JP2024041052A - Negative electrode composition for lithium ion batteries and method for producing negative electrodes for lithium ion batteries - Google Patents

Negative electrode composition for lithium ion batteries and method for producing negative electrodes for lithium ion batteries Download PDF

Info

Publication number
JP2024041052A
JP2024041052A JP2023143436A JP2023143436A JP2024041052A JP 2024041052 A JP2024041052 A JP 2024041052A JP 2023143436 A JP2023143436 A JP 2023143436A JP 2023143436 A JP2023143436 A JP 2023143436A JP 2024041052 A JP2024041052 A JP 2024041052A
Authority
JP
Japan
Prior art keywords
negative electrode
binder resin
weight
lithium ion
electrode composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023143436A
Other languages
Japanese (ja)
Inventor
絢香 石賀
省吾 磯村
悠輔 森
渉 石賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Publication of JP2024041052A publication Critical patent/JP2024041052A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】電解液浸透性が高く、かつ充放電効率(クーロン効率)に優れた負極を製造可能なリチウムイオン電池用負極組成物を提供すること。【解決手段】バインダー樹脂、導電助剤及び負極活物質を含むリチウムイオン電池用負極組成物であって、前記バインダー樹脂は、50℃で3日間、電解液に浸漬した際の吸液率が10~40%であり、50℃で3日間、前記電解液に浸漬した際のイオン伝導度が1×10-6~1×10-8S/cmである電池用負極組成物。【選択図】 なしAn object of the present invention is to provide a negative electrode composition for a lithium ion battery that can produce a negative electrode with high electrolyte permeability and excellent charge/discharge efficiency (Coulombic efficiency). [Solution] A negative electrode composition for a lithium ion battery containing a binder resin, a conductive aid, and a negative electrode active material, wherein the binder resin has a liquid absorption rate of 10 when immersed in an electrolytic solution at 50°C for 3 days. -40%, and has an ionic conductivity of 1 x 10-6 to 1 x 10-8 S/cm when immersed in the electrolytic solution at 50°C for 3 days. [Selection diagram] None

Description

本発明は、リチウムイオン電池用負極組成物及びリチウムイオン電池用負極の製造方法に関する。 The present invention relates to a negative electrode composition for lithium ion batteries and a method for producing a negative electrode for lithium ion batteries.

リチウムイオン電池は、高電圧、高エネルギー密度という特長を持つことから、携帯情報機器分野などにおいて広く利用され、携帯電話、ノート型パソコンを始めとする携帯端末用標準電池としての地位が確立されている。その用途は拡大する一方で、従来用途に加えてハイブリッド自動車や電気自動車などへの適用も検討されており一部では既に実用化されている。これらの更なる普及のためにもリチウムイオン電池の高容量化、高出力化が求められており様々な技術の適用が試みられている。 Lithium-ion batteries have the characteristics of high voltage and high energy density, so they are widely used in the field of mobile information devices and have established themselves as the standard battery for mobile devices such as mobile phones and notebook computers. There is. Its applications are expanding, and in addition to conventional applications, applications such as hybrid vehicles and electric vehicles are being considered, and some have already been put into practical use. In order to further popularize these batteries, higher capacity and higher output are required for lithium ion batteries, and various technologies are being applied.

二次電池の容量を向上させる一つの手法として電極密度の向上がある。活物質を密に充填することでより多くの容量を得ることができる。しかし、電極の密度を上げると電解液が電極中に浸透しにくくなり、理論値よりも少ない容量しか取り出せなくなったり、出力特性が悪化したりするという問題点があった。 One way to improve the capacity of secondary batteries is to improve electrode density. More capacity can be obtained by densely packing the active material. However, when the density of the electrode is increased, it becomes difficult for the electrolyte to penetrate into the electrode, resulting in a problem that a smaller capacity than the theoretical value can be obtained and the output characteristics deteriorate.

このような課題を解決するために、特許文献1では電極表面に溝を設けることで電解液浸透性を改良できるという技術が開示されている。特許文献2では活物質の粒径や形状を工夫することで電解液の浸透性を向上させる技術が開示されている。また、特許文献3では電極密度を調整することで電解液の浸透性を向上させる技術が開示されている。 In order to solve such problems, Patent Document 1 discloses a technique in which electrolyte permeability can be improved by providing grooves on the electrode surface. Patent Document 2 discloses a technique for improving the permeability of an electrolytic solution by modifying the particle size and shape of an active material. Further, Patent Document 3 discloses a technique for improving the permeability of an electrolytic solution by adjusting electrode density.

特開2008-27633号公報Japanese Patent Application Publication No. 2008-27633 特開2012-151088号公報Japanese Patent Application Publication No. 2012-151088 特開2020-053282号公報JP2020-053282A

しかし特許文献1の手法では電極表面に溝を設けるために凹凸のついたローラーでプレスするという工程があり新たな設備を導入する必要があるという問題点があった。
また特許文献2及び3の手法では浸透性に一定の改善がみられるもののその効果は充分ではなかった。
However, the method disclosed in Patent Document 1 involves a step of pressing with a roller with unevenness in order to form grooves on the electrode surface, and there is a problem in that new equipment needs to be introduced.
Moreover, although a certain improvement in permeability was observed in the methods of Patent Documents 2 and 3, the effect was not sufficient.

本発明は、上記課題を解決するものであり、電解液浸透性が高く、かつ充放電効率(クーロン効率)に優れた電極を製造可能なリチウムイオン電池用電極組成物、特に負極組成物を提供することを目的とする。 The present invention solves the above problems, and provides an electrode composition for lithium ion batteries, particularly a negative electrode composition, which can produce an electrode with high electrolyte permeability and excellent charge/discharge efficiency (Coulombic efficiency). The purpose is to

本発明者らは、鋭意検討した結果、本発明に到達した。
本発明は、バインダー樹脂、導電助剤及び負極活物質を含むリチウムイオン電池用負極組成物であって、前記バインダー樹脂は、50℃で3日間、電解液に浸漬した際の吸液率が10~40%であり、50℃で3日間、前記電解液に浸漬した際のイオン伝導度が1×10-6~1×10-8S/cmであり、前記電解液は、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)を体積割合でEC:DEC=3:7で混合した混合溶媒に、電解質としてLiPFを1mol/Lの濃度になるように溶解した電解液であり、
前記吸液率は、以下の式
吸液率(%)=[(電解液浸漬後のバインダー樹脂の重量-電解液浸漬前のバインダー樹脂の重量)/電解液浸漬前のバインダー樹脂の重量]×100
で求められ、
前記イオン伝導度は、交流インピーダンス法による25℃のイオン伝導度であることを特徴とするリチウムイオン電池用負極組成物、及び、前記バインダー樹脂、導電助剤及び負極活物質と、水性溶媒とを含むスラリーを作製する混合工程と、前記スラリーを集電体に塗布する塗布工程と、前記塗布工程後にスラリーを乾燥して前記集電体上に負極活物質層を形成する乾燥工程とを含むリチウムイオン電池用負極の製造方法、に関する。
The present inventors have arrived at the present invention as a result of intensive studies.
The present invention is a negative electrode composition for a lithium ion battery comprising a binder resin, a conductive aid, and a negative electrode active material, wherein the binder resin has a liquid absorption rate of 10 when immersed in an electrolytic solution at 50°C for 3 days. 40%, and the ionic conductivity when immersed in the electrolyte at 50°C for 3 days is 1×10 −6 to 1×10 −8 S/cm, and the electrolyte is ethylene carbonate (EC ), an electrolytic solution in which LiPF 6 is dissolved as an electrolyte to a concentration of 1 mol/L in a mixed solvent in which diethyl carbonate (DEC) is mixed at a volume ratio of EC:DEC=3:7,
The liquid absorption rate is determined by the following formula: Liquid absorption rate (%) = [(Weight of binder resin after immersion in electrolyte solution - Weight of binder resin before immersion in electrolyte solution) / Weight of binder resin before immersion in electrolyte solution] x 100
is required,
A negative electrode composition for a lithium ion battery, wherein the ionic conductivity is an ionic conductivity at 25° C. determined by an AC impedance method, and the binder resin, conductive aid, negative electrode active material, and aqueous solvent. a mixing step of preparing a slurry containing lithium, a coating step of applying the slurry to a current collector, and a drying step of drying the slurry after the coating step to form a negative electrode active material layer on the current collector. The present invention relates to a method for manufacturing a negative electrode for an ion battery.

本発明によれば、電解液浸透性が高く、かつ充放電効率(クーロン効率)に優れた負極を製造可能なリチウムイオン電池用負極組成物を提供することができる。 According to the present invention, it is possible to provide a negative electrode composition for a lithium ion battery that can produce a negative electrode that has high electrolyte permeability and excellent charge/discharge efficiency (Coulombic efficiency).

[リチウムイオン電池用負極組成物]
本発明のリチウムイオン電池用負極組成物は、バインダー樹脂、導電助剤及び負極活物質を含むリチウムイオン電池用負極組成物である。
前記バインダー樹脂は、50℃で3日間、電解液に浸漬した際の吸液率が10~40%である。
電解液に浸漬した際の吸液率は、電解液に浸漬する前、浸漬した後のバインダー樹脂の重量を測定して、以下の式で求める。
吸液率(%)=[(電解液浸漬後のバインダー樹脂の重量-電解液浸漬前のバインダー樹脂の重量)/電解液浸漬前のバインダー樹脂の重量]×100
[Negative electrode composition for lithium ion batteries]
The negative electrode composition for lithium ion batteries of the present invention is a negative electrode composition for lithium ion batteries containing a binder resin, a conductive additive, and a negative electrode active material.
The binder resin has a liquid absorption rate of 10 to 40% when immersed in an electrolytic solution at 50° C. for 3 days.
The liquid absorption rate when immersed in the electrolytic solution is determined by the following formula by measuring the weight of the binder resin before and after immersion in the electrolytic solution.
Liquid absorption rate (%) = [(Weight of binder resin after immersion in electrolyte solution - Weight of binder resin before immersion in electrolyte solution) / Weight of binder resin before immersion in electrolyte solution] x 100

吸液率を求めるための電解液としては、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)を体積割合でEC:DEC=3:7で混合した混合溶媒に、電解質としてLiPFを1mol/Lの濃度になるように溶解した電解液を用いる。 The electrolytic solution for determining the liquid absorption rate was a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) mixed at a volume ratio of EC:DEC=3:7, and 1 mol/L of LiPF 6 as an electrolyte. An electrolyte solution is used that has been dissolved to the desired concentration.

吸液試験用サンプル作製は以下の通り作製する。
樹脂濃度30重量%のバインダー樹脂溶液(溶媒にはN’-ジメチルホルムアミド(以下、DMF)を使用)をPPトレイ(14cm×10cm)に約3mmの高さになるように注ぎ込み、70℃順風乾燥機で3時間、さらに減圧(>-90kPa)乾燥機で3時間減圧乾燥させ、樹脂シートを作製した。
この樹脂シートを1.5cm角に切り出し、サンプルの厚みをハンディの膜厚計(ミツトヨ製)で計測して、約1mmであることを確認して、試験に供した。
Samples for the liquid absorption test are prepared as follows.
A binder resin solution with a resin concentration of 30% by weight (N'-dimethylformamide (hereinafter referred to as DMF) was used as the solvent) was poured into a PP tray (14 cm x 10 cm) to a height of about 3 mm, and dried at 70°C in a fair air. A resin sheet was prepared by drying in a vacuum dryer for 3 hours and then in a vacuum dryer (>-90 kPa) for 3 hours.
This resin sheet was cut into 1.5 cm square pieces, and the thickness of the sample was measured using a handy film thickness meter (manufactured by Mitutoyo) and confirmed to be about 1 mm, and then used for testing.

吸液率を求める際の電解液への浸漬は、50℃、3日間行う。電解液への浸漬は、スクリュー管(No.7、容量50mL)に前記樹脂シートを入れ、樹脂シートが完全に前記電解液に浸る状態で行った。50℃、3日間の浸漬を行うことによりバインダー樹脂が飽和吸液状態となる。なお、飽和吸液状態とは、それ以上電解液に浸漬してもバインダー樹脂の重量が増えない状態をいう。
なお、本発明のバインダー樹脂を用いてリチウムイオン電池を製造する際に使用する電解液は、上記電解液に限定されるものではなく、他の電解液を使用してもよい。
Immersion in the electrolytic solution when determining the liquid absorption rate is performed at 50° C. for 3 days. The resin sheet was immersed in the electrolytic solution by placing it in a screw tube (No. 7, capacity 50 mL), and the resin sheet was completely immersed in the electrolytic solution. By immersing at 50° C. for 3 days, the binder resin becomes saturated with liquid absorption. Note that the saturated liquid absorption state refers to a state in which the weight of the binder resin does not increase even if it is further immersed in the electrolytic solution.
Note that the electrolytic solution used when manufacturing a lithium ion battery using the binder resin of the present invention is not limited to the above electrolytic solution, and other electrolytic solutions may be used.

前記吸液率が10%未満であると、電解液がバインダー樹脂内に浸透しにくいためにリチウムイオンの伝導性が低くなり、リチウムイオン電池としての性能が充分に発揮されないことがある。前記吸液率が40%を超えると、電極中でバインダー樹脂が過度に膨張するため電極構造が破壊されやすく、また導電パスが切断されることでリチウムイオン電池の劣化が進むことがある。
前記吸液率は20%以上であることが好ましく、30%以上であることがより好ましい。
If the liquid absorption rate is less than 10%, the electrolytic solution will not easily penetrate into the binder resin, resulting in low lithium ion conductivity and the battery may not exhibit its full performance as a lithium ion battery. When the liquid absorption rate exceeds 40%, the binder resin expands excessively in the electrode, which tends to destroy the electrode structure, and the conductive path may be cut, leading to accelerated deterioration of the lithium ion battery.
The liquid absorption rate is preferably 20% or more, more preferably 30% or more.

前記バインダー樹脂の、50℃で3日間、電解液に浸漬した際の吸液率は、前記バインダー樹脂のSP値によって調整することができる。バインダー樹脂のSP値を大きくする(電解液とのSP値差を小さくする)ことで、前記バインダー樹脂の電解液吸液率を上げることができる。
バインダー樹脂のSP値は、10.0~15.0が好ましく、12.5~14.0がより好ましい。
なお、本発明におけるSP値(溶解度パラメータ)[単位は(cal/cm1/2]は、Fedors法(Polymer Engineering and Science,February,1974,Vol.14、No.2 P.147~154)の152頁(Table.5)に記載の数値(原子又は官能基の25℃における蒸発熱及びモル体積)を用いて、同153頁の数式(28)に記載の方法で算出される値である。
The liquid absorption rate of the binder resin when immersed in an electrolytic solution at 50° C. for 3 days can be adjusted by the SP value of the binder resin. By increasing the SP value of the binder resin (reducing the SP value difference with the electrolyte), the electrolyte absorption rate of the binder resin can be increased.
The SP value of the binder resin is preferably 10.0 to 15.0, more preferably 12.5 to 14.0.
Note that the SP value (solubility parameter) [unit: (cal/cm 3 ) 1/2 ] in the present invention is determined by the Fedors method (Polymer Engineering and Science, February, 1974, Vol. 14, No. 2 P. 147-154) ), using the values (heat of vaporization and molar volume at 25 °C of atoms or functional groups) described on page 152 (Table.5), and the value calculated by the method described in formula (28) on page 153. be.

前記バインダー樹脂は、50℃で3日間、前記電解液に浸漬した際のイオン伝導度が1×10-6~1×10-8S/cmである。
前記イオン伝導度は、50℃で3日間、前記電解液に浸漬した際のバインダー樹脂の25℃での伝導度を交流インピーダンス法で測定することによって求める。
The binder resin has an ionic conductivity of 1×10 −6 to 1×10 −8 S/cm when immersed in the electrolytic solution at 50° C. for 3 days.
The ionic conductivity is determined by measuring the conductivity of the binder resin at 25° C. by an AC impedance method when the binder resin is immersed in the electrolytic solution at 50° C. for 3 days.

イオン伝導度を求めるための電解液としては、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)を体積割合でEC:DEC=3:7で混合した混合溶媒に、電解質としてLiPFを1mol/Lの濃度になるように溶解した電解液を用いる。 The electrolytic solution for determining the ionic conductivity is a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) mixed at a volume ratio of EC:DEC=3:7, and 1 mol/L of LiPF 6 as an electrolyte. An electrolyte solution is used that has been dissolved to the desired concentration.

本願においては、前記バインダー樹脂の前記リチウムイオン伝導度を、モジュール式充放電測定システム[東洋テクニカ(株)]を用いて交流インピーダンス法で測定することによって求める。
リチウムイオン伝導度測定用サンプルの準備及び電解液への浸漬は、前記吸液試験用サンプルと同様の手順で行う。
交流インピーダンス測定は、25℃下、周波数2.0×10Hz~1.0×10-1Hzとし、電圧振れ幅は1000mAと、実数インピーダンス成分R(Ω)を求める。樹脂シートのイオン伝導性σ(S/cm)は、インピーダンス成分R(Ω)、樹脂シートの厚さd(cm)、及び電極と樹脂シートの接触面積A(cm)から求める。
イオン伝導性σ(S/cm)=d/(R×A)
In the present application, the lithium ion conductivity of the binder resin is determined by measuring with an AC impedance method using a modular charge/discharge measurement system [Toyo Technica Co., Ltd.].
Preparation of the sample for lithium ion conductivity measurement and immersion in the electrolytic solution are performed in the same manner as for the sample for the liquid absorption test.
AC impedance measurement is performed at 25° C. at a frequency of 2.0×10 4 Hz to 1.0×10 −1 Hz, voltage swing width is 1000 mA, and real number impedance component R (Ω) is determined. The ion conductivity σ (S/cm) of the resin sheet is determined from the impedance component R (Ω), the thickness d (cm) of the resin sheet, and the contact area A (cm 2 ) between the electrode and the resin sheet.
Ion conductivity σ (S/cm) = d/(R x A)

バインダー樹脂の50℃で3日間、前記電解液に浸漬した際のイオン伝導度が1×10-6S/cm未満であると、バインダー樹脂が電解液で膨潤しすぎて集電体との接着が悪くなりサイクル特性に影響することがある。また、バインダー樹脂の前記イオン伝導度が1×10-8S/cmを超えると活物質と電解液の間でのリチウムイオンの移動が妨げられてリチウムイオン電池としての性能が充分に発揮されないことがある。
イオン伝導度は、1×10-7~9×10-7S/cmであることが好ましく、2×10-7~5×10-7S/cmであることがより好ましい。
If the ionic conductivity of the binder resin when immersed in the electrolytic solution at 50° C. for 3 days is less than 1×10 −6 S/cm, the binder resin will swell too much with the electrolytic solution and will not adhere to the current collector. This may deteriorate the cycle characteristics. Furthermore, if the ionic conductivity of the binder resin exceeds 1×10 −8 S/cm, the movement of lithium ions between the active material and the electrolyte will be hindered, and the performance as a lithium ion battery will not be fully demonstrated. There is.
The ionic conductivity is preferably 1×10 −7 to 9×10 −7 S/cm, more preferably 2×10 −7 to 5×10 −7 S/cm.

前記バインダー樹脂は、前記電解液にエチレンカーボネート(EC)、ポリカーボネート(PC)を体積割合でEC:PC=1:1で混合した混合溶媒に、電解質としてLiPFを1mol/Lの濃度になるように溶解した電解液を使用した場合も、飽和吸液状態でのイオン伝導度が1×10-6~1×10-8S/cmであることが好ましい。
また、前記バインダー樹脂は、電解液を含侵させない場合でも、イオン伝導度が1×10-6~1×10-8S/cmであることがより好ましい。
The binder resin is prepared by adding LiPF 6 as an electrolyte to a mixed solvent in which ethylene carbonate (EC) and polycarbonate (PC) are mixed in a volume ratio of EC:PC=1:1 to the electrolyte at a concentration of 1 mol/L. Even when using an electrolytic solution dissolved in a liquid, the ionic conductivity in a saturated liquid absorption state is preferably 1×10 −6 to 1×10 −8 S/cm.
Further, it is more preferable that the binder resin has an ionic conductivity of 1×10 −6 to 1×10 −8 S/cm even when not impregnated with an electrolyte.

前記バインダー樹脂の50℃で3日間、前記電解液(エチレンカーボネート(EC)、ジエチルカーボネート(DEC)を体積割合でEC:DEC=3:7で混合した混合溶媒に、電解質としてLiPFを1mol/Lの濃度になるように溶解した電解液)に浸漬した際のイオン伝導度は、前記バインダー樹脂のSP値によって調整することができる。バインダー樹脂のSP値を大きくする(電解液とのSP値差を小さくする)ことで電解液吸液率が上昇し、イオン伝導度を大きくすることができる。
バインダー樹脂のSP値は、10.0~15.0が好ましく、12.5~14.0がより好ましい。
The binder resin was heated at 50° C. for 3 days, and 1 mol/L of LiPF 6 was added as an electrolyte to the electrolytic solution (a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) mixed at a volume ratio of EC:DEC=3:7). The ionic conductivity when immersed in an electrolytic solution dissolved to a concentration of L can be adjusted by the SP value of the binder resin. By increasing the SP value of the binder resin (reducing the difference in SP value from the electrolyte), the electrolyte absorption rate increases and the ionic conductivity can be increased.
The SP value of the binder resin is preferably 10.0 to 15.0, more preferably 12.5 to 14.0.

前記バインダー樹脂は、前記バインダー樹脂に対する前記電解液の接触角が30°未満であることが好ましい。前記バインダー樹脂に対する前記電解液の接触角が30°未満であると電解液のバインダー樹脂への浸透性が良くリチウムイオンの伝導性が高くなり電池性能が向上する。前記バインダー樹脂に対する前記電解液の接触角はより好ましくは10~25°である。
前記バインダー樹脂に対する前記電解液の接触角は、前記バインダー樹脂のSP値によって調整することができる。バインダー樹脂のSP値を大きくする(電解液とのSP値差を小さくする)ことで、前記バインダー樹脂に対する前記電解液の接触角を小さくすることができる。
It is preferable that the binder resin has a contact angle of the electrolytic solution with respect to the binder resin of less than 30°. When the contact angle of the electrolytic solution to the binder resin is less than 30°, the electrolytic solution will have good permeability into the binder resin, and lithium ion conductivity will be high, resulting in improved battery performance. The contact angle of the electrolytic solution with the binder resin is more preferably 10 to 25°.
The contact angle of the electrolytic solution with respect to the binder resin can be adjusted by the SP value of the binder resin. By increasing the SP value of the binder resin (reducing the SP value difference with the electrolyte), the contact angle of the electrolyte with the binder resin can be decreased.

前記バインダー樹脂に対する前記電解液の接触角は、協和界面化学(株)製動的接触角測定器「DMo-701」を用いて測定する。
本願においては、前記バインダー樹脂に対する前記電解液の接触角は以下の通り測定する。
バインダー樹脂3.0gをDMF30gに溶解した後、水平なガラス板上に塗布して室温で半日自然乾燥を行った。次に160℃に加熱した減圧乾燥機中に-90~-100kMPaで3時間静置した後、25℃まで冷却して測定用試料を作製した。続いて、測定装置として協和界面化学(株)製 動的接触角測定器「DMo-701」を用いて、25℃下、2.5μLの電解液滴が試料に着滴してから30秒後の値を接触角(°)として測定した。
The contact angle of the electrolytic solution with respect to the binder resin is measured using a dynamic contact angle measuring device "DMo-701" manufactured by Kyowa Interface Science Co., Ltd.
In the present application, the contact angle of the electrolytic solution with respect to the binder resin is measured as follows.
After dissolving 3.0 g of binder resin in 30 g of DMF, it was applied onto a horizontal glass plate and air-dried for half a day at room temperature. Next, it was allowed to stand for 3 hours at -90 to -100 kMPa in a vacuum dryer heated to 160°C, and then cooled to 25°C to prepare a measurement sample. Next, using a dynamic contact angle measuring device "DMo-701" manufactured by Kyowa Interface Science Co., Ltd. as a measurement device, the measurement was performed at 25°C 30 seconds after a 2.5 μL electrolyte droplet landed on the sample. The value was measured as the contact angle (°).

バインダー樹脂がDMFに不溶である場合は、バインダー樹脂3.0gをイソプロパノール30gに溶解すること、減圧乾燥温度を80℃に変更する以外は上記と同様の方法でバインダー樹脂に対する前記電解液の接触角(°)を測定した。 When the binder resin is insoluble in DMF, the contact angle of the electrolytic solution with respect to the binder resin is determined in the same manner as above except that 3.0 g of the binder resin is dissolved in 30 g of isopropanol and the vacuum drying temperature is changed to 80°C. (°) was measured.

前記バインダー樹脂は、前記バインダー樹脂に対する水の接触角が40°未満であることが好ましい。前記バインダー樹脂に対する水の接触角が40°未満であるとバインダー樹脂と水とのなじみが良くなり、特に負極の電極作製時に均一な水系スラリーを作製しやすくなる。前記バインダー樹脂に対する水の接触角はより好ましくは10~25°である。
前記バインダー樹脂に対する水の接触角は、前記バインダー樹脂の重量平均分子量及び/又はSP値で調整することができる。バインダー樹脂の重量平均分子量を小さくすればバインダー樹脂に対する水の接触角は小さくなる傾向があり、また、バインダー樹脂のSP値を大きくする(水とのSP値差を小さくする)ことで、前記バインダー樹脂に対する水の接触角を小さくすることができる。
It is preferable that the binder resin has a contact angle of water with respect to the binder resin of less than 40°. When the contact angle of water with respect to the binder resin is less than 40°, the binder resin and water will be compatible with each other, and it will be easier to prepare a uniform aqueous slurry especially when preparing a negative electrode. The contact angle of water with respect to the binder resin is more preferably 10 to 25°.
The contact angle of water with respect to the binder resin can be adjusted by the weight average molecular weight and/or SP value of the binder resin. If the weight average molecular weight of the binder resin is decreased, the contact angle of water with respect to the binder resin tends to decrease, and by increasing the SP value of the binder resin (reducing the difference in SP value with water), the binder resin The contact angle of water to the resin can be reduced.

前記バインダー樹脂に対する水の接触角は、協和界面化学(株)製動的接触角測定器「DMo-701」を用いて測定する。
本願においては、前記バインダー樹脂に対する水の接触角は以下の通り測定する。
バインダー樹脂に、イオン交換水を添加して固形分濃度を5重量%に調整した。固形分濃度調整後のバインダー樹脂水溶液を銅箔上に塗布し、オーブン中において50℃で10分乾燥させ、厚さ100μmのバインダーフィルムを作製した。得られたバインダーフィルムの上にイオン交換水を1μL滴下して、温度25℃、湿度50%の条件下、着滴から1分経過後のバインダーフィルム上の水滴を写真撮影し、その接触角をθ/2法によって測定した。バインダーフィルムの異なる箇所で、蒸留水の滴下から接触角測定までの操作を合計5回行い、得られた5つの測定値の平均値を、そのバインダー樹脂に対する水の接触角とした。
The contact angle of water with respect to the binder resin is measured using a dynamic contact angle measuring device "DMo-701" manufactured by Kyowa Interface Science Co., Ltd.
In the present application, the contact angle of water with respect to the binder resin is measured as follows.
Ion-exchanged water was added to the binder resin to adjust the solid content concentration to 5% by weight. The binder resin aqueous solution after adjusting the solid content concentration was applied onto a copper foil and dried in an oven at 50° C. for 10 minutes to produce a binder film with a thickness of 100 μm. 1 μL of ion-exchanged water was dropped onto the obtained binder film, and the water droplet on the binder film was photographed 1 minute after the droplet landed under conditions of a temperature of 25°C and a humidity of 50%, and the contact angle was measured. It was measured by the θ/2 method. The operation from dropping distilled water to measuring the contact angle was performed a total of five times at different locations on the binder film, and the average value of the five measured values was taken as the contact angle of water with respect to the binder resin.

バインダー樹脂がイオン交換水に不溶である場合は、バインダー樹脂水溶液を作製する際のイオン交換水をイソプロパノールに変更する以外は上記と同様の方法でバインダー樹脂に対する水の接触角(°)を測定した。 When the binder resin is insoluble in ion-exchanged water, the contact angle (°) of water with respect to the binder resin was measured in the same manner as above except that the ion-exchanged water used to prepare the binder resin aqueous solution was changed to isopropanol. .

前記バインダー樹脂の重量平均分子量は、95,000~200,000であることが好ましい。前記バインダー樹脂の重量平均分子量が95,000~200,000であると得られる電極の強度が優れる。前記バインダー樹脂の重量平均分子量は、より好ましくは120,000~140,000である。 The weight average molecular weight of the binder resin is preferably 95,000 to 200,000. When the weight average molecular weight of the binder resin is 95,000 to 200,000, the resulting electrode has excellent strength. The weight average molecular weight of the binder resin is more preferably 120,000 to 140,000.

前記バインダー樹脂の重量平均分子量は、以下の条件でGPC(ゲルパーミエーションクロマトグラフィー)測定により求めることができる。なお、試料となる重合体をオルトジクロロベンゼン、N’-ジメチルホルムアミド(DMF)、テトラヒドロフラン(THF)等の溶媒に溶解して0.25重量%の溶液を調製し、不溶解分を口径1μmのPTFEフィルターで濾過したものを試料溶液とする。
装置:Alliance GPC V2000(Waters社製)
溶媒:オルトジクロロベンゼン、DMF、THF
標準物質:ポリスチレンサンプル
濃度:3mg/ml
カラム固定相:PLgel 10um,MIXED-B 2本直列(ポリマーラボラトリーズ社製)
カラム温度:135℃
The weight average molecular weight of the binder resin can be determined by GPC (gel permeation chromatography) measurement under the following conditions. The sample polymer was dissolved in a solvent such as orthodichlorobenzene, N'-dimethylformamide (DMF), or tetrahydrofuran (THF) to prepare a 0.25% by weight solution, and the undissolved portion was removed using a 1 μm diameter tube. The solution filtered through a PTFE filter is used as a sample solution.
Equipment: Alliance GPC V2000 (manufactured by Waters)
Solvent: orthodichlorobenzene, DMF, THF
Standard material: polystyrene Sample concentration: 3mg/ml
Column stationary phase: PLgel 10um, MIXED-B 2 in series (manufactured by Polymer Laboratories)
Column temperature: 135℃

前記バインダー樹脂は、単量体(a1)を構成単量体として前記バインダー樹脂の構成単量体の合計重量を基準として90重量%以上含み、かつ、前記単量体(a1)が、アクリル酸、アクリル酸メチル、メタクリル酸及びメタクリル酸メチルからなる群から選択される1種以上であることが好ましい。前記組成であると負極活物質及び導電助剤との馴染みがよく、電極強度が向上する。 The binder resin contains the monomer (a1) in an amount of 90% by weight or more based on the total weight of the constituent monomers of the binder resin, and the monomer (a1) contains acrylic acid. , methyl acrylate, methacrylic acid, and methyl methacrylate. With the above composition, the negative electrode active material and the conductive additive are compatible with each other, and the electrode strength is improved.

本発明のリチウムイオン電池用負極組成物は、導電助剤を含む。導電助剤としては、導電性を有する材料であれば特に制限はない。
導電助剤としては、金属[アルミニウム、ステンレス(SUS)、銀、金、銅及びチタン等]、カーボン[グラファイト(薄片状黒鉛(UP))、カーボンブラック(アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック及びサーマルランプブラック等)及びカーボンナノファイバー(CNF)等]、及びこれらの混合物等が挙げられる。
これらの導電助剤は1種単独で用いられてもよいし、2種以上併用してもよい。また、これらの合金又は金属酸化物が用いられてもよい。電気的安定性の観点から、好ましくはアセチレンブラックが好ましい。
The negative electrode composition for lithium ion batteries of the present invention contains a conductive additive. There are no particular limitations on the conductive aid as long as it is a conductive material.
Examples of conductive aids include metals [aluminum, stainless steel (SUS), silver, gold, copper, titanium, etc.], carbon [graphite (flake graphite (UP)), carbon black (acetylene black, Ketjen black, furnace black, channel black, thermal lamp black, etc.), carbon nanofibers (CNF), etc.], and mixtures thereof.
These conductive aids may be used alone or in combination of two or more. Also, alloys or metal oxides of these may be used. From the viewpoint of electrical stability, acetylene black is preferred.

本発明のリチウムイオン電池用負極組成物は、負極活物質を含む。
負極活物質としては、炭素系材料[黒鉛(グラファイト)、難黒鉛化性炭素(ハードカーボン)、アモルファス炭素、樹脂焼成体(例えばフェノール樹脂及びフラン樹脂等を焼成し炭素化したもの等)、コークス類(例えばピッチコークス、ニードルコークス及び石油コークス等)及び炭素繊維等]、珪素系材料[珪素、酸化珪素(SiOx)、珪素-炭素複合体(炭素粒子の表面を珪素及び/又は炭化珪素で被覆したもの、珪素粒子又は酸化珪素粒子の表面を炭素及び/又は炭化珪素で被覆したもの並びに炭化珪素等)及び珪素合金(珪素-アルミニウム合金、珪素-リチウム合金、珪素-ニッケル合金、珪素-鉄合金、珪素-チタン合金、珪素-マンガン合金、珪素-銅合金及び珪素-スズ合金等)等]、導電性高分子(例えばポリアセチレン及びポリピロール等)、金属(スズ、アルミニウム、ジルコニウム及びチタン等)、金属酸化物(チタン酸化物及びリチウム・チタン酸化物等)及び金属合金(例えばリチウム-スズ合金、リチウム-アルミニウム合金及びリチウム-アルミニウム-マンガン合金等)等及びこれらと炭素系材料との混合物等が挙げられる。
電池容量の観点から、負極活物質としては黒鉛又はハードカーボンが好ましい。
The negative electrode composition for a lithium ion battery of the present invention includes a negative electrode active material.
As the negative electrode active material, carbon-based materials [graphite, non-graphitizable carbon (hard carbon), amorphous carbon, fired resin bodies (for example, carbonized products by firing phenol resin and furan resin, etc.), coke, etc. (e.g. pitch coke, needle coke, petroleum coke, etc.) and carbon fibers], silicon-based materials [silicon, silicon oxide (SiOx), silicon-carbon composites (carbon particles whose surfaces are coated with silicon and/or silicon carbide) silicon particles or silicon oxide particles whose surfaces are coated with carbon and/or silicon carbide, silicon carbide, etc.) and silicon alloys (silicon-aluminum alloys, silicon-lithium alloys, silicon-nickel alloys, silicon-iron alloys) , silicon-titanium alloy, silicon-manganese alloy, silicon-copper alloy, silicon-tin alloy, etc.), conductive polymers (e.g., polyacetylene and polypyrrole, etc.), metals (tin, aluminum, zirconium, titanium, etc.), metals Examples include oxides (titanium oxide and lithium titanium oxide, etc.), metal alloys (for example, lithium-tin alloy, lithium-aluminum alloy, lithium-aluminum-manganese alloy, etc.), and mixtures of these with carbon-based materials. It will be done.
From the viewpoint of battery capacity, graphite or hard carbon is preferable as the negative electrode active material.

本発明のリチウムイオン電池用負極組成物における前記バインダー樹脂の重量割合は、結着性能と電気特性の観点の観点から、前記リチウムイオン電池用負極組成物の重量を基準として1~5重量%であることが好ましい。
また、前記リチウムイオン電池用負極組成物における前記負極活物質の重量割合は、電池性能の観点から、前記リチウムイオン電池用負極組成物の重量を基準として90~98重量%であることが好ましい。
The weight proportion of the binder resin in the negative electrode composition for lithium ion batteries of the present invention is 1 to 5% by weight based on the weight of the negative electrode composition for lithium ion batteries from the viewpoint of binding performance and electrical properties. It is preferable that there be.
Further, from the viewpoint of battery performance, the weight proportion of the negative electrode active material in the negative electrode composition for lithium ion batteries is preferably 90 to 98% by weight based on the weight of the negative electrode composition for lithium ion batteries.

[リチウムイオン電池用負極の製造方法]
本発明は、前記バインダー樹脂、導電助剤及び負極活物質と、水性溶媒とを含むスラリーを作製する混合工程と、前記スラリーを集電体に塗布する塗布工程と、前記塗布工程後にスラリーを乾燥して前記集電体上に負極活物質層を形成する乾燥工程とを含むリチウムイオン電池用負極の製造方法である。
[Method for manufacturing negative electrode for lithium ion battery]
The present invention includes a mixing step of preparing a slurry containing the binder resin, a conductive aid, a negative electrode active material, and an aqueous solvent, a coating step of applying the slurry to a current collector, and drying the slurry after the coating step. and a drying step of forming a negative electrode active material layer on the current collector.

(混合工程)
本発明は、前記バインダー樹脂、導電助剤及び負極活物質と、水性溶媒とを含むスラリーを作製する混合工程を含む。
混合工程では、前記バインダー樹脂、導電助剤及び負極活物質と、水性溶媒とを含むスラリーを作製する。前記バインダー樹脂、導電助剤及び負極活物質と水性溶媒とを混合する方法としては、特に限定されず、公知の方法を用いることができる。
また、混合する順序にも制限はなく、前記バインダー樹脂、導電助剤及び負極活物質と水性溶媒とを、どの順序で混合してもよい。
(Mixing process)
The present invention includes a mixing step of preparing a slurry containing the binder resin, conductive aid, negative electrode active material, and an aqueous solvent.
In the mixing step, a slurry containing the binder resin, conductive support agent, negative electrode active material, and an aqueous solvent is prepared. The method for mixing the binder resin, conductive aid, and negative electrode active material with the aqueous solvent is not particularly limited, and any known method can be used.
Furthermore, there is no restriction on the order of mixing, and the binder resin, conductive aid, negative electrode active material, and aqueous solvent may be mixed in any order.

水性溶媒としては、水を必須構成成分とする液体であれば制限なく使用でき、後述する、水、有機溶剤の水溶液、界面活性剤の水溶液、水溶性ポリマーの水溶液及びこれらの2以上の混合物等が用いることができる。 As the aqueous solvent, any liquid that has water as an essential component can be used without any restriction, such as water, an aqueous solution of an organic solvent, an aqueous solution of a surfactant, an aqueous solution of a water-soluble polymer, a mixture of two or more of these, etc., which will be described later. can be used.

(塗布工程)
本発明は、前記混合工程で得た前記スラリーを集電体に塗布する塗布工程を含む。
塗布する方法としては、特に限定されず、公知の、バーコーター等の塗工装置を用いることができる。
(Coating process)
The present invention includes a coating step of applying the slurry obtained in the mixing step to a current collector.
The coating method is not particularly limited, and a known coating device such as a bar coater can be used.

集電体を構成する材料としては、銅、アルミニウム、チタン、ステンレス鋼、ニッケル及びこれらの合金等の金属材料、並びに、焼成炭素、導電性高分子材料、導電性ガラス等が挙げられる。
集電体の形状は特に限定されず、上記の材料からなるシート状の集電体、及び、上記の材料で構成された微粒子からなる堆積層であってもよい。
集電体の厚さは、特に限定されないが、50~500μmであることが好ましい。
Examples of the material constituting the current collector include metal materials such as copper, aluminum, titanium, stainless steel, nickel, and alloys thereof, as well as fired carbon, conductive polymer materials, conductive glass, and the like.
The shape of the current collector is not particularly limited, and may be a sheet-like current collector made of the above-mentioned material or a deposited layer made of fine particles made of the above-mentioned material.
The thickness of the current collector is not particularly limited, but is preferably 50 to 500 μm.

(乾燥工程)
本発明は、前記塗布工程後にスラリーを乾燥して前記集電体上に負極活物質層を形成する乾燥工程を含む。
乾燥工程で前記スラリーに含まれる水性溶媒を除去することが好ましい。水性溶媒を除去する方法としては、オーブンや真空オーブンを用いた乾燥が好ましい。水性溶媒を除去する雰囲気としては、空気、不活性ガス、真空状態などが挙げられる。また、水性溶媒を除去する温度は、60~250℃が好ましい。
(drying process)
The present invention includes a drying step of drying the slurry after the coating step to form a negative electrode active material layer on the current collector.
It is preferable to remove the aqueous solvent contained in the slurry in the drying step. As a method for removing the aqueous solvent, drying using an oven or a vacuum oven is preferable. Examples of the atmosphere for removing the aqueous solvent include air, an inert gas, and a vacuum state. Further, the temperature at which the aqueous solvent is removed is preferably 60 to 250°C.

本明細書には、以下の事項が開示されている。 The following items are disclosed in this specification.

本開示(1)は、
バインダー樹脂、導電助剤及び負極活物質を含むリチウムイオン電池用負極組成物であって、前記バインダー樹脂は、50℃で3日間、電解液に浸漬した際の吸液率が10~40%であり、50℃で3日間、前記電解液に浸漬した際のイオン伝導度が1×10-6~1×10-8S/cmであり、前記電解液は、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)を体積割合でEC:DEC=3:7で混合した混合溶媒に、電解質としてLiPFを1mol/Lの濃度になるように溶解した電解液であり、
前記吸液率は、以下の式
吸液率(%)=[(電解液浸漬後のバインダー樹脂の重量-電解液浸漬前のバインダー樹脂の重量)/電解液浸漬前のバインダー樹脂の重量]×100
で求められ、
前記イオン伝導度は、交流インピーダンス法による25℃のイオン伝導度であることを特徴とするリチウムイオン電池用負極組成物である。
This disclosure (1) is
A negative electrode composition for a lithium ion battery comprising a binder resin, a conductive aid, and a negative electrode active material, wherein the binder resin has a liquid absorption rate of 10 to 40% when immersed in an electrolytic solution at 50°C for 3 days. The ionic conductivity when immersed in the electrolyte at 50° C. for 3 days is 1×10 −6 to 1×10 −8 S/cm, and the electrolyte is ethylene carbonate (EC), diethyl carbonate, etc. It is an electrolytic solution in which LiPF 6 is dissolved as an electrolyte to a concentration of 1 mol/L in a mixed solvent in which (DEC) is mixed at a volume ratio of EC:DEC=3:7,
The liquid absorption rate is determined by the following formula: Liquid absorption rate (%) = [(Weight of binder resin after immersion in electrolyte solution - Weight of binder resin before immersion in electrolyte solution) / Weight of binder resin before immersion in electrolyte solution] x 100
is required,
The negative electrode composition for a lithium ion battery is characterized in that the ionic conductivity is an ionic conductivity at 25° C. determined by an AC impedance method.

本開示(2)は、前記バインダー樹脂に対する前記電解液の接触角が30°未満である本開示(1)に記載のリチウムイオン電池用負極組成物である。 The present disclosure (2) is the negative electrode composition for a lithium ion battery according to the present disclosure (1), wherein a contact angle of the electrolytic solution with the binder resin is less than 30°.

本開示(3)は、前記バインダー樹脂の重量平均分子量が、95,000~200,000である本開示(1)又は(2)に記載のリチウムイオン電池用負極組成物である。 The present disclosure (3) is the negative electrode composition for a lithium ion battery according to the present disclosure (1) or (2), wherein the binder resin has a weight average molecular weight of 95,000 to 200,000.

本開示(4)は、前記リチウムイオン電池用負極組成物における前記バインダー樹脂の重量割合が、前記リチウムイオン電池用負極組成物の重量を基準として1~5重量%であり、前記リチウムイオン電池用負極組成物における前記負極活物質の重量割合が、前記リチウムイオン電池用負極組成物の重量を基準として90~98重量%である本開示(1)~(3)のいずれかに記載のリチウムイオン電池用負極組成物である。 The present disclosure (4) provides that the weight ratio of the binder resin in the negative electrode composition for lithium ion batteries is 1 to 5% by weight based on the weight of the negative electrode composition for lithium ion batteries, and The lithium ion according to any one of the present disclosure (1) to (3), wherein the weight ratio of the negative electrode active material in the negative electrode composition is 90 to 98% by weight based on the weight of the negative electrode composition for lithium ion batteries. This is a negative electrode composition for batteries.

本開示(5)は、前記バインダー樹脂、導電助剤及び負極活物質と、水性溶媒とを含むスラリーを作製する混合工程と、前記スラリーを集電体に塗布する塗布工程と、前記塗布工程後にスラリーを乾燥して前記集電体上に負極活物質層を形成する乾燥工程とを含むリチウムイオン電池用負極の製造方法である。 The present disclosure (5) includes a mixing step of preparing a slurry containing the binder resin, a conductive aid, a negative electrode active material, and an aqueous solvent, a coating step of applying the slurry to a current collector, and a step of applying the slurry to a current collector, and after the coating step. The method of manufacturing a negative electrode for a lithium ion battery includes a drying step of drying a slurry to form a negative electrode active material layer on the current collector.

次に本発明を実施例によって具体的に説明するが、本発明の主旨を逸脱しない限り本発明は実施例に限定されるものではない。 EXAMPLES Next, the present invention will be specifically explained with reference to examples, but the present invention is not limited to the examples unless it departs from the gist of the present invention.

(製造例1:バインダー樹脂(A-1)の製造)
撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコにDMF150重量部を仕込み、75℃に昇温した。次いで、アクリル酸90重量部、メタクリル酸10重量部及びDMF50重量部を配合した単量体組成物と、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.5重量部及び2,2’-アゾビス(2-メチルブチロニトリル)0.5重量部をDMF30部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで2時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、75℃で反応を3時間継続した。次いで、80℃に昇温して反応を3時間継続し、樹脂濃度30重量%のバインダー樹脂溶液を得た。このバインダー樹脂溶液を160℃、0.01MPで3時間減圧乾燥して、DMFを留去してバインダー樹脂(A-1)(Mw:70,000)を得た。
(Production Example 1: Production of binder resin (A-1))
150 parts by weight of DMF was charged into a four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel, and a nitrogen gas introduction tube, and the temperature was raised to 75°C. Next, a monomer composition containing 90 parts by weight of acrylic acid, 10 parts by weight of methacrylic acid and 50 parts by weight of DMF, 0.5 parts by weight of 2,2'-azobis(2,4-dimethylvaleronitrile) and 2, An initiator solution prepared by dissolving 0.5 parts by weight of 2'-azobis(2-methylbutyronitrile) in 30 parts of DMF was continuously added to a four-necked flask over a period of 2 hours using a dropping funnel under stirring while blowing nitrogen. Radical polymerization was carried out by adding the mixture dropwise. After the dropwise addition was completed, the reaction was continued at 75°C for 3 hours. Next, the temperature was raised to 80° C. and the reaction was continued for 3 hours to obtain a binder resin solution with a resin concentration of 30% by weight. This binder resin solution was dried under reduced pressure at 160° C. and 0.01 MP for 3 hours, and DMF was distilled off to obtain a binder resin (A-1) (Mw: 70,000).

(製造例2:バインダー樹脂(A-2)の製造)
撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコにDMF150重量部を仕込み、75℃に昇温した。次いで、アクリル酸90重量部、メタクリル酸10重量部及びDMF50重量部を配合した単量体組成物と、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.2部及び2,2’-アゾビス(2-メチルブチロニトリル)0.5重量部をDMF30重量部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで2時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、75℃で反応を3時間継続した。次いで、80℃に昇温して反応を3時間継続し、樹脂濃度30重量%のバインダー樹脂溶液を得た。このバインダー樹脂溶液を160℃、0.01MPで3時間減圧乾燥して、DMFを留去してバインダー樹脂(A-2)(Mw:120,000)を得た。
(Production Example 2: Production of binder resin (A-2))
150 parts by weight of DMF was charged into a four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel, and a nitrogen gas introduction tube, and the temperature was raised to 75°C. Next, a monomer composition containing 90 parts by weight of acrylic acid, 10 parts by weight of methacrylic acid, and 50 parts by weight of DMF, and 0.2 parts of 2,2'-azobis(2,4-dimethylvaleronitrile) and 2,2 parts by weight were added. An initiator solution prepared by dissolving 0.5 parts by weight of '-azobis(2-methylbutyronitrile) in 30 parts by weight of DMF was continuously added to a four-necked flask over a period of 2 hours using a dropping funnel under stirring while blowing nitrogen into the 4-necked flask. Radical polymerization was carried out by adding the mixture dropwise. After the dropwise addition was completed, the reaction was continued at 75°C for 3 hours. Next, the temperature was raised to 80° C. and the reaction was continued for 3 hours to obtain a binder resin solution with a resin concentration of 30% by weight. This binder resin solution was dried under reduced pressure at 160° C. and 0.01 MP for 3 hours, and DMF was distilled off to obtain a binder resin (A-2) (Mw: 120,000).

(製造例3:バインダー樹脂(A-3)の製造)
撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコにDMF150重量部を仕込み、75℃に昇温した。次いで、アクリル酸90重量部、メタクリル酸10重量部及びDMF50重量部を配合した単量体組成物と、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.2重量部及び2,2’-アゾビス(2-メチルブチロニトリル)0.3重量部をDMF30重量部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで2時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、75℃で反応を3時間継続した。次いで、80℃に昇温して反応を3時間継続し、樹脂濃度30重量%のバインダー樹脂溶液を得た。このバインダー樹脂溶液を160℃、0.01MPで3時間減圧乾燥して、DMFを留去してバインダー樹脂(A-3)(Mw:250,000)を得た。
(Production Example 3: Production of binder resin (A-3))
150 parts by weight of DMF was charged into a four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel, and a nitrogen gas introduction tube, and the temperature was raised to 75°C. Next, a monomer composition containing 90 parts by weight of acrylic acid, 10 parts by weight of methacrylic acid and 50 parts by weight of DMF, 0.2 parts by weight of 2,2'-azobis(2,4-dimethylvaleronitrile) and 2, An initiator solution prepared by dissolving 0.3 parts by weight of 2'-azobis(2-methylbutyronitrile) in 30 parts by weight of DMF was added to a four-necked flask while blowing nitrogen through the dropping funnel for 2 hours under stirring. Radical polymerization was carried out by continuous dropwise addition. After the dropwise addition was completed, the reaction was continued at 75°C for 3 hours. Next, the temperature was raised to 80° C. and the reaction was continued for 3 hours to obtain a binder resin solution with a resin concentration of 30% by weight. This binder resin solution was dried under reduced pressure at 160° C. and 0.01 MP for 3 hours, and DMF was distilled off to obtain a binder resin (A-3) (Mw: 250,000).

(製造例4~7及び比較製造例3,4:バインダー樹脂(A-4)~(A-7)及び(AX-4)、(AX-5)の製造)
モノマーの種類、仕込み重量部数を表1に示すように変更した他は製造例1と同様にしてバインダー樹脂(A-4)~(A-7)及び(AX-4)、(AX-5)を製造した。
なお、バインダー樹脂(AX-1)としては、スチレンーブタジエンゴム(以下 SBR)[日本ゼオン(株)、商標 BM-400B,固形分40重量%、Tg-5℃]を100℃、0.01MPで3時間減圧乾燥したものを使用した。
(Production Examples 4 to 7 and Comparative Production Examples 3 and 4: Production of binder resins (A-4) to (A-7) and (AX-4) and (AX-5))
Binder resins (A-4) to (A-7), (AX-4), and (AX-5) were prepared in the same manner as in Production Example 1, except that the type of monomer and the weight parts charged were changed as shown in Table 1. was manufactured.
As the binder resin (AX-1), styrene-butadiene rubber (hereinafter referred to as SBR) [Nippon Zeon Co., Ltd., trademark BM-400B, solid content 40% by weight, Tg -5°C] was used at 100°C and 0.01MP. The sample was dried under reduced pressure for 3 hours before use.

(製造例8:バインダー樹脂(A-8)の製造)
撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコにイオン交換水300重量部を仕込み、70℃に昇温した。次いで、アクリル酸90重量部、メタクリル酸メチル10重量部及びイオン交換水50重量部を配合した単量体組成物と、2,2’-アゾビス(2-メチルプロピオンアミジン)二塩酸塩2.5重量部をイオン交換水50重量部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで3時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、80℃で反応を2時間継続した。樹脂濃度20重量%のバインダー樹脂溶液を得た。このバインダー樹脂溶液を100℃、0.01MPで1時間減圧乾燥して、イオン交換水を留去してバインダー樹脂(A-8)(Mw:130,000)を得た。
(Production Example 8: Production of binder resin (A-8))
A four-neck flask equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel, and a nitrogen gas introduction tube was charged with 300 parts by weight of ion-exchanged water, and the temperature was raised to 70°C. Next, a monomer composition containing 90 parts by weight of acrylic acid, 10 parts by weight of methyl methacrylate, and 50 parts by weight of ion-exchanged water, and 2.5 parts by weight of 2,2'-azobis(2-methylpropionamidine) dihydrochloride were added. Radical polymerization was carried out by continuously dropping an initiator solution in which parts by weight were dissolved in 50 parts by weight of ion-exchanged water using a dropping funnel over a period of 3 hours while stirring and blowing nitrogen into a four-necked flask. After the dropwise addition was completed, the reaction was continued at 80°C for 2 hours. A binder resin solution with a resin concentration of 20% by weight was obtained. This binder resin solution was dried under reduced pressure at 100° C. and 0.01 MP for 1 hour, and the ion exchange water was distilled off to obtain a binder resin (A-8) (Mw: 130,000).

(製造例9:バインダー樹脂(A-9)の製造)
撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコにイオン交換水300重量部を仕込み、70℃に昇温した。次いで、アクリル酸90重量部、メタクリル酸メチル10重量部及びイオン交換水50重量部を配合した単量体組成物と、2,2’-アゾビス(2-メチルプロピオンアミジン)二塩酸塩2.0重量部をイオン交換水50重量部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで3時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、80℃で反応を2時間継続した。樹脂濃度20重量%のバインダー樹脂溶液を得た。このバインダー樹脂溶液を100℃、0.01MPで1時間減圧乾燥して、イオン交換水を留去してバインダー樹脂(A-9)(Mw:180,000)を得た。
(Production Example 9: Production of binder resin (A-9))
A four-neck flask equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel, and a nitrogen gas introduction tube was charged with 300 parts by weight of ion-exchanged water, and the temperature was raised to 70°C. Next, a monomer composition containing 90 parts by weight of acrylic acid, 10 parts by weight of methyl methacrylate, and 50 parts by weight of ion-exchanged water, and 2.0 parts by weight of 2,2'-azobis(2-methylpropionamidine) dihydrochloride were added. Radical polymerization was carried out by continuously dropping an initiator solution in which parts by weight were dissolved in 50 parts by weight of ion-exchanged water using a dropping funnel over a period of 3 hours while stirring and blowing nitrogen into a four-necked flask. After the dropwise addition was completed, the reaction was continued at 80°C for 2 hours. A binder resin solution with a resin concentration of 20% by weight was obtained. This binder resin solution was dried under reduced pressure at 100° C. and 0.01 MP for 1 hour, and the ion-exchanged water was distilled off to obtain a binder resin (A-9) (Mw: 180,000).

(製造例10:バインダー樹脂(A-10)の製造)
撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコにイオン交換水300重量部を仕込み、70℃に昇温した。次いで、アクリル酸90重量部、メタクリル酸メチル10重量部及びイオン交換水50重量部を配合した単量体組成物と、2,2’-アゾビス(2-メチルプロピオンアミジン)二塩酸塩1.5重量部をイオン交換水50重量部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで3時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、80℃で反応を2時間継続した。樹脂濃度20重量%のバインダー樹脂溶液を得た。このバインダー樹脂溶液を100℃、0.01MPで1時間減圧乾燥して、イオン交換水を留去してバインダー樹脂(A-10)(Mw:240,000)を得た。
(Production Example 10: Production of binder resin (A-10))
A four-neck flask equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel, and a nitrogen gas introduction tube was charged with 300 parts by weight of ion-exchanged water, and the temperature was raised to 70°C. Next, a monomer composition containing 90 parts by weight of acrylic acid, 10 parts by weight of methyl methacrylate, and 50 parts by weight of ion-exchanged water, and 1.5 parts by weight of 2,2'-azobis(2-methylpropionamidine) dihydrochloride were added. Radical polymerization was carried out by continuously dropping an initiator solution in which parts by weight were dissolved in 50 parts by weight of ion-exchanged water using a dropping funnel over a period of 3 hours while stirring and blowing nitrogen into a four-necked flask. After the dropwise addition was completed, the reaction was continued at 80°C for 2 hours. A binder resin solution with a resin concentration of 20% by weight was obtained. This binder resin solution was dried under reduced pressure at 100° C. and 0.01 MP for 1 hour, and the ion exchange water was distilled off to obtain a binder resin (A-10) (Mw: 240,000).

(製造例11:バインダー樹脂(A-11)の製造)
撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコにイオン交換水300重量部を仕込み、70℃に昇温した。次いで、アクリル酸50重量部、アクリル酸ヒドロキシエチル50重量部及びイオン交換水50重量部を配合した単量体組成物と、2,2’-アゾビス(2-メチルプロピオンアミジン)二塩酸塩2.5重量部をイオン交換水50重量部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで3時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、80℃で反応を2時間継続した。樹脂濃度20重量%のバインダー樹脂溶液を得た。このバインダー樹脂溶液を100℃、0.01MPで1時間減圧乾燥して、イオン交換水を留去してバインダー樹脂(A-11)(Mw:150,000)を得た。
(Production Example 11: Production of Binder Resin (A-11))
A four-neck flask equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel and a nitrogen gas inlet tube was charged with 300 parts by weight of ion-exchanged water and heated to 70°C. Next, a monomer composition containing 50 parts by weight of acrylic acid, 50 parts by weight of hydroxyethyl acrylate and 50 parts by weight of ion-exchanged water, and an initiator solution containing 2.5 parts by weight of 2,2'-azobis(2-methylpropionamidine)dihydrochloride dissolved in 50 parts by weight of ion-exchanged water were continuously dropped into the four-neck flask with nitrogen for 3 hours under stirring to carry out radical polymerization. After the dropwise addition was completed, the reaction was continued for 2 hours at 80°C. A binder resin solution with a resin concentration of 20% by weight was obtained. This binder resin solution was dried under reduced pressure at 100°C and 0.01MP for 1 hour, and the ion-exchanged water was distilled off to obtain a binder resin (A-11) (Mw: 150,000).

(比較製造例1:バインダー樹脂(AX-2)の製造)
撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコにイソプロパノール150重量部を仕込み、70℃に昇温した。次いで、2-エチルヘキシルメタクリレート65重量部、2-エチルヘキシルアクリレート30重量部、アクリル酸4.6重量部、1,6-ヘキサンジオールジメタクリレート0.4重量部及びイソプロパノール50重量部を配合した単量体組成物と、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.2重量部及び2,2’-アゾビス(2-メチルブチロニトリル)0.3重量部をイソプロパノール30重量部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで2時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、70℃で反応を3時間継続した。次いで、80℃に昇温して反応を3時間継続し、樹脂濃度30重量%のバインダー樹脂溶液を得た。このバインダー樹脂溶液を100℃、0.01MPで3時間減圧乾燥して、イソプロパノールを留去してバインダー樹脂(AX-2)(Mw:150,000)を得た。
(Comparative production example 1: Production of binder resin (AX-2))
150 parts by weight of isopropanol was charged into a four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel, and a nitrogen gas introduction tube, and the temperature was raised to 70°C. Next, a monomer containing 65 parts by weight of 2-ethylhexyl methacrylate, 30 parts by weight of 2-ethylhexyl acrylate, 4.6 parts by weight of acrylic acid, 0.4 parts by weight of 1,6-hexanediol dimethacrylate, and 50 parts by weight of isopropanol was prepared. The composition, 0.2 parts by weight of 2,2'-azobis(2,4-dimethylvaleronitrile) and 0.3 parts by weight of 2,2'-azobis(2-methylbutyronitrile) in 30 parts by weight of isopropanol. Radical polymerization was carried out by continuously dropping the dissolved initiator solution into a four-necked flask over a period of 2 hours using a dropping funnel while stirring and blowing nitrogen into the flask. After the dropwise addition was completed, the reaction was continued at 70°C for 3 hours. Next, the temperature was raised to 80° C. and the reaction was continued for 3 hours to obtain a binder resin solution with a resin concentration of 30% by weight. This binder resin solution was dried under reduced pressure at 100° C. and 0.01 MP for 3 hours, and isopropanol was distilled off to obtain a binder resin (AX-2) (Mw: 150,000).

(比較製造例2:バインダー樹脂(AX-3)の製造)
撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコにイソプロパノール150重量部を仕込み、70℃に昇温した。次いで、2-エチルヘキシルメタクリレート65重量部、2-エチルヘキシルアクリレート30重量部、アクリル酸5重量部及びイソプロパノール50重量部を配合した単量体組成物と、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.2重量部及び2,2’-アゾビス(2-メチルブチロニトリル)0.3重量部をイソプロパノール30重量部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで2時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、70℃で反応を3時間継続した。次いで、80℃に昇温して反応を3時間継続し、樹脂濃度30重量%のバインダー樹脂溶液を得た。このバインダー樹脂溶液を100℃、0.01MPで3時間減圧乾燥して、イソプロパノールを留去してバインダー樹脂(AX-2)(Mw:120,000)を得た。
(Comparative production example 2: Production of binder resin (AX-3))
150 parts by weight of isopropanol was charged into a four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel, and a nitrogen gas introduction tube, and the temperature was raised to 70°C. Next, a monomer composition containing 65 parts by weight of 2-ethylhexyl methacrylate, 30 parts by weight of 2-ethylhexyl acrylate, 5 parts by weight of acrylic acid and 50 parts by weight of isopropanol, and 2,2'-azobis(2,4-dimethyl Nitrogen was blown into a four-necked flask with an initiator solution prepared by dissolving 0.2 parts by weight of valeronitrile and 0.3 parts by weight of 2,2'-azobis(2-methylbutyronitrile) in 30 parts by weight of isopropanol. While stirring, the mixture was continuously added dropwise from a dropping funnel over 2 hours to carry out radical polymerization. After the dropwise addition was completed, the reaction was continued at 70°C for 3 hours. Next, the temperature was raised to 80° C. and the reaction was continued for 3 hours to obtain a binder resin solution with a resin concentration of 30% by weight. This binder resin solution was dried under reduced pressure at 100° C. and 0.01 MP for 3 hours, and isopropanol was distilled off to obtain a binder resin (AX-2) (Mw: 120,000).

(実施例1~11、比較例1、4、5:リチウムイオン電池用負極組成物の作製及び負極の作製)
バインダー樹脂をイオン交換水に10重量%の濃度で溶解して樹脂溶液を得た。
黒鉛94重量部、アセチレンブラック(AB)[デンカ(株)DENKA BLACK Li-100]3重量部カルボキシメチルセルロースナトリウム1.5重量部、前記樹脂溶液1.5重量部及びイオン交換水100重量部を仕込み、あわとり練太郎による攪拌を2000rpmで1分間行い、負極用スラリー組成物を調整した。この負極用スラリー組成物をアプリケーターで厚み30μmの銅箔に乾燥後の膜厚が100μm程度になるように塗布し、100℃で2時間乾燥させ、電極シートを得た。この電極シートをΦ16mmに打ち抜いて、リチウムイオン電池用負極を作製した。
(Examples 1 to 11, Comparative Examples 1, 4, 5: Preparation of negative electrode composition for lithium ion battery and preparation of negative electrode)
A resin solution was obtained by dissolving the binder resin in ion-exchanged water at a concentration of 10% by weight.
94 parts by weight of graphite, 3 parts by weight of acetylene black (AB) [DENKA BLACK Li-100], 1.5 parts by weight of sodium carboxymethylcellulose, 1.5 parts by weight of the above resin solution, and 100 parts by weight of ion-exchanged water were prepared. A slurry composition for a negative electrode was prepared by stirring with a foaming Rentaro at 2000 rpm for 1 minute. This negative electrode slurry composition was applied to a 30 μm thick copper foil using an applicator so that the film thickness after drying would be about 100 μm, and dried at 100° C. for 2 hours to obtain an electrode sheet. This electrode sheet was punched out to a diameter of 16 mm to produce a negative electrode for a lithium ion battery.

(比較例2、3:リチウムイオン電池用負極組成物の作製及び負極の作製)
バインダー樹脂をイソプロパノールに10重量%の濃度で溶解して樹脂溶液を得た以外は実施例1と同様にリチウムイオン電池用負極を作製した。
(Comparative Examples 2 and 3: Preparation of negative electrode composition for lithium ion battery and preparation of negative electrode)
A negative electrode for a lithium ion battery was produced in the same manner as in Example 1, except that a resin solution was obtained by dissolving the binder resin in isopropanol at a concentration of 10% by weight.

<電解液浸透性(電解液浸透時間:注液速度)の評価>
作製した電解液浸透性評価用負極に電解液を5μL垂らし、電解液が電極にしみこむまでの時間(秒)を測定した。しみこむまでの時間が短いほど浸透性に優れていることを示す。
電解液を電解液浸透性評価用負極に垂らすと、電解液を垂らした部分の色が濃くなる。電解液が電極にしみこむと色が元に戻るので、電解液浸透性評価用負極の色が元に戻るまでの時間を計測した。
測定結果を表2に示した。
なお、電解液浸透性評価用負極は、作製したリチウムイオン電池用負極を所定の空隙(15%)になるように、加圧プレスでプレスして得た。なお、電解液としてはエチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合溶媒(体積比率3:7)にLiPFを1mol/Lの割合で溶解させたものを用いる。
<Evaluation of electrolyte permeability (electrolyte permeation time: injection speed)>
5 μL of the electrolytic solution was dropped onto the produced negative electrode for electrolyte permeability evaluation, and the time (seconds) until the electrolytic solution soaked into the electrode was measured. The shorter the time until penetration, the better the permeability.
When an electrolytic solution is dripped onto the negative electrode for evaluating electrolyte permeability, the color of the part where the electrolytic solution is dripped becomes darker. Since the color returns to its original color when the electrolyte permeates into the electrode, the time required for the negative electrode for electrolyte permeability evaluation to return to its original color was measured.
The measurement results are shown in Table 2.
The negative electrode for electrolyte permeability evaluation was obtained by pressing the prepared negative electrode for a lithium ion battery using a pressure press to form a predetermined void (15%). The electrolytic solution used is one in which LiPF 6 is dissolved at a ratio of 1 mol/L in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) (volume ratio 3:7).

(性能評価用電池の作製)
作製したリチウムイオン電池用負極を、Φ15mmに打ち抜いたリチウムイオン電池用正極と共に2032型コインセル内の両端に配置した。正極側の集電体としては、厚さ20μmのアルミ箔を用いた。電極間にセパレータ(セルガード3501)を挿入し、評価用電池セルを作製した。
評価用電池セルに上記電解液を注液密封し、実施例及び比較例に係る評価用電池をそれぞれ作製した。
(Preparation of battery for performance evaluation)
The produced negative electrode for a lithium ion battery was placed at both ends of a 2032 type coin cell together with a positive electrode for a lithium ion battery punched out to a diameter of 15 mm. As the current collector on the positive electrode side, aluminum foil with a thickness of 20 μm was used. A separator (Celguard 3501) was inserted between the electrodes to produce a battery cell for evaluation.
The electrolytic solution was injected into the evaluation battery cells and sealed, thereby producing evaluation batteries according to Examples and Comparative Examples.

<電池評価>
室温下、充放電測定装置[HJ0501SM8A][北斗電工(株)製]を用いて、0.1Cで4.2CまでCC-CV(カットオフ電流0.01C)で充電を行い、1時間休止した後、0.1Cで2.5Vまで放電を行った。この時の充電容量を初回充電容量X0とし、放電容量を初回容量Y0とした。その後、充放電を繰り返し、50サイクル目の放電容量Y1を得た。
以下の式で初回クーロン効率を算出し、結果を表2に示した。
初回クーロン効率(%)=初回放電容量(Y0)/初回充電容量(X0)×100
<Battery evaluation>
At room temperature, using a charge/discharge measuring device [HJ0501SM8A] [manufactured by Hokuto Denko Co., Ltd.], the battery was charged at CC-CV (cutoff current 0.01C) at 0.1C to 4.2C, and then rested for 1 hour. Afterwards, discharge was performed at 0.1C to 2.5V. The charging capacity at this time was defined as the initial charging capacity X0, and the discharging capacity was defined as the initial capacity Y0. Thereafter, charging and discharging were repeated to obtain a discharge capacity Y1 at the 50th cycle.
The initial coulombic efficiency was calculated using the following formula, and the results are shown in Table 2.
Initial coulombic efficiency (%) = Initial discharge capacity (Y0) / Initial charge capacity (X0) x 100

50サイクル放電容量維持率(%)=Y1 /Y0×100として、サイクル特性を測定した。結果を表2に示した。 The cycle characteristics were measured as follows: 50-cycle discharge capacity retention rate (%)=Y1/Y0×100. The results are shown in Table 2.

<レート試験評価>
室温下、充放電測定装置[HJ0501SM8A][北斗電工(株)製]を用いて、0.05Cで4.2VまでCC-CV(カットオフ電流0.005C)で充電を行い、1時間休止した後、0.05Cで2.5Vまで放電を行った。1時間休止した後、0.1Cで4.2VまでCC-CV(カットオフ電流0.01C)で充電を行い、1時間休止した後、0.1Cで2.5Vまで放電を行った。その後も充電速度は0.1Cで同じ条件の下、放電速度を0.2C、0.33C、0.5C、1C、2C、3C、5Cと1サイクルごとにCレートを上げて試験を実施した。このとき、0.1Cでの放電容量をZ(0.1C)、1C、3C、5Cで得られた放電容量をZ(1C)、Z(3C)、Z(5C)とそれぞれ置き、以下の式で1C、3C、5Cの放電レート(%)を算出した。結果を表2に示した。
放電レート(1C)=Z(1C)/Z(0.1C)×100(%)
放電レート(3C)=Z(3C)/Z(0.1C)×100(%)
放電レート(5C)=Z(5C)/Z(0.1C)×100(%)
<Rate test evaluation>
At room temperature, using a charge/discharge measuring device [HJ0501SM8A] [manufactured by Hokuto Denko Co., Ltd.], the battery was charged by CC-CV (cutoff current 0.005C) at 0.05C to 4.2V, and then rested for 1 hour. Afterwards, discharge was performed at 0.05C to 2.5V. After resting for 1 hour, it was charged by CC-CV (cutoff current 0.01C) at 0.1C to 4.2V, and after resting for 1 hour, it was discharged to 2.5V at 0.1C. After that, tests were conducted under the same conditions at a charging rate of 0.1C, but increasing the C rate for each cycle with a discharge rate of 0.2C, 0.33C, 0.5C, 1C, 2C, 3C, and 5C. . At this time, let the discharge capacity at 0.1C be Z(0.1C), and the discharge capacities obtained at 1C, 3C, and 5C be Z(1C), Z(3C), and Z(5C), respectively, and use the following formula. The discharge rates (%) of 1C, 3C, and 5C were calculated using the formula. The results are shown in Table 2.
Discharge rate (1C) = Z (1C) / Z (0.1C) x 100 (%)
Discharge rate (3C) = Z (3C) / Z (0.1C) x 100 (%)
Discharge rate (5C) = Z (5C) / Z (0.1C) x 100 (%)

表2から、各実施例の電極では、各比較例の電極に比べて電解液浸透時間が短く、初回クーロン効率が高くなっていることが分かる。 From Table 2, it can be seen that the electrodes of each Example had a shorter electrolyte permeation time and higher initial Coulombic efficiency than the electrodes of each Comparative Example.

本発明のリチウムイオン電池用負極組成物から得られるリチウムイオン電池は、特に、携帯電話、パーソナルコンピューター及びハイブリッド自動車、電気自動車用に用いられるリチウムイオン電池として有用である。

The lithium ion battery obtained from the negative electrode composition for a lithium ion battery of the present invention is particularly useful as a lithium ion battery used for mobile phones, personal computers, hybrid vehicles, and electric vehicles.

Claims (5)

バインダー樹脂、導電助剤及び負極活物質を含むリチウムイオン電池用負極組成物であって、
前記バインダー樹脂は、50℃で3日間、電解液に浸漬した際の吸液率が10~40%であり、50℃で3日間、前記電解液に浸漬した際のイオン伝導度が1×10-6~1×10-8S/cmであり、
前記電解液は、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)を体積割合でEC:DEC=3:7で混合した混合溶媒に、電解質としてLiPFを1mol/Lの濃度になるように溶解した電解液であり、
前記吸液率は、以下の式
吸液率(%)=[(電解液浸漬後のバインダー樹脂の重量-電解液浸漬前のバインダー樹脂の重量)/電解液浸漬前のバインダー樹脂の重量]×100
で求められ、
前記イオン伝導度は、交流インピーダンス法による25℃のイオン伝導度であることを特徴とするリチウムイオン電池用負極組成物。
A negative electrode composition for a lithium ion battery comprising a binder resin, a conductive aid, and a negative electrode active material,
The binder resin has a liquid absorption rate of 10 to 40% when immersed in the electrolytic solution at 50°C for 3 days, and an ionic conductivity of 1 x 10 when immersed in the electrolytic solution at 50°C for 3 days. -6 to 1×10 -8 S/cm,
The electrolyte was prepared by dissolving LiPF 6 as an electrolyte at a concentration of 1 mol/L in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of EC:DEC=3:7. It is an electrolyte,
The liquid absorption rate is determined by the following formula: Liquid absorption rate (%) = [(Weight of binder resin after immersion in electrolyte solution - Weight of binder resin before immersion in electrolyte solution) / Weight of binder resin before immersion in electrolyte solution] x 100
is required,
A negative electrode composition for a lithium ion battery, wherein the ionic conductivity is an ionic conductivity at 25° C. determined by an AC impedance method.
前記バインダー樹脂に対する前記電解液の接触角が30°未満である請求項1に記載のリチウムイオン電池用負極組成物。 The negative electrode composition for a lithium ion battery according to claim 1, wherein a contact angle of the electrolytic solution with the binder resin is less than 30°. 前記バインダー樹脂の重量平均分子量が、95,000~200,000である請求項1に記載のリチウムイオン電池用負極組成物。 The negative electrode composition for a lithium ion battery according to claim 1, wherein the binder resin has a weight average molecular weight of 95,000 to 200,000. 前記リチウムイオン電池用負極組成物における前記バインダー樹脂の重量割合が、前記リチウムイオン電池用負極組成物の重量を基準として1~5重量%であり、
前記リチウムイオン電池用負極組成物における前記負極活物質の重量割合が、前記リチウムイオン電池用負極組成物の重量を基準として90~98重量%である請求項1に記載のリチウムイオン電池用負極組成物。
The weight proportion of the binder resin in the negative electrode composition for lithium ion batteries is 1 to 5% by weight based on the weight of the negative electrode composition for lithium ion batteries,
The negative electrode composition for lithium ion batteries according to claim 1, wherein the weight ratio of the negative electrode active material in the negative electrode composition for lithium ion batteries is 90 to 98% by weight based on the weight of the negative electrode composition for lithium ion batteries. thing.
前記バインダー樹脂、導電助剤及び負極活物質と、水性溶媒とを含むスラリーを作製する混合工程と、前記スラリーを集電体に塗布する塗布工程と、前記塗布工程後にスラリーを乾燥して前記集電体上に負極活物質層を形成する乾燥工程とを含むリチウムイオン電池用負極の製造方法。

A mixing step of preparing a slurry containing the binder resin, conductive aid, and negative electrode active material, and an aqueous solvent, a coating step of applying the slurry to the current collector, and drying the slurry after the coating step to prepare the collector. A method for producing a negative electrode for a lithium ion battery, including a drying step of forming a negative electrode active material layer on an electric body.

JP2023143436A 2022-09-13 2023-09-05 Negative electrode composition for lithium ion batteries and method for producing negative electrodes for lithium ion batteries Pending JP2024041052A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022145196 2022-09-13
JP2022145196 2022-09-13

Publications (1)

Publication Number Publication Date
JP2024041052A true JP2024041052A (en) 2024-03-26

Family

ID=90368918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023143436A Pending JP2024041052A (en) 2022-09-13 2023-09-05 Negative electrode composition for lithium ion batteries and method for producing negative electrodes for lithium ion batteries

Country Status (1)

Country Link
JP (1) JP2024041052A (en)

Similar Documents

Publication Publication Date Title
CN109957360B (en) Water-based binder and secondary battery
Nam et al. A conductive self healing polymeric binder using hydrogen bonding for Si anodes in lithium ion batteries
KR20190039993A (en) Acrylonitrile Copolymer Adhesives and Their Applications in Lithium Ion Batteries
JP2018029069A (en) Binder for lithium battery, electrode preparation composition and electrode
JP2006519883A (en) Composite binder polymer for electrodes with chemically bonded dispersant
CN107710470B (en) Binder for negative electrode of lithium ion secondary battery, slurry composition for negative electrode, and lithium ion secondary battery
CN109957361B (en) Water-based binder and secondary battery
EP3806201A1 (en) Method for manufacturing lithium ion cell
WO2016145341A1 (en) Crosslinked polymeric battery materials
JP7034777B2 (en) Lithium-ion battery manufacturing method
CN111647345B (en) Lithium ion battery negative electrode polymer protective coating and preparation method and application thereof
JP2013229187A (en) Binder for carbon coat foil coating solution, carbon coat foil coating solution, carbon coat foil, electrode for lithium ion secondary battery, and lithium ion secondary battery
CN107534152B (en) Composition for binder for nonaqueous battery electrode, composition for nonaqueous battery electrode, and nonaqueous battery
CN112279982B (en) Binder for silicon-based negative electrode and lithium ion battery containing same
KR20170113332A (en) Electrode active material slurry and secondary battery comprising the same
CN117089017A (en) Non-fluorine binder for positive electrode of lithium ion battery, positive electrode using same and battery
CN114243022B (en) Three-dimensional network water system binder for lithium ion battery, preparation and application thereof
CN116247214A (en) Dispersing auxiliary, preparation method and application thereof
JP2024041052A (en) Negative electrode composition for lithium ion batteries and method for producing negative electrodes for lithium ion batteries
CN105957993A (en) Preparation method for thermal-crosslinking polymer electrolyte membrane for lithium battery
CN115295756A (en) Negative plate and battery comprising same
Zheng et al. Influence of copolymer chain sequence on electrode latex binder for lithium-ion batteries
US11611080B2 (en) Silicon electrode binder
CN114361456B (en) Water-based functional ion-conducting binder for lithium battery, preparation method and application
CN114656904B (en) Adhesive and battery comprising same