (23-28°C) for 30 minutes. After extracting the organic layer, the organic layer was washed with 250 mL of 1M aqueous hydrochloric acid. The organic layer was extracted again and dried over anhydrous magnesium sulfate. This solution was filtered, and 200 mL of dichloromethane and 200 mL of heptane were added to the filtrate, followed by filtration. The filtrate was concentrated under reduced pressure to remove the dichloromethane, and the supernatant was removed. The residue was dissolved in 80 mL of dichloromethane, and 400 mL of diethyl ether was added, and the precipitated solid was filtered. The obtained solid was dried under reduced pressure at 60°C to obtain the following (Intermediate 118) (6.60 g, yield 44%).

続いて、以下の反応は、窒素気流下で行った。反応容器に、前記(中間体118)4.94g(6.60mmol)、N-メチル-p-アニシジン1.81g(13.2mmol)、1-ブタノール66mLを入れ、105℃で2時間撹拌した。反応液を冷却後、ジクロロメタン200mLを加え、さらにヘプタン400mLを加えた。析出した固体をろ取した。得られた固体にジクロロメタン100mLとメタノール100mLを加え、溶解した後にLiN(SOCF 2.84g(9.90mmol)を加え30分撹拌した。この溶液を減圧濃縮した後、残渣をカラムクロマトグラフィー(担体:シリカゲル、溶媒:ジクロロメタン/メタノール=0/100~85/15(体積比))で精製し、溶媒を減圧留去した。残渣を60℃で減圧乾燥し、目的の化合物(C-10)を茶色固体として得た(0.80g,収率11%)。 Subsequently, the following reactions were performed under a nitrogen stream. 4.94 g (6.60 mmol) of the above (intermediate 118), 1.81 g (13.2 mmol) of N-methyl-p-anisidine, and 66 mL of 1-butanol were placed in a reaction vessel, and the mixture was stirred at 105° C. for 2 hours. After cooling the reaction solution, 200 mL of dichloromethane was added, and further 400 mL of heptane was added. The precipitated solid was collected by filtration. 100 mL of dichloromethane and 100 mL of methanol were added to the obtained solid, and after dissolving it, 2.84 g (9.90 mmol) of LiN(SO 2 CF 3 ) 2 was added and stirred for 30 minutes. After concentrating this solution under reduced pressure, the residue was purified by column chromatography (carrier: silica gel, solvent: dichloromethane/methanol = 0/100 to 85/15 (volume ratio)), and the solvent was distilled off under reduced pressure. The residue was dried under reduced pressure at 60° C. to obtain the target compound (C-10) as a brown solid (0.80 g, yield 11%).

得られた茶色固体のNMR測定を行い、以下の40個の水素のシグナルを検出し、下記式(C-10)で表される化合物の構造と同定した。 NMR measurement of the obtained brown solid was performed, and the following 40 hydrogen signals were detected, identifying the structure as the compound represented by the following formula (C-10).

H-NMR(400MHz、DMSO-d):δ(ppm)=7.62-6.47(34H)、3.85(3H)、3.49(3H)。 1 H-NMR (400 MHz, DMSO-d 6 ): δ (ppm) = 7.62-6.47 (34H), 3.85 (3H), 3.49 (3H).

[合成実施例11]化合物(C-11)の合成
以下の反応は、窒素気流下で行った。反応容器に、2-フェニルインドール70.5g(365mmol)、4-ブロモアニソール81.9g(438mmol)、リン酸三カリウム155g(730mmol)、ヨウ化銅(I)6.95g(36.5mmol)、trans-1,2-ジアミノシクロヘキサン8.34g(73.0mmol)、トルエン365mLを入れ、110℃で24時間撹拌した。反応液を室温(23~28℃)まで冷却後、酢酸エチル300mLを加え、0.5M塩酸水溶液300mLで3回洗浄した。有機層を抽出し、無水硫酸マグネシウムを加え乾燥した後、ろ過した。ろ液を減圧濃縮した。残渣をジクロロメタン300mLで溶解した後、メタノール400mLを加えた。この溶液を減圧濃縮によりジクロロメタンを留去し、析出した固体をろ取した。得られた固体にメタノール300mLを加え室温(23~28℃)で分散洗浄した。この溶液をろ過し、得られた固体を60℃で減圧乾燥することで下記(中間体119)を得た(63.0g、収率58%)。
[Synthesis Example 11] Synthesis of Compound (C-11) The following reaction was carried out under a nitrogen stream. In a reaction vessel, 70.5 g (365 mmol) of 2-phenylindole, 81.9 g (438 mmol) of 4-bromoanisole, 155 g (730 mmol) of tripotassium phosphate, 6.95 g (36.5 mmol) of copper(I) iodide, 8.34 g (73.0 mmol) of trans-1,2-diaminocyclohexane and 365 mL of toluene were added, and the mixture was stirred at 110° C. for 24 hours. After cooling the reaction solution to room temperature (23-28°C), 300 mL of ethyl acetate was added, and the mixture was washed three times with 300 mL of 0.5M aqueous hydrochloric acid. The organic layer was extracted, dried over anhydrous magnesium sulfate, and then filtered. The filtrate was concentrated under reduced pressure. After dissolving the residue in 300 mL of dichloromethane, 400 mL of methanol was added. This solution was concentrated under reduced pressure to remove dichloromethane, and the precipitated solid was collected by filtration. 300 mL of methanol was added to the obtained solid, and the mixture was dispersed and washed at room temperature (23 to 28°C). This solution was filtered and the obtained solid was dried under reduced pressure at 60°C to obtain the following (intermediate 119) (63.0 g, yield 58%).

続いて、以下の反応は、窒素気流下で行った。反応容器に、4-フルオロベンズアルデヒド3.72g(30.0mmol)、前記(中間体119)18.0g(60.0mmol)、尿素0.90g(15.0mmol)、エチルセロソルブ60mL、濃塩酸6.00g(60.0mmol)を入れ、室温(23~28℃)で3時間撹拌した。反応液にメタノール100mLを加え30分撹拌後、ろ過した。得られた固体をメタノール100mLで分散洗浄した。この溶液をろ過し、得られた固体を60℃で減圧乾燥することで、下記(中間体120)を得た(20.8g,収率98%)。 Subsequently, the following reactions were performed under a nitrogen stream. In a reaction vessel, 3.72 g (30.0 mmol) of 4-fluorobenzaldehyde, 18.0 g (60.0 mmol) of the above (intermediate 119), 0.90 g (15.0 mmol) of urea, 60 mL of ethyl cellosolve, and 6.0 g of concentrated hydrochloric acid. 00g (60.0 mmol) was added thereto, and the mixture was stirred at room temperature (23 to 28°C) for 3 hours. 100 mL of methanol was added to the reaction solution, stirred for 30 minutes, and then filtered. The obtained solid was dispersed and washed with 100 mL of methanol. This solution was filtered and the obtained solid was dried under reduced pressure at 60°C to obtain the following (intermediate 120) (20.8 g, yield 98%).

続いて、反応容器に、前記(中間体120)20.8g(29.5mmol)、ジクロロメタン80mL、DDQ8.71g(38.4mmol)を加え、室温(23~28℃)で16時間撹拌した後、ろ過した。ろ液を0.5M炭酸カリウム水溶液100mLで4回洗浄した後、1M塩酸水溶液100mLで洗浄した。有機層を抽出し、無水硫酸マグネシウムで乾燥した。この溶液をろ過し、ろ液を減圧濃縮した後、残渣をカラムクロマトグラフィー(担体:シリカゲル、溶媒:ヘプタン/酢酸エチル=50/50~0/100(体積比))で精製し、溶媒を減圧留去した。得られた固体を60℃で減圧乾燥し、下記(中間体121)を得た(4.80g,収率22%)。 Subsequently, 20.8 g (29.5 mmol) of the above (intermediate 120), 80 mL of dichloromethane, and 8.71 g (38.4 mmol) of DDQ were added to the reaction container, and after stirring at room temperature (23 to 28 ° C.) for 16 hours, Filtered. The filtrate was washed four times with 100 mL of a 0.5M aqueous potassium carbonate solution, and then washed with 100 mL of a 1M aqueous hydrochloric acid solution. The organic layer was extracted and dried over anhydrous magnesium sulfate. After filtering this solution and concentrating the filtrate under reduced pressure, the residue was purified by column chromatography (carrier: silica gel, solvent: heptane/ethyl acetate = 50/50 to 0/100 (volume ratio)), and the solvent was removed under reduced pressure. Distilled away. The obtained solid was dried under reduced pressure at 60° C. to obtain the following (intermediate 121) (4.80 g, yield 22%).

続いて、以下の反応は、窒素気流下で行った。反応容器に、前記(中間体121)1.48g(2.00mmol)、ジブチルアニリン1.29g(10.0mmol)、1-ブタノール20mLを入れ、105℃で24時間撹拌した。反応液を冷却後、酢酸エチル50mLを加えた。この溶液を1M塩酸水溶液100mLで3回洗浄し、有機層を抽出した。有機層を減圧濃縮した後、残渣をメタノール60mLで溶解し、この溶液にLiN(SOCF 0.86g(3.00mmol)を加え30分撹拌した。この溶液に水40mLを加え室温(23~28℃)で撹拌し、析出した固体をろ取した。得られた固体をカラムクロマトグラフィー(担体:シリカゲル、溶媒:ヘプタン/酢酸エチル=70/30~50/50(体積比))で精製し、溶媒を減圧留去した。得られた固体を60℃で減圧乾燥し、目的の化合物(C-11)を茶色固体として得た(0.58g,収率27%)。 Subsequently, the following reactions were performed under a nitrogen stream. 1.48 g (2.00 mmol) of the above (intermediate 121), 1.29 g (10.0 mmol) of dibutylaniline, and 20 mL of 1-butanol were placed in a reaction vessel, and the mixture was stirred at 105° C. for 24 hours. After cooling the reaction solution, 50 mL of ethyl acetate was added. This solution was washed three times with 100 mL of 1M aqueous hydrochloric acid solution, and the organic layer was extracted. After concentrating the organic layer under reduced pressure, the residue was dissolved in 60 mL of methanol, and 0.86 g (3.00 mmol) of LiN(SO 2 CF 3 ) 2 was added to this solution and stirred for 30 minutes. 40 mL of water was added to this solution and stirred at room temperature (23 to 28°C), and the precipitated solid was collected by filtration. The obtained solid was purified by column chromatography (carrier: silica gel, solvent: heptane/ethyl acetate = 70/30 to 50/50 (volume ratio)), and the solvent was distilled off under reduced pressure. The obtained solid was dried under reduced pressure at 60° C. to obtain the target compound (C-11) as a brown solid (0.58 g, yield 27%).

得られた茶色固体のNMR測定を行い、以下の54個の水素のシグナルを検出し、下記式(C-11)で表される化合物の構造と同定した。 The brown solid obtained was subjected to NMR measurement, and the following 54 hydrogen signals were detected, identifying the structure as the compound represented by the following formula (C-11).

H-NMR(400MHz、DMSO-d):δ(ppm)=7.67-6.35(34H)、3.71(6H)、1.82(4H)、1.52(4H)、1.02(6H)。 1 H-NMR (400 MHz, DMSO-d 6 ): δ (ppm) = 7.67-6.35 (34H), 3.71 (6H), 1.82 (4H), 1.52 (4H), 1.02 (6H).

[合成実施例12]化合物(C-12)の合成
以下の反応は、窒素気流下で行った。反応容器に、前記(中間体121)1.48g(2.00mmol)、N-メチルアニリン0.43g(4.00mmol)、1-ブタノール20mLを入れ、105℃で16時間撹拌した。反応液を減圧濃縮し、残渣をメタノール50mLで溶解し、この溶液にLiN(SOCF 0.86g(3.00mmol)を加え、室温(23~28℃)で30分撹拌した。この溶液を減圧濃縮した後、残渣をカラムクロマトグラフィー(担体:シリカゲル、溶媒:ヘプタン/ジクロロメタン=50/50(体積比))で精製し、溶媒を減圧留去した。得られた固体を60℃で減圧乾燥し、目的の化合物(C-12)を茶色固体として得た(0.30g,収率18%)。
[Synthesis Example 12] Synthesis of Compound (C-12) The following reaction was carried out under a nitrogen stream. 1.48 g (2.00 mmol) of the above (Intermediate 121), 0.43 g (4.00 mmol) of N-methylaniline, and 20 mL of 1-butanol were placed in a reaction vessel, and the mixture was stirred at 105° C. for 16 hours. The reaction solution was concentrated under reduced pressure, the residue was dissolved in 50 mL of methanol, 0.86 g (3.00 mmol) of LiN(SO 2 CF 3 ) 2 was added to this solution, and the mixture was stirred at room temperature (23 to 28° C.) for 30 minutes. After concentrating this solution under reduced pressure, the residue was purified by column chromatography (carrier: silica gel, solvent: heptane/dichloromethane = 50/50 (volume ratio)), and the solvent was distilled off under reduced pressure. The obtained solid was dried under reduced pressure at 60° C. to obtain the target compound (C-12) as a brown solid (0.30 g, yield 18%).

得られた茶色固体のNMR測定を行い、以下の44個の水素のシグナルを検出し、下記式(C-12)で表される化合物の構造と同定した。 The obtained brown solid was subjected to NMR measurement, and the following 44 hydrogen signals were detected, which were identified as the structure of a compound represented by the following formula (C-12).

H-NMR(400MHz、DMSO-d):δ(ppm)=7.61-6.30(35H)、3.80(6H)、3.72(3H)。 1 H-NMR (400 MHz, DMSO-d 6 ): δ (ppm) = 7.61-6.30 (35H), 3.80 (6H), 3.72 (3H).

[比較例化合物(D-1)の合成]
特許文献4(特開2012-83652号公報)の段落[0058]合成例1に記載された方法により、下記式で表される比較例化合物(D-1)を茶色固体として得た。
[Synthesis of Comparative Example Compound (D-1)]
According to the method described in paragraph [0058] Synthesis Example 1 of Patent Document 4 (JP-A-2012-83652), a comparative compound (D-1) represented by the following formula was obtained as a brown solid.

得られた茶色固体のNMR測定を行い、以下の39個の水素のシグナルを検出し、下記式(D-1)で表される化合物の構造と同定した。 NMR measurement of the obtained brown solid was performed, and the following 39 hydrogen signals were detected, identifying the structure as the compound represented by the following formula (D-1).

H-NMR(400MHz、CDCl):δ(ppm)=8.01(1H)、7.54-7.18(7H)、6.90-6.62(5H)、6.18(1H)、3.62-3.51(10H)、1.47(3H)、1.30(12H)。 1 H-NMR (400 MHz, CDCl 3 ): δ (ppm) = 8.01 (1H), 7.54-7.18 (7H), 6.90-6.62 (5H), 6.18 (1H) ), 3.62-3.51 (10H), 1.47 (3H), 1.30 (12H).

Figure 2024046614000050
Figure 2024046614000050

[比較例化合物(D-2)の合成]
特許文献2の段落[0320]~[0322]に記載された方法により、下記式で表される比較例化合物(D-2)を茶色固体として得た。
[Synthesis of Comparative Example Compound (D-2)]
According to the method described in paragraphs [0320] to [0322] of Patent Document 2, a comparative compound (D-2) represented by the following formula was obtained as a brown solid.

得られた茶色固体のNMR測定を行い、以下の40個の水素のシグナルを検出し、下記式(D-2)で表される化合物の構造と同定した。 The obtained brown solid was subjected to NMR measurement, and the following 40 hydrogen signals were detected and identified as the structure of a compound represented by the following formula (D-2).

H-NMR(400MHz、CDCl):δ(ppm)=7.80(1H)、7.48-7.17(11H)、6.93(1H)、6.90-6.66(4H)、3.85(3H)、3.55(8H)、1.15(12H)。 1H -NMR (400 MHz, CDCl3 ): δ (ppm) = 7.80 (1H), 7.48-7.17 (11H), 6.93 (1H), 6.90-6.66 (4H), 3.85 (3H), 3.55 (8H), 1.15 (12H).

Figure 2024046614000051
Figure 2024046614000051

[比較例化合物(D-3)の合成]
特許文献3の段落[0208]~[0209]実施例1)に記載された方法により、下記式で表される比較例化合物(D-3)を青紫色固体として得た。
[Synthesis of Comparative Example Compound (D-3)]
Comparative Example Compound (D-3) represented by the following formula was obtained as a blue-purple solid by the method described in paragraphs [0208] to [0209] Example 1) of Patent Document 3.

得られた青紫色固体のNMR測定を行い、以下の45個の水素のシグナルを検出し、下記式(D-3)で表される化合物の構造と同定した。 The obtained blue-purple solid was subjected to NMR measurement, and the following 45 hydrogen signals were detected, identifying the structure as the compound represented by the following formula (D-3).

H-NMR(400MHz、CDCl):δ(ppm)=7.56-7.41(4H)、7.40-7.23(6H)、7.21-7.11(3H)、6.84-6.72(4H)、4.31(1H)、3.91(1H)、3.50(8H)、2.31(3H)、1.29(3H)、1.11(12H)。 1 H-NMR (400 MHz, CDCl 3 ): δ (ppm) = 7.56-7.41 (4H), 7.40-7.23 (6H), 7.21-7.11 (3H), 6 .84-6.72 (4H), 4.31 (1H), 3.91 (1H), 3.50 (8H), 2.31 (3H), 1.29 (3H), 1.11 (12H) ).

Figure 2024046614000052
Figure 2024046614000052

[実施例1]
(極大吸収波長の測定)
合成実施例1で得られた化合物(C-1)をプロピレングリコールモノメチルエーテル(PGME)に溶解し、濃度0.01mmol/Lの溶液を調製し、紫外可視分光光度計(日本分光株式会社製、型式:V-650)を用いて、分光特性として紫外可視吸収スペクトル(350~800nmの波長範囲)を室温(25℃)で測定し、測定波長範囲における極大吸収波長を測定した。測定結果を表1に示す。
[Example 1]
(Measurement of maximum absorption wavelength)
Compound (C-1) obtained in Synthesis Example 1 was dissolved in propylene glycol monomethyl ether (PGME) to prepare a solution with a concentration of 0.01 mmol/L. The ultraviolet-visible absorption spectrum (wavelength range of 350 to 800 nm) was measured at room temperature (25° C.) as a spectral property using a spectrometer (Model: V-650), and the maximum absorption wavelength in the measurement wavelength range was measured. The measurement results are shown in Table 1.

(溶解性の評価)
合成実施例1で得られた化合物(C-1)をプロピレングリコールモノメチルエーテルアセテート(PGMEA)への溶解度を次のように測定した。サンプル瓶に、色素として化合物(C-1)20mg、および、PGMEAを、色素濃度が1~10質量%となるように秤量して入れ、混合液を調製した。サンプル瓶を密栓し、20分間超音波処理した後、室温(25℃)で24時間放置した。室温(25℃)における各濃度の色素溶液を目視で観察し、不溶分の見られない最高の色素濃度(質量%)を溶解度とした。また、同様な方法で、プロピレングリコールモノメチルエーテル(PGME)への溶解度も測定した。測定結果を表1に示す。
(Evaluation of solubility)
The solubility of compound (C-1) obtained in Synthesis Example 1 in propylene glycol monomethyl ether acetate (PGMEA) was measured as follows. A mixed solution was prepared by weighing and placing 20 mg of Compound (C-1) as a dye and PGMEA in a sample bottle so that the dye concentration was 1 to 10% by mass. The sample bottle was tightly stoppered, subjected to ultrasonic treatment for 20 minutes, and then left at room temperature (25° C.) for 24 hours. The dye solutions of each concentration at room temperature (25° C.) were visually observed, and the highest dye concentration (mass %) without any insoluble matter was taken as the solubility. In addition, the solubility in propylene glycol monomethyl ether (PGME) was also measured in a similar manner. The measurement results are shown in Table 1.

(耐熱性の評価)
サンプル瓶に合成実施例1で得られた化合物(C-1)20mg、メタクリル酸、アクリル酸エステルおよびスチレンの共重合体の25質量%DMF-PGMEA混合溶液5gを入れ、30分間撹拌して混合した。得られた着色樹脂溶液をシリンジフィルターでろ過し、ろ液1gをガラス基板上に塗布(スピンコート法、1000rpm-6秒)し、100℃で2分間加熱乾燥して薄膜を作製した。得られた膜について、分光測色計(コニカミノルタ株式会社製、CM-5)を用いて色彩値を測定した。その後、230℃で20分間加熱を行い、同様に色彩値を測定した。230℃での加熱前後の色彩値の色差(ΔE ab)を耐熱性の指標とし、結果を表1に示す。
(Evaluation of heat resistance)
20 mg of the compound (C-1) obtained in Synthesis Example 1 and 5 g of a 25% by mass DMF-PGMEA mixed solution of a copolymer of methacrylic acid, acrylic acid ester and styrene were placed in a sample bottle and mixed by stirring for 30 minutes. The obtained colored resin solution was filtered with a syringe filter, and 1 g of the filtrate was applied to a glass substrate (spin coating method, 1000 rpm-6 seconds), and heated and dried at 100 ° C for 2 minutes to prepare a thin film. The color value of the obtained film was measured using a spectrophotometer (CM-5, manufactured by Konica Minolta, Inc.). Then, the film was heated at 230 ° C for 20 minutes, and the color value was measured in the same manner. The color difference (ΔE * ab ) of the color value before and after heating at 230 ° C was used as an index of heat resistance, and the results are shown in Table 1.

[実施例2~実施例12]
実施例1において、化合物(C-1)の代わりに、合成実施例2~12で得られた化合物(C-2)~(C-12)を使用した以外は、実施例1と同様に、極大吸収波長の測定、溶解性の評価、耐熱性の評価を行った。結果を表1にまとめて示す。
[Examples 2 to 12]
Except for using the compounds (C-2) to (C-12) obtained in Synthesis Examples 2 to 12 instead of the compound (C-1) in Example 1, the measurement of the maximum absorption wavelength, the evaluation of the solubility, and the evaluation of the heat resistance were carried out in the same manner as in Example 1. The results are summarized in Table 1.

[比較例1~比較例3]
比較のために、実施例の化合物(C-1)の代わりに、本発明に属さないトリアリールメタン色素であり、前記比較例化合物(D-1)~(D-3)を用いた以外は、実施例1と同様に、溶解性の評価、耐熱性の評価を行った。結果を表1にまとめて示す。
[Comparative Examples 1 to 3]
For comparison, the solubility and heat resistance were evaluated in the same manner as in Example 1, except that the comparative compounds (D-1) to (D-3), which are triarylmethane dyes not belonging to the present invention, were used instead of the compound (C-1) in the example. The results are summarized in Table 1.

Figure 2024046614000053
Figure 2024046614000053

表1に示すように、本発明の実施例の化合物は、PGMEAやPGMEへの高い溶解性および製膜時における高い耐熱性を示しており、本発明の化合物を含有する着色組成物は、カラーフィルター用着色剤として実用上問題ない。また、成膜時において比較例よりも高い耐熱性を有しており、カラーフィルター用着色剤として優れている。 As shown in Table 1, the compounds of the examples of the present invention exhibit high solubility in PGMEA and PGME and high heat resistance during film formation, and the colored compositions containing the compounds of the present invention have a color There is no practical problem as a coloring agent for filters. In addition, it has higher heat resistance than the comparative example during film formation, and is excellent as a coloring agent for color filters.

本発明に係るトリアリールメタン色素を含有する着色組成物は、有機溶媒(PGMEAやPGMEなど)への溶解性に優れており、かつ、製膜時の耐熱性に優れているため、カラーフィルター用着色剤などの種々の用途の色素材料として有用である。 The coloring composition containing the triarylmethane dye of the present invention has excellent solubility in organic solvents (PGMEA, PGME, etc.) and excellent heat resistance during film formation, making it useful as a dye material for various applications such as colorants for color filters.

Claims (8)

下記一般式(1)で表されるトリアリールメタン色素。
Figure 2024046614000054

[式(1)中、RおよびRは、それぞれ独立に、
置換基を有していてもよい炭素原子数1~20の直鎖状、分岐状もしくは環状のアルキル基、または、置換基を有していてもよい炭素原子数6~20の芳香族炭化水素基を表し、
およびRは、それぞれ独立に、
置換基を有していてもよい炭素原子数1~20の直鎖状、分岐状もしくは環状のアルキル基、置換基を有していてもよい炭素原子数6~20の芳香族炭化水素基、または、置換基を有していてもよい環形成原子数5~20の複素環基を表し、
~R12は、それぞれ独立に、水素原子、ハロゲン原子、ニトロ基、シアノ基、
置換基を有していてもよい炭素原子数1~20の直鎖状、分岐状もしくは環状のアルキル基、置換基を有していてもよい炭素原子数6~20の芳香族炭化水素基、置換基を有していてもよい炭素原子数1~20の直鎖状、分岐状もしくは環状のアルコキシ基、または、置換基を有していてもよい炭素原子数0~20のアミノ基を表し、
13~R16は、それぞれ独立に、水素原子、ハロゲン原子、
置換基を有していてもよい炭素原子数1~20の直鎖状、分岐状もしくは環状のアルキル基、置換基を有していてもよい炭素原子数6~20の芳香族炭化水素基、または、置換基を有していてもよい炭素原子数1~20の直鎖状、分岐状もしくは環状のアルコキシ基を表し、
17およびR18は、それぞれ独立に、水素原子、
置換基を有していてもよい炭素原子数1~20の直鎖状、分岐状もしくは環状のアルキル基、または、置換基を有していてもよい炭素原子数6~20の芳香族炭化水素基を表し、
13~R18は、単結合、置換もしくは無置換のメチレン基もしくはビニレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよく、
Anは、アニオンを表す。]
A triarylmethane dye represented by the following general formula (1):
Figure 2024046614000054

[In formula (1), R 1 and R 2 each independently represent
represents a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms which may have a substituent, or an aromatic hydrocarbon group having 6 to 20 carbon atoms which may have a substituent,
R3 and R4 are each independently
represents a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms which may have a substituent, an aromatic hydrocarbon group having 6 to 20 carbon atoms which may have a substituent, or a heterocyclic group having 5 to 20 ring atoms which may have a substituent,
R 5 to R 12 each independently represent a hydrogen atom, a halogen atom, a nitro group, a cyano group,
represents a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms which may have a substituent, an aromatic hydrocarbon group having 6 to 20 carbon atoms which may have a substituent, a linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms which may have a substituent, or an amino group having 0 to 20 carbon atoms which may have a substituent,
R 13 to R 16 each independently represent a hydrogen atom, a halogen atom,
represents a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms which may have a substituent, an aromatic hydrocarbon group having 6 to 20 carbon atoms which may have a substituent, or a linear, branched or cyclic alkoxy group having 1 to 20 carbon atoms which may have a substituent,
R 17 and R 18 each independently represent a hydrogen atom,
represents a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms which may have a substituent, or an aromatic hydrocarbon group having 6 to 20 carbon atoms which may have a substituent,
R 13 to R 18 may be bonded to each other via a single bond, a substituted or unsubstituted methylene group, a vinylene group, an oxygen atom, or a sulfur atom to form a ring;
An represents an anion.
前記一般式(1)において、RおよびRが置換基を有していてもよい炭素原子数6~12の芳香族炭化水素基である、請求項1に記載のトリアリールメタン色素。 2. The triarylmethane dye according to claim 1, wherein in the general formula (1), R 3 and R 4 are aromatic hydrocarbon groups having 6 to 12 carbon atoms which may have a substituent. 前記一般式(1)において、R13~R16が水素原子である、請求項1に記載のトリアリールメタン色素。 The triarylmethane dye according to claim 1, wherein in the general formula (1), R 13 to R 16 are hydrogen atoms. 前記一般式(1)において、Anがハロゲン化物イオン、ビス(トリフルオロメタンスルホニル)イミドアニオン、スルホニルイミドアニオン、トリス(トリフルオロメタンスルホニル)メチドアニオン、またはスルホン酸アニオンである、請求項1~3のいずれか一項に記載のトリアリールメタン色素。 The triarylmethane dye according to any one of claims 1 to 3, wherein in the general formula (1), An is a halide ion, a bis(trifluoromethanesulfonyl)imide anion, a sulfonylimide anion, a tris(trifluoromethanesulfonyl)methide anion, or a sulfonate anion. 請求項1~3のいずれか一項に記載のトリアリールメタン色素を含有する着色組成物。 A coloring composition containing the triarylmethane dye according to any one of claims 1 to 3. 請求項4に記載のトリアリールメタン色素を含有する着色組成物。 A coloring composition containing the triarylmethane dye according to claim 4. 請求項6に記載の着色組成物を含有するカラーフィルター用着色剤。 A colorant for color filters containing the coloring composition according to claim 6. 請求項7に記載のカラーフィルター用着色剤を用いるカラーフィルター。 A color filter using the colorant for color filters according to claim 7.
JP2023148351A 2022-09-22 2023-09-13 Triarylmethane dye, coloring composition containing the dye, colorant for color filter, and color filter Pending JP2024046614A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022163539 2022-09-22
JP2022163539 2022-09-22

Publications (1)

Publication Number Publication Date
JP2024046614A true JP2024046614A (en) 2024-04-03

Family

ID=90481473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023148351A Pending JP2024046614A (en) 2022-09-22 2023-09-13 Triarylmethane dye, coloring composition containing the dye, colorant for color filter, and color filter

Country Status (1)

Country Link
JP (1) JP2024046614A (en)

Similar Documents

Publication Publication Date Title
JP7240187B2 (en) Xanthene compound, coloring composition containing said compound, colorant for color filter and color filter
JP7168417B2 (en) Yellow compound, coloring composition containing said compound, colorant for color filter and color filter
JP7195889B2 (en) Yellow compound, coloring composition containing said compound, colorant for color filter and color filter
JP2022132057A (en) Xanthene dye, coloring composition containing xanthene dye, colorant for color filters, and color filter
JP2024046614A (en) Triarylmethane dye, coloring composition containing the dye, colorant for color filter, and color filter
JP7307653B2 (en) Xanthene dye, coloring composition containing the dye, colorant for color filter, and color filter
JP7425576B2 (en) Xanthene pigments, coloring compositions containing the pigments, coloring agents for color filters, and color filters
CN116925562B (en) Anthraquinone dye for color photoresist and application of anthraquinone dye in color photoresist and optical filter
CN113248939B (en) Xanthene dye, coloring composition containing the same, colorant for color filter, and color filter
JP7158957B2 (en) Coloring composition containing azo compound, colorant for color filter, and color filter
JP2023150459A (en) Triarylmethane dye, coloring composition containing the same, colorant for color filter, and color filter
KR20210060327A (en) Xanthene dye, coloring composition containing the dye, coloring agent for color filter, and color filter
CN114230515A (en) Yellow compound, colored composition containing the same, colorant for color filter, and color filter
JP2020200444A (en) Xanthene-based pigment, coloring composition containing that pigment, color filter colorant, and color filter
JP2023051753A (en) Dipyrromethene boron complex compound, and coloring composition and optical filter which contain that compound
JP2022056354A (en) Xanthene dye, coloring composition containing the dye, colorant for color filters, and color filter
JP2019167488A (en) Salt-forming compound, and coloring composition and color filter colorant containing the same
JP2023149735A (en) Triarylmethane dye, coloring composition containing the same, colorant for color filter, and color filter
TW202235419A (en) Yellow compound, coloring composition containing the compound, colorant for color filter, and color filter