JP2024046007A - Method for manufacturing three-dimensional additive manufacturing object, and kit for three-dimensional additive manufacturing - Google Patents

Method for manufacturing three-dimensional additive manufacturing object, and kit for three-dimensional additive manufacturing Download PDF

Info

Publication number
JP2024046007A
JP2024046007A JP2022151133A JP2022151133A JP2024046007A JP 2024046007 A JP2024046007 A JP 2024046007A JP 2022151133 A JP2022151133 A JP 2022151133A JP 2022151133 A JP2022151133 A JP 2022151133A JP 2024046007 A JP2024046007 A JP 2024046007A
Authority
JP
Japan
Prior art keywords
binder
granular material
acid
dimensional
dimensional additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022151133A
Other languages
Japanese (ja)
Inventor
幸佑 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gun Ei Chemical Industry Co Ltd
Original Assignee
Gun Ei Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gun Ei Chemical Industry Co Ltd filed Critical Gun Ei Chemical Industry Co Ltd
Priority to JP2022151133A priority Critical patent/JP2024046007A/en
Priority to PCT/JP2023/033506 priority patent/WO2024063002A1/en
Publication of JP2024046007A publication Critical patent/JP2024046007A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/02Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives
    • B22C1/10Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives for influencing the hardening tendency of the mould material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/30Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing

Abstract

【課題】作業環境が良好で、実用的な強度の3次元積層造形物を容易に製造できる3次元積層造形物の製造方法、及び3次元積層造形用キットの提供。【解決手段】耐火性粒状材料を層状に敷き詰める工程(a)と、前記層状に敷き詰められた耐火性粒状材料の所望の領域に、バインダを射出する工程(b)とを含み、前記バインダは、糖類及び多価カルボン酸類を具備し、前記工程(a)と前記工程(b)とを目的の3次元積層造形物が造形されるまで繰り返す、3次元積層造形物の製造方法。耐火性粒状材料と、バインダとを各々独立して有し、前記バインダは、糖類及び多価カルボン酸類を具備する、3次元積層造形用キット。【選択図】なし[Problem] To provide a manufacturing method for a three-dimensional additive manufacturing object, which can easily manufacture a three-dimensional additive manufacturing object with practical strength in a good working environment, and a kit for three-dimensional additive manufacturing. [Solution] A manufacturing method for a three-dimensional additive manufacturing object, which includes a step (a) of spreading a fire-resistant granular material in layers, and a step (b) of injecting a binder into desired areas of the fire-resistant granular material spread in layers, the binder comprising a sugar and a polyvalent carboxylic acid, and the steps (a) and (b) are repeated until a desired three-dimensional additive manufacturing object is manufactured. A three-dimensional additive manufacturing kit, which includes a fire-resistant granular material and a binder, each of which is independent, the binder comprising a sugar and a polyvalent carboxylic acid. [Selected Figure] None

Description

本発明は、3次元積層造形物の製造方法、及び3次元積層造形用キットに関する。 The present invention relates to a method for manufacturing a three-dimensional additive manufacturing object and a kit for three-dimensional additive manufacturing.

従来、鋳造用鋳型(以下、単に「鋳型」ともいう。)の一つとして自硬性鋳型が知られている。自硬性鋳型とは、珪砂等の耐火性粒状材料に、フラン樹脂等を主成分とした粘結剤(酸硬化性粘結剤)と、硫酸やキシレンスルホン酸等の酸触媒(硬化剤)とを添加、混練した後、得られた混練砂を木型や樹脂型(以下、これらを総称して「模型」という。)に充填し、粘結剤を硬化させる方法で製造されているものである。 Self-hardening molds have been known as one type of casting mold (hereinafter simply referred to as "mold"). Self-hardening molds are manufactured by adding a binder (acid-hardening binder) whose main component is furan resin and the like, and an acid catalyst (hardener) such as sulfuric acid or xylene sulfonic acid to a refractory granular material such as silica sand, mixing the mixture, and then filling a wooden or resin mold (hereinafter collectively referred to as "model") with the resulting mixed sand and allowing the binder to harden.

鋳型には、鉄、銅、アルミニウム等の金属を高温で溶かした液体が注湯され、鋳物が得られるが、注湯時に酸硬化性粘結剤が熱分解してガス(熱分解ガス)が発生することがある。
また、硬化速度を速くする目的で酸触媒を多量に使用すると、注湯時に亜硫酸ガス等の硫黄酸化物が発生しやすくなる。
このように、注湯時にガスが発生すると、作業環境が悪化する。
A liquid made by melting metals such as iron, copper, and aluminum at high temperatures is poured into the mold to obtain a casting, but during pouring, the acid-curing binder is thermally decomposed and gas (pyrolysis gas) is released. This may occur.
Furthermore, if a large amount of acid catalyst is used for the purpose of increasing the curing speed, sulfur oxides such as sulfur dioxide gas are likely to be generated during pouring.
As described above, when gas is generated during pouring, the working environment deteriorates.

そこで、粘結剤として酸硬化性粘結剤の代わりに糖類を用いて鋳型を製造する方法が提案されている。
例えば特許文献1、2には、耐火骨材の表面に、粘結剤として糖類を含有する固形のコーティング層が被覆された粘結剤コーテッド耐火物を模型に充填し、加熱することで糖類を溶融した後に、糖類を固化ないし硬化させて鋳型を製造する方法が開示されている。糖類は炭水化物であるため、熱分解しても炭酸ガス及び水等が発生する程度であり、作業環境は悪化しにくい。また、溶融した糖類の固化ないし硬化により粘結性を発現させているので、酸触媒を用いる必要がない。
Therefore, a method has been proposed in which a mold is manufactured using saccharides as a binder instead of an acid-curable binder.
For example, in Patent Documents 1 and 2, a model is filled with a binder-coated refractory in which the surface of refractory aggregate is coated with a solid coating layer containing sugars as a binder, and the sugars are removed by heating. A method of manufacturing a mold by solidifying or hardening the sugar after melting is disclosed. Since saccharides are carbohydrates, even if they are thermally decomposed, only carbon dioxide gas, water, etc. are generated, and the working environment is unlikely to deteriorate. Further, since the caking property is developed by solidifying or hardening the molten sugar, there is no need to use an acid catalyst.

国際公開第2011/030795号International Publication No. 2011/030795 特開2016-221540号公報JP2016-221540A

ところで、複雑な形状の鋳型を製造するには、必然的に模型の数を増やす必要があるが、模型の数を増やすことは工程の煩雑化の原因となる。また、模型の数を増やすことができても、鋳型を模型から外すことができなければ、鋳型を製造することはできない。
また、鋳型を中空化すれば、粘結剤の使用量を減らすことができるため、粘結剤として酸硬化性粘結剤を用いても注湯時に発生する熱分解ガスを軽減できるとともに、熱分解ガスを鋳型の外へ放出しやすくできる。しかし、模型を用いて鋳型を製造する方法では、中空の鋳型を製造するのは困難である。
こうした問題を解決するために、近年、模型を用いなくても直接鋳型を製造することが可能な、3次元積層造形による鋳型の製造方法が提案されている。
By the way, in order to manufacture a mold of a complex shape, it is necessary to increase the number of patterns, but increasing the number of patterns causes the process to become complicated. Even if the number of patterns can be increased, if the mold cannot be removed from the pattern, the mold cannot be manufactured.
In addition, if the mold is hollow, the amount of binder used can be reduced, so that even if an acid-hardening binder is used as the binder, the amount of pyrolysis gas generated during pouring can be reduced and the pyrolysis gas can be easily released outside the mold. However, it is difficult to manufacture a hollow mold using a model.
In order to solve these problems, in recent years, methods for manufacturing molds by three-dimensional additive manufacturing have been proposed, which make it possible to directly manufacture a mold without using a model.

特許文献1、2に記載の粘結剤コーテッド耐火物を用いて3次元積層造形により鋳型の製造する場合、所望の形状の鋳型を得るためには、粘結剤コーテッド耐火物を層状に積層する工程と、層状に敷き詰められた粘結剤コーテッド耐火物の所望の領域に水を射出して糖類を糊状化させる工程とを、目的の3次元積層造形物が造形されるまで繰り返した後に、加熱処理する必要がある。
しかし、加熱処理により水が射出されていない領域の糖類も溶融した後に硬化してしまうため、目的の形状の3次元積層造形物が得られない。
このように、耐火骨材に糖類が被覆された粘結剤コーテッド耐火物は、3次元積層造形による鋳型の製造には不向きある。
When manufacturing a mold by three-dimensional additive manufacturing using the binder-coated refractory materials described in Patent Documents 1 and 2, in order to obtain a mold of a desired shape, it is necessary to repeat a step of stacking the binder-coated refractory materials in layers and a step of injecting water into desired areas of the binder-coated refractory materials laid out in layers to gelatinize the sugars until the desired three-dimensional additive object is formed, and then to perform a heat treatment.
However, the sugar in the area where water is not injected also melts and then hardens due to the heat treatment, so a three-dimensional additive manufacturing object with the desired shape cannot be obtained.
As described above, a binder-coated refractory material in which refractory aggregate is coated with a sugar is not suitable for manufacturing a casting mold by three-dimensional additive manufacturing.

本発明は、作業環境が良好で、実用的な強度の3次元積層造形物を容易に製造できる3次元積層造形物の製造方法、及び3次元積層造形用キットを提供することを目的とする。 An object of the present invention is to provide a method for manufacturing a three-dimensional layered product that allows easy production of a three-dimensional layered product with a good working environment and a practical strength, and a three-dimensional layered product kit.

本発明は、以下の態様を有する。
[1] 耐火性粒状材料を層状に敷き詰める工程(a)と、
前記層状に敷き詰められた耐火性粒状材料の所望の領域に、バインダを射出する工程(b)とを含み、
前記バインダは、糖類及び多価カルボン酸類を具備し、
前記工程(a)と前記工程(b)とを目的の3次元積層造形物が造形されるまで繰り返す、3次元積層造形物の製造方法。
[2] 少なくとも最後の前記工程(b)の後に、加熱により前記バインダを硬化させる工程(c)をさらに含む、前記[1]の3次元積層造形物の製造方法。
[3] 耐火性粒状材料と、バインダとを各々独立して有し、
前記バインダは、糖類及び多価カルボン酸類を具備する、3次元積層造形用キット。
The present invention has the following aspects.
[1] A step (a) of laying a layer of refractory granular material;
(b) injecting a binder into desired areas of the layered refractory granular material;
The binder comprises a sugar and a polyvalent carboxylic acid,
The method for manufacturing a three-dimensional additive object includes repeating the steps (a) and (b) until a desired three-dimensional additive object is manufactured.
[2] The method for producing a three-dimensional additive manufacturing object according to [1], further comprising, after at least the final step (b), a step (c) of curing the binder by heating.
[3] A method for producing a fireproof granular material and a binder, each of which is independently
The binder comprises a sugar and a polycarboxylic acid.

本発明によれば、作業環境が良好で、実用的な強度の3次元積層造形物を容易に製造できる3次元積層造形物の製造方法、及び3次元積層造形用キットを提供できる。 According to the present invention, it is possible to provide a method for manufacturing a three-dimensional layered product in which a working environment is favorable and a three-dimensional layered product with practical strength can be easily manufactured, and a three-dimensional layered product kit.

[3次元積層造形物の製造方法]
以下、本発明の3次元積層造形物の製造方法の一実施形態について説明する。
本実施形態の3次元積層造形物の製造方法は、以下に示す工程(a)と工程(b)とを含み、工程(a)と工程(b)とを目的の3次元積層造形物が造形されるまで繰り返すことで、3次元積層造形物を製造する方法である。
本実施形態の3次元積層造形物の製造方法は、少なくとも最後の工程(b)の後に、以下に示す工程(c)をさらに含むことが好ましい。
[Manufacturing method of three-dimensional layered product]
Hereinafter, one embodiment of the method for manufacturing a three-dimensional layered product of the present invention will be described.
The method for manufacturing a three-dimensional layered product according to the present embodiment includes the following steps (a) and (b), and the three-dimensional layered product intended for step (a) and step (b) is manufactured. This is a method of manufacturing a three-dimensional layered product by repeating the process until it is completed.
It is preferable that the method for manufacturing a three-dimensional laminate-molded article of the present embodiment further includes a step (c) shown below after at least the last step (b).

<耐火性粒状材料>
本発明で用いる耐火性粒状材料としては、砂、セラミック、金属などが挙げられる。
これらの耐火性粒状材料は、1種単独で用いてもよく、2種以上を併用してもよい。
<Fire-resistant granular material>
Refractory particulate materials for use in the present invention include sand, ceramic, metal, and the like.
These refractory granular materials may be used alone or in combination of two or more.

砂としては、珪砂、クロマイト砂、ジルコン砂、オリビン砂、非晶質シリカ、アルミナ砂、ムライト砂等の天然砂;人工砂などが挙げられる。また、使用済みの人工砂や天然砂を回収したもの(回収砂)や、これらを再生処理(焙焼再生、研磨など乾式再生)したもの(再生砂)なども使用できる。これらの砂は、1種単独で用いてもよく、2種以上を併用してもよい。
人工砂は、一般的にボーキサイトを原料とし、溶融法(アトマイズ法)、焼結法、火炎溶融法のいずれかの方法で得られる。溶融法、焼結法、火炎溶融法の具体的な条件等は特に限定されず、例えば特開平5-169184号公報、特開2003-251434号公報、特開2004-202577号公報等に記載された公知の条件等を用いて人工砂を製造すればよい。
金属としては、ニッケル、コバルト、モリブデン、鉄、ステンレス、アルミニウム、チタン、銅などが挙げられる。これらの金属は、1種単独で用いてもよく、2種以上を併用してもよい。
Examples of the sand include natural sand such as silica sand, chromite sand, zircon sand, olivine sand, amorphous silica, alumina sand, and mullite sand; and artificial sand. In addition, used artificial sand or natural sand that has been recovered (recovered sand), or recycled sand (recycled sand) that has been recycled (dry recycling such as roasting, polishing, etc.) can also be used. These sands may be used alone or in combination of two or more.
Artificial sand generally uses bauxite as a raw material and is obtained by any one of the melting method (atomization method), sintering method, and flame fusion method. The specific conditions of the melting method, sintering method, and flame melting method are not particularly limited, and are described in, for example, JP-A-5-169184, JP-A-2003-251434, JP-A-2004-202577, etc. Artificial sand may be manufactured using known conditions.
Examples of metals include nickel, cobalt, molybdenum, iron, stainless steel, aluminum, titanium, and copper. These metals may be used alone or in combination of two or more.

耐火性粒状材料の平均粒子径は10~300μmが好ましく、50~150μmがより好ましい。耐火性粒状材料の平均粒子径が上記下限値以上であれば、強度の高い3次元積層造形物が得られる。耐火性粒状材料の平均粒子径が上記上限値以下であれば、面相度に優れた3次元積層造形物が得られる。
耐火性粒状材料の平均粒子径は、動的光散乱法により測定した耐火性粒状材料の体積分布基準での累積頻度50%に相当する粒子径(メジアン径)である。
また、「面粗度」とは、3次元積層造形物の積層方向の表面粗さのことである。
The average particle diameter of the refractory granular material is preferably 10 to 300 μm, more preferably 50 to 150 μm. If the average particle diameter of the refractory granular material is at least the above lower limit, a three-dimensional layered product with high strength can be obtained. If the average particle diameter of the refractory granular material is below the above-mentioned upper limit, a three-dimensional laminate-molded article with excellent surface texture can be obtained.
The average particle diameter of the refractory granular material is a particle diameter (median diameter) corresponding to a cumulative frequency of 50% based on the volume distribution of the refractory granular material measured by a dynamic light scattering method.
Moreover, "surface roughness" refers to the surface roughness in the stacking direction of a three-dimensional layered product.

耐火性粒状材料は、得られる3次元積層造形物の使用目的に応じて選択される。例えば、3次元積層造形物を鋳型として使用する場合、耐火性粒状材料としては砂が適している。天然砂は人工砂に比べて安価であるため、製造コストを抑える観点では、天然砂を単独又は人工砂と混合して用いるのが好ましく、鋳型の耐火度も考慮するのであれば、天然砂と人工砂とを混合して用いるのが好ましい。
なお、鋳型は鋳物を鋳造するための型であり、鋳造後は鋳物を取り出すために解体される。すなわち、鋳物を最終目的物(最終製品)とすると、鋳型は最終的に壊される前提のものである。
一方、3次元積層造形物が最終目的物(最終的に壊されることを前提としていないもの)である場合、耐火性粒状材料としては金属が適している。本明細書において、金属を用いて得られた3次元積層造形物を「金属成形体」ともいう。
The fire-resistant granular material is selected depending on the intended use of the resulting three-dimensional laminated object. For example, when the three-dimensional laminated object is used as a mold, sand is suitable as the fire-resistant granular material. Since natural sand is cheaper than artificial sand, it is preferable to use natural sand alone or in combination with artificial sand from the viewpoint of reducing the manufacturing cost, and it is preferable to use natural sand in combination with artificial sand if the fire resistance of the mold is also taken into consideration.
A casting mold is a model for casting metal, and is dismantled to remove the casting after casting. In other words, if the casting is the final object (final product), then the casting mold is meant to be destroyed in the end.
On the other hand, when the three-dimensional additive manufacturing object is the final object (one that is not intended to be destroyed in the end), a metal is suitable as the fire-resistant granular material. In this specification, a three-dimensional additive manufacturing object obtained by using a metal is also referred to as a "metal molded body."

耐火性粒状材料は、被覆剤で被覆されていてもよい。
被覆剤で被覆された耐火性粒状材料を「被覆材料」ともいう。特に耐火性粒状材料が砂である場合、被覆材料を「被覆砂」ともいう。
被覆剤としては、ブロッキング防止剤、多価カルボン酸類以外の酸成分等が挙げられる。
The refractory particulate material may be coated with a coating.
A refractory granular material coated with a coating agent is also referred to as a "coating material." In particular when the refractory granular material is sand, the coating material is also referred to as "coated sand".
Examples of the coating agent include antiblocking agents and acid components other than polyhydric carboxylic acids.

ブロッキング防止剤としては、例えば無機粒子、ゼオライト、滑剤等のブロッキング防止剤などが挙げられる。
無機粒子としては、例えばシリカ、チタニア、アルミナ、ゼオライト、カオリン、タルク、マイカ等の珪酸塩鉱物;珪藻土などが挙げられる。シリカは非晶質でもよいし、結晶質でもよい。また、天然シリカでもよいし、合成シリカでもよい。合成シリカとしては沈降法シリカ、シリカゲル等の湿式シリカ;ヒュームドシリカ(火炎加水分解法シリカ)、アーク法シリカ、プラズマ法シリカ、石英ガラス(火炎溶融シリカ)等の乾式シリカなどが挙げられる。
ゼオライトは、結晶性アルミノケイ酸塩の総称である。ゼオライトの骨格構造としては、例えばA型、X型、LSX型、ベータ型、ZSM-5型、フェリエライト型、モルデナイト型、L型、Y型などが挙げられる。
滑剤としては、例えばパラフィンワックス、カルナバワックス等の脂肪族炭化水素系滑剤;高級脂肪族系アルコール、エチレンビスステアリン酸アマイド、ステアリン酸アマイド等の脂肪族アマイド系滑剤;ステアリン酸カルシウム、ステアリン酸バリウム、ステアリン酸亜鉛、ステアリン酸アルミニウム、ステアリン酸マグネシウム等の金属石けん系滑剤;脂肪酸エステル系滑剤;複合滑剤などが挙げられる。
これらのブロッキング防止剤は、1種単独で用いてもよく、2種以上を併用してもよい。
Examples of the antiblocking agent include antiblocking agents such as inorganic particles, zeolite, and lubricants.
Examples of the inorganic particles include silicate minerals such as silica, titania, alumina, zeolite, kaolin, talc, and mica; diatomaceous earth, and the like. Silica may be amorphous or crystalline. Moreover, natural silica or synthetic silica may be used. Examples of synthetic silica include wet silica such as precipitated silica and silica gel; dry silica such as fumed silica (flame hydrolysis silica), arc silica, plasma silica, and quartz glass (flame fused silica).
Zeolite is a general term for crystalline aluminosilicates. Examples of the zeolite skeleton structure include A type, X type, LSX type, beta type, ZSM-5 type, ferrierite type, mordenite type, L type, and Y type.
Examples of lubricants include aliphatic hydrocarbon lubricants such as paraffin wax and carnauba wax; aliphatic amide lubricants such as higher aliphatic alcohols, ethylene bisstearamide, and stearamide; calcium stearate, barium stearate, and stearin. Examples include metal soap-based lubricants such as acid zinc, aluminum stearate, and magnesium stearate; fatty acid ester-based lubricants; and composite lubricants.
These antiblocking agents may be used alone or in combination of two or more.

酸成分としては、多価カルボン酸類以外であれば特に制限されないが、例えば安息香酸、o-ヒドロキシ安息香酸、m-ヒドロキシ安息香酸、p-ヒドロキシ安息香酸、2,4-ジヒドロキシ安息香酸、2,6-ジヒドロキシ安息香酸、3,5-ジヒドロキシ安息香酸、3,4,5-トリヒドロキシ安息香酸(没食子酸)、2,4,6-トリヒドロキシ安息香酸、サリチル酸、アントラニル酸等の一価のカルボン酸;パラトルエンスルホン酸、キシレンスルホン酸、ベンゼンスルホン酸、メタンスルホン酸等のスルホン酸;硫酸;リン酸などが挙げられる。
これらの酸成分は、1種単独で用いてもよく、2種以上を併用してもよい。
ただし、スルホン酸や硫酸などの硫黄を含む酸は、注湯時に亜硫酸ガス等の硫黄酸化物を発生しやすい。そのため、スルホン酸や硫酸などの硫黄を含む酸の含有量は、耐火性粒状材料100質量部に対して、0.5質量部未満が好ましく、0.3質量部以下がより好ましく、0.1質量部以下がさらに好ましく、耐火性粒状材料は、硫黄を含む酸で被覆されていないことが特に好ましい。
The acid component is not particularly limited as long as it is not a polyhydric carboxylic acid, but includes, for example, benzoic acid, o-hydroxybenzoic acid, m-hydroxybenzoic acid, p-hydroxybenzoic acid, 2,4-dihydroxybenzoic acid, 2, Monovalent carboxylic acid such as 6-dihydroxybenzoic acid, 3,5-dihydroxybenzoic acid, 3,4,5-trihydroxybenzoic acid (gallic acid), 2,4,6-trihydroxybenzoic acid, salicylic acid, anthranilic acid, etc. Acids; sulfonic acids such as para-toluenesulfonic acid, xylenesulfonic acid, benzenesulfonic acid and methanesulfonic acid; sulfuric acid; phosphoric acid and the like.
These acid components may be used alone or in combination of two or more.
However, acids containing sulfur such as sulfonic acid and sulfuric acid tend to generate sulfur oxides such as sulfur dioxide gas during pouring. Therefore, the content of sulfur-containing acids such as sulfonic acid and sulfuric acid is preferably less than 0.5 parts by mass, more preferably 0.3 parts by mass or less, and 0.1 parts by mass, based on 100 parts by mass of the refractory granular material. Parts by weight or less are more preferred, and it is especially preferred that the refractory particulate material is not coated with a sulfur-containing acid.

被覆材料は、例えば加熱した耐火性粒状材料に、被覆剤を含む溶液(以下、「溶液(α)」ともいう。)を添加することで得られる。
乾態の被覆材料を得る場合、耐火性粒状材料の加熱温度は、溶液(α)に含まれる溶媒の沸点以上であることが好ましい。
耐火性粒状材料の加熱温度の上限値は、被覆剤が熱分解しない温度であれば特に制限されない。
被覆材料は、乾態でもよいし、3次元積層造形において積層できれば湿態でもよいが、乾態であることが好ましい。
The coating material can be obtained, for example, by adding a solution containing a coating agent (hereinafter also referred to as "solution (α)") to a heated refractory granular material.
When a dry coating material is to be obtained, the heating temperature of the refractory granular material is preferably equal to or higher than the boiling point of the solvent contained in the solution (α).
The upper limit of the heating temperature of the refractory granular material is not particularly limited as long as the coating agent does not thermally decompose.
The coating material may be in a dry state, or in a wet state as long as it can be layered in three-dimensional additive manufacturing, but is preferably in a dry state.

<バインダ>
本発明で用いるバインダは、糖類及び多価カルボン酸類を具備する。
バインダは、本発明の効果を損なわない範囲内であれば、必要に応じて、糖類及び多価カルボン酸類以外の成分(任意成分)を具備していてもよい。
なお、本発明において糖類及び多価カルボン酸類を具備するバインダを「糖バインダ」ともいう。
<Binder>
The binder used in the present invention comprises a sugar and a polyvalent carboxylic acid.
The binder may contain components (optional components) other than the sugars and polyvalent carboxylic acids, as necessary, within a range that does not impair the effects of the present invention.
In the present invention, a binder comprising a sugar and a polyvalent carboxylic acid is also called a "sugar binder."

(糖類)
糖類は、粘結剤の役割を果たす。
糖類としては、単糖、オリゴ糖、多糖等の糖質;糖アルコールなどが挙げられる。
なお、本明細書において、「オリゴ糖」は2~10の単糖が結合したものとし、「多糖」は11以上の単糖が結合したものとする。
(sugar)
Sugars act as binders.
Examples of saccharides include carbohydrates such as monosaccharides, oligosaccharides, and polysaccharides; sugar alcohols, and the like.
In this specification, an "oligosaccharide" is defined as one in which 2 to 10 monosaccharides are bound together, and a "polysaccharide" is defined as one in which 11 or more monosaccharides are bound together.

単糖としては、例えばグルコース、フルクトース、マンノース、ガラクトース、リボース、キシロースなどが挙げられる。
オリゴ糖としては、例えばショ糖(スクロース)、マルトース、ラクトース、トレハロース、イソマルトース、セロビオース等の二糖;マルトトリオース、ラフィノース等の三糖;マルトオリゴ糖;イソマルトオリゴ糖;フラクトオリゴ糖;マンノオリゴ糖;ガラクトオリゴ糖などが挙げられる。
多糖としては、例えばデンプン、デキストリン、ザンサンガム、カードラン、プルラン、シクロアミロース、キチン、セルロース、ポリデキストロースなどが挙げられる。
デンプンとしては、末加工デンプン及び加工デンプンを挙げることができる。具体的には馬鈴薯デンプン、コーンスターチ、ハイアミロース、甘藷デンプン、タピオカデンプン、サゴデンプン、米デンプン、アマランサスデンプンなどの未加工デンプン、及びこれらの加工デンプン(焙焼デキストリン、酵素変性デキストリン、酸処理デンプン、酸化デンプン、ジアルデヒド化デンプン、エーテル化デンプン(カルボキシメチルデンプン、ヒドロキシアルキルデンプン、カチオンデンプン、メチロール化デンプン等)、エステル化デンプン(酢酸デンプン、リン酸デンプン、コハク酸デンプン、オクテニルコハク酸デンプン、マレイン酸デンプン、高級脂肪酸エステル化デンプン等)、架橋デンプン、クラフト化デンプン、及び湿熱処理デンプンなどが挙げられる。
糖アルコールとしては、例えばマルチトール、ソルビトール、リビトール、マンニトール、アラビトール、ガラクチトール、ラクチトール、キシリトール、スクロース、エリトリトール、イノシトールなどが挙げられる。
なお、砂糖はスクロース(ショ糖)を主成分とするものであり、原料や製法などによって上白糖、グラニュー糖、白双糖、三温糖、黒糖などがあり、これらはいずれも本発明において糖類として使用することができる。
これらの糖類は、1種単独で用いてもよく、2種以上を併用してもよい。
Examples of monosaccharides include glucose, fructose, mannose, galactose, ribose, and xylose.
Examples of oligosaccharides include disaccharides such as sucrose, maltose, lactose, trehalose, isomaltose, and cellobiose; trisaccharides such as maltotriose and raffinose; maltooligosaccharides; isomaltooligosaccharides; fructooligosaccharides; mannooligosaccharides; and galactooligosaccharides.
Examples of polysaccharides include starch, dextrin, xanthan gum, curdlan, pullulan, cycloamylose, chitin, cellulose, and polydextrose.
Examples of starch include unmodified starch and modified starch. Specific examples include unmodified starches such as potato starch, corn starch, high amylose, sweet potato starch, tapioca starch, sago starch, rice starch, and amaranth starch, and modified starches thereof (roasted dextrin, enzyme-modified dextrin, acid-treated starch, oxidized starch, dialdehyde-modified starch, etherified starch (carboxymethyl starch, hydroxyalkyl starch, cationic starch, methylol-modified starch, etc.), esterified starch (starch acetate, starch phosphate, starch succinate, starch octenylsuccinate, starch maleate, higher fatty acid esterified starch, etc.), crosslinked starch, kraft starch, and heat-moisture treated starch.
Examples of sugar alcohols include maltitol, sorbitol, ribitol, mannitol, arabitol, galactitol, lactitol, xylitol, sucrose, erythritol, and inositol.
Sugar is composed mainly of sucrose (cane sugar), and depending on the raw materials and manufacturing method, there are white sugar, granulated sugar, white double sugar, brown sugar, brown sugar, etc., and any of these can be used as sugars in the present invention.
These sugars may be used alone or in combination of two or more.

(多価カルボン酸類)
多価カルボン酸類は、糖類と反応してポリマー化することで粘結性を発現することから、粘結剤の役割を果たす。加えて、多価カルボン酸類は、糖類の酸触媒(硬化剤)としての役割も果たす。
本発明において、「多価カルボン酸類」との用語は、多価カルボン酸に加え、多価カルボン酸塩、多価カルボン酸無水物、多価カルボン酸ハロゲン化物、多価カルボン酸誘導体等も含むものである。
(Polyhydric carboxylic acids)
Polyhydric carboxylic acids exhibit caking properties by reacting with saccharides and polymerizing, so they play the role of caking agents. In addition, polycarboxylic acids also serve as acid catalysts (curing agents) for sugars.
In the present invention, the term "polyvalent carboxylic acids" includes not only polyvalent carboxylic acids but also polyvalent carboxylic acid salts, polyvalent carboxylic acid anhydrides, polyvalent carboxylic acid halides, polyvalent carboxylic acid derivatives, etc. It is something that

多価カルボン酸類としては、例えばクエン酸、リンゴ酸、シュウ酸、マレイン酸、コハク酸、フマル酸、酒石酸、イソフタル酸、イタコン酸、ブタンテトラジカルボン酸、ミリスチン酸、パルミチン酸、マロン酸、グルタル酸、フタル酸、テレフタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、5-ヒドロキシイソフタル酸、3,6-ジヒドロキシフタル酸、4-ヒドロキシフタル酸、メチルビニルエーテル-無水マレイン酸共重合体等の多価カルボン酸;これら多価カルボン酸の塩(多価カルボン酸塩);これら多価カルボン酸の無水物(多価カルボン酸無水物);これら多価カルボン酸のハロゲン化物(多価カルボン酸ハロゲン化物);及びこれら多価カルボン酸の誘導体(多価カルボン酸誘導体)などが挙げられる。
多価カルボン酸の塩としては、例えば多価カルボン酸とアルカリ金属(カリウム、ナトリウム等)との塩、多価カルボン酸とアルカリ土類金属(マグネシウム、カルシウム等)との塩、多価カルボン酸とアンモニウムとの塩、多価カルボン酸とアルカノールアミン(モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等)との塩などが挙げられる。
多価カルボン酸の無水物としては、例えば多価カルボン酸の分子内又は分子間より脱水縮合され、カルボン酸無水物基(-CO-O-CO-)を含むものなどが挙げられる。
多価カルボン酸のハロゲン化物としては、例えば多価カルボン酸の酸塩化物、多価カルボン酸の酸臭化物などが挙げられる。
多価カルボン酸の誘導体としては、例えば多価カルボン酸の炭素数1~5の低級アルコール(メタノール、エタノール、プロパノール、ブタノール、ペンタノール等)とのエステル化合物、多価カルボン酸と低分子量グリコール(エチレングリコール等)とのエステル化合物などが挙げられる。
これの中でも、植物由来であり、かつ入手のし易さの観点から、多価カルボン酸が好ましく、クエン酸、リンゴ酸がより好ましい。
これらの多価カルボン酸類は、1種単独で用いてもよく、2種以上を併用してもよい。
Examples of polyvalent carboxylic acids include polyvalent carboxylic acids such as citric acid, malic acid, oxalic acid, maleic acid, succinic acid, fumaric acid, tartaric acid, isophthalic acid, itaconic acid, butanetetradicarboxylic acid, myristic acid, palmitic acid, malonic acid, glutaric acid, phthalic acid, terephthalic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, 5-hydroxyisophthalic acid, 3,6-dihydroxyphthalic acid, 4-hydroxyphthalic acid, and methyl vinyl ether-maleic anhydride copolymer; salts of these polyvalent carboxylic acids (polyvalent carboxylates); anhydrides of these polyvalent carboxylic acids (polyvalent carboxylic acid anhydrides); halides of these polyvalent carboxylic acids (polyvalent carboxylic acid halides); and derivatives of these polyvalent carboxylic acids (polyvalent carboxylic acid derivatives).
Examples of the salts of polycarboxylic acids include salts of polycarboxylic acids and alkali metals (potassium, sodium, etc.), salts of polycarboxylic acids and alkaline earth metals (magnesium, calcium, etc.), salts of polycarboxylic acids and ammonium, and salts of polycarboxylic acids and alkanolamines (monoethanolamine, diethanolamine, triethanolamine, etc.).
Examples of the anhydrides of polycarboxylic acids include those which are formed by intramolecular or intermolecular dehydration condensation of polycarboxylic acids and contain a carboxylic anhydride group (--CO--O--CO--).
Examples of the halides of polycarboxylic acids include acid chlorides of polycarboxylic acids and acid bromides of polycarboxylic acids.
Examples of the derivatives of polycarboxylic acids include ester compounds of polycarboxylic acids with lower alcohols having 1 to 5 carbon atoms (e.g., methanol, ethanol, propanol, butanol, pentanol, etc.) and ester compounds of polycarboxylic acids with low molecular weight glycols (e.g., ethylene glycol).
Among these, polycarboxylic acids are preferred from the viewpoints of plant origin and ease of availability, and citric acid and malic acid are more preferred.
These polyvalent carboxylic acids may be used alone or in combination of two or more kinds.

(任意成分)
任意成分としては、耐火性粒状材料の説明において先に例示した、多価カルボン酸類以外の酸成分等が挙げられる。
(optional ingredient)
Examples of optional components include acid components other than polyhydric carboxylic acids, which were exemplified earlier in the description of the refractory granular material.

<工程(a)、工程(b)>
工程(a)は、耐火性粒状材料を層状に敷き詰める工程である。
工程(b)は、層状に敷き詰められた耐火性粒状材料の所望の領域にバインダを射出する工程である。
本実施形態の3次元積層造形物の製造方法では、工程(a)と工程(b)とを目的の3次元積層造形物が造形されるまで繰り返す。
<Step (a), step (b)>
Step (a) is a step of spreading the refractory granular material in layers.
Step (b) is a step of injecting a binder into a desired area of the layered refractory granular material.
In the method for manufacturing a three-dimensional layered product according to the present embodiment, steps (a) and (b) are repeated until the desired three-dimensional layered product is manufactured.

工程(a)及び工程(b)は、例えば印刷造形法を用いた3次元積層装置を用い、以下のようにして行われる。
3次元積層装置としては、ブレード機構と、印刷ノズルヘッド機構と、造形テーブル機構とを備えるものが好ましい。さらに、各機構の動作を造形対象物の3次元データを用いて制御する制御部を備えていることが好ましい。
ブレード機構は、リコータを含み、金属ケースの面又はバインダで結合済みの造形部の上層に、耐火性粒状材料を所定の厚みで積層するものである。
印刷ノズルヘッド機構は、積層された耐火性粒状材料に対してバインダによる印刷を行い、耐火性粒状材料を結合することによって1層毎の造形を行うものである。
造形テーブル機構は、1層の造形が終了すると1層分の距離だけ下降して、所定の厚みでの積層造形を実現するものである。
Steps (a) and (b) are performed as follows using, for example, a three-dimensional lamination apparatus using a printing method.
The three-dimensional lamination apparatus is preferably one that includes a blade mechanism, a printing nozzle head mechanism, and a modeling table mechanism. Furthermore, it is preferable to include a control section that controls the operation of each mechanism using three-dimensional data of the object to be modeled.
The blade mechanism includes a recoater and laminates the refractory granular material to a predetermined thickness on the surface of the metal case or on the upper layer of the shaped part that has been bonded with a binder.
The printing nozzle head mechanism prints with a binder on the laminated refractory granular materials, and shapes each layer by bonding the refractory granular materials.
When the modeling of one layer is completed, the modeling table mechanism is lowered by a distance corresponding to one layer, thereby realizing layered manufacturing with a predetermined thickness.

まず、印刷造形法を用いた3次元積層装置を用い、リコータを有するブレード機構により耐火性粒状材料を3次元積層装置に設置された金属ケースの底面に積層する(工程(a))。ついで、積層した耐火性粒状材料の所望の領域に、目的の3次元積層造形物の形状を3DCAD設計して得られたデータに基づいて印刷ノズルヘッド機構により印刷ノズルヘッドを走査させて、バインダを印刷(射出)する(工程(b))。金属ケースの底面は造形テーブルとなっており、上下に可動することができる。バインダを印刷した後、金属ケースの底面(造形テーブル)を1層分降下させ、先と同様にして耐火性粒状材料を積層し(工程(a))、その上にバインダを印刷する(工程(b))。これら積層と印刷の操作を、目的の3次元積層造形物が造形されるまで繰り返す。1層の厚さは、100~500μmが好ましく、100~300μmがより好ましい。
なお、耐火性粒状材料が金属である耐火性粒状材料を用いて金属成形体を製造する場合は、メタル3Dプリンタを用いることが好ましい。
First, using a three-dimensional lamination apparatus using a printing method, a refractory granular material is laminated on the bottom surface of a metal case installed in the three-dimensional lamination apparatus using a blade mechanism having a recoater (step (a)). Next, the binder is applied to a desired area of the laminated fire-resistant granular material by scanning the printing nozzle head with the printing nozzle head mechanism based on the data obtained by 3D CAD designing the shape of the desired three-dimensional laminate model. Print (inject) (step (b)). The bottom of the metal case is a modeling table that can be moved up and down. After printing the binder, lower the bottom of the metal case (modeling table) by one layer, layer the refractory granular material in the same manner as before (step (a)), and print the binder on top of it (step (a)). b)). These laminating and printing operations are repeated until the desired three-dimensional layered product is manufactured. The thickness of one layer is preferably 100 to 500 μm, more preferably 100 to 300 μm.
In addition, when manufacturing a metal molded body using a fire-resistant granular material in which the refractory granular material is a metal, it is preferable to use a metal 3D printer.

バインダに具備される糖類及び多価カルボン酸類は、混合物の状態で用いられてもよいし、別々に用いられてもよい。すなわち、工程(b)では、層状に敷き詰められた耐火性粒状材料の所望の領域に、糖類及び多価カルボン酸類を含む混合物(以下、「混合物(M1)」ともいう。)を射出してもよいし、糖類及び多価カルボン酸類を別々に射出してもよい。糖類及び多価カルボン酸類を別々に射出する場合、射出の順序については特に制限されず、糖類を射出した後に多価カルボン酸類を射出してもよいし、多価カルボン酸類を射出した後に糖類を射出してもよいし、糖類及び多価カルボン酸類を同時に射出してもよい。製造コストや手間を考慮すると、混合物(M1)を射出することが好ましい。
以下、本明細書において、混合物(M1)を射出する場合を「工程(b1)」ともいう。糖類を射出する場合を「工程(b2)」ともいう。多価カルボン酸類を射出する場合を「工程(b3)」ともいう。
The saccharides and polycarboxylic acids included in the binder may be used in a mixture or separately. That is, in step (b), a mixture containing sugars and polycarboxylic acids (hereinafter also referred to as "mixture (M1)") is injected into a desired area of the refractory granular material spread in layers. Alternatively, the saccharide and polycarboxylic acid may be separately injected. When saccharides and polyvalent carboxylic acids are injected separately, there are no particular restrictions on the order of injection; the polyvalent carboxylic acids may be injected after the saccharides are injected, or the saccharides may be injected after the polyvalent carboxylic acids are injected. It may be injected, or the saccharide and polycarboxylic acid may be injected at the same time. Considering manufacturing cost and labor, it is preferable to inject the mixture (M1).
Hereinafter, in this specification, the case where the mixture (M1) is injected is also referred to as "step (b1)". The case of injecting sugars is also referred to as "step (b2)." The case where polycarboxylic acids are injected is also referred to as "step (b3)."

工程(a)及び工程(b)の好ましい態様は以下の通りである。
工程(a)、工程(b1)の順で、目的の3次元積層造形物が造形されるまで繰り返す態様。
工程(a)、工程(b2)、工程(b3)の順で、目的の3次元積層造形物が造形されるまで繰り返す態様。
工程(a)、工程(b3)、工程(b2)の順で、目的の3次元積層造形物が造形されるまで繰り返す態様。
工程(a)、工程(b2)及び工程(b3)の順で(ただし、工程(b2)及び工程(b3)は同時である)、目的の3次元積層造形物が造形されるまで繰り返す態様。
Preferred embodiments of step (a) and step (b) are as follows.
A mode in which step (a) and step (b1) are repeated in this order until the desired three-dimensional layered product is modeled.
A mode in which step (a), step (b2), and step (b3) are repeated in this order until the desired three-dimensional layered product is modeled.
A mode in which step (a), step (b3), and step (b2) are repeated in this order until the desired three-dimensional layered product is modeled.
A mode in which step (a), step (b2), and step (b3) are repeated in this order (however, step (b2) and step (b3) are simultaneous) until the desired three-dimensional layered product is modeled.

バインダは、印刷ノズルヘッド機構から射出しやすい濃度となるように、予め溶媒に溶解又は希釈して、溶液の状態で用いることが好ましい。すなわち、工程(b)ではバインダを含む溶液(以下、「溶液(β)」ともいう。)を射出することが好ましい。溶液(β)は、必要に応じて上述した任意成分を含んでいてもよい。
糖類及び多価カルボン酸類を混合物の状態で用いる場合、工程(b1)では、混合物(M1)を含む溶液(以下、「溶液(β1)」ともいう。)を用いることが好ましい。
糖類及び多価カルボン酸類を別々に用いる場合、工程(b2)では、糖類を含む溶液(以下、「溶液(β2)」ともいう。)を用いることが好ましい。工程(b3)では、多価カルボン酸類を含む溶液(以下、「溶液(β3)」ともいう。)を用いることが好ましい。
溶液(β1)、溶液(β2)及び溶液(β3)のそれぞれは、必要に応じて上述した任意成分を含んでいてもよい。
溶液(β)、すなわち溶液(β1)、溶液(β2)及び溶液(β3)に用いる溶媒としては、水、アルコール、これらの混合物などが挙げられる。アルコールとしては、メタノール、エタノール、1-プロパノール、2プロパノールなどが挙げられる。これらの中でも水が好ましい。
溶液(β)、すなわち溶液(β1)、溶液(β2)及び溶液(β3)中の糖類及び多価カルボン酸類の合計量は特に限定されず、3次元積層装置の性能等に応じて適宜決定すればよい。
The binder is preferably dissolved or diluted in a solvent in advance and used in the form of a solution so that it has a concentration that is easy to eject from the printing nozzle head mechanism. That is, in step (b), it is preferable to inject a solution containing a binder (hereinafter also referred to as "solution (β)"). The solution (β) may contain the above-mentioned optional components as necessary.
When saccharides and polycarboxylic acids are used in the form of a mixture, it is preferable to use a solution containing the mixture (M1) (hereinafter also referred to as "solution (β1)") in step (b1).
When saccharides and polycarboxylic acids are used separately, it is preferable to use a solution containing saccharides (hereinafter also referred to as "solution (β2)") in step (b2). In step (b3), it is preferable to use a solution containing polyhydric carboxylic acids (hereinafter also referred to as "solution (β3)").
Each of the solution (β1), the solution (β2), and the solution (β3) may contain the above-mentioned optional components as necessary.
Examples of the solvent used for the solution (β), that is, the solution (β1), the solution (β2), and the solution (β3) include water, alcohol, and mixtures thereof. Examples of alcohol include methanol, ethanol, 1-propanol, 2-propanol, and the like. Among these, water is preferred.
The total amount of saccharides and polyvalent carboxylic acids in the solution (β), that is, the solution (β1), the solution (β2), and the solution (β3) is not particularly limited, and should be determined as appropriate depending on the performance of the three-dimensional lamination device, etc. Bye.

工程(b)では、糖類と多価カルボン酸類との質量比が、糖類:多価カルボン酸類=90:10~10:90となるように、糖類及び多価カルボン酸類を射出することが好ましく、より好ましくは80:20~20:80であり、さらに好ましくは70:30~30:70であり、特に好ましくは60:40~40:60であり、最も好ましくは50:50である。糖類及び多価カルボン酸類を質量比が上記範囲内となるように射出することで、糖類と多価カルボン酸類との反応により十分な硬化が可能となる。特に、糖類と多価カルボン酸類との質量比が50:50~20:80の範囲内であれば、耐水性に優れた3次元積層造形物が得られやすくなる傾向にある。よって、3次元積層造形物が鋳型の場合、湿度の高い環境下で鋳造する場合であっても鋳型の強度を良好に維持できる。 In step (b), the sugars and polycarboxylic acids are preferably injected so that the mass ratio of the sugars to the polycarboxylic acids is 90:10 to 10:90, more preferably 80:20 to 20:80, even more preferably 70:30 to 30:70, particularly preferably 60:40 to 40:60, and most preferably 50:50. By injecting the sugars and polycarboxylic acids so that the mass ratio is within the above range, sufficient hardening can be achieved by the reaction between the sugars and the polycarboxylic acids. In particular, if the mass ratio of the sugars to the polycarboxylic acids is within the range of 50:50 to 20:80, a three-dimensional additively shaped product with excellent water resistance tends to be obtained. Therefore, when the three-dimensional additively shaped product is a mold, the strength of the mold can be well maintained even when it is cast in a humid environment.

また、工程(b)では、バインダの総質量に対して、糖類及び多価カルボン酸類の合計量が60質量%以上となるように、糖類及び多価カルボン酸類を射出することが好ましく、より好ましくは70質量%以上であり、さらに好ましくは80質量%以上であり、特に好ましくは100質量%である。 In step (b), it is preferable, more preferably, that the saccharides and polycarboxylic acids are injected such that the total amount of the saccharides and polycarboxylic acids is 60% by mass or more based on the total mass of the binder. is 70% by mass or more, more preferably 80% by mass or more, particularly preferably 100% by mass.

また、バインダを印刷する際の塗布量は純分換算で、その印刷領域における1層分の耐火性粒状材料の質量を100質量部としたときに、糖類及び多価カルボン酸類の合計量が0.5~10質量部となる量が好ましく、より好ましくは0.5~5質量部であり、さらに好ましくは0.5~2質量部である。耐火性粒状材料に対する糖類及び多価カルボン酸類の合計量が、上記下限値以上であれば十分な粘結性が得られる。粘結性の効果は、糖類及び多価カルボン酸類の合計量の割合が増えるほど得られやすくなる傾向にあるが、増えすぎても効果は頭打ちになるだけである。よって、糖類及び多価カルボン酸類の合計量は10質量部以下が好ましい。 In addition, the amount of application when printing the binder is preferably an amount, calculated on a pure basis, such that the total amount of sugars and polycarboxylic acids is 0.5 to 10 parts by mass, more preferably 0.5 to 5 parts by mass, and even more preferably 0.5 to 2 parts by mass, when the mass of one layer of fire-resistant granular material in the printing area is 100 parts by mass. If the total amount of sugars and polycarboxylic acids relative to the fire-resistant granular material is equal to or greater than the lower limit above, sufficient binding properties can be obtained. The binding effect tends to be more easily obtained as the ratio of the total amount of sugars and polycarboxylic acids increases, but if the amount increases too much, the effect will simply plateau. Therefore, the total amount of sugars and polycarboxylic acids is preferably 10 parts by mass or less.

なお、工程(a)において、耐火性粒状材料は、上述した被覆剤で被覆された状態で用いられてもよいし、ブロッキング防止剤と混合された状態で用いられてもよい。すなわち、工程(a)では、上述した被覆材料を層状に敷き詰めてもよいし、耐火性粒状材料又は被覆材料とブロッキング防止剤とを含む混合物(以下、「混合物(M2)」ともいう。)を層状に敷き詰めてもよい。
工程(a)において被覆材料又は混合物(M2)を層状に敷き詰める場合、工程(b)では、層状に敷き詰められた被覆材料又は混合物(M2)の所望の領域にバインダを射出する。
In addition, in step (a), the refractory granular material may be used in a state coated with the above-mentioned coating material, or may be used in a state mixed with an antiblocking agent. That is, in step (a), the above-mentioned coating material may be spread in layers, or a mixture containing a fire-resistant granular material or coating material and an antiblocking agent (hereinafter also referred to as "mixture (M2)"). It may be laid out in layers.
When the coating material or mixture (M2) is spread in layers in step (a), in step (b), a binder is injected into a desired area of the coating material or mixture (M2) spread in layers.

このようにして得られる3次元積層造形物は、耐火性粒状材料の粉末の中で埋もれながら造形される。射出されたバインダ(糖類及び多価カルボン酸類)の乾燥固化により、バインダが液架橋して耐火性粒状材料同士がある程度結合するので、耐火性粒状材料の粉末から3次元積層造形物を取り出すことができる。取り出した3次元積層造形物の周囲に、バインダが印刷されていない領域(非印刷領域)の耐火性粒状材料が付着している場合は、刷毛、ブラシ、掃除機等で除去する。 The three-dimensional additive model obtained in this way is modeled while being embedded in the powder of fire-resistant granular material. As the injected binder (sugars and polycarboxylic acids) dries and solidifies, the binder forms liquid bridges, bonding the fire-resistant granular material to a certain extent, allowing the three-dimensional additive model to be removed from the powder of fire-resistant granular material. If any fire-resistant granular material is attached to the periphery of the removed three-dimensional additive model in areas where the binder is not printed (non-printed areas), it is removed with a brush, vacuum cleaner, etc.

耐火性粒状材料の粉末から3次元積層造形物を取り出した後、3次元積層造形物の強度を高める目的で、以下の工程(c)を行うことが好ましい。
また、取り出した3次元積層造形物の周囲に付着した耐火性粒状材料が除去しにくい場合は、以下の工程(c)を行うことが好ましい。
なお、耐火性粒状材料の粉末から3次元積層造形物を取り出さずに、3次元積層造形物が耐火性粒状材料の粉末の中で埋もれた状態で、以下の工程(c)を行ってもよい。
After the three-dimensional layered product is taken out from the powder of the refractory granular material, the following step (c) is preferably performed for the purpose of increasing the strength of the three-dimensional layered product.
Furthermore, if it is difficult to remove the refractory granular material adhering to the periphery of the three-dimensional layered product taken out, it is preferable to perform the following step (c).
In addition, the following step (c) may be performed in a state where the three-dimensional layered product is buried in the powder of the fire-resistant granular material without taking out the three-dimensional layered product from the powder of the fire-resistant granular material. .

<工程(c)>
工程(c)は、少なくとも最後の工程(b)の後に、加熱によりバインダを硬化させる工程である。
工程(c)の回数は、1回でもよいし、2回以上でもよい。
工程(c)の回数が1回の場合は、最後の工程(b)の後でのみ工程(c)を行う。
工程(c)の回数が2回以上の場合は、最後の工程(b)以外の工程(b)の後にも工程(c)を1回以上行う。例えば、工程(a)と工程(b)と工程(c)とをこの順で目的の3次元積層造形物が造形されるまで繰り返す。
最後の工程(b)の後、耐火性粒状材料の粉末から3次元積層造形物を取り出せる場合は、取り出した3次元積層造形物のみを加熱してもよい。その際、取り出した3次元積層造形物の周囲に非印刷領域の耐火性粒状材料が付着した状態で加熱してもよい。また、3次元積層造形物が耐火性粒状材料の粉末に埋もれた状態で加熱してもよい。
<Step (c)>
Step (c) is a step of curing the binder by heating, at least after the last step (b).
The number of times of step (c) may be one time, or two or more times.
When the number of times of step (c) is one, step (c) is performed only after the last step (b).
When the number of times of step (c) is two or more, step (c) is performed one or more times after steps (b) other than the last step (b). For example, step (a), step (b), and step (c) are repeated in this order until the desired three-dimensional layered product is modeled.
After the last step (b), if the three-dimensional laminate-molded article can be taken out from the powder of the refractory granular material, only the taken-out three-dimensional laminate-molded article may be heated. At that time, heating may be performed in a state in which the refractory granular material in the non-printing area is attached to the periphery of the three-dimensional layered product taken out. Alternatively, the three-dimensional layered product may be heated while being buried in powder of the refractory granular material.

工程(c)における加熱温度は、100~300℃が好ましく、130~290℃がより好ましく、150~280℃がさらに好ましく、160~270℃がよりさらに好ましく、170~260℃が特に好ましく、180~250℃が最も好ましい。加熱温度が上記下限値以上であれば、バインダが硬化しやすい。特に加熱温度が150℃以上であれば、実用的な強度の3次元積層造形物が得られやすい。さらに、加熱温度が150℃超であれば、耐水性に優れた3次元積層造形物が得られやすい。よって、3次元積層造形物が鋳型の場合、湿度の高い環境下で鋳造する場合であっても鋳型の強度を良好に維持できる。加熱温度が上記上限値以下であれば、糖類及び多価カルボン酸類が熱分解するのを抑制できる。
加熱処理は、乾燥機を用いて行ってもよいし、3次元積層装置が加熱処理機構を備えている場合は3次元積層装置の金属ケース内にて加熱処理を行ってもよい。
The heating temperature in step (c) is preferably 100 to 300 ° C, more preferably 130 to 290 ° C, even more preferably 150 to 280 ° C, even more preferably 160 to 270 ° C, particularly preferably 170 to 260 ° C, and most preferably 180 to 250 ° C. If the heating temperature is equal to or higher than the lower limit, the binder is easily cured. In particular, if the heating temperature is 150 ° C or higher, a three-dimensional laminated object having practical strength is easily obtained. Furthermore, if the heating temperature is more than 150 ° C, a three-dimensional laminated object having excellent water resistance is easily obtained. Therefore, when the three-dimensional laminated object is a mold, the strength of the mold can be well maintained even when casting is performed in a humid environment. If the heating temperature is equal to or lower than the upper limit, the sugars and polyvalent carboxylic acids can be suppressed from being thermally decomposed.
The heat treatment may be performed using a dryer, or in the case where the three-dimensional stacking device is equipped with a heat treatment mechanism, the heat treatment may be performed inside a metal case of the three-dimensional stacking device.

加熱により糖類及び多価カルボン酸類が溶融し、その後に固化又は硬化することで耐火性粒状材料同士が強固に結合する。また、糖類及び多価カルボン酸類が溶融したときに、糖類と多価カルボン酸類との反応(エステル化等)が進行してポリマー化しやすくなるので、糖類が単独で固化又は硬化する場合よりも硬化性が高まり、耐火性粒状材料同士がより強固に結合する。
糖類と多価カルボン酸類との反応を十分に進行させる観点からも、工程(c)を行うことが好ましい。
The sugars and polycarboxylic acids are melted by heating, and then solidified or hardened, thereby firmly bonding the refractory granular materials together. In addition, when the sugars and polycarboxylic acids are melted, the reaction between the sugars and the polycarboxylic acids (esterification, etc.) progresses and it becomes easier to polymerize, so it becomes more difficult to solidify or harden than when the sugars solidify or harden alone. The fire-resistant granular materials become more strongly bonded to each other.
It is preferable to carry out step (c) also from the viewpoint of sufficiently advancing the reaction between the saccharide and the polycarboxylic acid.

耐火性粒状材料の粉末の中で3次元積層造形物が埋もれた状態で工程(c)を行う場合、最後の工程(b)の後に工程(c)を行った後、バインダが印刷されていない領域(非印刷領域)の耐火性粒状材料を刷毛、ブラシ、掃除機等で除去して、3次元積層造形物を取り出す。加熱により糖類と多価カルボン酸類とがポリマー化することで耐火性粒状材料同士がより強固に結合するので、3次元積層造形物の強度が高まり、3次元積層造形物はその形状を良好に維持できる。よって、耐火性粒状材料の粉末の中から3次元積層造形物を容易に取り出すことができる。
非印刷領域においては糖類と多価カルボン酸類との反応は起こらないため、耐火性粒状材料同士は結合しておらず、非印刷領域の耐火性粒状材料を容易に除去できる。
When step (c) is performed with the three-dimensional additive model buried in the powder of the refractory granular material, after step (c) is performed after the last step (b), the refractory granular material in the area where the binder is not printed (non-printed area) is removed with a brush, a vacuum cleaner, or the like to remove the three-dimensional additive model. The sugars and polyvalent carboxylic acids are polymerized by heating, so that the refractory granular materials bond more firmly to each other, increasing the strength of the three-dimensional additive model and allowing the three-dimensional additive model to maintain its shape well. Therefore, the three-dimensional additive model can be easily removed from the powder of the refractory granular material.
Since no reaction occurs between the sugars and the polyvalent carboxylic acids in the non-printed areas, the refractory granular material is not bonded to itself, and the refractory granular material in the non-printed areas can be easily removed.

なお、金属成形体を製造する場合は、最後の工程(b)の後に工程(c)を行った後、必要に応じて脱脂工程及び焼結工程を行ってもよい。 When manufacturing a metal molded body, step (c) may be performed after the final step (b), and then a degreasing step and a sintering step may be performed as necessary.

<作用効果>
以上説明した本発明の3次元積層造形物の製造方法によれば、粘結剤として糖類及び多価カルボン酸類を具備するバインダを用いているので、本発明により得られる3次元積層造形物が鋳型の場合、注湯時に熱分解しても炭酸ガス及び水等が発生する程度であり、注湯時における作業環境は悪化しにくい。
また、本発明であれば、酸触媒としてスルホン酸や硫酸などの硫黄を含む酸を用いる必要がない。よって、本発明により得られる3次元積層造形物が鋳型の場合、注湯時に亜硫酸ガス等の硫黄酸化物が発生しにくい観点からも、注湯時における作業環境は悪化しにくい。
<Action and effect>
According to the manufacturing method of the present invention for producing a three-dimensional additive object as described above, a binder comprising sugars and polyvalent carboxylic acids is used as a binding agent. Therefore, when the three-dimensional additive object obtained by the present invention is a casting mold, even if it undergoes thermal decomposition during pouring, only carbon dioxide gas, water, etc. are generated, and the working environment during pouring is unlikely to deteriorate.
Furthermore, according to the present invention, there is no need to use an acid containing sulfur, such as sulfonic acid or sulfuric acid, as an acid catalyst. Therefore, when the three-dimensional additive manufacturing object obtained according to the present invention is used as a casting mold, the working environment during pouring is unlikely to deteriorate, from the viewpoint of preventing the generation of sulfur oxides, such as sulfur dioxide gas, during pouring.

なお、金属成形体を製造する場合は、通常、粘結剤を硬化させた後に脱脂工程及び焼結工程を行う。これら脱脂工程及び焼結工程の際に、粘結剤が熱分解してガス(熱分解ガス)が発生したり、硫酸やキシレンスルホン酸等の酸触媒に起因して亜硫酸ガス等の硫黄酸化物が発生したりして、作業環境が悪化する。
しかし、本発明であれば、粘結剤として糖類及び多価カルボン酸類を具備するバインダを用いており、硫黄を含む酸を用いる必要もないので、工程(c)の後に脱脂工程及び焼結工程を行っても、熱分解ガスや硫黄酸化物が発生しにくく、金属成形体の製造過程において作業環境が悪化しにくい。
In addition, when manufacturing a metal molded body, a degreasing process and a sintering process are normally performed after hardening the binder. During these degreasing and sintering processes, the binder is thermally decomposed and gas (pyrolysis gas) is generated, and sulfur oxides such as sulfur dioxide gas are generated due to acid catalysts such as sulfuric acid and xylene sulfonic acid. may occur, deteriorating the working environment.
However, in the present invention, a binder containing sugars and polycarboxylic acids is used as a binder, and there is no need to use an acid containing sulfur. Even if this is done, pyrolysis gases and sulfur oxides are less likely to be generated, and the working environment is less likely to deteriorate during the manufacturing process of metal molded bodies.

このように、本発明では、粘結剤として糖類及び多価カルボン酸類を具備するバインダを用いているので、注湯時や製造過程における作業環境が良好で、実用的な強度の3次元積層造形物を製造できる。また、3次元積層造形を採用していることから、複雑な形状の3次元積層造形物であっても容易に製造できる。
しかも、糖類は植物を原料とする植物由来のバインダであることから、本発明によればカーボンニュートラルな3次元積層造形物を製造でき、石油・石炭などの化石燃料使用量を削減でき、カーボンニュートラルによる地球温暖化防止(二酸化炭素削減)や循環型社会の構築に貢献できる。
In this way, the present invention uses a binder containing sugars and polyvalent carboxylic acids as a binding agent, which provides a good working environment during pouring and the manufacturing process, and allows the manufacture of 3D additive objects with practical strength. In addition, the use of 3D additive manufacturing makes it easy to manufacture 3D additive objects with complex shapes.
Furthermore, because sugars are plant-derived binders made from plants, the present invention makes it possible to produce carbon-neutral three-dimensional additive manufacturing objects, thereby reducing the amount of fossil fuels such as oil and coal used, and contributing to the prevention of global warming (reducing carbon dioxide emissions) and the creation of a circular society through carbon neutrality.

加えて、本発明であれば、工程(b)においてバインダが射出されていない領域ではバインダが硬化しないため、耐火性粒状材料同士は結合せず、耐火性粒状材料の粉末から3次元積層造形物を容易に取り出すことができる。よって、例えば中空の3次元積層造形物を製造する場合は、中空部分に位置する耐火性粒状材料を除去する必要があるが、本発明であれば中空部分に位置する耐火性粒状材料同士は結合しにくいため容易に除去でき、中空の3次元積層造形物を容易に製造できる。なお、中空の3次元積層造形物を製造する場合は、中空部分に位置する耐火性粒状材料を除去するための除去用穴が3次元積層造形物の任意の箇所に設けられるように、3次元積層造形物の形状を設計することが好ましい。 In addition, in the present invention, since the binder does not harden in the area where the binder is not injected in step (b), the refractory granular materials do not bond to each other, and the three-dimensional additive manufacturing object can be easily removed from the powder of the refractory granular material. Therefore, for example, when manufacturing a hollow three-dimensional additive manufacturing object, it is necessary to remove the refractory granular material located in the hollow part, but in the present invention, the refractory granular material located in the hollow part is difficult to bond to each other, so it can be easily removed, and the hollow three-dimensional additive manufacturing object can be easily manufactured. Note that, when manufacturing a hollow three-dimensional additive manufacturing object, it is preferable to design the shape of the three-dimensional additive manufacturing object so that a removal hole for removing the refractory granular material located in the hollow part is provided at any position of the three-dimensional additive manufacturing object.

[3次元積層造形用キット]
本発明の3次元積層造形用キットは、耐火性粒状材料と、バインダとを各々独立して有する。3次元積層造形用キットは、さらにブロッキング防止剤を独立して有していてもよい。
ここで、「独立して有する」とは、各々の成分が互いに混合、接触しない状態で存在していることを意味する。
[3D additive manufacturing kit]
The three-dimensional additive manufacturing kit of the present invention includes a fire-resistant granular material and a binder, each independently. The three-dimensional additive manufacturing kit may further independently contain an antiblocking agent.
Here, "having independently" means that the respective components are present without being mixed or in contact with each other.

3次元積層造形用キットを構成する耐火性粒状材料としては、上述した本発明の3次元積層造形物の製造方法の説明において先に例示した耐火性粒状材料が挙げられる。
3次元積層造形用キットを構成するバインダは、糖類及び多価カルボン酸類を具備する。バインダは、本発明の効果を損なわない範囲内で、必要に応じて任意成分を具備していてもよい。
糖類、多価カルボン酸類及び任意成分としては、それぞれ、上述した本発明の3次元積層造形物の製造方法の説明において先に例示した糖類、多価カルボン酸類及び任意成分が挙げられる。
バインダに具備される糖類及び多価カルボン酸類は、混合物の状態で存在していてもよし、独立して存在していてもよい。
3次元積層造形用キットを構成するブロッキング防止剤としては、上述した本発明の3次元積層造形物の製造方法の説明において先に例示したブロッキング防止剤が挙げられる。
Examples of the fire-resistant granular material constituting the three-dimensional additive manufacturing kit include the fire-resistant granular materials exemplified above in the description of the method for producing a three-dimensional additive-molded article of the present invention.
The binder constituting the three-dimensional additive manufacturing kit includes saccharides and polycarboxylic acids. The binder may contain optional components as necessary within a range that does not impair the effects of the present invention.
Examples of the saccharides, polycarboxylic acids, and optional components include the saccharides, polycarboxylic acids, and optional components previously exemplified in the explanation of the method for producing a three-dimensional laminate-molded article of the present invention.
The saccharides and polycarboxylic acids included in the binder may exist in a mixture or independently.
Examples of the anti-blocking agent constituting the three-dimensional layered manufacturing kit include the anti-blocking agents exemplified above in the description of the method for manufacturing the three-dimensional layered product of the present invention.

3次元積層造形用キットの好ましい態様は以下の通りである。
耐火性粒状材料が収容された第一の容器と、前記混合物(M1)が収容された第二の容器とを備える、容器の集合体。
耐火性粒状材料が収容された第一の容器と、糖類が収容された第三の容器と、多価カルボン酸類が収容された第四の容器とを備える、容器の集合体。
耐火性粒状材料が収容された第一の容器と、前記混合物(M1)が収容された第二の容器と、ブロッキング防止剤が収容された第五の容器とを備える、容器の集合体。
耐火性粒状材料が収容された第一の容器と、糖類が収容された第三の容器と、多価カルボン酸類が収容された第四の容器と、ブロッキング防止剤が収容された第五の容器とを備える、容器の集合体。
第一の容器には、必要に応じてブロッキング防止剤がさらに収容されていてもよい。すなわち、耐火性粒状材料はブロッキング防止剤との混合物の状態で第一の容器に収容されていてもよい。
また、耐火性粒状材料は、上述した被覆剤で被覆された状態で(すなわち、被覆材料として)第一の容器に収容されていてもよい。
A preferred embodiment of the three-dimensional additive manufacturing kit is as follows.
A collection of containers comprising a first container containing a refractory granular material and a second container containing said mixture (M1).
A collection of containers comprising a first container containing a refractory granular material, a third container containing a sugar, and a fourth container containing a polycarboxylic acid.
A collection of containers comprising a first container containing a refractory granular material, a second container containing said mixture (M1), and a fifth container containing an anti-blocking agent.
A collection of containers comprising a first container containing a fire-resistant granular material, a third container containing a sugar, a fourth container containing a polycarboxylic acid, and a fifth container containing an antiblocking agent.
The first container may further contain an anti-blocking agent if necessary, i.e. the refractory granular material may be contained in the first container in a mixture with the anti-blocking agent.
The refractory granular material may also be contained in the first container in a state coated with the above-mentioned coating agent (i.e., as a coating material).

上述した本発明の3次元積層造形物の製造方法においては、本発明の3次元積層造形用キットを用いて、3次元積層造形物を製造してもよい。
例えば、第一の容器から取り出した耐火性粒状材料を層状に敷き詰める工程と、層状に敷き詰められた耐火性粒状材料の所望の領域に、第二の容器から取り出した混合物(M1)を射出する工程とを、目的の3次元積層造形物が造形されるまで繰り返して、3次元積層造形物を製造する。その際、上述した工程(c)を行うことが好ましい。
なお、第一の容器にブロッキング防止剤がさらに収容されている場合、耐火性粒状材料はブロッキング防止剤と混合された状態で用いられることとなる。3次元積層造形用キットが耐火性粒状材料とブロッキング防止剤とを独立して有する場合、第一の容器から取り出した耐火性粒状材料と、第五の容器から取り出したブロッキング防止剤とを混合して混合物(M2)を調製した後に、得られた混合物(M2)を層状に敷き詰めてもよい。
また、混合物(M1)の代わりに、第三の容器から取り出した糖類及び第四の容器から取り出した多価カルボン酸類を用いてもよい。
In the above-described method for producing a three-dimensional additive manufacturing object of the present invention, the three-dimensional additive manufacturing kit of the present invention may be used to produce the three-dimensional additive manufacturing object.
For example, the step of spreading the refractory granular material taken out from the first container in layers and the step of injecting the mixture (M1) taken out from the second container into desired areas of the refractory granular material spread in layers are repeated until a desired three-dimensional additively manufactured object is manufactured. In this case, it is preferable to carry out the above-mentioned step (c).
In addition, when an antiblocking agent is further contained in the first container, the refractory granular material is used in a state mixed with the antiblocking agent. When the three-dimensional additive manufacturing kit has the refractory granular material and the antiblocking agent independently, the refractory granular material taken out from the first container and the antiblocking agent taken out from the fifth container may be mixed to prepare a mixture (M2), and then the obtained mixture (M2) may be laid out in a layer shape.
Moreover, the mixture (M1) may be replaced with the saccharides taken out from the third container and the polyvalent carboxylic acids taken out from the fourth container.

以上説明した本発明の3次元積層造形用キットによれば、粘結剤として糖類及び多価カルボン酸類を具備するバインダを有しているので、本発明の3次元積層造形用キットを用いて得られる3次元積層造形物が鋳型の場合、注湯時に熱分解しても炭酸ガス及び水等が発生する程度であり、注湯時における作業環境は悪化しにくい。
また、3次元積層造形用キットであれば、酸触媒としてスルホン酸や硫酸などの硫黄を含む酸を用いる必要がない。よって、本発明の3次元積層造形用キットを用いて得られる3次元積層造形物が鋳型の場合、注湯時に亜硫酸ガス等の硫黄酸化物が発生しにくい観点からも、注湯時における作業環境は悪化しにくい。
さらに、本発明の3次元積層造形用キットを用いて金属成形体を製造する場合において、工程(c)の後に脱脂工程及び焼結工程を行っても、熱分解ガスや硫黄酸化物が発生しにくく、金属成形体の製造過程において作業環境が悪化しにくい。
According to the three-dimensional additive manufacturing kit of the present invention described above, since it has a binder containing sugars and polyvalent carboxylic acids as a binding agent, it is possible to obtain a product using the three-dimensional additive manufacturing kit of the present invention. When the three-dimensional layered product to be produced is a mold, even if it is thermally decomposed during pouring, only carbon dioxide gas, water, etc. are generated, and the working environment during pouring is unlikely to deteriorate.
Furthermore, in the case of a three-dimensional additive manufacturing kit, there is no need to use an acid containing sulfur such as sulfonic acid or sulfuric acid as an acid catalyst. Therefore, when the three-dimensional additively manufactured object obtained using the three-dimensional additive manufacturing kit of the present invention is a mold, the working environment during pouring is important from the viewpoint that sulfur oxides such as sulfur dioxide gas are less likely to be generated during pouring. is unlikely to worsen.
Furthermore, when manufacturing a metal molded body using the three-dimensional additive manufacturing kit of the present invention, even if a degreasing process and a sintering process are performed after step (c), pyrolysis gas and sulfur oxides are not generated. The working environment is less likely to deteriorate during the manufacturing process of metal molded bodies.

このように、本発明の3次元積層造形用キットを用いれば、注湯時や製造過程における作業環境が良好で、実用的な強度の3次元積層造形物を製造できる。
しかも、糖類は植物を原料とする植物由来のバインダであることから、本発明の3次元積層造形用キットを用いればカーボンニュートラルな3次元積層造形物を製造でき、石油・石炭などの化石燃料使用量を削減でき、カーボンニュートラルによる地球温暖化防止(二酸化炭素削減)や循環型社会の構築に貢献できる。
加えて、本発明の3次元積層造形用キットを用いれば、複雑な形状はもちろんのこと、中空の3次元積層造形物を容易に製造できる。
As described above, by using the three-dimensional additive manufacturing kit of the present invention, a three-dimensional additive-molded product with a practical strength can be manufactured in a favorable working environment during pouring and during the manufacturing process.
Moreover, since saccharides are plant-derived binders that are made from plants, the 3D additive manufacturing kit of the present invention can be used to produce carbon-neutral 3D additive products, making it possible to use fossil fuels such as oil and coal. By reducing the amount of carbon dioxide, it can contribute to preventing global warming (reducing carbon dioxide) and building a recycling-oriented society through carbon neutrality.
In addition, by using the three-dimensional additive manufacturing kit of the present invention, it is possible to easily manufacture hollow three-dimensional additive-molded products as well as complex shapes.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。各例で用いた材料を以下に示す。また、各種測定方法は以下の通りである。 EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto. The materials used in each example are shown below. Further, various measurement methods are as follows.

[測定・評価方法]
<曲げ強さの測定>
各実施例および比較例で得られたテストピースの曲げ強さをJACT試験法SM-1に記載の測定方法を用いて測定した。
[Measurement and evaluation method]
<Measurement of bending strength>
The bending strength of the test pieces obtained in each of the Examples and Comparative Examples was measured using the measurement method described in JACT Test Method SM-1.

<取り出しやすさの評価>
テストピースの作製において、非印刷部分の耐火性粒状材料を除去して3次元積層造形物(テストピース)を取り出す際の取り出しやすさについて、以下の評価基準にて評価した。
<<評価基準>>
I:刷毛を用いてテストピースの表面をなぞる程度で、非印刷部分の耐火性粒状材料を容易に除去することができる。
II:ブラシを用いてテストピースの表面を擦ることで、非印刷部分の耐火性粒状材料を除去することができる。
III:非印刷部分の耐火性粒状材料を除去できず、テストピースを取り出すことが困難である。
<Evaluation of ease of removal>
In the production of the test piece, the ease of taking out the three-dimensional laminate-molded article (test piece) by removing the fire-resistant granular material in the non-printed portion was evaluated using the following evaluation criteria.
<<Evaluation criteria>>
I: The refractory particulate material in the non-printed area can be easily removed by tracing the surface of the test piece with a brush.
II: By scrubbing the surface of the test piece with a brush, the refractory particulate material in the non-printed areas can be removed.
III: The refractory granular material in the non-printing part cannot be removed and it is difficult to take out the test piece.

[実施例1]
溶融法により得られた人工砂(伊藤機工株式会社製、「アルサンド#1000」、平均粒子径120μm)を目開き212μmの篩に通過させ、篩を通過したものを耐火性粒状材料として用いた。
糖類としてマルトースと、多価カルボン酸類としてクエン酸と、水とを質量比が糖類:多価カルボン酸類:水=10:10:80となるように混合して溶液(β1)を調製し、これをバインダの溶液として用いた。
溶液(β1)について、25℃におけるpH、25℃における粘度、及び25℃における比重を測定した。結果を表1に示す。なお、pHはpHメータを用い、25℃の条件で測定した。粘度は、B型粘度計を用い、ローターの回転数60rpm、測定温度25℃の条件で測定した。ローターとしては、1号ローターを用いた。比重は、JIS Z 8804:2012における「液体の密度及び比重の測定方法」に準じて測定した。
[Example 1]
Artificial sand obtained by the melting method (manufactured by Ito Kiko Co., Ltd., "Alsand #1000", average particle size 120 μm) was passed through a sieve with openings of 212 μm, and the sand that passed through the sieve was used as the fire-resistant granular material.
Maltose as a sugar, citric acid as a polycarboxylic acid, and water were mixed in a mass ratio of sugar:polycarboxylic acid:water=10:10:80 to prepare a solution (β1), which was used as a binder solution.
The pH at 25°C, viscosity at 25°C, and specific gravity at 25°C of the solution (β1) were measured. The results are shown in Table 1. The pH was measured using a pH meter at 25°C. The viscosity was measured using a B-type viscometer at a rotor speed of 60 rpm and a measurement temperature of 25°C. The rotor used was a No. 1 rotor. The specific gravity was measured in accordance with JIS Z 8804:2012 "Method of measurement of density and specific gravity of liquids."

(テストピースの作製)
印刷造形法を用いた3次元積層造形装置(3D Systems社製、製品名「ZPrinter 310 Plus」)を用い、リコータを有するブレード機構により耐火性粒状材料を厚さが200μmとなるように、3次元積層造形装置に設置された金属ケース(縦210mm、横260mm、高さ150mm)の底面(造形テーブル)に積層した(工程(a))。
次いで、積層した耐火性粒状材料の上に、3次元積層造形物の形状を3DCAD設計して得られたデータに基づいて印刷ノズルヘッドを走査させて、溶液(β1)を印刷した(工程(b1))。溶液(β1)を印刷した後、金属ケースの造形テーブルを一層分(200μm)降下させ、先と同様にして耐火性粒状材料を積層し(工程(a))、その上に溶液(β1)を印刷した(工程(b1))。これら工程(a)と工程(b1)を複数回、繰り返し行った。
最後の工程(b1)の後、3時間経過した後に、3次元積層造形物を耐火性粒状材料の粉末の中で埋もれた状態で金属ケースより取り出し、乾燥機内にて200℃で1時間加熱処理した(工程(c))。室温(25℃)まで放冷後、溶液(β1)の非印刷部分の耐火性粒状材料を除去し、縦10mm、横60mm、高さ10mmの直方体状の3次元積層造形物を取り出し、これをテストピースとした。テストピースは同時に9個作製した。
テストピースを取り出す際の取り出しやすさを評価した。結果を表1に示す。
(Preparation of test pieces)
Using a three-dimensional additive manufacturing device employing a printing modeling method (manufactured by 3D Systems, product name "ZPrinter 310 Plus"), the fire-resistant granular material was laminated to a thickness of 200 μm on the bottom surface (modeling table) of a metal case (length 210 mm, width 260 mm, height 150 mm) installed in the three-dimensional additive manufacturing device using a blade mechanism having a recoater (step (a)).
Next, the print nozzle head was scanned on the laminated refractory granular material based on the data obtained by designing the shape of the three-dimensional laminated object using 3D CAD, and the solution (β1) was printed (step (b1)). After printing the solution (β1), the modeling table of the metal case was lowered by one layer (200 μm), and the refractory granular material was laminated in the same manner as above (step (a)), and the solution (β1) was printed on it (step (b1)). These steps (a) and (b1) were repeated multiple times.
After three hours had elapsed after the final step (b1), the three-dimensional laminated object was taken out of the metal case while buried in the powder of the refractory granular material, and was heat-treated in a dryer at 200°C for one hour (step (c)). After cooling to room temperature (25°C), the refractory granular material in the non-printed portion of the solution (β1) was removed, and a rectangular three-dimensional laminated object measuring 10 mm in length, 60 mm in width, and 10 mm in height was taken out and used as a test piece. Nine test pieces were made at the same time.
The ease of removing the test piece was evaluated. The results are shown in Table 1.

次いで、放冷後の9個のテストピースの曲げ強さを測定し、その平均値を求めた。結果を表2に示す。
また、曲げ強さを測定した後のテストピースを用いて、以下のようにして耐火性粒状材料100質量部に対するバインダの添加量(糖類及び多価カルボン酸類の合計量)を求めた。結果を表2に示す。
Next, the bending strength of the nine test pieces after being left to cool was measured, and the average value was determined. The results are shown in Table 2.
Further, using the test piece whose bending strength had been measured, the amount of binder added (total amount of sugars and polyvalent carboxylic acids) to 100 parts by mass of the fire-resistant granular material was determined as follows. The results are shown in Table 2.

(バインダの添加量の算出)
テストピースをヤスリで粉砕し、粉砕物20gをるつぼに採取した。粉砕物をるつぼに入れた状態で、105℃で1時間乾燥し、粉砕物中の水分を除去し、粉砕物の重量を測定した。次いで、水分を除去した後の粉砕物を800℃で3時間、加熱処理した。放冷後、粉砕物の重量を測定し、下記式(1)よりテストピースの強熱減量を求めた。結果を表1に示す。
強熱減量[%]=(800℃で加熱処理する前の粉砕物の重量[g]-800℃で加熱処理した後の粉砕物の重量[g])/800℃で加熱処理する前の粉砕物の重量[g]×100 ・・・・(1)
(Calculation of the amount of binder added)
The test piece was crushed with a file, and 20 g of the crushed material was collected in a crucible. The crushed material was dried in the crucible at 105°C for 1 hour to remove the moisture in the crushed material, and the weight of the crushed material was measured. Next, the crushed material after removing the moisture was heat-treated at 800°C for 3 hours. After cooling, the weight of the crushed material was measured, and the ignition loss of the test piece was calculated using the following formula (1). The results are shown in Table 1.
Ignition loss [%] = (weight [g] of pulverized material before heat treatment at 800 ° C. - weight [g] of pulverized material after heat treatment at 800 ° C.) / weight [g] of pulverized material before heat treatment at 800 ° C. × 100 (1)

別途、耐火性粒状材料100質量部に対して、テストピースの作製に用いた溶液(β1)と同じ種類の溶液(β1)を2.00質量部、3.00質量部又は4.00質量部添加して混練砂を作製した。
得られた混練砂を200℃で1時間、加熱処理し、硬化させた。放冷後、硬化した混練砂をヤスリで粉砕し、粉砕物20gをるつぼに採取した。粉砕物をるつぼに入れた状態で、105℃で1時間乾燥し、粉砕物中の水分を除去し、粉砕物の重量を測定した。次いで、水分を除去した後の粉砕物を800℃で3時間、加熱処理した。放冷後、粉砕物の重量を測定し、下記式(2)より強熱減量を求め、強熱減量を縦軸(y)、溶液(β1)の添加量を横軸(x)にとって、検量線を作製した。
強熱減量[%]=(800℃で加熱処理する前の粉砕物の重量[g]-800℃で加熱処理した後の粉砕物の重量[g])/800℃で加熱処理する前の粉砕物の重量[g]×100 ・・・・(2)
Separately, mixed sand was prepared by adding 2.00 parts by mass, 3.00 parts by mass, or 4.00 parts by mass of the same type of solution (β1) as the solution (β1) used to prepare the test pieces to 100 parts by mass of the fire-resistant granular material.
The obtained mixed sand was heat-treated at 200°C for 1 hour and hardened. After cooling, the hardened mixed sand was crushed with a file, and 20 g of the crushed product was collected in a crucible. The crushed product was dried in the crucible at 105°C for 1 hour to remove moisture from the crushed product, and the weight of the crushed product was measured. Next, the crushed product after removing moisture was heat-treated at 800°C for 3 hours. After cooling, the weight of the crushed product was measured, and the ignition loss was calculated using the following formula (2), and a calibration curve was created by plotting the ignition loss on the vertical axis (y) and the amount of solution (β1) added on the horizontal axis (x).
Ignition loss [%] = (weight [g] of pulverized material before heat treatment at 800 ° C. - weight [g] of pulverized material after heat treatment at 800 ° C.) / weight [g] of pulverized material before heat treatment at 800 ° C. × 100 (2)

作製した検量線を用い、先に求めたテストピースの強熱減量の結果から、テストピースにおける耐火性粒状材料100質量部に対する溶液(β1)の添加量を求め、これを耐火性粒状材料100質量部に対する溶液(β1)の添加量に換算した。結果を表1に示す。
また、算出した溶液(β1)の添加量と溶液(β1)中の糖類及び多価カルボン酸類の濃度から、耐火性粒状材料100質量部に対するバインダの純分換算での添加量を求めた。結果を表1に示す。本実施例において、このバインダの添加量は、バインダを印刷する際の、その印刷領域における1層分の耐火性粒状材料の質量を100質量部に対するバインダの純分換算での塗布量(糖類及び多価カルボン酸類の合計量)である。
Using the prepared calibration curve and the results of the ignition loss of the test pieces obtained above, the amount of solution (β1) added to the test pieces per 100 parts by mass of the refractory granular material was calculated, and this was converted into the amount of solution (β1) added to 100 parts by mass of the refractory granular material. The results are shown in Table 1.
The amount of binder added in terms of the pure content per 100 parts by mass of the fire-resistant granular material was calculated from the calculated amount of solution (β1) added and the concentrations of the sugars and polyvalent carboxylic acids in solution (β1). The results are shown in Table 1. In this example, the amount of binder added is the application amount (total amount of sugars and polyvalent carboxylic acids) in terms of the pure content per 100 parts by mass of the fire-resistant granular material for one layer in the printing area when the binder is printed.

[実施例2~8]
表1、2に示す種類の耐火性粒状材料を用い、かつ、表1、2に示す配合組成となるように調製した溶液(β1)を用いた以外は、実施例1と同様にしてテストピースを作製し、テストピースの取り出しやすさを評価した。結果を表1、2に示す。
得られたテストピースについて、実施例1と同様にして曲げ強さを測定した。また実施例1と同様にしてバインダの添加量を求めた。これらの結果を表1、2に示す。
なお、実施例6で用いた耐火性粒状材料は、珪砂(三菱商事建材株式会社製、「フラタリーMS-60」、平均粒子径150μm)を目開き212μmの篩に通過させ、篩を通過したものである。
[Examples 2 to 8]
A test piece was prepared in the same manner as in Example 1, except that the fire-resistant granular materials of the types shown in Tables 1 and 2 were used, and the solution (β1) prepared to have the composition shown in Tables 1 and 2 was used. was prepared and the ease of taking out the test piece was evaluated. The results are shown in Tables 1 and 2.
The bending strength of the obtained test piece was measured in the same manner as in Example 1. Further, the amount of binder added was determined in the same manner as in Example 1. These results are shown in Tables 1 and 2.
The refractory granular material used in Example 6 was obtained by passing silica sand (manufactured by Mitsubishi Corporation Kenzai Co., Ltd., "Flattary MS-60", average particle size 150 μm) through a sieve with an opening of 212 μm. It is.

[比較例1]
耐火性粒状材料として、溶融法により得られた人工砂(伊藤機工株式会社製、「アルサンド#1000」、平均粒子径120μm)を用いた。
130℃に加熱した耐火性粒状材料100質量部に対して、濃度50質量%のクエン酸水溶液を1質量部(クエン酸の純分換算で0.5質量部)添加し、3分間撹拌した後に排砂し、室温(25℃)まで冷却後、目開き212μmの篩を通過させ、篩を通過したものを被覆材料(被覆砂)として回収した。
別途、マルトースと安息香酸ナトリウム(防腐剤)と水とを質量比がマルトース:安息香酸ナトリウム:水=20:0.5:79.5となるように混合し、溶液(β2)を調製し、これを工程(b)で用いる射出液とした。溶液(β2)について、実施例1と同様にして25℃におけるpH、25℃における粘度、及び25℃における比重を測定した。結果を表3に示す。
[Comparative example 1]
As the refractory granular material, artificial sand obtained by a melting method (manufactured by Ito Kiko Co., Ltd., "Alsand #1000", average particle diameter 120 μm) was used.
To 100 parts by mass of the refractory granular material heated to 130°C, 1 part by mass of an aqueous citric acid solution with a concentration of 50% by mass (0.5 parts by mass in terms of pure citric acid) was added, and after stirring for 3 minutes. After the sand was removed and cooled to room temperature (25° C.), it was passed through a sieve with an opening of 212 μm, and the material that passed through the sieve was collected as a coating material (coated sand).
Separately, a solution (β2) is prepared by mixing maltose, sodium benzoate (preservative), and water so that the mass ratio is maltose: sodium benzoate: water = 20:0.5:79.5, This was used as the injection liquid used in step (b). Regarding the solution (β2), the pH at 25°C, the viscosity at 25°C, and the specific gravity at 25°C were measured in the same manner as in Example 1. The results are shown in Table 3.

耐火性粒状材料の代わりに被覆材料(被覆砂)を用い、かつ、溶液(β1)の代わりに溶液(β2)を用いた以外は、実施例1と同様にしてテストピースを作製し、テストピースの取り出しやすさを評価した。結果を表3に示す。
得られたテストピースについて、実施例1と同様にして曲げ強さを測定した。また実施例1と同様にしてバインダの添加量を求めた。これらの結果を表3に示す。
なお、比較例1におけるバインダの添加量は、糖類であるマルトースの添加量である。
Test pieces were prepared in the same manner as in Example 1, except that the covering material (covering sand) was used instead of the refractory granular material and the solution (β2) was used instead of the solution (β1), and the ease of removing the test pieces was evaluated. The results are shown in Table 3.
The bending strength of the obtained test pieces was measured in the same manner as in Example 1. The amount of binder added was determined in the same manner as in Example 1. The results are shown in Table 3.
The amount of binder added in Comparative Example 1 is the amount of maltose, which is a sugar.

[比較例2]
耐火性粒状材料として、溶融法により得られた人工砂(伊藤機工株式会社製、「アルサンド#1000」、平均粒子径120μm)を用いた。
150℃に加熱した耐火性粒状材料100質量部に対して、濃度50質量%のマルトース水溶液を2質量部(マルトースの純分換算で1質量部)添加し、5分間撹拌してマルトース水溶液の溶媒である水を揮発させた。次いで、ステアリン酸カルシウム0.3質量部を添加して1分間撹拌した後に排砂し、室温(25℃)まで冷却後、目開き212μmの篩を通過させ、篩を通過したものを被覆材料(被覆砂)として回収した。
別途、エチレングリコール(EG)と水とを質量比がEG:水=5:95となるように混合し、溶液(β4)を調製し、これを工程(b)で用いる射出液とした。溶液(β4)について、実施例1と同様にして25℃におけるpH、25℃における粘度、及び25℃における比重を測定した。結果を表3に示す。
[Comparative Example 2]
As the refractory granular material, artificial sand obtained by a fusion method (manufactured by Ito Kiko Co., Ltd., "Alsand #1000", average particle size 120 μm) was used.
To 100 parts by mass of the refractory granular material heated to 150°C, 2 parts by mass of a 50% concentration maltose aqueous solution (1 part by mass in terms of pure maltose) was added, and the mixture was stirred for 5 minutes to volatilize the water, which was the solvent of the maltose aqueous solution. Next, 0.3 parts by mass of calcium stearate was added and stirred for 1 minute, after which the mixture was discharged and cooled to room temperature (25°C), and the mixture was passed through a sieve with 212 μm openings, and the material that passed through the sieve was collected as the coating material (coated sand).
Separately, ethylene glycol (EG) and water were mixed in a mass ratio of EG:water = 5:95 to prepare a solution (β4), which was used as the injection liquid to be used in step (b). The pH, viscosity, and specific gravity of solution (β4) at 25°C were measured in the same manner as in Example 1. The results are shown in Table 3.

耐火性粒状材料の代わりに被覆材料(被覆砂)を用い、かつ、溶液(β1)の代わりに溶液(β4)を用いた以外は、実施例1と同様にしてテストピースを作製し、テストピースの取り出しやすさを評価した。結果を表3に示す。 Test pieces were prepared in the same manner as in Example 1, except that a coating material (coating sand) was used instead of the refractory granular material and solution (β4) was used instead of solution (β1), and the ease of removing the test pieces was evaluated. The results are shown in Table 3.

Figure 2024046007000001
Figure 2024046007000001

Figure 2024046007000002
Figure 2024046007000002

Figure 2024046007000003
Figure 2024046007000003

表1、2の結果から明らかなように、各実施例の場合、テストピース(3次元積層造形物)を容易に取り出すことができた。また、各実施例で得られたテストピースは、曲げ強さが高かった。
また、各実施例で得られたテストピースは、糖類と多価カルボン酸類とを具備するバインダを用いていることから、注湯時の温度まで加熱しても亜硫酸ガス等は発生せず、作業環境が悪化しにくい。
As is clear from the results in Tables 1 and 2, in each Example, the test pieces (three-dimensionally laminated objects) could be easily taken out. Furthermore, the test pieces obtained in each Example had high bending strength.
In addition, since the test pieces obtained in each example use a binder containing sugars and polyvalent carboxylic acids, no sulfur dioxide gas is generated even when heated to the temperature at the time of pouring, and the working environment is unlikely to deteriorate.

一方、表3の結果から明らかなように、比較例1の場合、テストピースの曲げ強さは高いが、テストピースを取り出す際に各実施例の場合よりも強く擦る必要があった。
比較例2の場合、加熱処理(工程(c))後に非印刷領域も固まりテストピースを取り出すことができなかった。そのため、曲げ強さ等を測定することができなかった。
On the other hand, as is clear from the results in Table 3, in the case of Comparative Example 1, the bending strength of the test piece was high, but when taking out the test piece, it was necessary to rub it more forcefully than in each of the Examples.
In the case of Comparative Example 2, the non-printing area also solidified after the heat treatment (step (c)) and the test piece could not be taken out. Therefore, it was not possible to measure bending strength, etc.

Claims (3)

耐火性粒状材料を層状に敷き詰める工程(a)と、
前記層状に敷き詰められた耐火性粒状材料の所望の領域に、バインダを射出する工程(b)とを含み、
前記バインダは、糖類及び多価カルボン酸類を具備し、
前記工程(a)と前記工程(b)とを目的の3次元積層造形物が造形されるまで繰り返す、3次元積層造形物の製造方法。
(a) laying a layer of refractory granular material;
(b) injecting a binder into desired areas of the layered refractory granular material;
The binder comprises a sugar and a polyvalent carboxylic acid,
The method for manufacturing a three-dimensional additive object includes repeating the steps (a) and (b) until a desired three-dimensional additive object is manufactured.
少なくとも最後の前記工程(b)の後に、加熱により前記バインダを硬化させる工程(c)をさらに含む、請求項1に記載の3次元積層造形物の製造方法。 The method for producing a three-dimensional additive manufacturing object according to claim 1, further comprising, after at least the last step (b), a step (c) of curing the binder by heating. 耐火性粒状材料と、バインダとを各々独立して有し、
前記バインダは、糖類及び多価カルボン酸類を具備する、3次元積層造形用キット。
having a fire-resistant granular material and a binder each independently;
A kit for three-dimensional additive manufacturing, wherein the binder includes saccharides and polycarboxylic acids.
JP2022151133A 2022-09-22 2022-09-22 Method for manufacturing three-dimensional additive manufacturing object, and kit for three-dimensional additive manufacturing Pending JP2024046007A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022151133A JP2024046007A (en) 2022-09-22 2022-09-22 Method for manufacturing three-dimensional additive manufacturing object, and kit for three-dimensional additive manufacturing
PCT/JP2023/033506 WO2024063002A1 (en) 2022-09-22 2023-09-14 Method for manufacturing three-dimensional additively manufactured object, and three-dimensional additive manufacturing kit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022151133A JP2024046007A (en) 2022-09-22 2022-09-22 Method for manufacturing three-dimensional additive manufacturing object, and kit for three-dimensional additive manufacturing

Publications (1)

Publication Number Publication Date
JP2024046007A true JP2024046007A (en) 2024-04-03

Family

ID=90454372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022151133A Pending JP2024046007A (en) 2022-09-22 2022-09-22 Method for manufacturing three-dimensional additive manufacturing object, and kit for three-dimensional additive manufacturing

Country Status (2)

Country Link
JP (1) JP2024046007A (en)
WO (1) WO2024063002A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6007318A (en) * 1996-12-20 1999-12-28 Z Corporation Method and apparatus for prototyping a three-dimensional object
US20120217373A1 (en) * 2009-09-10 2012-08-30 Isamu Ide Binder coated refractories, casting mold using the same, and method of manufacturing casting mold using the same
JP2019155848A (en) * 2018-03-16 2019-09-19 株式会社リコー Method and device for manufacturing three-dimensional molded product
US20230040883A1 (en) * 2019-12-20 2023-02-09 Sandvik Machining Solutions Ab Use of a thermoset binder for 3d printing of cemented carbide or cermet bodies
JP2022132894A (en) * 2021-03-01 2022-09-13 株式会社リコー Molding apparatus, molding method, and program

Also Published As

Publication number Publication date
WO2024063002A1 (en) 2024-03-28

Similar Documents

Publication Publication Date Title
JP5951855B2 (en) Mold manufacturing method
JP7345596B2 (en) Mold material composition and mold manufacturing method using the same
JP7060519B2 (en) Coated sand and its manufacturing method and mold manufacturing method using it
KR101548219B1 (en) Thermal regeneration of foundry sand
KR102010334B1 (en) Method for the layerwise construction of models
JP7055753B2 (en) Coated sand and its manufacturing method and mold manufacturing method using it
JP5170813B2 (en) Molding material mixture containing carbohydrates
US20160059301A1 (en) Mould material mixture having improved flowability
JP6027263B1 (en) Organic binder, granular material, three-dimensional additive manufacturing mold manufacturing apparatus, and three-dimensional additive manufacturing mold manufacturing method
JP6289648B1 (en) Granular material, method for producing granular material, and method for producing three-dimensional additive manufacturing mold
JP7177089B2 (en) Coated sand, its manufacturing method, and mold manufacturing method
JP6027264B1 (en) Granular material, three-dimensional additive manufacturing mold manufacturing apparatus, and three-dimensional additive manufacturing mold manufacturing method
JP6096378B1 (en) Manufacturing method of granular material for manufacturing 3D additive manufacturing mold and manufacturing method of 3D additive manufacturing mold
MX2012006583A (en) Foundry mixes containing sulfate and/or nitrate salts and their uses.
JP7055752B2 (en) Coated sand and its manufacturing method and mold manufacturing method using it
JP2024046007A (en) Method for manufacturing three-dimensional additive manufacturing object, and kit for three-dimensional additive manufacturing
WO2023182265A1 (en) Production method for three-dimensional additive manufactured article, and three-dimensional additive manufacturing kit
JP2024046003A (en) Manufacturing method of modeled object and modeling kit
JP2018153822A (en) Improved manufacturing method of laminated mold
JP7418279B2 (en) Mold manufacturing method
Nagai et al. Molding and mold properties of spherical artificial sand coated with inorganic binder
US20210370388A1 (en) Tool-less method for making molds, cores, and temporary tools
JP6565011B2 (en) Mold manufacturing method
JP6841694B2 (en) Laminated mold manufacturing method
JP6841693B2 (en) Manufacturing method of laminated mold