JP2024039229A - Cancer metastasis inhibitor using Galectin-7 inhibitor - Google Patents

Cancer metastasis inhibitor using Galectin-7 inhibitor Download PDF

Info

Publication number
JP2024039229A
JP2024039229A JP2022143622A JP2022143622A JP2024039229A JP 2024039229 A JP2024039229 A JP 2024039229A JP 2022143622 A JP2022143622 A JP 2022143622A JP 2022143622 A JP2022143622 A JP 2022143622A JP 2024039229 A JP2024039229 A JP 2024039229A
Authority
JP
Japan
Prior art keywords
cells
galectin
tumor
metastatic
metastasis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022143622A
Other languages
Japanese (ja)
Inventor
敬司 久場
悟 本山
健博 安
穣 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita University NUC
Original Assignee
Akita University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita University NUC filed Critical Akita University NUC
Priority to JP2022143622A priority Critical patent/JP2024039229A/en
Publication of JP2024039229A publication Critical patent/JP2024039229A/en
Pending legal-status Critical Current

Links

Abstract

【課題】癌転移におけるガレクチン-7の生理学的役割、特に、腫瘍微小環境における免疫抑制にガレクチン-7が果たす役割を明らかにすることにより、癌転移を抑制するための治療法及び治療薬を提供する。【解決手段】ガレクチン-7阻害剤を有効成分とする癌転移抑制剤、好ましくは、ガレクチン-7阻害剤が、ガレクチン-7メッセンジャーRNA(mRNA)に相補的な配列を有するオリゴヌクレオチドであり、好ましくは、ガレクチン-7阻害剤が、ガレクチン-7タンパク質に対する抗体である、癌転移抑制剤を提供する。【選択図】図3[Problem] To provide a method and a drug for suppressing cancer metastasis by elucidating the physiological role of galectin-7 in cancer metastasis, in particular the role that galectin-7 plays in immunosuppression in the tumor microenvironment. [Solution] To provide a cancer metastasis inhibitor containing a galectin-7 inhibitor as an active ingredient, preferably an oligonucleotide having a sequence complementary to galectin-7 messenger RNA (mRNA), and preferably an antibody against galectin-7 protein. [Selected Figure] Figure 3

Description

本発明は、癌免疫療法及びこれに使用する医薬に関するものである。 TECHNICAL FIELD The present invention relates to cancer immunotherapy and medicines used therefor.

世界中で癌関連死亡の主因はがん転移である1,2。扁平上皮癌(SCC)は、皮膚、膀胱および上部気道消化管に発生する異なるタイプの腫瘍を含む。上部気道消化管癌のうち、頭頸部癌(口腔癌を含む)はほぼ全例、食道癌は80%以上がSCCである3,4。これらのSCCは、喫煙、飲酒、発癌性ウイルスなどの同じ危険因子により発症し、治療と同様に病理学的にも密接な類似性を共有している5。SCCは腺癌よりもリンパ節および遠隔臓器への転移を伴う頻度が高い。外科療法と化学療法/放射線療法を組み合わせた包括的治療戦略が継続的に進歩しているにもかかわらず、腫瘍はしばしば治療抵抗性で、患者の予後は不良である6,7。体細胞癌の重要な予後決定因子は転移の存在であり、死亡率と有意に相関する6,7。実際には、外科的治療後のリンパ節や遠隔臓器への転移による再発が問題となることが多い。このように、SCC細胞の転移の基本的機序を実験的に検討することは重要である。 Cancer metastasis is the leading cause of cancer-related death worldwide1,2 . Squamous cell carcinoma (SCC) includes different types of tumors that occur in the skin, bladder and upper aerodigestive tract. Among upper aerodigestive tract cancers, almost all head and neck cancers (including oral cancer) and more than 80% of esophageal cancers are SCC3,4 . These SCCs are caused by the same risk factors, such as smoking, alcohol consumption, and oncogenic viruses, and share close similarities in pathology as well as treatment . SCC more frequently involves metastasis to lymph nodes and distant organs than adenocarcinoma. Despite continued advances in comprehensive treatment strategies combining surgery and chemotherapy/radiotherapy, tumors are often resistant to treatment and patient prognosis is poor6,7 . An important prognostic factor for somatic cell carcinoma is the presence of metastases, which is significantly correlated with mortality 6,7 . In reality, recurrence due to metastasis to lymph nodes or distant organs after surgical treatment is often a problem. Thus, it is important to experimentally investigate the basic mechanism of SCC cell metastasis.

がん細胞は不均一な集団であり、転移能の高い細胞(転移性細胞)のごく一部がクローン選択されて転移に寄与している8,9。腫瘍微小環境は、線維芽細胞、内皮細胞、免疫/炎症細胞、および細胞外マトリックスから構成される。転移性細胞は、特異的な腫瘍微小環境において、周囲の細胞との相互作用、すなわち癌間質クロストークを介して、リンパ管および/または血管内で選択的に増殖し、侵入し、移動性を獲得する10,11。抗腫瘍免疫は腫瘍根絶に必須の役割を果たす。細胞傷害性リンパ球や樹状細胞(DC)などの抗腫瘍免疫細胞のアポトーシスや消耗、制御性T細胞や骨髄由来サプレッサー細胞(MDSC)の動員は、免疫抑制の微小環境を構成し、腫瘍細胞が播種の免疫監視から逃れることを可能にする12,13。さらに、免疫抑制/消耗は、低酸素環境の発達や血管新生と関連していた14,15。しかし、免疫抑制が腫瘍微小環境における転移をどのように形作るかの分子機構はほとんど未知のままであり、これは部分的には、in vivoでの腫瘍微小環境の遺伝子発現プロファイルを評価する方法論が限られているためである。 Cancer cells are a heterogeneous population, and a small proportion of cells with high metastatic potential (metastatic cells) are clonally selected to contribute to metastasis8,9 . The tumor microenvironment is composed of fibroblasts, endothelial cells, immune/inflammatory cells, and extracellular matrix. Metastatic cells selectively proliferate, invade, and migrate within lymphatics and/or blood vessels through interactions with surrounding cells, i.e., cancer stromal crosstalk, in a specific tumor microenvironment. Earn 10,11 . Antitumor immunity plays an essential role in tumor eradication. Apoptosis and exhaustion of antitumor immune cells, such as cytotoxic lymphocytes and dendritic cells (DCs), and recruitment of regulatory T cells and myeloid-derived suppressor cells (MDSCs) constitute an immunosuppressive microenvironment, and tumor cells 12,13 allows the immune system to escape from disseminated immune surveillance12,13. Furthermore, immunosuppression/wasting was associated with the development of a hypoxic environment and angiogenesis . However, the molecular mechanisms of how immunosuppression shapes metastasis in the tumor microenvironment remain largely unknown, and this is partially due to the lack of methodology to assess gene expression profiles of the tumor microenvironment in vivo. This is because it is limited.

ガレクチンは多様な生物学的機能を有するβ‐ガラクトシド結合レクチンのファミリーであり、全部で16の哺乳動物ガレクチンが同定されている16-18。ヒトの表皮で最初に同定されたガレクチンファミリーの原型であるガレクチン-7は、1つの糖鎖認識部位をもつ15kDaのタンパク質であり、ホモ二量体を形成する19,20。ガレクチン-7の発現は、主に皮膚、舌部、食道、胸腺などの重層上皮細胞に認められる21。ガレクチン-7の機能には、細胞遊走、細胞接着、アポトーシスおよび免疫の調節がある22,23。癌では、ガレクチン-7はもともとアポトーシスを起こした大腸癌細胞におけるp53誘導遺伝子として同定された。一方、ガレクチン-7の癌における役割は、腫瘍形成促進性と抗腫瘍性の両方が報告されており、SCCでも同様である25-27。例えば、ガレクチン-7の発現は、食道SCCおよび膀胱SCCにおける腫瘍細胞の高分化状態と正の相関を示した28,29。ガレクチン-7の発現は、子宮頸部SCC患者の予後に有益である30-32。一方、ガレクチン-7の高発現は口腔SCCの予後不良を予測する33-37。さらに、ガレクチン-7は、マウス異種移植モデルにおいて、ヒト頭頸部SCC (HNSCC)細胞及び乳癌細胞の腫瘍転移を促進することが報告された38,39。このように、癌転移におけるガレクチン-7の生理学的役割は未だ解明されていない。 Galectins are a family of β-galactoside-binding lectins with diverse biological functions, and a total of 16 mammalian galectins have been identified 16-18 . Galectin-7, the prototype of the galectin family first identified in the human epidermis, is a 15 kDa protein with a single carbohydrate recognition site that forms homodimers19,20 . Galectin-7 expression is mainly found in stratified epithelial cells such as the skin, tongue, esophagus, and thymus21 . Galectin-7 functions include cell migration, cell adhesion, apoptosis, and immune regulation22,23 . In cancer, galectin-7 was originally identified as a p53-induced gene in apoptotic colon cancer cells. On the other hand, galectin-7 has been reported to have both pro- and anti-tumor roles in cancer, and the same is true for SCC25-27 . For example, galectin-7 expression was positively correlated with the well-differentiated status of tumor cells in esophageal and bladder SCCs28,29 . Galectin-7 expression is beneficial for the prognosis of cervical SCC patients30-32 . On the other hand, high expression of galectin-7 predicts poor prognosis of oral SCC33-37 . Additionally, galectin-7 was reported to promote tumor metastasis of human head and neck SCC (HNSCC) cells and breast cancer cells in mouse xenograft models. Thus, the physiological role of galectin-7 in cancer metastasis has not yet been elucidated.

1. Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians 71, 209-249, doi:https://doi.org/10.3322/caac.21660 (2021).
2. Mehlen, P. & Puisieux, A. Metastasis: a question of life or death. Nature reviews. Cancer 6, 449-458, doi:10.1038/nrc1886 (2006).
3. Arnold, M., Ferlay, J., van Berge Henegouwen, M. I. & Soerjomataram, I. Global burden of oesophageal and gastric cancer by histology and subsite in 2018. Gut 69, 1564, doi:10.1136/gutjnl-2020-321600 (2020).
4. Mody, M. D., Rocco, J. W., Yom, S. S., Haddad, R. I. & Saba, N. F. Head and neck cancer. The Lancet 398, 2289-2299, doi:10.1016/S0140-6736(21)01550-6 (2021).
5. Wenig, B. M. Squamous cell carcinoma of the upper aerodigestive tract: dysplasia and select variants. Modern Pathology 30, S112-S118, doi:10.1038/modpathol.2016.207 (2017).
6. van Hagen, P. et al. Preoperative Chemoradiotherapy for Esophageal or Junctional Cancer. New England Journal of Medicine 366, 2074-2084, doi:10.1056/NEJMoa1112088 (2012).
7. Cramer, J. D., Burtness, B., Le, Q. T. & Ferris, R. L. The changing therapeutic landscape of head and neck cancer. Nature Reviews Clinical Oncology 16, 669-683, doi:10.1038/s41571-019-0227-z (2019).
8. Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nature medicine 19, 1423-1437, doi:10.1038/nm.3394 (2013).
9. Lawson, D. A., Kessenbrock, K., Davis, R. T., Pervolarakis, N. & Werb, Z. Tumour heterogeneity and metastasis at single-cell resolution. Nat Cell Biol 20, 1349-1360, doi:10.1038/s41556-018-0236-7 (2018).
10. Talmadge, J. E. & Fidler, I. J. AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer research 70, 5649-5669, doi:10.1158/0008-5472.Can-10-1040 (2010).
11. Lambert, A. W., Pattabiraman, D. R. & Weinberg, R. A. Emerging Biological Principles of Metastasis. Cell 168, 670-691, doi:10.1016/j.cell.2016.11.037 (2017).
12. Gonzalez, H., Hagerling, C. & Werb, Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev 32, 1267-1284, doi:10.1101/gad.314617.118 (2018).
13. Janssen, L. M. E., Ramsay, E. E., Logsdon, C. D. & Overwijk, W. W. The immune system in cancer metastasis: friend or foe? Journal for ImmunoTherapy of Cancer 5, 79, doi:10.1186/s40425-017-0283-9 (2017).
14. Rahma, O. E. & Hodi, F. S. The Intersection between Tumor Angiogenesis and Immune Suppression. Clinical Cancer Research 25, 5449-5457, doi:10.1158/1078-0432.CCR-18-1543 (2019).
15. Terry, S., Buart, S. & Chouaib, S. Hypoxic Stress-Induced Tumor and Immune Plasticity, Suppression, and Impact on Tumor Heterogeneity. Frontiers in Immunology 8 (2017).
16. Johannes, L., Jacob, R. & Leffler, H. Galectins at a glance. Journal of Cell Science 131, jcs208884, doi:10.1242/jcs.208884 (2018).
17. Yang, R.-Y., Rabinovich, G. A. & Liu, F.-T. Galectins: structure, function and therapeutic potential. Expert Reviews in Molecular Medicine 10, e17, doi:10.1017/S1462399408000719 (2008).
18. Si, Y. et al. Human galectin-16 has a pseudo ligand binding site and plays a role in regulating c-Rel-mediated lymphocyte activity. Biochimica et Biophysica Acta (BBA) - General Subjects 1865, 129755, doi:https://doi.org/10.1016/j.bbagen.2020.129755 (2021).
19. Madsen, P. et al. Cloning, Expression, and Chromosome Mapping of Human Galectin-7 (*). Journal of Biological Chemistry 270, 5823-5829, doi:https://doi.org/10.1074/jbc.270.11.5823 (1995).
20. Magnaldo, T., Bernerd, F. & Darmon, M. Galectin-7, a human 14-kDa S-lectin, specifically expressed in keratinocytes and sensitive to retinoic acid. Dev Biol 168, 259-271, doi:10.1006/dbio.1995.1078 (1995).
21. Magnaldo, T., Fowlis, D. & Darmon, M. Galectin-7, a marker of all types of stratified epithelia. Differentiation 63, 159-168, doi:https://doi.org/10.1046/j.1432-0436.1998.6330159.x (1998).
22. Saussez, S. & Kiss, R. Galectin-7. Cell Mol Life Sci 63, 686-697, doi:10.1007/s00018-005-5458-8 (2006).
23. Sewgobind, N. V., Albers, S. & Pieters, R. J. Functions and Inhibition of Galectin-7, an Emerging Target in Cellular Pathophysiology. Biomolecules 11, 1720, doi:10.3390/biom11111720 (2021).
24. Polyak, K., Xia, Y., Zweier, J. L., Kinzler, K. W. & Vogelstein, B. A model for p53-induced apoptosis. Nature 389, 300-305, doi:10.1038/38525 (1997).
25. Advedissian, T., Deshayes, F. & Viguier, M. Galectin-7 in Epithelial Homeostasis and Carcinomas. Int J Mol Sci 18, 2760, doi:10.3390/ijms18122760 (2017).
26. Kaur, M., Kaur, T., Kamboj, S. S. & Singh, J. Roles of Galectin-7 in Cancer. Asian Pacific journal of cancer prevention : APJCP 17, 455-461, doi:10.7314/apjcp.2016.17.2.455 (2016).
27. St-Pierre, Y., Campion, C. G. & Grosset, A.-A. A distinctive role for galectin-7 in cancer ? FBL 17, 438-450, doi:10.2741/3937 (2012).
28. Zhu, X. et al. Identification of galectin-7 as a potential biomarker for esophageal squamous cell carcinoma by proteomic analysis. BMC Cancer 10, 290-290, doi:10.1186/1471-2407-10-290 (2010).
29. Ostergaard, M. et al. Proteome profiling of bladder squamous cell carcinomas: identification of markers that define their degree of differentiation. Cancer research 57, 4111-4117 (1997).
30. Zhu, H. et al. Roles of galectin-7 and S100A9 in cervical squamous carcinoma: Clinicopathological and in vitro evidence. International Journal of Cancer 132, 1051-1059, doi:https://doi.org/10.1002/ijc.27764 (2013).
31. Zhu, H. et al. Profiling Protein Markers Associated with the Sensitivity to Concurrent Chemoradiotherapy in Human Cervical Carcinoma. Journal of Proteome Research 8, 3969-3976, doi:10.1021/pr900287a (2009).
32. Tsai, C. J. et al. Galectin-7 levels predict radiation response in squamous cell carcinoma of the cervix. Gynecologic Oncology 131, 645-649, doi:https://doi.org/10.1016/j.ygyno.2013.04.056 (2013).
33. Guo, J.-P. & Li, X.-G. Galectin-7 promotes the invasiveness of human oral squamous cell carcinoma cells via activation of ERK and JNK signaling. Oncol Lett 13, 1919-1924, doi:10.3892/ol.2017.5649 (2017).
34. Mesquita, J. A. et al. Association of immunoexpression of the galectins-3 and -7 with histopathological and clinical parameters in oral squamous cell carcinoma in young patients. European Archives of Oto-Rhino-Laryngology 273, 237-243, doi:10.1007/s00405-014-3439-y (2016).
35. Alves, P. M. et al. Significance of galectins-1, -3, -4 and -7 in the progression of squamous cell carcinoma of the tongue. Pathology - Research and Practice 207, 236-240, doi:https://doi.org/10.1016/j.prp.2011.02.004 (2011).
36. Saussez, S. et al. Identification of matrix metalloproteinase-9 as an independent prognostic marker in laryngeal and hypopharyngeal cancer with opposite correlations to adhesion/growth-regulatory galectins-1 and -7. Int J Oncol 34, 433-439, doi:10.3892/ijo_00000167 (2009).
37. Saussez, S. et al. Galectin 7 (p53-Induced Gene 1): A New Prognostic Predictor of Recurrence and Survival in Stage IV Hypopharyngeal Cancer. Annals of Surgical Oncology 13, 999-1009, doi:10.1245/ASO.2006.08.033 (2006).
38. Chen, Y.-S. et al. HSP40 co-chaperone protein Tid1 suppresses metastasis of head and neck cancer by inhibiting Galectin-7-TCF3-MMP9 axis signaling. Theranostics 8, 3841-3855, doi:10.7150/thno.25784 (2018).
39. Demers, M. et al. Overexpression of galectin-7, a myoepithelial cell marker, enhances spontaneous metastasis of breast cancer cells. Am J Pathol 176, 3023-3031, doi:10.2353/ajpath.2010.090876 (2010).
40. Gozgit, J. M. et al. PARP7 negatively regulates the type I interferon response in cancer cells and its inhibition triggers antitumor immunity. Cancer Cell 39, 1214-1226.e1210, doi:https://doi.org/10.1016/j.ccell.2021.06.018 (2021).
41. Owen, K. L. et al. Prostate cancer cell-intrinsic interferon signaling regulates dormancy and metastatic outgrowth in bone. EMBO Rep 21, e50162, doi:https://doi.org/10.15252/embr.202050162 (2020).
42. Kumar, V., Patel, S., Tcyganov, E. & Gabrilovich, D. I. The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. Trends Immunol 37, 208-220, doi:10.1016/j.it.2016.01.004 (2016).
43. Hirakawa, S. et al. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. Journal of Experimental Medicine 201, 1089-1099, doi:10.1084/jem.20041896 (2005).
44. Richardson, A. M. et al. Vimentin Is Required for Lung Adenocarcinoma Metastasis via Heterotypic Tumor Cell-Cancer-Associated Fibroblast Interactions during Collective Invasion. Clin Cancer Res 24, 420-432, doi:10.1158/1078-0432.CCR-17-1776 (2018).
45. Li, H.-J. et al. ENO1 Promotes Lung Cancer Metastasis via HGFR and WNT Signaling-Driven Epithelial-to-Mesenchymal Transition. Cancer research 81, 4094-4109, doi:10.1158/0008-5472.CAN-20-3543 (2021).
46. Wang, J. et al. NRP-2 in tumor lymphangiogenesis and lymphatic metastasis. Cancer Letters 418, 176-184, doi:https://doi.org/10.1016/j.canlet.2018.01.040 (2018).
47. Liu, X. et al. Phosphoglycerate Mutase 1 (PGAM1) Promotes Pancreatic Ductal Adenocarcinoma (PDAC) Metastasis by Acting as a Novel Downstream Target of the PI3K/Akt/mTOR Pathway. Oncol Res 26, 1123-1131, doi:10.3727/096504018X15166223632406 (2018).
48. Bogucka, K. et al. ERK3/MAPK6 controls IL-8 production and chemotaxis. Elife 9, e52511, doi:10.7554/eLife.52511 (2020).
49. Huang, W.-C. et al. A novel miR-365-3p/EHF/keratin 16 axis promotes oral squamous cell carcinoma metastasis, cancer stemness and drug resistance via enhancing β5-integrin/c-met signaling pathway. J Exp Clin Cancer Res 38, 89-89, doi:10.1186/s13046-019-1091-5 (2019).
50. Albini, A., Mirisola, V. & Pfeffer, U. Metastasis signatures: genes regulating tumor-microenvironment interactions predict metastatic behavior. Cancer and Metastasis Reviews 27, 75-83, doi:10.1007/s10555-007-9111-x (2008).
51. Liu, Y. & Cao, X. Immunosuppressive cells in tumor immune escape and metastasis. Journal of Molecular Medicine 94, 509-522, doi:10.1007/s00109-015-1376-x (2016).
52. Campbell, P. J. et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467, 1109-1113, doi:10.1038/nature09460 (2010).
53. Nguyen, B. et al. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell 185, 563-575 e511, doi:10.1016/j.cell.2022.01.003 (2022).
54. Saussez, S. et al. The determination of the levels of circulating galectin-1 and -3 in HNSCC patients could be used to monitor tumor progression and/or responses to therapy. Oral Oncology 44, 86-93, doi:https://doi.org/10.1016/j.oraloncology.2006.12.014 (2008).
55. Labrie, M., Vladoiu, M. C., Grosset, A.-A., Gaboury, L. & St-Pierre, Y. Expression and functions of galectin-7 in ovarian cancer. Oncotarget 5, 7705-7721, doi:10.18632/oncotarget.2299 (2014).
56. Pham, N. T. H. et al. Perturbing dimer interactions and allosteric communication modulates the immunosuppressive activity of human galectin-7. J Biol Chem 297, 101308-101308, doi:10.1016/j.jbc.2021.101308 (2021).
57. Pape, M. et al. Treatment patterns and overall survival for recurrent esophageal or gastroesophageal junctional cancer: A nationwide European population-based study. Journal of Clinical Oncology 39, 186-186, doi:10.1200/JCO.2021.39.3_suppl.186 (2021).
58. Matsumoto, G. et al. Cold shock domain protein A (CSDA) overexpression inhibits tumor growth and lymph node metastasis in a mouse model of squamous cell carcinoma. Clinical & Experimental Metastasis 27, 539-547, doi:10.1007/s10585-010-9343-y (2010).
59. Nagasawa, S. et al. Genomic profiling reveals heterogeneous populations of ductal carcinoma in situ of the breast. Communications Biology 4, 438, doi:10.1038/s42003-021-01959-9 (2021).
1. Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians 71, 209-249, doi:https://doi.org /10.3322/caac.21660 (2021).
2. Mehlen, P. & Puisieux, A. Metastasis: a question of life or death. Nature reviews. Cancer 6, 449-458, doi:10.1038/nrc1886 (2006).
3. Arnold, M., Ferlay, J., van Berge Henegouwen, MI & Soerjomataram, I. Global burden of oesophageal and gastric cancer by histology and subsite in 2018. Gut 69, 1564, doi:10.1136/gutjnl-2020-321600 (2020).
4. Mody, MD, Rocco, JW, Yom, SS, Haddad, RI & Saba, NF Head and neck cancer. The Lancet 398, 2289-2299, doi:10.1016/S0140-6736(21)01550-6 (2021) .
5. Wenig, BM Squamous cell carcinoma of the upper aerodigestive tract: dysplasia and select variants. Modern Pathology 30, S112-S118, doi:10.1038/modpathol.2016.207 (2017).
6. van Hagen, P. et al. Preoperative Chemoradiotherapy for Esophageal or Junctional Cancer. New England Journal of Medicine 366, 2074-2084, doi:10.1056/NEJMoa1112088 (2012).
7. Cramer, JD, Burtness, B., Le, QT & Ferris, RL The changing therapeutic landscape of head and neck cancer. Nature Reviews Clinical Oncology 16, 669-683, doi:10.1038/s41571-019-0227-z ( 2019).
8. Quail, DF & Joyce, JA Microenvironmental regulation of tumor progression and metastasis. Nature medicine 19, 1423-1437, doi:10.1038/nm.3394 (2013).
9. Lawson, DA, Kessenbrock, K., Davis, RT, Pervolarakis, N. & Werb, Z. Tumour heterogeneity and metastasis at single-cell resolution. Nat Cell Biol 20, 1349-1360, doi:10.1038/s41556-018 -0236-7 (2018).
10. Talmadge, JE & Fidler, IJ AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer research 70, 5649-5669, doi:10.1158/0008-5472.Can-10-1040 (2010).
11. Lambert, AW, Pattabiraman, DR & Weinberg, RA Emerging Biological Principles of Metastasis. Cell 168, 670-691, doi:10.1016/j.cell.2016.11.037 (2017).
12. Gonzalez, H., Hagerling, C. & Werb, Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev 32, 1267-1284, doi:10.1101/gad.314617.118 (2018).
13. Janssen, LME, Ramsay, EE, Logsdon, CD & Overwijk, WW The immune system in cancer metastasis: friend or foe? Journal for ImmunoTherapy of Cancer 5, 79, doi:10.1186/s40425-017-0283-9 (2017 ).
14. Rahma, OE & Hodi, FS The Intersection between Tumor Angiogenesis and Immune Suppression. Clinical Cancer Research 25, 5449-5457, doi:10.1158/1078-0432.CCR-18-1543 (2019).
15. Terry, S., Buart, S. & Chouaib, S. Hypoxic Stress-Induced Tumor and Immune Plasticity, Suppression, and Impact on Tumor Heterogeneity. Frontiers in Immunology 8 (2017).
16. Johannes, L., Jacob, R. & Leffler, H. Galectins at a glance. Journal of Cell Science 131, jcs208884, doi:10.1242/jcs.208884 (2018).
17. Yang, R.-Y., Rabinovich, GA & Liu, F.-T. Galectins: structure, function and therapeutic potential. Expert Reviews in Molecular Medicine 10, e17, doi:10.1017/S1462399408000719 (2008).
18. Si, Y. et al. Human galectin-16 has a pseudo ligand binding site and plays a role in regulating c-Rel-mediated lymphocyte activity. Biochimica et Biophysica Acta (BBA) - General Subjects 1865, 129755, doi:https ://doi.org/10.1016/j.bbagen.2020.129755 (2021).
19. Madsen, P. et al. Cloning, Expression, and Chromosome Mapping of Human Galectin-7 (*). Journal of Biological Chemistry 270, 5823-5829, doi:https://doi.org/10.1074/jbc.270.11 .5823 (1995).
20. Magnaldo, T., Bernerd, F. & Darmon, M. Galectin-7, a human 14-kDa S-lectin, specifically expressed in keratinocytes and sensitive to retinoic acid. Dev Biol 168, 259-271, doi:10.1006 /dbio.1995.1078 (1995).
21. Magnaldo, T., Fowlis, D. & Darmon, M. Galectin-7, a marker of all types of stratified epithelia. Differentiation 63, 159-168, doi:https://doi.org/10.1046/j. 1432-0436.1998.6330159.x (1998).
22. Saussez, S. & Kiss, R. Galectin-7. Cell Mol Life Sci 63, 686-697, doi:10.1007/s00018-005-5458-8 (2006).
23. Sewgobind, NV, Albers, S. & Pieters, RJ Functions and Inhibition of Galectin-7, an Emerging Target in Cellular Pathophysiology. Biomolecules 11, 1720, doi:10.3390/biom11111720 (2021).
24. Polyak, K., Xia, Y., Zweier, JL, Kinzler, KW & Vogelstein, B. A model for p53-induced apoptosis. Nature 389, 300-305, doi:10.1038/38525 (1997).
25. Advedissian, T., Deshayes, F. & Viguier, M. Galectin-7 in Epithelial Homeostasis and Carcinomas. Int J Mol Sci 18, 2760, doi:10.3390/ijms18122760 (2017).
26. Kaur, M., Kaur, T., Kamboj, SS & Singh, J. Roles of Galectin-7 in Cancer. Asian Pacific journal of cancer prevention : APJCP 17, 455-461, doi:10.7314/apjcp.2016.17. 2.455 (2016).
27. St-Pierre, Y., Campion, CG & Grosset, A.-A. A distinctive role for galectin-7 in cancer? FBL 17, 438-450, doi:10.2741/3937 (2012).
28. Zhu, X. et al. Identification of galectin-7 as a potential biomarker for esophageal squamous cell carcinoma by proteomic analysis. BMC Cancer 10, 290-290, doi:10.1186/1471-2407-10-290 (2010).
29. Ostergaard, M. et al. Proteome profiling of bladder squamous cell carcinomas: identification of markers that define their degree of differentiation. Cancer research 57, 4111-4117 (1997).
30. Zhu, H. et al. Roles of galectin-7 and S100A9 in cervical squamous carcinoma: Clinicopathological and in vitro evidence. International Journal of Cancer 132, 1051-1059, doi:https://doi.org/10.1002/ijc .27764 (2013).
31. Zhu, H. et al. Profiling Protein Markers Associated with the Sensitivity to Concurrent Chemoradiotherapy in Human Cervical Carcinoma. Journal of Proteome Research 8, 3969-3976, doi:10.1021/pr900287a (2009).
32. Tsai, CJ et al. Galectin-7 levels predict radiation response in squamous cell carcinoma of the cervix. Gynecologic Oncology 131, 645-649, doi:https://doi.org/10.1016/j.ygyno.2013.04.056 (2013).
33. Guo, J.-P. & Li, X.-G. Galectin-7 promotes the invasiveness of human oral squamous cell carcinoma cells via activation of ERK and JNK signaling. Oncol Lett 13, 1919-1924, doi:10.3892/ ol.2017.5649 (2017).
34. Mesquita, JA et al. Association of immunoexpression of the galectins-3 and -7 with histopathological and clinical parameters in oral squamous cell carcinoma in young patients. European Archives of Oto-Rhino-Laryngology 273, 237-243, doi:10.1007 /s00405-014-3439-y (2016).
35. Alves, PM et al. Significance of galectins-1, -3, -4 and -7 in the progression of squamous cell carcinoma of the tongue. Pathology - Research and Practice 207, 236-240, doi:https:// doi.org/10.1016/j.prp.2011.02.004 (2011).
36. Saussez, S. et al. Identification of matrix metalloproteinase-9 as an independent prognostic marker in laryngeal and hypopharyngeal cancer with opposite correlations to adhesion/growth-regulatory galectins-1 and -7. Int J Oncol 34, 433-439, doi:10.3892/ijo_00000167 (2009).
37. Saussez, S. et al. Galectin 7 (p53-Induced Gene 1): A New Prognostic Predictor of Recurrence and Survival in Stage IV Hypopharyngeal Cancer. Annals of Surgical Oncology 13, 999-1009, doi:10.1245/ASO.2006.08 .033 (2006).
38. Chen, Y.-S. et al. HSP40 co-chaperone protein Tid1 suppresses metastasis of head and neck cancer by inhibiting Galectin-7-TCF3-MMP9 axis signaling. Theranostics 8, 3841-3855, doi:10.7150/thno. 25784 (2018).
39. Demers, M. et al. Overexpression of galectin-7, a myoepithelial cell marker, enhances spontaneous metastasis of breast cancer cells. Am J Pathol 176, 3023-3031, doi:10.2353/ajpath.2010.090876 (2010).
40. Gozgit, JM et al. PARP7 negatively regulates the type I interferon response in cancer cells and inhibits its triggers antitumor immunity. Cancer Cell 39, 1214-1226.e1210, doi:https://doi.org/10.1016/j. ccell.2021.06.018 (2021).
41. Owen, KL et al. Prostate cancer cell-intrinsic interferon signaling regulates dormancy and metastatic outgrowth in bone. EMBO Rep 21, e50162, doi:https://doi.org/10.15252/embr.202050162 (2020).
42. Kumar, V., Patel, S., Tcyganov, E. & Gabrilovich, DI The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. Trends Immunol 37, 208-220, doi:10.1016/j.it.2016.01 .004 (2016).
43. Hirakawa, S. et al. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. Journal of Experimental Medicine 201, 1089-1099, doi:10.1084/jem.20041896 (2005).
44. Richardson, AM et al. Vimentin Is Required for Lung Adenocarcinoma Metastasis via Heterotypic Tumor Cell-Cancer-Associated Fibroblast Interactions during Collective Invasion. Clin Cancer Res 24, 420-432, doi:10.1158/1078-0432.CCR-17- 1776 (2018).
45. Li, H.-J. et al. ENO1 Promotes Lung Cancer Metastasis via HGFR and WNT Signaling-Driven Epithelial-to-Mesenchymal Transition. Cancer research 81, 4094-4109, doi:10.1158/0008-5472.CAN-20 -3543 (2021).
46. Wang, J. et al. NRP-2 in tumor lymphangiogenesis and lymphatic metastasis. Cancer Letters 418, 176-184, doi:https://doi.org/10.1016/j.canlet.2018.01.040 (2018).
47. Liu, X. et al. Phosphoglycerate Mutase 1 (PGAM1) Promotes Pancreatic Ductal Adenocarcinoma (PDAC) Metastasis by Acting as a Novel Downstream Target of the PI3K/Akt/mTOR Pathway. Oncol Res 26, 1123-1131, doi:10.3727 /096504018X15166223632406 (2018).
48. Bogucka, K. et al. ERK3/MAPK6 controls IL-8 production and chemotaxis. Elife 9, e52511, doi:10.7554/eLife.52511 (2020).
49. Huang, W.-C. et al. A novel miR-365-3p/EHF/keratin 16 axis promotes oral squamous cell carcinoma metastasis, cancer stemness and drug resistance via enhancing β5-integrin/c-met signaling pathway. J Exp Clin Cancer Res 38, 89-89, doi:10.1186/s13046-019-1091-5 (2019).
50. Albini, A., Mirisola, V. & Pfeffer, U. Metastasis signatures: genes regulating tumor-microenvironment interactions predict metastatic behavior. Cancer and Metastasis Reviews 27, 75-83, doi:10.1007/s10555-007-9111-x (2008).
51. Liu, Y. & Cao, X. Immunosuppressive cells in tumor immune escape and metastasis. Journal of Molecular Medicine 94, 509-522, doi:10.1007/s00109-015-1376-x (2016).
52. Campbell, PJ et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467, 1109-1113, doi:10.1038/nature09460 (2010).
53. Nguyen, B. et al. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell 185, 563-575 e511, doi:10.1016/j.cell.2022.01.003 (2022).
54. Saussez, S. et al. The determination of the levels of circulating galectin-1 and -3 in HNSCC patients could be used to monitor tumor progression and/or responses to therapy. Oral Oncology 44, 86-93, doi:https ://doi.org/10.1016/j.oraloncology.2006.12.014 (2008).
55. Labrie, M., Vladoiu, MC, Grosset, A.-A., Gaboury, L. & St-Pierre, Y. Expression and functions of galectin-7 in ovarian cancer. Oncotarget 5, 7705-7721, doi: 10.18632/oncotarget.2299 (2014).
56. Pham, NTH et al. Perturbing dimer interactions and allosteric communication modulates the immunosuppressive activity of human galectin-7. J Biol Chem 297, 101308-101308, doi:10.1016/j.jbc.2021.101308 (2021).
57. Pape, M. et al. Treatment patterns and overall survival for recurrent esophageal or gastroesophageal junctional cancer: A nationwide European population-based study. Journal of Clinical Oncology 39, 186-186, doi:10.1200/JCO.2021.39.3_suppl. 186 (2021).
58. Matsumoto, G. et al. Cold shock domain protein A (CSDA) overexpression inhibits tumor growth and lymph node metastasis in a mouse model of squamous cell carcinoma. Clinical & Experimental Metastasis 27, 539-547, doi:10.1007/s10585- 010-9343-y (2010).
59. Nagasawa, S. et al. Genomic profiling reveals heterogeneous populations of ductal carcinoma in situ of the breast. Communications Biology 4, 438, doi:10.1038/s42003-021-01959-9 (2021).

本発明が解決しようとする課題は、癌転移におけるガレクチン-7の生理学的役割、特に、腫瘍微小環境における免疫抑制にガレクチン-7が果たす役割を明らかにすることにより、癌転移を抑制するための治療法及び治療薬を提供することである。 The problem to be solved by the present invention is to clarify the physiological role of galectin-7 in cancer metastasis, and in particular, the role that galectin-7 plays in immunosuppression in the tumor microenvironment. The objective is to provide treatments and therapeutic agents.

本研究では、同系マウスSCCモデルを利用することにより、転移性腫瘍微小環境の分子基盤を検討した。転移した腫瘍細胞の遺伝子発現プロファイルは、転移における免疫抑制の役割を示唆した。我々は、空間的トランスクリプトーム解析を行い、下方制御されたインターフェロン応答、抗原提示、ならびに自然免疫応答の特徴を共有する原発腫瘍の免疫抑制領域を遺伝的にマッピングした。免疫抑制領域内で、転移の決定的メディエータとして腫瘍細胞由来ガレクチン-7を同定した。ガレクチン-7の枯渇は、原発腫瘍の増殖に影響することなく、リンパ節および肺転移を有意に抑制した。従って、本発明は以下の構成を有する。
[実施態様1]
ガレクチン-7阻害剤を有効成分とする癌転移抑制剤。
[実施態様2]
ガレクチン-7阻害剤が、ガレクチン-7メッセンジャーRNA(mRNA)に相補的な配列を有するオリゴヌクレオチドである、実施態様1に記載の癌転移抑制剤。
[実施態様3]
ガレクチン-7阻害剤が、ガレクチン-7タンパク質に対する抗体である、実施態様1に記載の癌転移抑制剤。
[実施態様4]
担癌患者由来試料中のガレクチン-7タンパク質濃度が、標準対照と比較して一定倍数以上高い場合に転移のリスクが高いと判定する方法。
In this study, we investigated the molecular basis of the metastatic tumor microenvironment by utilizing a syngeneic mouse SCC model. Gene expression profiles of metastatic tumor cells suggested a role for immunosuppression in metastasis. We performed spatial transcriptome analysis and genetically mapped immunosuppressive regions of the primary tumor that share features of downregulated interferon response, antigen presentation, and innate immune responses. Within the immunosuppressive region, we identified tumor cell-derived galectin-7 as a critical mediator of metastasis. Galectin-7 depletion significantly inhibited lymph node and lung metastases without affecting primary tumor growth. Therefore, the present invention has the following configuration.
[Embodiment 1]
A cancer metastasis inhibitor containing a galectin-7 inhibitor as an active ingredient.
[Embodiment 2]
The cancer metastasis inhibitor according to embodiment 1, wherein the galectin-7 inhibitor is an oligonucleotide having a sequence complementary to galectin-7 messenger RNA (mRNA).
[Embodiment 3]
The cancer metastasis suppressor according to embodiment 1, wherein the galectin-7 inhibitor is an antibody against galectin-7 protein.
[Embodiment 4]
A method to determine that the risk of metastasis is high when the concentration of galectin-7 protein in a sample derived from a cancer-bearing patient is higher than a certain number of times compared to a standard control.

本発明の医薬を用いることにより、癌又は腫瘍、特に、転移性腫瘍微小環境における免疫抑制が問題となる癌又は腫瘍の転移を抑制することができる。 By using the medicament of the present invention, it is possible to suppress metastasis of cancer or tumors, particularly cancers or tumors where immunosuppression in the metastatic tumor microenvironment is a problem.

インターフェロン遺伝子シグネチャーは転移性NR‐S1M細胞で下方制御される。C3H/HeN雌マウスにNRS1M細胞を皮下移植した。a、腫瘍増殖の経時変化を追跡し、腫瘍重量を測定してプロットする。b、移植2、4および5週後に、LN転移を有するマウスの割合を算出し、棒グラフとして示す。c、肺内の転移した腫瘍結節の数を数え、プロットする。d、転移性NR-S1M細胞を単離するための実験過程の図解。e、in vitroで培養した親および転移性NR-S1M細胞の増殖能をBrdU取り込みアッセイにより測定し、増殖細胞を表すO.D.値を棒グラフとしてプロットする。f、細胞死の程度はPI染色で評価し、PI陽性細胞の割合(比率、%)を算出する。C3H/HeN雌マウスに親NR-S1M細胞と転移性NR‐S1M細胞をそれぞれ移植した。g、移植後4週目の腫瘍重量を測定した。h、移植3週間後にLN転移を有するマウスの割合を算出する。データは平均値±標準誤差として示す。*p<0.05。***p<0.005。親細胞及び転移性NR-S1M細胞の網羅的遺伝子発現プロファイルは、RNA-Seqにより決定した。i、適用したカットオフ値(Q値<0.05、倍率変化>2)でDEGを提示する散布図である。j、転移性NR‐S1M細胞における下方制御されたDEGの遺伝子セット濃縮分析インターフェロン応答の遺伝子セットはトップヒットとして同定された。k、インターフェロン応答に含まれる遺伝子の発現レベル(TPM+1に調整)をヒートマッププロットとして示す。Interferon gene signature is downregulated in metastatic NR-S1M cells. C3H/HeN female mice were subcutaneously implanted with NRS1M cells. a, Tracking the time course of tumor growth and measuring and plotting tumor weight. b, The percentage of mice with LN metastases was calculated and shown as a bar graph 2, 4 and 5 weeks after transplantation. c, The number of metastatic tumor nodules in the lungs is counted and plotted. d, Illustration of the experimental process to isolate metastatic NR-S1M cells. e, Proliferative capacity of parental and metastatic NR-S1M cells cultured in vitro is measured by BrdU incorporation assay, and O.D. values representing proliferating cells are plotted as a bar graph. f, The degree of cell death is evaluated by PI staining, and the percentage (ratio, %) of PI-positive cells is calculated. C3H/HeN female mice were transplanted with parental NR-S1M cells and metastatic NR-S1M cells, respectively. g, Tumor weight was measured 4 weeks after transplantation. h, Calculate the percentage of mice with LN metastases 3 weeks after transplantation. Data are presented as mean ± standard error. *p<0.05. ***p<0.005. Comprehensive gene expression profiles of parental and metastatic NR-S1M cells were determined by RNA-Seq. i, Scatter plot presenting DEGs with applied cutoff values (Q value < 0.05, fold change > 2). j, Gene set enrichment analysis of downregulated DEGs in metastatic NR-S1M cells. Gene sets of interferon response were identified as top hits. k, Expression levels of genes involved in interferon response (adjusted to TPM+1) are shown as a heat map plot. 悪性NR-S1M腫瘍は、限局性の免疫抑制領域を発達させる。a、CD45+ Gr-1-細胞上のCD3εおよびB220発現の代表的な細胞像指定されたT細胞とB細胞の割合を計算し、棒グラフとしてプロットする。b-c、転移性細胞に由来するNR-S1M腫瘍を、抗CD8または抗CD11c抗体を用いて免疫染色した。CD8陽性(b)およびCD11c陽性(c)細胞(茶色)を示す代表的な画像。青枠と赤枠の領域を強拡大すると、それぞれ免疫細胞に富む領域と乏しい領域が強調される。d-e、親細胞のNR-S1M腫瘍におけるCD8陽性(d)細胞およびCD11c陽性(e)細胞(茶色)の代表例。赤枠の領域を強拡大すると、免疫細胞の重度の欠損が強調される。Malignant NR-S1M tumors develop focal areas of immunosuppression. a, Representative cell images of CD3ε and B220 expression on CD45 + Gr-1 cells. The percentage of designated T cells and B cells is calculated and plotted as a bar graph. bc, NR-S1M tumors derived from metastatic cells were immunostained with anti-CD8 or anti-CD11c antibodies. Representative images showing CD8 positive (b) and CD11c positive (c) cells (brown). When the areas in the blue and red frames are strongly enlarged, areas rich in immune cells and areas lacking in immune cells are emphasized, respectively. de, Representative examples of CD8-positive (d) and CD11c-positive (e) cells (brown) in the parental NR-S1M tumor. High magnification of the red-framed area highlights severe deficiencies in immune cells. NR‐S1M腫瘍の空間的トランスクリプトーム(ST)解析。a、NR-S1M腫瘍組織のVisium結果の可視化(#3-2項)。H&E染色(左)と合計2812個のSTスポットを表す(右)。組織全体は、色の異なる偏りのないK-Meansクラスタリング(k = 9)を介して分類される。各クラスターのSTスポット数を列挙した。b、t-SNEアルゴリズムに従って、9つのクラスターすべてをプロットする。c-d、Loupe Browser Softwareを用いて、各クラスターの有意に上方制御された(c)および下方制御された(d)遺伝子を決定し、GO濃縮分析(Metascapeツール)に供した。各クラスターの上位5つのGO用語をP値付き棒グラフとして示した。Spatial transcriptome (ST) analysis of NR‐S1M tumors. a, Visualization of Visium results for NR-S1M tumor tissue (section #3-2). H&E staining (left) and representing a total of 2812 ST spots (right). The entire tissue is classified via unbiased K-Means clustering (k = 9) with different colors. The number of ST spots in each cluster was listed. b, Plot all nine clusters according to the t-SNE algorithm. c–d, Significantly upregulated (c) and downregulated (d) genes in each cluster were determined using Loupe Browser Software and subjected to GO enrichment analysis (Metascape tool). The top five GO terms in each cluster were shown as a bar graph with P values. 転移能を有する免疫抑制領域の同定。a-b、指定された免疫適格性(クラスター6)および免疫抑制性(クラスター4)領域のSTスポットは、それぞれ青色と赤色に着色される。これらの領域のうち、CD8陽性(a)およびCD11c陽性(b) STスポット(黄色)の割合を算出しプロットする。c、免疫適格性クラスターと免疫抑制性クラスターの間の有意に上方制御された遺伝子のマルチGO解析低酸素、アポトーシスシグナル伝達経路および血管新生の細胞応答のGO用語に対応する転移関連遺伝子の発現量(Median-Normalized Average)をdの棒グラフとしてプロットした。データは平均± SEMで示す。*p<0.05。**p<0.01。Identification of immunosuppressive regions with metastatic potential. a-b, ST spots of designated immunocompetent (cluster 6) and immunosuppressive (cluster 4) regions are colored blue and red, respectively. Among these regions, the proportions of CD8-positive (a) and CD11c-positive (b) ST spots (yellow) are calculated and plotted. c, Multi-GO analysis of significantly upregulated genes between immunocompetent and immunosuppressive clusters Expression levels of metastasis-related genes corresponding to GO terms of cellular responses of hypoxia, apoptotic signaling pathway and angiogenesis (Median-Normalized Average) was plotted as a bar graph of d. Data are presented as mean ± SEM. *p<0.05. **p<0.01. 潜在的転移促進因子としてのガレクチン-7の同定。a、転移性NR-S1M細胞における下方制御されたDEG(親株と比較して、赤丸、470遺伝子)および免疫抑制クラスター(免疫適格クラスターと比較して、青丸、86遺伝子)を合併して、21の共通遺伝子を得る。b、転移性NR-S1M細胞における上方制御されたDEG(親株と比較して、赤丸、393遺伝子)および免疫抑制クラスター(免疫適格クラスターと比較して、青丸、20遺伝子)を合併して、2つの共通遺伝子を得る。c-d、転移性NR-S1M細胞(c)および免疫抑制領域(d)におけるLgals7の上方制御された発現量を棒グラフとして示す。e、親および転移性NR-S1M細胞由来の細胞溶解物をウェスタンブロット法に付す。バンドはそれぞれガレクチン-7とGAPDH (内部対照)のレベルを示す。f、抗Gal-7抗体および抗CD8抗体を用いてNR-S1M腫瘍を免疫染色した。Gal-7がCD8に乏しい領域(赤い点線で囲まれた地域)で高発現していることを示す代表的な画像である。g、IFN‐γ(100ng/ml)またはTNF‐α(100ng/ml)の24時間処理の有無による転移性NR‐S1M細胞におけるLgals7発現の定量的RT‐PCR分析h、転移性NR-S1M細胞培養の上清およびNR-S1M移植マウス由来の血漿を採取し、ELISAに供した。ガレクチン-7の含有量を定量し、棒グラフとしてプロットする。データは平均± SEMで示す。*p<0.05。**p<0.01。****p<0.001。Identification of galectin-7 as a potential metastasis-promoting factor. a, Downregulated DEGs (compared to the parental strain, red circles, 470 genes) and immunosuppressive clusters (blue circles, 86 genes compared to the immunocompetent cluster) in metastatic NR-S1M cells were combined; Obtain 21 common genes. b, Merging upregulated DEGs (compared with the parental strain, red circles, 393 genes) and immunosuppressive clusters (blue circles, 20 genes, compared with the immunocompetent cluster) in metastatic NR-S1M cells; Obtain two common genes. c–d, Upregulated expression levels of Lgals7 in metastatic NR-S1M cells (c) and immunosuppressed regions (d) are shown as bar graphs. e, Cell lysates from parental and metastatic NR-S1M cells are subjected to Western blotting. Bands indicate the levels of galectin-7 and GAPDH (internal control), respectively. f, NR-S1M tumor was immunostained using anti-Gal-7 and anti-CD8 antibodies. This is a representative image showing that Gal-7 is highly expressed in a CD8-poor region (area surrounded by a red dotted line). g, Quantitative RT-PCR analysis of Lgals7 expression in metastatic NR-S1M cells with or without 24-h treatment with IFN-γ (100 ng/ml) or TNF-α (100 ng/ml) h, metastatic NR-S1M cells Culture supernatants and plasma from NR-S1M transplanted mice were collected and subjected to ELISA. The content of galectin-7 is quantified and plotted as a bar graph. Data are presented as mean ± SEM. *p<0.05. **p<0.01. ****p<0.001. NR‐S1M細胞におけるガレクチン-7の除去は転移を軽減する。C3H/HeN雌マウスに対照またはGal-7 KO NR-S1M細胞を6週間移植した。a、血漿ガレクチン-7の含有量はELISAにより定量した。b、腫瘍体積の経時変化を追跡し(左)、最終腫瘍重量を測定した(右)。c、6週間の移植後、LN転移を有するマウスの割合を計算する。d、各群のマウスのマクロ肺の代表的な画像を示す。棒は4mmを示す。e、肺内の転移性腫瘍結節の数を数え、プロットする。f、各群のマウスの肺重量を測定し、プロットする。データは平均± SEMで示す。*p<0.05。**p<0.01。Removal of galectin-7 in NR-S1M cells alleviates metastasis. C3H/HeN female mice were implanted with control or Gal-7 KO NR-S1M cells for 6 weeks. a, Plasma galectin-7 content was quantified by ELISA. b, Time course of tumor volume was tracked (left) and final tumor weight was measured (right). c, Calculating the percentage of mice with LN metastases after 6 weeks of transplantation. d, Representative images of the macroscopic lungs of mice in each group are shown. The bar indicates 4mm. e, Count and plot the number of metastatic tumor nodules within the lung. f, Lung weights of mice in each group are measured and plotted. Data are presented as mean ± SEM. *p<0.05. **p<0.01. NR-S1M腫瘍におけるCD45+ Gr-1+細胞の比率。親および転移性NR‐S1M細胞に由来する腫瘍におけるCD45+ Gr‐1+細胞の割合に関するフローサイトメトリー解析Proportion of CD45 + Gr-1 + cells in NR-S1M tumors. Flow cytometry analysis of the percentage of CD45 + Gr-1 + cells in tumors derived from parental and metastatic NR-S1M cells STクラスターのGlobal GO分析(切片#3-2)K‐Means分類クラスタ間の有意に上方制御された(左)および下方制御された(右)遺伝子のマルチGO解析Global GO analysis of ST clusters (Intercept #3-2) Multi-GO analysis of significantly up-regulated (left) and down-regulated (right) genes among K-Means classification clusters NR-S1M腫瘍のST解析(切片#3-1)。a、NR-S1M腫瘍組織(#3-1)のVisium結果の可視化H&E染色(左)と合計2258個のSTスポットを表す(右)。組織全体は、色の異なる偏りのないK-Meansクラスタリング(k = 9)を介して分類される。各クラスターのSTスポット数を列挙した。b、t-SNEアルゴリズムに従って、9つのクラスターすべてをプロットする。c-d、Loupe Browser Softwareを用いて、各クラスターの有意に上方制御された(c)および下方制御された(d)遺伝子を決定し、GO濃縮分析(Metascapeツール)に供した。各クラスターの上位5つのGO用語をP値付き棒グラフとして示した。ST analysis of NR-S1M tumor (section #3-1). a, Visualization of Visium results H&E staining of NR-S1M tumor tissue (#3-1) (left) and representing a total of 2258 ST spots (right). The entire tissue is classified via unbiased K-Means clustering (k = 9) with different colors. The number of ST spots in each cluster was listed. b, Plot all nine clusters according to the t-SNE algorithm. c–d, Significantly upregulated (c) and downregulated (d) genes in each cluster were determined using Loupe Browser Software and subjected to GO enrichment analysis (Metascape tool). The top five GO terms in each cluster were shown as a bar graph with P values. NR-S1M腫瘍のST解析(切片#4-3)。a、NR-S1M腫瘍組織(#4-3)のVisium結果の可視化H&E染色(左)と合計3774個のSTスポットを表す(右)。組織全体は、色の異なる偏りのないK-Meansクラスタリング(k = 9)を介して分類される。各クラスターのSTスポット数を列挙した。b、t-SNEアルゴリズムに従って、9つのクラスターすべてをプロットする。c-d、Loupe Browser Softwareを用いて、各クラスターの有意に上方制御された(c)および下方制御された(d)遺伝子を決定し、GO濃縮分析(Metascapeツール)に供した。各クラスターの上位5つのGO用語をP値付き棒グラフとして示した。ST analysis of NR-S1M tumor (section #4-3). a, Visualization of Visium results H&E staining of NR-S1M tumor tissue (#4-3) (left) and representing a total of 3774 ST spots (right). The entire tissue is classified via unbiased K-Means clustering (k = 9) with different colors. The number of ST spots in each cluster was listed. b, Plot all nine clusters according to the t-SNE algorithm. c–d, Significantly upregulated (c) and downregulated (d) genes in each cluster were determined using Loupe Browser Software and subjected to GO enrichment analysis (Metascape tool). The top five GO terms in each cluster were shown as a bar graph with P values. NR-S1M腫瘍のST解析(切片#4-4)。a、NR-S1M腫瘍組織(#4-4)のVisium結果の可視化H&E染色(左)と合計2446個のSTスポットを表す(右)。組織全体は、色の異なる偏りのないK平均クラスタリング(k = 9)を介して分類される。各クラスターのSTスポット数を列挙した。b、t-SNEアルゴリズムに従って、9つのクラスターすべてをプロットする。c-d、Loupe Browser Softwareを用いて、各クラスターの有意に上方制御された(c)および下方制御された(d)遺伝子を決定し、GO濃縮分析(Metascapeツール)に供した。各クラスターの上位5つのGO用語をP値付き棒グラフとして示した。ST analysis of NR-S1M tumor (section #4-4). a, Visualization of Visium results H&E staining of NR-S1M tumor tissue (#4-4) (left) and representing a total of 2446 ST spots (right). The entire tissue is classified via unbiased K-means clustering (k = 9) with different colors. The number of ST spots in each cluster was listed. b, Plot all nine clusters according to the t-SNE algorithm. c–d, Significantly upregulated (c) and downregulated (d) genes in each cluster were determined using Loupe Browser Software and subjected to GO enrichment analysis (Metascape tool). The top five GO terms in each cluster were shown as a bar graph with P values. 免疫抑制領域の比較GO解析(切片#3-1)。NR-S1M腫瘍組織#3-1では、指定された免疫適格性(クラスター2)および免疫抑制性(クラスター3)領域のSTスポットがそれぞれ青色および赤色に着色されている。免疫適格性クラスターと免疫抑制性クラスターの間の有意に上方制御された遺伝子のマルチGO解析を示す。Comparative GO analysis of immunosuppressive regions (section #3-1). In NR-S1M tumor tissue #3-1, ST spots in designated immunocompetent (cluster 2) and immunosuppressive (cluster 3) regions are colored blue and red, respectively. Multi-GO analysis of significantly upregulated genes between immunocompetent and immunosuppressive clusters is shown. 免疫抑制領域の比較GO解析(切片#4-3)。NR-S1M腫瘍組織#4-3では、指定された免疫適格性(クラスター3)および免疫抑制性(クラスター4)領域のSTスポットがそれぞれ青色および赤色に着色されている。免疫適格性クラスターと免疫抑制性クラスターの間の有意に上方制御された遺伝子のマルチGO解析を示す。Comparative GO analysis of immunosuppressive regions (section #4-3). In NR-S1M tumor tissue #4-3, ST spots in designated immunocompetent (cluster 3) and immunosuppressive (cluster 4) regions are colored blue and red, respectively. Multi-GO analysis of significantly upregulated genes between immunocompetent and immunosuppressive clusters is shown. 免疫抑制領域の比較GO解析(切片#4-4)。NR-S1M腫瘍組織#4-4では、指定された免疫適格性(クラスター2)および免疫抑制性(クラスター4)領域のSTスポットがそれぞれ青色および赤色に着色されている。免疫適格性クラスターと免疫抑制性クラスターの間の有意に上方制御された遺伝子のマルチGO解析を示す。Comparative GO analysis of immunosuppressive regions (section #4-4). In NR-S1M tumor tissue #4-4, ST spots in designated immunocompetent (cluster 2) and immunosuppressive (cluster 4) regions are colored blue and red, respectively. Multi-GO analysis of significantly upregulated genes between immunocompetent and immunosuppressive clusters is shown.

本発明者らは、転移性癌細胞がガレクチン-7タンパク質を細胞外に分泌し、腫瘍微小環境において免疫抑制を達成することにより自らの転移を促進することを見出した。従って、様々な段階においてガレクチン-7の機能を阻害する物質が本発明の癌転移抑制剤の有効成分となる。また、本発明の一態様において、担癌患者由来試料中のガレクチン-7タンパク質濃度が、標準対照と比較して一定倍数以上高い場合に転移のリスクが高いと判定することができる。当該一定倍数としては、例えば、1.5倍、2倍、3倍、4倍、5倍、8倍、又は10倍が挙げられる。 We found that metastatic cancer cells promote their metastasis by secreting galectin-7 protein extracellularly and achieving immunosuppression in the tumor microenvironment. Therefore, a substance that inhibits the function of galectin-7 at various stages is an active ingredient of the cancer metastasis inhibitor of the present invention. Furthermore, in one embodiment of the present invention, it can be determined that the risk of metastasis is high when the galectin-7 protein concentration in a sample derived from a cancer-bearing patient is higher than a certain number of times compared to a standard control. Examples of the fixed multiple include 1.5 times, 2 times, 3 times, 4 times, 5 times, 8 times, or 10 times.

第1に、ガレクチン-7阻害剤として、ガレクチン-7遺伝子の発現を抑制する物質が挙げられる。より具体的には、ガレクチン-7メッセンジャーRNA(mRNA: 好ましくは、NCBI Reference Sequence: NM_002307.4)に相補的な配列を有するオリゴヌクレオチド(核酸医薬)が挙げられる。核酸医薬は、核酸医薬として一般的な長さであればよく、相補的な配列を有する部分は10~30、15~25、18~23、あるいは、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、又は30ヌクレオチド長である。当該相補的な配列は、好ましくはガレクチン-7 mRNAに対して完全に相補的な配列であるが、10%以下又は5%以下(例えば、相補的な配列を有する部分の長さが20ヌクレオチド長の場合には、それぞれ、2か所以下又は1か所以下)のミスマッチを有しても良い。核酸医薬は、相補的な配列を有する部分に加えて、他の機能的部分(修飾基、標識、薬剤等)を有しても良い。 First, examples of galectin-7 inhibitors include substances that suppress the expression of the galectin-7 gene. More specifically, examples include oligonucleotides (nucleic acid medicines) having a sequence complementary to galectin-7 messenger RNA (mRNA: preferably NCBI Reference Sequence: NM_002307.4). The nucleic acid drug may have a length that is common for nucleic acid drugs, and the portion having a complementary sequence may be 10 to 30, 15 to 25, 18 to 23, or 10, 11, 12, 13, 14, 15. , 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides in length. The complementary sequence is preferably a sequence that is completely complementary to galectin-7 mRNA, but less than 10% or less than 5% (for example, the length of the portion having the complementary sequence is 20 nucleotides). In this case, there may be mismatches of 2 or less places or 1 or less places, respectively. In addition to the portion having a complementary sequence, the nucleic acid drug may have other functional portions (modifying groups, labels, drugs, etc.).

第2に、ガレクチン-7阻害剤として、ガレクチン-7タンパク質(好ましくは、NCBI Reference Sequence: NP_002298.1)の機能を阻害する物質が挙げられる。より具体的には、ガレクチン-7タンパク質に結合する抗体(抗体医薬)が挙げられる。抗体医薬は、好ましくは、モノクローナル抗体であり、マウス抗体、キメラ抗体、ヒト化抗体、完全ヒト抗体である。 Second, galectin-7 inhibitors include substances that inhibit the function of galectin-7 protein (preferably, NCBI Reference Sequence: NP_002298.1). More specifically, examples include antibodies (antibody drugs) that bind to galectin-7 protein. The antibody drug is preferably a monoclonal antibody, such as a mouse antibody, a chimeric antibody, a humanized antibody, or a fully human antibody.

第3に、ガレクチン-7阻害剤として、腫瘍微小環境の免疫細胞上の標的へのガレクチン-7の結合を阻害する物質が挙げられる。 Third, galectin-7 inhibitors include substances that inhibit the binding of galectin-7 to targets on immune cells in the tumor microenvironment.

癌転移抑制は、一態様において、転移性腫瘍微小環境における免疫抑制の防止である。別の一態様において、癌転移抑制は、転移性腫瘍微小環境における抗腫瘍免疫細胞のアポトーシスや消耗、あるいは、制御性T細胞や骨髄由来サプレッサー細胞(MDSC)の動員の抑制である。別の一態様において、癌転移抑制は、転移性腫瘍微小環境における抗腫瘍免疫細胞の浸潤の低下の抑制である。ここで、抗腫瘍免疫細胞はCD8+ T細胞又はCD11c+ 樹状細胞(DC)である。 Suppression of cancer metastasis, in one aspect, is the prevention of immunosuppression in the metastatic tumor microenvironment. In another embodiment, suppressing cancer metastasis is suppressing apoptosis or exhaustion of anti-tumor immune cells in the metastatic tumor microenvironment, or recruitment of regulatory T cells or myeloid-derived suppressor cells (MDSCs). In another aspect, cancer metastasis inhibition is inhibition of reduced infiltration of anti-tumor immune cells in the metastatic tumor microenvironment. Here, the anti-tumor immune cells are CD8 + T cells or CD11c + dendritic cells (DC).

原理的に、本発明のガレクチン-7阻害剤が有効な癌は、ガレクチン-7を発現し且つ転移能の高い細胞(転移性細胞)を含む癌である。具体的には、本発明のガレクチン-7阻害剤は口腔扁平上皮癌(SCC)に対して有効である。一方で、本発明のガレクチン-7阻害剤は食道SCC、膀胱SCC、及び子宮頸部SCCに対しては有効ではない。 In principle, cancers for which the galectin-7 inhibitor of the present invention is effective are cancers that express galectin-7 and contain cells with high metastatic potential (metastatic cells). Specifically, the galectin-7 inhibitor of the present invention is effective against oral squamous cell carcinoma (SCC). On the other hand, the galectin-7 inhibitor of the present invention is not effective against esophageal SCC, bladder SCC, and cervical SCC.

1.材料及び方法 1. Materials and methods

1.1. 細胞培養・腫瘍転移モデル
マウス口腔扁平上皮癌細胞株NR-S1MはDr。Matsumotoから入手した58。親NR-S1M細胞を、5% CO2の存在下において37℃で10%ウシ胎児血清を添加したRPMI-1640培地を用いて培養した。Lgals7ノックアウト(Gal‐7 KO)NR‐S1M細胞を樹立するために、Lgals7の2つのsgRNA配列(Lgals7(AB)、CCTCGGGTTAAAGTGCAAGG; Lgals7(AC)、GCGATGAGGAGCACTTCAAA)をそれぞれpLentiCRISCRv2ベクターにクローニングした。pMD2.GおよびpsPax2プラズミドと組み合わせた合成したpLentiCRISPRv2‐sgRNAをPEI MAX試薬(Polysciences)で293FT細胞に共トランスフェクトし、レンチウィルスを得た。親NR‐S1M細胞をポリブレン(10μg/ml)で2種類の精製Lgals7レンチウイルスによりスピン感染させ、次いで1週間ピューロマイシンセレクチン(5μg/ml)にさらした。5週齢の雌C3H/HeNマウスをJapan SLCから購入した。マウスにNR-S1M細胞(DPBS 100μL中に5×106細胞/マウス)を皮下接種し、腫瘍体積が毎週測定され、安楽死後に腫瘍転移が評価された。マウスは秋田大学大学院医学研究科の動物施設で飼育した。すべての動物実験は、米国国立衛生研究所が公表している実験動物の飼育と使用の手引き(NIH Publication No.85-23、1996年改訂)に準拠し、秋田大学倫理審査委員会の承認を得た。転移性NR‐S1M細胞は、接種6週後にマウスの転移LNから採取し、プールし、親株と同様に培養した。
1.1. Cell culture/tumor metastasis model Mouse oral squamous cell carcinoma cell line NR-S1M was developed by Dr. 58 obtained from Matsumoto. Parental NR-S1M cells were cultured in RPMI-1640 medium supplemented with 10% fetal bovine serum at 37°C in the presence of 5% CO2 . To establish Lgals7 knockout (Gal‐7 KO) NR‐S1M cells, two sgRNA sequences of Lgals7 (Lgals7(AB), CCTCGGGTTAAAGTGCAAGG; Lgals7(AC), GCGATGAGGAGCACTTCAAA) were each cloned into pLentiCRISCRv2 vector. The synthesized pLentiCRISPRv2-sgRNA combined with pMD2.G and psPax2 plasmid was co-transfected into 293FT cells with PEI MAX reagent (Polysciences) to obtain lentivirus. Parental NR-S1M cells were spin-infected with two purified Lgals7 lentiviruses in polybrene (10 μg/ml) and then exposed to puromycin selectin (5 μg/ml) for 1 week. Five-week-old female C3H/HeN mice were purchased from Japan SLC. Mice were inoculated subcutaneously with NR-S1M cells (5×10 6 cells/mouse in 100 μL of DPBS), tumor volumes were measured weekly, and tumor metastasis was assessed after euthanasia. Mice were kept in the animal facility of Akita University Graduate School of Medicine. All animal experiments were conducted in accordance with the Guidelines for the Care and Use of Laboratory Animals published by the National Institutes of Health (NIH Publication No. 85-23, revised in 1996) and approved by the Akita University Ethics Review Committee. Obtained. Metastatic NR-S1M cells were harvested from metastatic LNs of mice 6 weeks after inoculation, pooled, and cultured similarly to the parent strain.

1.2. BrdU取込分析法
親および転移性NR‐S1M細胞の2×105細胞/mlを、それぞれ24ウェルプレートに播種した。翌日、培地にBrdUを6時間添加し、BrdU Cell Proliferation ELISA Kit (ab126556、abcam)を用いて増殖細胞を定量した。
1.2. BrdU incorporation assay 2×10 5 cells/ml of parental and metastatic NR-S1M cells were each seeded in 24-well plates. The next day, BrdU was added to the medium for 6 hours, and proliferating cells were quantified using the BrdU Cell Proliferation ELISA Kit (ab126556, ABCAM).

1.3. 細胞死の測定
親および転移性NR‐S1M細胞の2×105細胞/mlを、それぞれ24ウェルプレートに播種した。翌日、剥離した細胞を、PI染色溶液(00-6990-50、eBioscience)を含有する1×DPBSに懸濁した。細胞死の程度(PI陽性細胞の比率)をBD FACSCalibur (BD Biosciences社)で評価した。
1.3. Measurement of Cell Death 2×10 5 cells/ml of parental and metastatic NR-S1M cells were each seeded in 24-well plates. The next day, detached cells were suspended in 1× DPBS containing PI staining solution (00-6990-50, eBioscience). The degree of cell death (ratio of PI-positive cells) was evaluated using BD FACSCalibur (BD Biosciences).

1.4. RNA-Seq解析
三つ組みで、全RNAを、親または転移性NR‐S1M細胞からDirect‐zol RNA MicroPrep (Zymo Research)を用いて精製した。BGI Japanによりライブラリ構築とハイスループット配列決定を行った。DESeq2アルゴリズムを用いて、群間で差次的に発現する遺伝子(DEG)を選択した。遺伝子セット濃縮解析はDr.Tom Data Visualization Solution (BGI Japan)で行った。
1.4. RNA-Seq analysis In triplicate, total RNA was purified from parental or metastatic NR-S1M cells using Direct-zol RNA MicroPrep (Zymo Research). Library construction and high-throughput sequencing were performed by BGI Japan. Differentially expressed genes (DEGs) between groups were selected using the DESeq2 algorithm. Gene set enrichment analysis was performed using Dr.Tom Data Visualization Solution (BGI Japan).

1.5. フローサイトメトリー
NR‐S1M腫瘍を切除し、細かく刻み、コラゲナーゼIV (2mg/ml、C5138、Sigma)とDNase I(100μg/ml、DN25、Sigma)を含むTESCA緩衝剤中で、振とうしながら37℃で30分間消化した。細胞懸濁液を細胞ストレーナーに通し、マウスBD Fcブロック精製ラット抗マウスCD16/CD32 mAb (BD Biosciences社)と氷上で15分間プレインキュベートした。次に、APC結合抗CD45(30-F11)、PE結合抗CD45R/B220(RA3-6B2)、PerCP/Cy5.5結合抗CD3ε(145-2C11)、およびPE/Cy7結合抗Gr-1(RB6-8C5)で細胞を染色した。抗体はすべてBioLegend社から購入した。フローサイトメトリー分析をBD FACSMelody (BD Biosciences社)で行い、データをFlowJo ver.10(Tree Star社)で分析した。
1.5. Flow cytometry
NR‐S1M tumors were excised, minced, and cultured in TESCA buffer containing collagenase IV (2 mg/ml, C5138, Sigma) and DNase I (100 μg/ml, DN25, Sigma) at 37°C for 30 min with shaking. Digested for minutes. The cell suspension was passed through a cell strainer and preincubated with mouse BD Fc block purified rat anti-mouse CD16/CD32 mAb (BD Biosciences) for 15 minutes on ice. Next, APC-conjugated anti-CD45 (30-F11), PE-conjugated anti-CD45R/B220 (RA3-6B2), PerCP/Cy5.5-conjugated anti-CD3ε (145-2C11), and PE/Cy7-conjugated anti-Gr-1 (RB6 -8C5). All antibodies were purchased from BioLegend. Flow cytometry analysis was performed with BD FACSMelody (BD Biosciences), and data were analyzed with FlowJo ver. 10 (Tree Star).

1.6. 免疫組織化学
ホルマリン固定パラフィン包埋NR‐S1M腫瘍組織を切片化し、次にクエン酸緩衝液(pH 6.0)抗原回復と内因性ペルオキシダーゼ消光に供した。スライドをCD8α(4SM15,1:500、eBioscience)、CD11c (#97585,1:350、Cell Signaling Technology)、及びGal-7(A18059A,1:500、BioLegend)に対する一次抗体とインキュベートし、続いてSimple StainTM MAX PO (Nichirei Biosciences)を用いて検出した。核染色はMayer's Hematoxylin Solutionを用いて行った。
1.6. Immunohistochemistry Formalin-fixed paraffin-embedded NR-S1M tumor tissues were sectioned and then subjected to citrate buffer (pH 6.0) antigen retrieval and endogenous peroxidase quenching. Slides were incubated with primary antibodies against CD8α (4SM15, 1:500, eBioscience), CD11c (#97585, 1:350, Cell Signaling Technology), and Gal-7 (A18059A, 1:500, BioLegend), followed by Simple Detection was performed using StainTM MAX PO (Nichirei Biosciences). Nuclear staining was performed using Mayer's Hematoxylin Solution.

1.7. 空間的トランスクリプトーム(ST)解析(Visium)
2匹のマウスに転移性NR‐S1M細胞を接種した。接種3週後の原発腫瘍を切除した。各腫瘍を2片に切断し、これにより計4個の腫瘍組織を採取し、ST解析に供した。新鮮組織は、Tissue-Tek O.C.T. Compound (Sakura Finetek)で直ちに凍結保存し、1週間以内に処理した。凍結組織ブロックを10μmの厚さで切片化した(CM1900、Leica)。切片組織のRNAの質は、ST分析の要件(RIN >7)を満たすことが確認された。Visium用ライブラリーは、Visium Spatial Gene Expression User Guide (CG000239 Rev C、10x Genomics)に従って厳密に作成した。組織を24分間透過させ、これをVisium Spatial Tissue Optimization Slide & Reagent Kit (10x Genomics社)を用いて測定した。NovaSeq S4試薬キット(Illumina)を用いて、NovaSeq 6000システム(Illumina)上で、試料あたり約3.5億~5億読取りの深さでライブラリーの配列を決定した。生のFASTQファイルとヒストロジー画像は、Space Ranger Software (10x Genomics)を用いて処理し、次にLoupe Browser Software (10x Genomics)59上で可視化した。代表的な組織切片(#3-2)を図3及び4に、他の3つの切片を図9~14に示す。各切片のすべてのSTスポットは、非階層的クラスタリングのためにK‐Means(k = 9)およびt‐SNEアルゴリズムを介して分類した。Loupe Browser Software (10x Genomics)により決定された各々のクラスターにおける有意に上方制御された遺伝子及び下方制御された遺伝子を、Metascape (https://metascape.org)を用いた遺伝子オントロジー(GO)解析に供した。
1.7. Spatial transcriptome (ST) analysis (Visium)
Two mice were inoculated with metastatic NR-S1M cells. The primary tumor was excised 3 weeks after inoculation. Each tumor was cut into two pieces, and a total of four tumor tissues were collected and subjected to ST analysis. Fresh tissue was immediately cryopreserved in Tissue-Tek OCT Compound (Sakura Finetek) and processed within 1 week. Frozen tissue blocks were sectioned at a thickness of 10 μm (CM1900, Leica). The RNA quality of the sectioned tissue was confirmed to meet the requirements for ST analysis (RIN >7). The library for Visium was created strictly according to the Visium Spatial Gene Expression User Guide (CG000239 Rev C, 10x Genomics). The tissue was permeabilized for 24 minutes and measured using the Visium Spatial Tissue Optimization Slide & Reagent Kit (10x Genomics). Libraries were sequenced on a NovaSeq 6000 system (Illumina) using the NovaSeq S4 reagent kit (Illumina) to a depth of approximately 350-500 million reads per sample. Raw FASTQ files and histology images were processed using Space Ranger Software (10x Genomics) and then visualized on Loupe Browser Software (10x Genomics). A representative tissue section (#3-2) is shown in Figures 3 and 4, and the other three sections are shown in Figures 9-14. All ST spots in each section were classified via K-Means (k = 9) and t-SNE algorithms for non-hierarchical clustering. Significantly upregulated and downregulated genes in each cluster determined by Loupe Browser Software (10x Genomics) were subjected to gene ontology (GO) analysis using Metascape (https://metascape.org). provided.

1.8. ウエスタンブロット法
親および転移性NR‐S1M細胞を、プロテアーゼ阻害剤カクテル(P8340、シグマ)を添加したRIPA緩衝液(50mM Tris‐Cl、pH 7.5、150mM NaCl、1% Triton、0.5%デオキシコール酸ナトリウム、0.1%ドデシル硫酸ナトリウム)中で溶解した。細胞溶解物を超音波処理し、LDS Sample Buffer (Invitrogen)およびβ-メルカプトエタノールで変性させた。試料をNuPAGE Bis-Tris Precast Gel (Invitrogen)にロードし、NuPAGE MES SDS Running Buffer (Invitrogen)を用いて分離し、ニトロセルロース膜(Invitrogen)に移した。メンブレンを5%スキムミルクでプレインキュベートし、次に抗Gal-7(1:1000,A18059A、BioLegend)または抗GAPDH (#5174,1:2000、Cell Signaling Technology)抗体で染色した。ブロットバンドは、ChemiDoc Touch Imaging System (Bio‐Rad)を用いてECL試薬(Bio‐Rad)で可視化した。
1.8. Western Blotting Parental and metastatic NR-S1M cells were cultured in RIPA buffer (50mM Tris-Cl, pH 7.5, 150mM NaCl, 1% Triton, 0.5% deoxycol) supplemented with protease inhibitor cocktail (P8340, Sigma). 0.1% sodium dodecyl sulfate). Cell lysates were sonicated and denatured with LDS Sample Buffer (Invitrogen) and β-mercaptoethanol. Samples were loaded onto NuPAGE Bis-Tris Precast Gel (Invitrogen), separated using NuPAGE MES SDS Running Buffer (Invitrogen), and transferred to nitrocellulose membranes (Invitrogen). Membranes were preincubated with 5% skim milk and then stained with anti-Gal-7 (1:1000, A18059A, BioLegend) or anti-GAPDH (#5174, 1:2000, Cell Signaling Technology) antibodies. Blot bands were visualized with ECL reagent (Bio‐Rad) using the ChemiDoc Touch Imaging System (Bio‐Rad).

1.9. 定量RT-PCR
抽出した全RNAをPrimeScript RT試薬キット(RR037、タカラバイオ)を用いてcDNA合成を行った。cDNA産物は、Thermal Cycler Dice Real Time System III(タカラバイオ)上で遺伝子特異的プライマーとTB Green Premix Ex Taq II (RR820、タカラバイオ)を用いて増幅した。以下のプライマーを合成し、この研究で使用した: Lgals7 Fw, AATTCGAGGCATGGTCCCTGAC; Lgals7 Rv, GGTGTTGAAGACAACCTCGGAAG; gapdh Fw, CTGCACCACCAACTGCTTAG; gapdh Rv, GTCTTCTGGGTGGCAGTGAT。
1.9. Quantitative RT-PCR
cDNA synthesis was performed on the extracted total RNA using PrimeScript RT reagent kit (RR037, Takara Bio). The cDNA product was amplified using gene-specific primers and TB Green Premix Ex Taq II (RR820, Takara Bio) on Thermal Cycler Dice Real Time System III (Takara Bio). The following primers were synthesized and used in this study: Lgals7 Fw, AATTCGAGGCATGGTCCCTGAC; Lgals7 Rv, GGTGTTGAAGACAACCTCGGAAG; gapdh Fw, CTGCACCACCAACTGCTTAG; gapdh Rv, GTCTTCTGGGTGGCAGTGAT.

1.10. Gal-7 ELISA
NR-S1M細胞を接種したマウスの細胞培養上清および血漿を、製造業者のプロトコルに従ってマウスガレクチン-7 DuoSet ELISA (DY1304、R&D Systems社)に供した。
1.10. Gal-7 ELISA
Cell culture supernatants and plasma from mice inoculated with NR-S1M cells were subjected to mouse galectin-7 DuoSet ELISA (DY1304, R&D Systems) according to the manufacturer's protocol.

1.11. 統計
2つの実験群間の統計的有意性はスチューデントの両側t検定を用いて決定した。3群以上間のパラメータの比較は一元配置分散分析、続いてDunnettの多重比較試験を行った。P<0.05を有意とした。
1.11. Statistics
Statistical significance between two experimental groups was determined using Student's two-tailed t-test. Comparisons of parameters between three or more groups were performed using one-way analysis of variance, followed by Dunnett's multiple comparison test. P<0.05 was considered significant.

2. 結果 2. Results

2.2. 同系マウスSCCモデルにおけるリンパ節転移からの転移性NR‐S1M腫瘍細胞の単離
NR-S1Mマウス口腔SCC細胞をC3H/HeNマウスの皮下に移植したところ、原発腫瘍の増殖が認められ、接種6週後までに腫瘍重量は最大値に達した(図1a)。腫瘍転移は、接種4週後には一定の割合のマウスで所属リンパ節(LN)および肺に認められるようになり、その後、腫瘍移植6週後にはすべてのマウスで腫瘍結節の肉眼的病理像を示す(図1b、c)。転移性細胞を解析するために、in vitro培養において、接着した腫瘍細胞を他の非接着性LN細胞(大部分はリンパ球)から解離させることにより、接種6週後の担癌マウスのリンパ節から転移した細胞を単離した(図1d)。この過程を3回繰り返すことにより、in vitro培養で転移性NR‐S1M細胞を樹立した。In vitro転移性NR‐S1M細胞では、増殖や細胞死に親細胞からの変化は認められなかった(図1e、f)。一方、転移性NR‐S1M細胞をマウスに接種すると、転移性NR‐S1M細胞の腫瘍は親細胞よりも腫瘍の増殖と転移が速く、転移性NR‐S1M細胞は移植後3週目に転移を示したが、6週目には親細胞の転移が確認された(図1g、h)。このように、単離された転移性NR‐S1M細胞は、in vivo腫瘍微小環境において転移能が増強された細胞について濃縮される。
2.2. Isolation of metastatic NR-S1M tumor cells from lymph node metastases in a syngeneic murine SCC model
When NR-S1M mouse oral SCC cells were subcutaneously transplanted into C3H/HeN mice, growth of the primary tumor was observed, and the tumor weight reached its maximum value by 6 weeks after inoculation (Figure 1a). Tumor metastasis was observed in regional lymph nodes (LNs) and lungs in a certain percentage of mice 4 weeks after inoculation, and macroscopic pathological images of tumor nodules were observed in all mice 6 weeks after tumor implantation. shown (Fig. 1b,c). To analyze metastatic cells, we dissociated adherent tumor cells from other non-adherent LN cells (mostly lymphocytes) in in vitro culture to analyze the lymph nodes of tumor-bearing mice 6 weeks after inoculation. We isolated cells that had metastasized from (Figure 1d). By repeating this process three times, metastatic NR-S1M cells were established in vitro. In vitro metastatic NR-S1M cells showed no changes in proliferation or cell death from their parent cells (Fig. 1e, f). On the other hand, when mice were inoculated with metastatic NR-S1M cells, tumors of metastatic NR-S1M cells grew and metastasized faster than parental cells, and metastatic NR-S1M cells did not metastasize 3 weeks after transplantation. However, metastasis of the parental cells was confirmed at 6 weeks (Fig. 1g, h). Thus, isolated metastatic NR-S1M cells are enriched for cells with enhanced metastatic potential in the in vivo tumor microenvironment.

2.3. インターフェロン活性化遺伝子(ISG)の発現は転移性NR‐S1M細胞で下方制御される
転移性NR‐S1M細胞の網羅的遺伝子発現プロファイルを調べるために、RNA‐seq解析を行った。転移性NR-S1M細胞とその親細胞との比較において、合計863の差次的発現遺伝子(DEG)が同定され、そのうち393の遺伝子が上方制御され、470の遺伝子が下方制御された(図1i)。遺伝子セット濃縮分析は、下方制御されたDEGがほとんどインターフェロン応答の観点で濃縮されたが(図1j)、上方制御されたDEGは角化についてのみ検出されたことを実証した。変化したISGs発現量の代表的遺伝子を図1kに示す。
2.3. Interferon-activated gene (ISG) expression is downregulated in metastatic NR-S1M cells To investigate the global gene expression profile of metastatic NR-S1M cells, we performed RNA-seq analysis. A total of 863 differentially expressed genes (DEGs) were identified in the comparison between metastatic NR-S1M cells and their parental cells, of which 393 genes were upregulated and 470 genes were downregulated (Fig. 1i ). Gene set enrichment analysis demonstrated that downregulated DEGs were mostly enriched in terms of interferon response (Fig. 1j), whereas upregulated DEGs were only detected for cornification. Representative genes with changed ISGs expression levels are shown in Figure 1k.

2.4. NR-S1M腫瘍の限局性免疫抑制領域
腫瘍細胞におけるISG発現の調節異常は腫瘍免疫に影響することが知られているため40,41、転移性NR‐S1M腫瘍では抗腫瘍免疫がダウンモジュレートされると推論した。腫瘍組織から酵素的に解離させた細胞のうちCD3陽性(CD3+)T細胞数をフローサイトメトリーで測定したところ、移植3週後の転移性NR-S1M細胞の腫瘍では、同じ時点の親細胞由来腫瘍に比べてCD3+ T細胞の割合が有意に減少していた(図2a)。対照的に、転移性細胞由来の腫瘍におけるB220+ B細胞の比率は変わらなかった(図2a)。さらに、Gr-1+細胞は転移性細胞の腫瘍の中へとより侵襲的に浸潤し、抗腫瘍免疫反応を抑制する未成熟骨髄好中球および単球のサブタイプであるMDSCの潜在的増加を意味することがわかった42(図7)。次にNR‐S1M腫瘍の組織切片における抗腫瘍免疫細胞の分布を調べた。移植4週後の転移性細胞の腫瘍の免疫組織化学では、CD8+ T細胞は腫瘍内に均等に分布するのではなく、むしろ不均一に局在している。腫瘍組織の一部の領域ではCD8+ T細胞が濃縮されている(青枠)が、他の領域ではまばらなCD8+ T細胞が認められる(赤枠)(図2b)。これと一貫して、CD11c+ DCもNR-S1M腫瘍に不均一に浸潤しており(図2c)、腫瘍免疫の不均一性が示された。興味深いことに、移植後6週目に親NR-S1M細胞の腫瘍が最大サイズに達し、転移を示した際に、親細胞由来腫瘍もCD8+ T細胞とCD11c+ DCの不均一な分布を示し(図2d、e)、悪性NR-S1M腫瘍では限局性の免疫抑制領域が発達していることが示唆された。
2.4. Areas of Focal Immunosuppression in NR-S1M Tumors As dysregulation of ISG expression in tumor cells is known to affect tumor immunity, 40,41 anti-tumor immunity may be downmodulated in metastatic NR-S1M tumors. I reasoned that it would be rated. When the number of CD3-positive (CD3 + ) T cells was measured by flow cytometry among cells enzymatically dissociated from tumor tissues, it was found that in tumors of metastatic NR-S1M cells 3 weeks after transplantation, parental cells at the same time point The percentage of CD3 + T cells was significantly reduced compared to the tumor of origin (Figure 2a). In contrast, the proportion of B220 + B cells in tumors derived from metastatic cells remained unchanged (Figure 2a). Additionally, Gr-1 + cells infiltrate more invasively into tumors in metastatic cells, potentially increasing the potential of MDSCs, a subtype of immature myeloid neutrophils and monocytes, to suppress antitumor immune responses. 42 (Figure 7). Next, we investigated the distribution of antitumor immune cells in tissue sections of NR-S1M tumors. Immunohistochemistry of metastatic cell tumors 4 weeks after transplantation shows that CD8 + T cells are not evenly distributed within the tumor, but rather localized heterogeneously. CD8 + T cells are enriched in some areas of the tumor tissue (blue frame), while sparse CD8 + T cells are observed in other areas (red frame) (Figure 2b). Consistent with this, CD11c + DCs also heterogeneously infiltrated NR-S1M tumors (Figure 2c), indicating the heterogeneity of tumor immunity. Interestingly, when the parental NR-S1M cell tumors reached their maximum size and showed metastasis at 6 weeks post-transplant, the parental cell-derived tumors also showed a heterogeneous distribution of CD8 + T cells and CD11c + DCs. (Fig. 2d, e), suggesting that malignant NR-S1M tumors develop focal immunosuppressive areas.

2.5. NR-S1M腫瘍の空間的トランスクリプトーム解析
NR‐S1M腫瘍の不均一性領域における空間的遺伝子発現を調べるために、空間的トランスクリプトーム(ST)解析(Visium)を行った。接種3週後に転移性NR-S1M細胞の原発腫瘍4個について、切片あたり2200~3700個のバーコード化されたSTスポット(直径55μm)の遺伝子発現プロファイルが取得され、K-Means(k = 9)およびt-SNEアルゴリズム解析(図3a)により偏りのないクラスタリングが行われた。その結果、STスポットは遺伝子発現パターンから主に6クラスターに分類され、NR-S1M腫瘍における遺伝子発現の不均一性が示された(図3a、b)。各クラスターについて、有意に上方制御された遺伝子および下方制御された遺伝子を遺伝子オントロジー(GO)解析に供した(図8)。#3-2の切片では、上方制御された遺伝子のGO用語と下方制御された遺伝子のGO用語が、それぞれ、クラスター1、3-6並びにクラスター1、3および4で確認された(図3c、d)。重要なことに、抗原提示およびインターフェロン応答の遺伝子発現は、切片全体の他の領域と比較してクラスター4で顕著に下方制御されたが(図3d)、インターフェロン応答関連遺伝子はクラスター6で有意に上方制御された(図3c)。したがって、クラスター4および6はそれぞれ免疫抑制領域および免疫適格領域として遺伝的にマップされると解釈した。これと一貫して、著者らは、腫瘍の他の3つの切片において、免疫抑制領域および免疫適格領域に対応する同様の一対のクラスターを検出した(図9、10および11)。腫瘍の4切片のCd8aまたはItgax (Cd11c)陽性斑点を調べたところ、免疫適格領域と比較して免疫抑制領域ではCd8a+斑点とCd11c+斑点の両方が有意に減少しており(図4a、b)、免疫抑制領域における抗腫瘍免疫細胞の浸潤の低下が示された。#3-2の切片で免疫適格領域と免疫抑制領域との間でGO解析を行ったところ、免疫抑制はアポトーシス、低酸素応答、血管新生の上方制御と有意に関連していることが確認された(図4c)。他の3つの切片の免疫抑制領域でも同じ遺伝子セットが同定された(図12、13および14)。重要なことに、Vegfa、VimおよびMapk6などの転移に関連する遺伝子43-48は、免疫適格領域と比較して免疫抑制領域で有意に上方制御されていた(図4d)。これらの結果から、転移には免疫抑制領域が重要であることが示唆された。
2.5. Spatial transcriptome analysis of NR-S1M tumors
Spatial transcriptome (ST) analysis (Visium) was performed to investigate spatial gene expression in the heterogeneous regions of NR-S1M tumors. Three weeks after inoculation, gene expression profiles of 2200 to 3700 barcoded ST spots (55 μm in diameter) per section were obtained for four primary tumors of metastatic NR-S1M cells, with K-Means (k = 9 ) and t-SNE algorithm analysis (Fig. 3a) resulted in unbiased clustering. As a result, ST spots were mainly classified into six clusters based on gene expression patterns, indicating heterogeneity of gene expression in NR-S1M tumors (Fig. 3a, b). For each cluster, significantly upregulated and downregulated genes were subjected to gene ontology (GO) analysis (Figure 8). In section #3-2, GO terms for up-regulated genes and GO terms for down-regulated genes were identified in clusters 1, 3-6 and clusters 1, 3 and 4, respectively (Fig. 3c, d). Importantly, antigen presentation and interferon response gene expression were significantly downregulated in cluster 4 compared to other regions across the section (Figure 3d), whereas interferon response related genes were significantly downregulated in cluster 6. upregulated (Fig. 3c). We therefore interpreted clusters 4 and 6 to map genetically as immunosuppressive and immunocompetent regions, respectively. Consistent with this, the authors detected similar paired clusters corresponding to immunosuppressive and immunocompetent regions in three other sections of the tumor (Figures 9, 10 and 11). When we examined Cd8a or Itgax (Cd11c)-positive puncta in 4 sections of the tumor, we found that both Cd8a + and Cd11c + puncta were significantly reduced in the immunosuppressive area compared to the immunocompetent area (Fig. 4a, b ), showed reduced infiltration of antitumor immune cells in immunosuppressed areas. GO analysis was performed between immunocompetent and immunosuppressive regions in section #3-2, and it was confirmed that immunosuppression was significantly associated with upregulation of apoptosis, hypoxic response, and angiogenesis. (Figure 4c). The same gene set was identified in the immunosuppressive regions of the other three sections (Figures 12, 13 and 14). Importantly, genes 43-48 associated with metastasis, such as Vegfa, Vim and Mapk6, were significantly upregulated in the immunosuppressive region compared to the immunocompetent region (Fig. 4d). These results suggested that the immunosuppressive region is important for metastasis.

2.6 ガレクチン-7は、腫瘍の免疫抑制領域で上方制御される潜在的な転移促進因子である。
NR‐S1M腫瘍の免疫抑制領域における重要な転移促進遺伝子を探索するために、NR‐S1M腫瘍の免疫抑制領域のDEGをin vitro培養転移性NR‐S1M細胞と比較した。下方制御されたコンパートメントについては、両DEGで21個の遺伝子が共通して下方制御され、そのほとんどがISGであった(図5a)。
2.6 Galectin-7 is a potential pro-metastasis factor that is upregulated in immunosuppressive regions of tumors.
To explore the important metastasis-promoting genes in the immunosuppressive region of NR-S1M tumors, we compared the DEGs in the immunosuppressive region of NR-S1M tumors with in vitro-cultured metastatic NR-S1M cells. Regarding the downregulated compartments, 21 genes were commonly downregulated in both DEGs, most of which were ISGs (Fig. 5a).

一方、Lgals7とKrt16の2つの遺伝子のみが両方のDEGで共通に上方制御されていた(図5b)。Keratin-16をコードするKrt16がOSCCの浸潤および転移を促進することが以前に報告されていることから49、我々はガレクチン-7をコードしSCCにおける役割については依然として解明されていないLgals7に焦点を当てた26,27。Lgals7はin vivoの免疫抑制腫瘍領域とin vitroの転移性NR-S1M細胞の両方で高発現していた(図5c、d)。ウエスタンブロット解析の結果、ガレクチン-7はin vitroで転移性NR-S1M細胞に発現していることが確認された(図5e)。ガレクチン-7の発現は親NR-S1M細胞には認められなかったが(図5c、e)、免疫組織化学的解析の結果、ガレクチン-7の発現は親NR-S1M細胞由来の生体内腫瘍、特にCD8+ T細胞に乏しい領域で誘導されることが明らかとなった(図5f)。また、転移性NR‐S1M細胞をIFN-γではなくTNF-αで処理すると、Lgals7の発現が有意に抑制されることがわかり(図5g)、ガレクチン-7の発現は炎症誘発性/免疫シグナル伝達によって負に調節されることが示唆された。さらに、in vitroで転移性NR-S1M細胞の細胞培養上清中にガレクチン-7は検出されなかったが(図5c、h)、NR-S1M担癌マウスでは腫瘍接種後5~6週目に血漿中ガレクチン-7レベルが有意に上方制御された(図5h)。このように、ガレクチン-7の発現は免疫抑制という微小環境下で誘導・強化され、腫瘍発生の後期段階においてin vivoで腫瘍細胞から細胞外に放出される。 Meanwhile, only two genes, Lgals7 and Krt16, were commonly upregulated in both DEGs (Fig. 5b). As Krt16, which encodes Keratin-16, was previously reported to promote OSCC invasion and metastasis, 49 we focused on Lgals7, which encodes galectin-7 and whose role in SCC remains unclear. I guessed 26,27 . Lgals7 was highly expressed in both immunosuppressed tumor areas in vivo and metastatic NR-S1M cells in vitro (Fig. 5c, d). Western blot analysis confirmed that galectin-7 was expressed in metastatic NR-S1M cells in vitro (Figure 5e). Although galectin-7 expression was not observed in parental NR-S1M cells (Fig. 5c, e), immunohistochemical analysis showed that galectin-7 expression was observed in in vivo tumors derived from parental NR-S1M cells. It became clear that it was especially induced in areas lacking CD8 + T cells (Figure 5f). We also found that when metastatic NR-S1M cells were treated with TNF-α but not IFN-γ, Lgals7 expression was significantly suppressed (Figure 5g), and galectin-7 expression is a pro-inflammatory/immune signal. It was suggested that it is negatively regulated by transmission. Furthermore, although galectin-7 was not detected in the cell culture supernatant of metastatic NR-S1M cells in vitro (Fig. 5c, h), galectin-7 was detected in NR-S1M tumor-bearing mice at 5 to 6 weeks after tumor inoculation. Plasma galectin-7 levels were significantly upregulated (Figure 5h). Thus, galectin-7 expression is induced and enhanced in the immunosuppressive microenvironment and is released extracellularly from tumor cells in vivo during the late stages of tumor development.

2.7. NR‐S1M細胞におけるガレクチン-7の除去は転移を抑制する
ガレクチン-7が腫瘍転移に関与するかどうかを検討するために、CRISPR‐Cas9システムを用いることによりLgals7ノックアウト(Gal‐7 KO)NR‐S1M細胞を作製した。免疫組織化学的検査では、Gal-7 KO細胞(示していない)の腫瘍ではガレクチン-7の誘導は確認されず、Gal-7 KO腫瘍を有するマウスでは血漿中ガレクチン-7レベルが大幅に低下していた(図6a)。原発腫瘍の増殖速度は変わらなかったが(図6b、c)、対照細胞を接種したマウスと比較してGal-7 KO細胞を接種したマウスでは、LN転移陽性マウスの数が有意に減少していた(図6d)。さらに、ガレクチン-7を枯渇させたNR-S1M細胞を移植したマウスでは、対照細胞を移植したマウスと比較して、肺の転移結節が顕著に減少しており(図6e、f)、Gal-7 KO細胞を移植したマウスでは一貫して肺重量も減少しており、腫瘍量の減少が示された(図6g)。このように、NR‐S1M細胞におけるガレクチン-7の枯渇はリンパ節および肺への転移を軽減する。
2.7. Ablation of galectin-7 suppresses metastasis in NR-S1M cells To investigate whether galectin-7 is involved in tumor metastasis, we generated Lgals7 knockout (Gal-7 KO) NR-S1M cells by using the CRISPR-Cas9 system. Immunohistochemistry did not confirm induction of galectin-7 in tumors of Gal-7 KO cells (not shown), and plasma galectin-7 levels were significantly reduced in mice bearing Gal-7 KO tumors (Fig. 6a). Although the growth rate of primary tumors was unchanged (Fig. 6b, c), the number of LN metastasis-positive mice was significantly reduced in mice inoculated with Gal-7 KO cells compared to mice inoculated with control cells (Fig. 6d). Furthermore, mice implanted with galectin-7-depleted NR-S1M cells had significantly fewer metastatic nodules in the lungs compared to mice implanted with control cells (Fig. 6e, f), and mice implanted with Gal-7 KO cells also had consistently reduced lung weights, indicating reduced tumor burden (Fig. 6g). Thus, depletion of galectin-7 in NR-S1M cells reduces lymph node and lung metastasis.

3. 考察 3. Discussion

転移性細胞のRNA‐seqとin vivo腫瘍の空間的トランスクリプトミクスとの著者らの組み合わせ解析は、転移のメディエータとしてガレクチン-7を同定した。ガレクチン-7は免疫抑制の腫瘍微小環境において高度に誘導される。ガレクチン-7の欠失は、原発腫瘍の増殖に影響することなく、リンパ節および肺転移を特異的に抑制した。このように、ガレクチン-7は腫瘍転移の促進に特異的な役割を果たす。 Our combined analysis of RNA-seq of metastatic cells and spatial transcriptomics of in vivo tumors identified galectin-7 as a mediator of metastasis. Galectin-7 is highly induced in the immunosuppressive tumor microenvironment. Deletion of galectin-7 specifically suppressed lymph node and lung metastases without affecting primary tumor growth. Thus, galectin-7 plays a specific role in promoting tumor metastasis.

インビトロでの転移性NR‐S1M細胞は親細胞と比較して遺伝子発現の全体的な交代とISGの下方制御を示し、これは特異的な腫瘍微小環境によりインプリントされた遺伝的特性を示している可能性がある50。実際、腫瘍細胞固有のIFNシグナル伝達の下方制御40,41および腫瘍における抗腫瘍免疫細胞集団の劇的な減少12は、癌転移にとって極めて重要であることが示されている。我々のST解析は、悪性NR‐S1M腫瘍は非常に不均一であり、その中で同定された免疫抑制部位は転移性腫瘍細胞を増殖、維持するためのニッチ13,51である可能性を示した。転移性細胞のクローン選択に関する初期の研究は、転移性細胞におけるゲノムの不安定性を示唆していた52,53。免疫抑制領域における腫瘍細胞の遺伝的およびエピジェネティックな選択は、転移性細胞の選択およびその後の遠隔臓器における転移性結節の形成の原因となる可能性がある。正確な機構を解明するためには、単一細胞配列決定および/または単一細胞ATAC配列決定によるさらなる分析が必要であろう。 Metastatic NR-S1M cells in vitro exhibited a global alternation in gene expression and downregulation of ISGs compared to parental cells, indicating genetic characteristics imprinted by the specific tumor microenvironment. There could be 50 . Indeed, the downregulation of tumor cell-intrinsic IFN signaling40,41 and the dramatic reduction of antitumor immune cell populations in tumors12 have been shown to be crucial for cancer metastasis. Our ST analysis indicates that malignant NR-S1M tumors are highly heterogeneous and the immunosuppressive sites identified therein may be niches for the proliferation and maintenance of metastatic tumor cells. Ta. Early studies on clonal selection of metastatic cells suggested genomic instability in metastatic cells52,53 . Genetic and epigenetic selection of tumor cells in immunosuppressive regions may be responsible for selection of metastatic cells and subsequent formation of metastatic nodules in distant organs. Further analysis by single-cell sequencing and/or single-cell ATAC sequencing will be required to elucidate the exact mechanism.

in vitroでの転移性NR-S1M細胞におけるIFNならびにTNF-αに対する細胞応答の下方制御(図1j)は、炎症/免疫シグナル伝達がガレクチン-7発現の調節に関与しているかどうかを検討することを促した。重要なことに、TNF‐αによる処理はin vitroで転移性細胞におけるガレクチン-7発現を劇的に阻害し、ガレクチン-7はNR‐S1M腫瘍の免疫抑制領域で高度に発現した。このように、炎症/免疫シグナル伝達が損なわれた微小環境は、腫瘍進行中の腫瘍細胞におけるガレクチン-7の発現を強化するようである。一方、NR‐S1M腫瘍の免疫抑制領域は、アポトーシスと低酸素応答の遺伝子セットに富んでいる。ガレクチン-7発現はp53活性化により誘導される24ので、低酸素腫瘍微小環境は腫瘍細胞においてp53を活性化し、それによりガレクチン-7発現の誘発を導き、続いて細胞から放出される可能性がある。以前の研究では、核ガレクチン-7がMMP9発現を上方制御し、HNSCCの転移を誘発することを示した38。それにもかかわらず、HNSCC患者の血中に細胞外ガレクチン-7は検出されなかった。転移が血漿ガレクチン-7レベルの上昇と相関しているというエビデンスが今回の試験から得られたことから、細胞外ガレクチン-7が特異的な転移促進因子として機能している可能性が高い。組換えガレクチン-7は、試験管内でヒトJurkat T細胞のアポトーシスを誘導することが報告されているが55,56、これらの試験は非生理的に高濃度のガレクチン-7を用いて実施された。実際、ガレクチン-7による処置は、マウス脾臓DCにおけるISGの発現に影響を及ぼさないことが観察された(データは示さず)。このように、細胞外ガレクチン-7の転移特異的作用は非免疫細胞を介して発揮される可能性があり、さらなる解析が必要である。 Downregulation of cellular responses to IFN as well as TNF-α in metastatic NR-S1M cells in vitro (Figure 1j) prompted us to examine whether inflammatory/immune signaling is involved in regulating galectin-7 expression. urged. Importantly, treatment with TNF-α dramatically inhibited galectin-7 expression in metastatic cells in vitro, and galectin-7 was highly expressed in immunosuppressive regions of NR-S1M tumors. Thus, a microenvironment with impaired inflammatory/immune signaling appears to enhance galectin-7 expression in tumor cells during tumor progression. On the other hand, the immunosuppressive region of NR-S1M tumors is enriched with apoptotic and hypoxia-responsive gene sets. Since galectin-7 expression is induced by p53 activation, it is possible that the hypoxic tumor microenvironment activates p53 in tumor cells, thereby leading to the induction of galectin-7 expression and subsequent release from the cells. be. A previous study showed that nuclear galectin-7 upregulates MMP9 expression and induces metastasis in HNSCC . Nevertheless, extracellular galectin-7 was not detected in the blood of HNSCC patients. The present study provides evidence that metastasis is correlated with elevated plasma galectin-7 levels, making it likely that extracellular galectin-7 functions as a specific metastasis-promoting factor. Recombinant galectin-7 has been reported to induce apoptosis in human Jurkat T cells in vitro, 55,56 but these studies were performed using non-physiologically high concentrations of galectin-7. . Indeed, it was observed that treatment with galectin-7 did not affect the expression of ISGs in mouse splenic DCs (data not shown). Thus, the metastasis-specific effects of extracellular galectin-7 may be exerted through non-immune cells, and further analysis is required.

ガレクチン-7の発現は癌の不均一性と関連しており、転移形成を促進するが原発腫瘍の増殖は促進しない。詳細な機序はさらなる解析を待つが、その転移特異的作用は独特である。例えば、食道SCC患者の治療では、術前化学療法または放射線療法とそれに続く食道の治癒的切除が現在の標準治療法であるが、患者の特定の集団はリンパ節転移の再発に苦しんでいる57。ガレクチン-7発現の誘導は、著者らの腫瘍モデルにおける細胞アポトーシスならびに免疫抑制と関連するため、術前処置はガレクチン-7発現および分泌を誘導し、それによりSCC患者における腫瘍転移を逆に促進する可能性がある。 Galectin-7 expression is associated with cancer heterogeneity and promotes metastasis formation but not primary tumor growth. Although the detailed mechanism awaits further analysis, its metastasis-specific effects are unique. For example, in the treatment of patients with esophageal SCC, neoadjuvant chemotherapy or radiotherapy followed by curative resection of the esophagus is the current standard of care, but certain populations of patients suffer from recurrence of lymph node metastases57 . Preoperative treatment induces galectin-7 expression and secretion, thereby inversely promoting tumor metastasis in SCC patients, as induction of galectin-7 expression is associated with cell apoptosis as well as immunosuppression in our tumor model there is a possibility.

したがって、ガレクチン-7および免疫抑制に関連する他の転移促進因子は、癌免疫療法の開発の潜在的標的である可能性がある。 Therefore, galectin-7 and other pro-metastasis factors associated with immunosuppression may be potential targets for the development of cancer immunotherapy.

Claims (4)

ガレクチン-7阻害剤を有効成分とする癌転移抑制剤。 A cancer metastasis inhibitor containing a galectin-7 inhibitor as an active ingredient. ガレクチン-7阻害剤が、ガレクチン-7メッセンジャーRNA(mRNA)に相補的な配列を有するオリゴヌクレオチドである、請求項1に記載の癌転移抑制剤。 2. The cancer metastasis suppressor according to claim 1, wherein the galectin-7 inhibitor is an oligonucleotide having a sequence complementary to galectin-7 messenger RNA (mRNA). ガレクチン-7阻害剤が、ガレクチン-7タンパク質に対する抗体である、請求項1に記載の癌転移抑制剤。 2. The cancer metastasis inhibitor according to claim 1, wherein the galectin-7 inhibitor is an antibody against galectin-7 protein. 担癌患者由来試料中のガレクチン-7タンパク質濃度が、標準対照と比較して一定倍数以上高い場合に転移のリスクが高いと判定する方法。 A method to determine that the risk of metastasis is high when the concentration of galectin-7 protein in a sample derived from a cancer-bearing patient is higher than a certain number of times compared to a standard control.
JP2022143622A 2022-09-09 2022-09-09 Cancer metastasis inhibitor using Galectin-7 inhibitor Pending JP2024039229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022143622A JP2024039229A (en) 2022-09-09 2022-09-09 Cancer metastasis inhibitor using Galectin-7 inhibitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022143622A JP2024039229A (en) 2022-09-09 2022-09-09 Cancer metastasis inhibitor using Galectin-7 inhibitor

Publications (1)

Publication Number Publication Date
JP2024039229A true JP2024039229A (en) 2024-03-22

Family

ID=90326441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022143622A Pending JP2024039229A (en) 2022-09-09 2022-09-09 Cancer metastasis inhibitor using Galectin-7 inhibitor

Country Status (1)

Country Link
JP (1) JP2024039229A (en)

Similar Documents

Publication Publication Date Title
Wang et al. Granulocytic myeloid‐derived suppressor cells promote the stemness of colorectal cancer cells through exosomal S100A9
Armacki et al. Protein kinase D1, reduced in human pancreatic tumors, increases secretion of small extracellular vesicles from cancer cells that promote metastasis to lung in mice
Zhao et al. Diminished CD68+ cancer-associated fibroblast subset induces regulatory T-cell (Treg) infiltration and predicts poor prognosis of oral squamous cell carcinoma patients
JP2013509882A (en) Catena: Serous cancer stem cells
Benyamine et al. BTN3A is a prognosis marker and a promising target for Vγ9Vδ2 T cells based-immunotherapy in pancreatic ductal adenocarcinoma (PDAC)
US10501537B2 (en) Methods for treating cancer
JP2019530733A (en) Compositions and methods for treating tumor suppressor deficient cancer
JP2019532096A (en) Compositions and methods for treating tumor suppressor deficient cancer
Shaashua et al. BRCA mutational status shapes the stromal microenvironment of pancreatic cancer linking clusterin expression in cancer associated fibroblasts with HSF1 signaling
CA2953149A1 (en) Dickkopf2 (dkk2) inhibition suppresses tumor formation
Egan et al. Targeting stromal cell sialylation reverses T cell-mediated immunosuppression in the tumor microenvironment
An et al. Identification of Galectin-7 as a crucial metastatic enhancer of squamous cell carcinoma associated with immunosuppression
Muñoz-Cordero et al. Predictive value of EGFR-PI3K-pAKT-mTOR-pS6 pathway in sinonasal squamous cell carcinomas
JP2024039229A (en) Cancer metastasis inhibitor using Galectin-7 inhibitor
Melia et al. Pro-tumorigenic role of type 2 diabetes-induced cellular senescence in colorectal cancer
WO2022049867A1 (en) Tumor immune microenvironment regulator, and preventive, diagnostic or therapeutic use thereof
Sanchez et al. Host CLIC4 expression in the tumor microenvironment is essential for breast cancer metastatic competence
Feng et al. A novel PDPN antagonist peptide CY12-RP2 inhibits melanoma growth via Wnt/β-catenin and modulates the immune cells
Wang et al. E2F1-EP300 co-activator complex potentiates immune escape in nasopharyngeal carcinoma through the mediation of MELK
Twum Interferon regulatory factor 8 (IRF8) transcriptionally regulates the macrophage response during tumor immunosurveillance
Chen et al. RGS1 serves as an anti-tumor target to inhibit proliferation of NICN87-DR cells and tumor growth in gastric cancer mouse model
Lee et al. Concordance and deviations of the PDX tumors from the primary tumors of NSCLC patients: effects of murine fibroblasts on low engraftment rates
Chang et al. NLRP6 deficiency suppresses colorectal cancer liver metastasis growth by modulating M-MDSC-induced immunosuppressive microenvironment
Yang et al. Exosome-delivered miR-15a/16 target PD-L1 to inhibit immune escape in gastric cancer
Vinaixa Forner Role of Galectin-1 in pancreatic cancer stroma, a small but mischievous protein with a novel nuclear function