JP2024037197A - Carbonaceous material, negative electrode for power storage device, power storage device, and method for manufacturing carbonaceous material - Google Patents

Carbonaceous material, negative electrode for power storage device, power storage device, and method for manufacturing carbonaceous material Download PDF

Info

Publication number
JP2024037197A
JP2024037197A JP2022141826A JP2022141826A JP2024037197A JP 2024037197 A JP2024037197 A JP 2024037197A JP 2022141826 A JP2022141826 A JP 2022141826A JP 2022141826 A JP2022141826 A JP 2022141826A JP 2024037197 A JP2024037197 A JP 2024037197A
Authority
JP
Japan
Prior art keywords
carbonaceous material
mass
compound
acid
element content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022141826A
Other languages
Japanese (ja)
Inventor
啓一 西村
Keiichi Nishimura
尚大 西村
Hisahiro Nishimura
淳 ▲高▼井
Atsushi Takai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2022141826A priority Critical patent/JP2024037197A/en
Publication of JP2024037197A publication Critical patent/JP2024037197A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a carbonaceous material capable of providing a power storage device which has a high discharge capacity and excellent current efficiency per weight and can maintain a high discharge capacity even after repeated charging and discharging when applied as a negative electrode layer and being excellent in coatability capable of improving the yield of an electrode.SOLUTION: A carbonaceous material has a nitrogen element content of 1.0 mass% or more, an oxygen element content of 0.6 mass% or more and 2.0 mass% or less, a hydrogen element content of 0.1 mass% or less, and a phosphorus element content of 0.1 mass% or more and 2.0 mass% or less by X-ray fluorescence analysis.SELECTED DRAWING: None

Description

本発明は、炭素質材料、蓄電デバイス用負極、蓄電デバイス、及び炭素質材料の製造方法に関する。 The present invention relates to a carbonaceous material, a negative electrode for a power storage device, a power storage device, and a method for manufacturing a carbonaceous material.

蓄電デバイスは、電気化学的な現象を利用する二次電池及びキャパシタ等のデバイスであり、広く利用されている。例えば、蓄電デバイスの1つであるリチウムイオン二次電池は、携帯電話やノートパソコンのような小型携帯機器に広く用いられている。リチウムイオン二次電池の負極材料としては、黒鉛の理論容量372mAh/gを超える量のリチウムのドープ(充電)及び脱ドープ(放電)が可能な難黒鉛化性炭素が開発され(例えば特許文献1)、使用されてきた。 Electricity storage devices are devices such as secondary batteries and capacitors that utilize electrochemical phenomena, and are widely used. For example, lithium ion secondary batteries, which are one type of power storage device, are widely used in small portable devices such as mobile phones and notebook computers. Non-graphitizable carbon, which can be doped (charged) and dedoped (discharged) with lithium in an amount exceeding the theoretical capacity of graphite of 372 mAh/g, has been developed as a negative electrode material for lithium ion secondary batteries (for example, Patent Document 1 ), has been used.

難黒鉛化性炭素は、例えば石油ピッチ、石炭ピッチ、フェノール樹脂、植物を炭素源として得ることができる。これらの炭素源の中でも、例えば糖化合物などの植物由来の原料は、栽培することによって持続して安定的に供給可能な原料であり、安価に入手できるため注目されている。また、植物由来の炭素原料を焼成して得られる炭素質材料には、細孔が多く存在するため、良好な充放電容量が期待される(例えば特許文献1及び特許文献2)。 Non-graphitizable carbon can be obtained from, for example, petroleum pitch, coal pitch, phenolic resin, or plants as a carbon source. Among these carbon sources, plant-derived raw materials such as sugar compounds are attracting attention because they can be continuously and stably supplied through cultivation and can be obtained at low cost. In addition, since carbonaceous materials obtained by firing plant-derived carbon raw materials have many pores, good charge and discharge capacity is expected (for example, Patent Document 1 and Patent Document 2).

また、リチウムイオン二次電池等の負極として使用され得る炭素質材料として、炭素元素以外の種々の元素を特定量含むように調整した炭素質材料(特許文献3)などが知られている。 Further, as carbonaceous materials that can be used as negative electrodes of lithium ion secondary batteries and the like, carbonaceous materials adjusted to contain specific amounts of various elements other than carbon (Patent Document 3) are known.

国際公開第2019/009332号International Publication No. 2019/009332 国際公開第2019/009333号International Publication No. 2019/009333 特開2009-200014号公報Japanese Patent Application Publication No. 2009-200014

特許文献1~3の炭素質材料では、高い充放電容量を発現する負極材料として使用されることが知られてはいるものの、蓄電デバイスの様々な用途において、負極のさらなる高容量化と電流効率の向上に対する要求はなお存在する。また、繰り返しの充放電を経ても高い放電容量を維持することが求められる。さらに電極として塗工する際に、炭素質材料の凝集等によるブツが電極上に生じることで、電極の歩留まりが低下する可能性があった。したがって、本発明は、負極層として適用される際に、重量あたりの高い放電容量と高い電流効率を有すると共に、繰り返しの充放電を経ても高い放電容量を維持することができる蓄電デバイスを提供することが可能であり、かつ電極の歩留まりを改善できる塗工性に優れた炭素質材料を提供することを目的とする。また、本発明は、そのような炭素質材料を含む蓄電デバイス用負極、及びそのような蓄電デバイス用負極を含む蓄電デバイスを提供することを目的とする。 Although it is known that the carbonaceous materials described in Patent Documents 1 to 3 are used as negative electrode materials that exhibit high charge/discharge capacity, it is necessary to further increase the capacity and current efficiency of the negative electrode in various applications of electricity storage devices. There is still a need for improvements in Furthermore, it is required to maintain high discharge capacity even after repeated charging and discharging. Furthermore, when coating as an electrode, spots due to agglomeration of the carbonaceous material may be formed on the electrode, which may reduce the yield of the electrode. Therefore, the present invention provides an electricity storage device that has high discharge capacity per weight and high current efficiency when applied as a negative electrode layer, and can maintain high discharge capacity even after repeated charging and discharging. The purpose of the present invention is to provide a carbonaceous material with excellent coating properties that can improve the yield of electrodes. Another object of the present invention is to provide a negative electrode for a power storage device including such a carbonaceous material, and a power storage device including such a negative electrode for a power storage device.

本発明者らが鋭意研究した結果、炭素質材料における窒素元素含有量、酸素元素含有量、水素元素含有量、及びリン元素含有量を所定の範囲内とすることによって、重量あたりの高い放電容量と、優れた電流効率を有すると共に、繰り返しの充放電を経ても高い放電容量を維持することが可能な蓄電デバイスに適しており、かつ電極の歩留まりを改善できる塗工性に優れた炭素質材料を得られることが分かった。 As a result of intensive research by the present inventors, it has been found that by setting the nitrogen element content, oxygen element content, hydrogen element content, and phosphorus element content in the carbonaceous material within predetermined ranges, a high discharge capacity per weight can be achieved. A carbonaceous material that has excellent current efficiency, is suitable for power storage devices that can maintain high discharge capacity even after repeated charging and discharging, and has excellent coating properties that can improve the yield of electrodes. I found out that I can get .

すなわち、本発明は、以下の好適な態様を包含する。
〔1〕元素分析による、窒素元素含有量が1.0質量%以上であり、酸素量が0.60質量%以上2.0質量%以下であり、水素元素含有量が0.1質量%以下であり、蛍光X線分析によるリン元素含有量が0.1質量%以上2.0質量%以下である、炭素質材料。
〔2〕X線回折測定による炭素面間隔(d002)が3.65Å以上である、〔1〕に記載の炭素質材料。
〔3〕レーザーラマン分光法により観測されるラマンスペクトルにおいて、1360cm-1付近のピークの半値幅の値が210cm-1以上である、〔1〕又は〔2〕に記載の炭素質材料。
〔4〕蓄電デバイスの負極用炭素質材料である、〔1〕~〔3〕のいずれかに記載の炭素質材料。
〔5〕〔1〕~〔4〕のいずれかに記載の炭素質材料を含む、蓄電デバイス用負極。
〔6〕〔5〕に記載の蓄電デバイス用負極を含む、蓄電デバイス。
〔7〕以下の工程:
(1)糖類骨格を有する化合物、及び窒素含有化合物を混合して混合物を得る工程、
(2)前記混合物を、不活性ガス雰囲気下、500~900℃で熱処理して炭化物を得る工程、
(3)前記炭化物を粉砕及び/又は分級する工程
(4)粉砕及び/又は分級された前記炭化物を、不活性ガス雰囲気下、1100~1600℃で熱処理する工程、及び
(5)前記熱処理物にカルボン酸化合物または糖類骨格を有する化合物を混合し、100℃~300℃で熱処理して炭素質材料を得る工程
を少なくとも含み、
(a)前記工程(4)における熱処理よりも前に、糖類骨格を有する化合物、該化合物を含む混合物、又は、該混合物の炭化物と、リン含有化合物とを混合する工程
を含む、〔1〕~〔4〕のいずれかに記載の炭素質材料の製造方法。
That is, the present invention includes the following preferred embodiments.
[1] According to elemental analysis, the nitrogen element content is 1.0 mass% or more, the oxygen amount is 0.60 mass% or more and 2.0 mass% or less, and the hydrogen element content is 0.1 mass% or less A carbonaceous material having a phosphorus element content of 0.1% by mass or more and 2.0% by mass or less as determined by X-ray fluorescence analysis.
[2] The carbonaceous material according to [1], which has a carbon plane spacing (d 002 ) of 3.65 Å or more as measured by X-ray diffraction.
[3] The carbonaceous material according to [1] or [2], wherein the half-width value of the peak near 1360 cm -1 is 210 cm -1 or more in the Raman spectrum observed by laser Raman spectroscopy.
[4] The carbonaceous material according to any one of [1] to [3], which is a carbonaceous material for a negative electrode of an electricity storage device.
[5] A negative electrode for an electricity storage device, comprising the carbonaceous material according to any one of [1] to [4].
[6] An electricity storage device comprising the negative electrode for an electricity storage device according to [5].
[7] The following steps:
(1) A step of mixing a compound having a sugar skeleton and a nitrogen-containing compound to obtain a mixture;
(2) heat-treating the mixture at 500 to 900°C under an inert gas atmosphere to obtain a carbide;
(3) a step of pulverizing and/or classifying the carbide; (4) a step of heat-treating the pulverized and/or classified carbide at 1100 to 1600°C in an inert gas atmosphere; At least a step of mixing a carboxylic acid compound or a compound having a saccharide skeleton and heat-treating the mixture at 100°C to 300°C to obtain a carbonaceous material,
(a) Prior to the heat treatment in step (4), it includes a step of mixing a compound having a sugar skeleton, a mixture containing the compound, or a carbonized product of the mixture, and a phosphorus-containing compound, [1] to The method for producing a carbonaceous material according to any one of [4].

本発明によれば、重量あたりの高い放電容量と、優れた電流効率を有すると共に、繰り返しの充放電を経ても高い放電容量を維持することが可能な蓄電デバイスに適しており、電極の歩留まりを改善できる塗工性にも優れた炭素質材料を提供することができる。なお、本明細書中では、初回の電流効率と繰り返し充放電後の容量維持率を掛け合わせたものを全効率と定義し、全効率が高い電池を上記の特性に優れた電池とする。 According to the present invention, it is suitable for an electricity storage device that has a high discharge capacity per weight, excellent current efficiency, and can maintain a high discharge capacity even after repeated charging and discharging. It is possible to provide a carbonaceous material with excellent coating properties that can be improved. In this specification, the total efficiency is defined as the product of the initial current efficiency and the capacity retention rate after repeated charging and discharging, and a battery with a high total efficiency is considered to be a battery excellent in the above characteristics.

以下、本発明の実施形態について詳細に説明する。なお、本発明を以下の実施形態に制限する趣旨ではない。 Embodiments of the present invention will be described in detail below. Note that the present invention is not intended to be limited to the following embodiments.

本明細書において、蓄電デバイスとは、炭素質材料を含有する負極を含み、かつ電気化学的な現象を利用するデバイス全般をいう。具体的には、蓄電デバイスは、例えば、充電により繰り返し使用が可能である、リチウムイオン二次電池、ニッケル水素二次電池、ニッケルカドミウム二次電池等の二次電池及び電気二重層キャパシタ等のキャパシタ等を含む。これらのうち、蓄電デバイスは、二次電池、特に非水電解質二次電池(例えばリチウムイオン二次電池、ナトリウムイオン電池、リチウム硫黄電池、リチウム空気電池、全固体電池、有機ラジカル電池等)であってよく、中でもリチウムイオン二次電池であってよい。 In this specification, an electricity storage device refers to any device that includes a negative electrode containing a carbonaceous material and utilizes electrochemical phenomena. Specifically, power storage devices include, for example, secondary batteries such as lithium ion secondary batteries, nickel hydride secondary batteries, and nickel cadmium secondary batteries, and capacitors such as electric double layer capacitors, which can be used repeatedly by charging. Including etc. Among these, power storage devices are secondary batteries, especially non-aqueous electrolyte secondary batteries (e.g. lithium ion secondary batteries, sodium ion batteries, lithium sulfur batteries, lithium air batteries, all-solid-state batteries, organic radical batteries, etc.). Among them, it may be a lithium ion secondary battery.

本発明の炭素質材料は、重量あたりの高い放電容量と、優れた電流効率を有すると共に、繰り返しの充放電を経ても高い放電容量を維持することが可能な蓄電デバイスを提供するのに適しているのみでなく、電極の歩留まりを改善できる塗工性にも優れた炭素質材料である。すなわち本発明の炭素質材料は、元素分析による窒素元素含有量が1.0質量%以上であり、酸素量が0.60質量%以上2.0質量%以下であり、水素元素含有量が0.1質量%以下であり、蛍光X線分析によるリン元素含有量が0.1質量%以上2.0質量%以下である。 The carbonaceous material of the present invention has high discharge capacity per weight, excellent current efficiency, and is suitable for providing an electricity storage device that can maintain high discharge capacity even after repeated charging and discharging. It is a carbonaceous material that not only has excellent coating properties, but also has excellent coating properties that can improve the yield of electrodes. That is, the carbonaceous material of the present invention has a nitrogen element content of 1.0 mass% or more, an oxygen content of 0.60 mass% or more and 2.0 mass% or less, and a hydrogen element content of 0. .1 mass% or less, and the phosphorus element content as determined by fluorescent X-ray analysis is 0.1 mass% or more and 2.0 mass% or less.

本発明の炭素質材料の蛍光X線分析によるリン元素含有量は0.1質量%以上2.0質量%以下である。リン元素含有量は、炭素質材料を蛍光X線分析して得られる分析値である。リン元素含有量が0.1質量%未満である場合、充放電時にリチウムイオンを吸脱着するサイトが少なくなるため、重量あたりの放電容量及び電流効率を十分に高めることができない。リン元素含有量は、放電容量及び電流効率をより高めやすい観点から、好ましくは0.3質量%以上、より好ましくは0.5質量%以上、さらに好ましくは0.7質量%以上、さらにより好ましくは0.9質量%以上、とりわけ好ましくは1.2質量%以上である。また、リン元素含有量が2.0質量%を超える場合、リチウムイオンを不可逆的に吸着するサイトが発生しやすくなり、繰り返しの充放電において容量を維持しにくくなり、高い放電容量を維持することが難しくなる。繰り返しの充放電後も高い放電容量を維持しやすい観点から、本発明の炭素質材料の蛍光X線分析によるリン元素含有量は2.0質量%以下であり、好ましくは1.9質量%以下、より好ましくは1.8質量%以下、さらに好ましくは1.75質量%以下である。炭素質材料の蛍光X線分析によるリン元素含有量は、炭素質材料を製造する際に添加され得るリン元素含有化合物の添加量を調整すること、熱処理を施す温度、時間を調整すること等により、上記の範囲に調整することができる。 The phosphorus element content of the carbonaceous material of the present invention as determined by X-ray fluorescence analysis is 0.1% by mass or more and 2.0% by mass or less. The phosphorus element content is an analytical value obtained by subjecting a carbonaceous material to fluorescent X-ray analysis. When the phosphorus element content is less than 0.1% by mass, the number of sites for adsorbing and desorbing lithium ions during charging and discharging decreases, making it impossible to sufficiently increase the discharge capacity and current efficiency per weight. The phosphorus element content is preferably 0.3% by mass or more, more preferably 0.5% by mass or more, still more preferably 0.7% by mass or more, and even more preferably from the viewpoint of easily increasing discharge capacity and current efficiency. is 0.9% by mass or more, particularly preferably 1.2% by mass or more. In addition, if the phosphorus element content exceeds 2.0% by mass, sites that irreversibly adsorb lithium ions are likely to occur, making it difficult to maintain capacity during repeated charging and discharging, making it difficult to maintain high discharge capacity. becomes difficult. From the viewpoint of easily maintaining a high discharge capacity even after repeated charging and discharging, the phosphorus element content of the carbonaceous material of the present invention determined by fluorescent X-ray analysis is 2.0% by mass or less, preferably 1.9% by mass or less. , more preferably 1.8% by mass or less, still more preferably 1.75% by mass or less. The phosphorus element content of carbonaceous materials determined by X-ray fluorescence analysis can be determined by adjusting the amount of phosphorus element-containing compounds that may be added when manufacturing carbonaceous materials, and by adjusting the temperature and time of heat treatment. , can be adjusted within the above range.

本発明の炭素質材料の元素分析による窒素元素含有量は1.0質量%以上であり、水素元素含有量は0.1質量%以下である。窒素元素含有量及び水素元素含有量は、炭素質材料を元素分析して得られる分析値である。炭素質材料が窒素元素を1.0質量%以上含むと共に、水素元素含有量が0.1質量%以下であることによって、リン元素のみを含む炭素質材料や水素元素含有量が高い炭素質材料に比べて、放電容量と電流効率をさらに高められ、かつ、繰り返しの充放電を経ても高い放電容量を維持することができることを見出した。窒素元素を含まずリン元素を含む炭素質材料においては、リン元素が酸化されやすいことに由来して、電流効率が低下する場合がある。これに対し、窒素元素とリン元素を共に含む炭素質材料は、理由は明らかではないが、リン元素の還元が起きやすく、酸素元素含有量が小さくなる傾向にあり、電流効率を高めることができると考えられる。加えて、窒素元素含有量が1.0質量%未満である場合、炭素面が互いに近接することにより充放電時にリチウムイオンを吸脱着するサイトが少なくなるため、この点でも、重量あたりの放電容量を十分に高めることができないと考えられる。また、水素元素含有量が0.1質量%を超える炭素質材料の場合には、Liイオンと電解液との反応などの副反応が生じやすくなり、その結果、Liイオンの不可逆容量が増加し、繰り返しの充放電を経ても高い放電容量を維持するということが難しくなると考えられる。これに対し、水素元素含有量が0.1質量%以下であることによって、このような副反応を抑制できると考えられる。 The nitrogen element content according to elemental analysis of the carbonaceous material of the present invention is 1.0 mass % or more, and the hydrogen element content is 0.1 mass % or less. The nitrogen element content and the hydrogen element content are analytical values obtained by elemental analysis of a carbonaceous material. The carbonaceous material contains 1.0% by mass or more of the nitrogen element and the hydrogen element content is 0.1% by mass or less, thereby creating a carbonaceous material containing only the phosphorus element or a carbonaceous material with a high hydrogen element content. It has been found that the discharge capacity and current efficiency can be further increased compared to the conventional method, and that the high discharge capacity can be maintained even after repeated charging and discharging. In a carbonaceous material that does not contain nitrogen but contains phosphorus, current efficiency may decrease because phosphorus is easily oxidized. On the other hand, carbonaceous materials containing both nitrogen and phosphorus elements tend to undergo reduction of the phosphorus element, which tends to reduce the oxygen element content, for reasons that are not clear, and can increase current efficiency. it is conceivable that. In addition, when the nitrogen element content is less than 1.0% by mass, the carbon surfaces are close to each other, which reduces the number of sites for adsorbing and desorbing lithium ions during charging and discharging, so this also reduces the discharge capacity per weight. It is considered that it is not possible to sufficiently increase the In addition, in the case of carbonaceous materials with a hydrogen element content of more than 0.1% by mass, side reactions such as reactions between Li ions and electrolyte tend to occur, and as a result, the irreversible capacity of Li ions increases. It is thought that it becomes difficult to maintain a high discharge capacity even after repeated charging and discharging. On the other hand, it is considered that such side reactions can be suppressed by having a hydrogen element content of 0.1% by mass or less.

窒素元素含有量は、放電容量と電流効率をより高めやすい観点から好ましくは1.10質量%以上、より好ましくは1.15質量%以上、さらに好ましくは1.20質量%以上である。また、窒素元素含有量の上限は、充放電を繰り返した時の放電容量低下抑制及び電流効率向上の観点から、好ましくは8.0質量%以下、より好ましくは6.0質量%以下、さらに好ましくは5.0質量%以下、さらにより好ましくは4.0質量%以下、とりわけ好ましくは2.0質量%以下、とりわけより好ましくは1.5質量%以下、ことさら好ましくは1.30質量%以下、ことさらより好ましくは1.28質量%以下である。炭素質材料の元素分析による窒素元素含有量は、炭素質材料を製造する際に添加され得る窒素含有化合物の添加量を調整すること、熱処理を施す温度、時間を調整する等により、上記の範囲に調整することができる。 The nitrogen element content is preferably 1.10% by mass or more, more preferably 1.15% by mass or more, and even more preferably 1.20% by mass or more from the viewpoint of easily increasing discharge capacity and current efficiency. Further, the upper limit of the nitrogen element content is preferably 8.0% by mass or less, more preferably 6.0% by mass or less, and even more preferably is 5.0% by mass or less, even more preferably 4.0% by mass or less, especially preferably 2.0% by mass or less, especially more preferably 1.5% by mass or less, even more preferably 1.30% by mass or less, More preferably, it is 1.28% by mass or less. The nitrogen element content determined by elemental analysis of the carbonaceous material can be determined within the above range by adjusting the amount of nitrogen-containing compounds that may be added when manufacturing the carbonaceous material, adjusting the temperature and time of heat treatment, etc. can be adjusted to

水素元素含有量は、充放電を繰り返した時の放電容量低下抑制及び電流効率向上の観点から、好ましくは0.10質量%以下、より好ましくは0.08質量%以下、さらに好ましくは0.06質量%以下、さらにより好ましくは0.05質量%以下である。また、水素元素含有量の下限は、0質量%以上である。炭素質材料の元素分析による水素元素含有量は、炭素質材料を製造する際に添加され得る窒素含有化合物の添加量やリン含有化合物を調整すること、熱処理を施す温度、時間を調整すること等により、上記の範囲に調整することができる。 The hydrogen element content is preferably 0.10% by mass or less, more preferably 0.08% by mass or less, and even more preferably 0.06% by mass, from the viewpoint of suppressing discharge capacity reduction and improving current efficiency when charging and discharging are repeated. It is not more than 0.05% by mass, even more preferably not more than 0.05% by mass. Further, the lower limit of the hydrogen element content is 0% by mass or more. The hydrogen element content determined by elemental analysis of carbonaceous materials can be determined by adjusting the amount of nitrogen-containing compounds and phosphorus-containing compounds that may be added when manufacturing carbonaceous materials, and by adjusting the temperature and time of heat treatment. It can be adjusted within the above range.

本発明の炭素質材料の元素分析による酸素元素含有量は、0.60質量%以上2.0質量%以下である。酸素元素含有量を上記の範囲に調整することにより、高い放電容量と、優れた電流効率を有すると共に、繰り返しの充放電を経ても高い放電容量を維持することが可能であるだけでなく、電極の歩留まりを改善できる塗工性に優れた炭素質材料を提供することが可能となる。酸素量の下限は塗工性の観点から、好ましくは0.70質量%以上、より好ましくは0.80質量%以上、さらに好ましくは0.90質量%以上である。また、酸素元素含有量の上限は、放電容量と電流効率向上の観点から、好ましくは4.0質量%以下、より好ましくは3.0質量%以下、さらに好ましくは2.0質量%以下、さらにより好ましくは1.5質量%以下、とりわけ好ましくは1.0質量%以下である。炭素質材料の元素分析による酸素元素含有量は、炭素質材料を製造する際に添加され得る窒素含有化合物の添加量、添加され得るリン含有化合物の添加量、熱処理を施す温度、時間を調整する等によって調整され、加えて後述する後熱処理によって添加する添加剤の量、熱処理を施す温度、時間を調整することによって、上記の範囲に調整することができる。 The oxygen element content of the carbonaceous material of the present invention as determined by elemental analysis is 0.60% by mass or more and 2.0% by mass or less. By adjusting the oxygen element content within the above range, it is possible not only to have high discharge capacity and excellent current efficiency, but also to maintain high discharge capacity even after repeated charging and discharging. It becomes possible to provide a carbonaceous material with excellent coating properties that can improve the yield of carbonaceous materials. From the viewpoint of coatability, the lower limit of the oxygen amount is preferably 0.70% by mass or more, more preferably 0.80% by mass or more, and still more preferably 0.90% by mass or more. Further, from the viewpoint of improving discharge capacity and current efficiency, the upper limit of the oxygen element content is preferably 4.0% by mass or less, more preferably 3.0% by mass or less, still more preferably 2.0% by mass or less, and It is more preferably 1.5% by mass or less, particularly preferably 1.0% by mass or less. The oxygen element content determined by elemental analysis of the carbonaceous material is determined by adjusting the amount of nitrogen-containing compounds that may be added when manufacturing the carbonaceous material, the amount of phosphorus-containing compounds that may be added, and the temperature and time of heat treatment. In addition, the above range can be adjusted by adjusting the amount of additives added in the post-heat treatment described later, the temperature and time of the heat treatment.

本発明の炭素質材料のX線回折測定による炭素面間隔(d002)は、炭素面の間隔を広くし、リチウムイオンを効率的に移動させやすくすると共に、微小細孔を十分に発達させクラスター化リチウムの吸蔵サイトを増加させ、重量あたりの放電容量及び電流効率を高めやすい観点から、好ましくは3.65Å以上、より好ましくは3.68Å以上、さらに好ましくは3.70Å以上、さらにより好ましくは3.71Å以上、とりわけ好ましくは3.73Å以上である。また、炭素面間隔(d002)の上限は、d002を適度に小さくすることで炭素質材料の体積を適度に小さくし、体積あたりの実行容量を高め、体積あたりの放電容量を高めやすい観点からは、好ましくは4.00Å以下、より好ましくは3.95Å以下、さらに好ましくは3.90Å以下、さらにより好ましくは3.85Å以下である。炭素面間隔(d002)は、X線回折測定によりBragg式を用いて測定され、具体的には実施例に記載の方法により測定される。炭素面間隔(d002)は、炭素質材料を製造する際に添加され得る窒素含有化合物の添加量を調整すること、熱処理を施す温度、時間を調整すること等により、上記の範囲に調整することができる。 The carbon plane spacing (d 002 ) measured by X-ray diffraction of the carbonaceous material of the present invention is determined by widening the carbon plane spacing, making it easier for lithium ions to move efficiently, and by sufficiently developing micropores to form clusters. From the viewpoint of increasing the occlusion sites of lithium chloride and easily increasing the discharge capacity and current efficiency per weight, preferably 3.65 Å or more, more preferably 3.68 Å or more, still more preferably 3.70 Å or more, and even more preferably The thickness is 3.71 Å or more, particularly preferably 3.73 Å or more. In addition, the upper limit of the carbon plane spacing ( d002 ) is determined from the viewpoint that by appropriately reducing d002 , the volume of the carbonaceous material can be appropriately reduced, the effective capacity per volume can be increased, and the discharge capacity per volume can be easily increased. , preferably 4.00 Å or less, more preferably 3.95 Å or less, still more preferably 3.90 Å or less, and even more preferably 3.85 Å or less. The carbon spacing (d 002 ) is measured by X-ray diffraction measurement using the Bragg equation, and specifically, by the method described in Examples. The carbon spacing (d 002 ) is adjusted within the above range by adjusting the amount of nitrogen-containing compound that may be added when manufacturing the carbonaceous material, adjusting the temperature and time of heat treatment, etc. be able to.

本発明の好ましい一態様において、本発明の炭素質材料のレーザーラマン分光法により観測されるラマンスペクトルにおける、1360cm-1付近のピークの半値幅の値は、炭素質材料を用いて作製した電極の放電容量をより高めやすい観点から、好ましくは210cm-1以上、より好ましくは220cm-1以上、さらに好ましくは230cm-1以上、さらにより好ましくは240cm-1以上である。ここで、1360cm-1付近のピークとは、一般にDバンドと称されるラマンピークであり、グラファイト構造の乱れ・欠陥に起因するピークである。1360cm-1付近のピークは、通常、1345cm-1~1375cm-1、好ましくは1350cm-1~1370cm-1の範囲に観測される。該ラマンスペクトルは、ラマン分光器を用いて、例えば実施例に記載の条件にて測定される。1360cm-1付近のピークの半値幅の値は、炭素質材料を製造する際に添加され得る窒素含有化合物の添加量を調整すること、熱処理を施す温度、時間を調整すること等により、上記の範囲に調整することができる。 In a preferred embodiment of the present invention, the half-value width of the peak near 1360 cm -1 in the Raman spectrum observed by laser Raman spectroscopy of the carbonaceous material of the present invention is the same as that of the electrode fabricated using the carbonaceous material. From the viewpoint of easily increasing the discharge capacity, it is preferably 210 cm -1 or more, more preferably 220 cm -1 or more, even more preferably 230 cm -1 or more, and even more preferably 240 cm -1 or more. Here, the peak near 1360 cm -1 is a Raman peak generally referred to as the D band, and is a peak resulting from disorder/defects in the graphite structure. The peak around 1360 cm −1 is usually observed in the range of 1345 cm −1 to 1375 cm −1 , preferably 1350 cm −1 to 1370 cm −1 . The Raman spectrum is measured using a Raman spectrometer under the conditions described in Examples, for example. The value of the half-width of the peak near 1360 cm -1 can be determined by adjusting the amount of nitrogen-containing compounds that may be added when manufacturing the carbonaceous material, and by adjusting the temperature and time of heat treatment. Can be adjusted to the range.

本発明の好ましい一態様において、本発明の炭素質材料のレーザーラマン分光法により観測されるラマンスペクトルにおける、1650cm-1付近のピークの半値幅の値は、炭素質材料を用いて作製した電極の重量あたりの放電容量をより高めやすい観点から、好ましくは98cm-1以上、より好ましくは100cm-1以上、さらに好ましくは101cm-1以上、さらにより好ましくは102cm-1以上である。ここで、1650cm-1付近のピークとは、一般にGバンドと称されるラマンピークであり、グラファイト構造の乱れ・欠陥に起因するピークである。1650cm-1付近のピークは、通常、90cm-1~120cm-1の範囲、好ましくは100cm-1~110cm-1の範囲に観測される。該ラマンスペクトルは、ラマン分光器を用いて、例えば実施例に記載の条件にて測定される。1650cm-1付近のピークの半値幅の値は、炭素質材料を製造する際に添加され得る窒素含有化合物の添加量を調整すること、熱処理を施す温度、時間を調整すること等により、上記の範囲に調整することができる。 In a preferred embodiment of the present invention, the half-width value of the peak near 1650 cm −1 in the Raman spectrum observed by laser Raman spectroscopy of the carbonaceous material of the present invention is the same as that of the electrode made using the carbonaceous material. From the viewpoint of easily increasing the discharge capacity per weight, it is preferably 98 cm -1 or more, more preferably 100 cm -1 or more, even more preferably 101 cm -1 or more, and even more preferably 102 cm -1 or more. Here, the peak near 1650 cm -1 is a Raman peak generally referred to as the G band, and is a peak caused by disorder/defects in the graphite structure. The peak around 1650 cm -1 is usually observed in the range of 90 cm -1 to 120 cm -1 , preferably in the range of 100 cm -1 to 110 cm -1 . The Raman spectrum is measured using a Raman spectrometer under the conditions described in Examples, for example. The value of the half-width of the peak near 1650 cm -1 can be determined by adjusting the amount of nitrogen-containing compounds that may be added when producing the carbonaceous material, and by adjusting the temperature and time of heat treatment. Can be adjusted to the range.

本発明の炭素質材料において、炭素質材料を用いて得られる負極の電極密度を高めやすく、その結果、重量あたりの放電容量に加えて体積あたりの放電容量も高めやすい観点からは、炭素質材料のブタノール浸漬法による真密度は、好ましくは1.50g/cc以上、より好ましくは1.51g/cc以上、さらに好ましくは1.52g/cc以上、さらにより好ましくは1.55g/cc以上であり、好ましくは1.65g/cc以下、より好ましくは1.64g/cc以下、さらに好ましくは1.62g/cc以下、さらにより好ましくは1.60g/cc以下である。 In the carbonaceous material of the present invention, the carbonaceous material The true density by the butanol immersion method is preferably 1.50 g/cc or more, more preferably 1.51 g/cc or more, still more preferably 1.52 g/cc or more, even more preferably 1.55 g/cc or more. , preferably 1.65 g/cc or less, more preferably 1.64 g/cc or less, even more preferably 1.62 g/cc or less, even more preferably 1.60 g/cc or less.

本発明の炭素質材料において、電極密度を高めやすい観点からは、炭素質材料のタップ嵩密度は、好ましくは0.70g/cc以上、より好ましくは0.72g/cc以上、さらに好ましくは0.75g/cc以上、さらにより好ましくは0.78g/cc以上、とりわけ好ましくは0.80g/cc以上である。また、該タップ嵩密度は、電極を作成する際の電解液の吸液性の観点から、好ましくは1.0g/cc以下、より好ましくは0.97g/cc以下、さらに好ましくは0.95g/cc以下、さらにより好ましくは0.93g/cc以下、とりわけ好ましくは0.91g/cc以下である。炭素質材料のタップ嵩密度は、目開き300μmの篩を通して炭素質材料を充填した直径1.8cmの円筒状のガラス製容器を、5cmの高さから自由落下させることを100回繰り返す工程を1セットとして、炭素質材料の体積と質量から求められる密度の変化率が1セットの操作の前後で2%以下となるまで繰り返して測定される。 In the carbonaceous material of the present invention, from the viewpoint of easily increasing the electrode density, the tap bulk density of the carbonaceous material is preferably 0.70 g/cc or more, more preferably 0.72 g/cc or more, and still more preferably 0.70 g/cc or more. It is 75 g/cc or more, even more preferably 0.78 g/cc or more, particularly preferably 0.80 g/cc or more. In addition, the tap bulk density is preferably 1.0 g/cc or less, more preferably 0.97 g/cc or less, and even more preferably 0.95 g/cc, from the viewpoint of liquid absorption of the electrolyte when making the electrode. cc or less, even more preferably 0.93 g/cc or less, particularly preferably 0.91 g/cc or less. The tap bulk density of the carbonaceous material is determined by repeating the step of letting a cylindrical glass container with a diameter of 1.8 cm filled with the carbonaceous material pass through a sieve with an opening of 300 μm and freely fall from a height of 5 cm 100 times. As a set, measurements are repeated until the rate of change in density determined from the volume and mass of the carbonaceous material becomes 2% or less before and after one set of operations.

本発明の炭素質材料において、電極密度を高めやすい観点からは、炭素質材料のレーザー回折散乱式粒度分布測定法による体積基準粒度分布におけるD20に対するD80の割合D80/D20は、好ましくは3.5以上、より好ましくは4.0以上、さらに好ましくは4.5以上、さらにより好ましくは5.0以上、とりわけ好ましくは5.5以上、とりわけより好ましくは6.0以上であり、同様の観点から、好ましくは18以下、より好ましくは16以下、さらに好ましくは15以下である。D80/D20は、レーザー回折散乱式粒度分布測定法による体積基準粒度分布は、炭素質材料の分散液を測定試料とし、粒子径・粒度分布測定装置を用いて測定することができ、該粒度分布における、累積体積が80%となる粒子径をD80、累積体積が20%となる粒子径をD20とする。 In the carbonaceous material of the present invention, from the viewpoint of easily increasing the electrode density, the ratio D 80 /D 20 of D 80 to D 20 in the volume-based particle size distribution measured by the laser diffraction scattering particle size distribution measurement method of the carbonaceous material is preferably is 3.5 or more, more preferably 4.0 or more, even more preferably 4.5 or more, even more preferably 5.0 or more, particularly preferably 5.5 or more, particularly preferably 6.0 or more, From the same viewpoint, it is preferably 18 or less, more preferably 16 or less, and even more preferably 15 or less. D 80 /D 20 is a volume-based particle size distribution measured by a laser diffraction scattering particle size distribution measurement method, which can be measured using a particle size/particle size distribution measuring device using a carbonaceous material dispersion as a measurement sample. In the particle size distribution, the particle diameter at which the cumulative volume is 80% is D 80 , and the particle diameter at which the cumulative volume is 20% is D 20 .

本発明の炭素質材料において、電極密度を高めやすい観点からは、炭素質材料のフロー式粒子像分析装置による投影面積に相当する円の直径が5μm以上の粒子について測定した円形度が、好ましくは0.70以上、より好ましくは0.71以上、さらに好ましくは0.72以上、さらにより好ましくは0.73以上であり、同様の観点から、好ましくは0.99以下、より好ましくは0.98以下、さらに好ましくは0.96以下である。該円形度は、炭素質材料の分散液を測定試料とし、フロー式粒子像分析装置を用いて粒子の投影像を得て、該投影像における1つの粒子について、同じ投影面積を持つ相当円の直径をDμmとし、該粒子像を挟む二本の平行線の距離が最大になる長さをMμmとして、次の式:円形度=(D/M)により粒子あたりの円形度を算出し、該粒子あたりの円形度をDが5μm以上の粒子の例えば5000個以上、好ましくは1万個以上について測定して得た円形度の平均値である。 In the carbonaceous material of the present invention, from the viewpoint of easily increasing the electrode density, the circularity measured for particles having a diameter of 5 μm or more in a circle corresponding to the projected area by a flow type particle image analyzer of the carbonaceous material is preferably 0.70 or more, more preferably 0.71 or more, still more preferably 0.72 or more, even more preferably 0.73 or more, and from the same point of view, preferably 0.99 or less, more preferably 0.98 Below, it is more preferably 0.96 or below. The circularity is determined by using a dispersion of a carbonaceous material as a measurement sample, obtaining a projected image of the particle using a flow-type particle image analyzer, and calculating, for each particle in the projected image, an equivalent circle with the same projected area. Calculate the circularity per particle using the following formula: Circularity = (D / M) 2 , where the diameter is Dμm and the length at which the distance between two parallel lines sandwiching the particle image is maximum is Mμm. The circularity per particle is the average value of the circularity obtained by measuring, for example, 5,000 or more, preferably 10,000 or more particles having D of 5 μm or more.

本発明の炭素質材料の製造方法は、上記のような特性を有する炭素質材料が得られる限り特に限定されないが、炭素源となる化合物と窒素含有化合物とを混合し、得られた混合物を500℃以上900℃以下の不活性ガス雰囲気下で熱処理し、その後、粉砕及び/又は分級し、得られた炭化物をさらに1100~1600℃で熱処理し、得られた熱処理物にカルボン酸化合物または糖類骨格を有する化合物を混合し、100℃~300℃で熱処理する方法であって、1100~1600℃での熱処理の前に、リン含有化合物との混合工程を含む方法が挙げられる。原料として使用する炭素源となる化合物は、上記の特性を満たす炭素質材料が得られる限り特に限定されないが、炭素質材料の上記の特性を好ましい範囲に調整しやすい観点から、好ましくは糖類骨格を有する化合物である。したがって、本発明の炭素質材料は、好ましくは糖由来の炭素質材料である。以下において、糖類骨格を有する化合物を炭素源として用いる製造方法について説明する。 The method for producing a carbonaceous material of the present invention is not particularly limited as long as a carbonaceous material having the above-mentioned characteristics can be obtained. However, a compound serving as a carbon source and a nitrogen-containing compound are mixed, and the resulting mixture is heated to 500% Heat treatment is carried out in an inert gas atmosphere at a temperature of ℃ to 900℃, followed by pulverization and/or classification, and the resulting charred material is further heat-treated at 1100 to 1600℃, and a carboxylic acid compound or saccharide skeleton is added to the resulting heat-treated product. Examples include a method in which a compound having a phosphorus-containing compound is mixed and heat treated at 100°C to 300°C, which includes a step of mixing with a phosphorus-containing compound before the heat treatment at 1100 to 1600°C. The compound serving as the carbon source used as a raw material is not particularly limited as long as a carbonaceous material satisfying the above characteristics can be obtained, but from the viewpoint of easily adjusting the above characteristics of the carbonaceous material to a preferable range, it is preferable to use a compound having a saccharide skeleton. It is a compound that has Therefore, the carbonaceous material of the present invention is preferably a sugar-derived carbonaceous material. A production method using a compound having a saccharide skeleton as a carbon source will be described below.

本発明の好ましい一態様において、本発明の炭素質材料の製造方法は、以下の工程:
(1)糖類骨格を有する化合物、及び窒素含有化合物を混合して混合物を得る工程、
(2)前記混合物を、不活性ガス雰囲気下、500~900℃で熱処理して炭化物を得る工程、
(3)前記炭化物を粉砕及び/又は分級する工程、及び
(4)粉砕及び/又は分級された前記炭化物を、不活性ガス雰囲気下、1100~1600℃で熱処理する工程
(5)前記熱処理物にカルボン酸化合物または糖類骨格を有する化合物を混合し、100℃~300℃で熱処理して炭素質材料を得る工程
を少なくとも含み、
(a)上記工程(4)における熱処理よりも前に、糖類骨格を有する化合物、該化合物を含む混合物、又は、該混合物の炭化物と、リン含有化合物とを混合する工程
を含む。本発明は、上記の炭素質材料の製造方法も提供する。
In a preferred embodiment of the present invention, the method for producing a carbonaceous material of the present invention includes the following steps:
(1) A step of mixing a compound having a sugar skeleton and a nitrogen-containing compound to obtain a mixture;
(2) heat-treating the mixture at 500 to 900°C under an inert gas atmosphere to obtain a carbide;
(3) A step of pulverizing and/or classifying the carbide, and (4) a step of heat-treating the pulverized and/or classified carbide at 1100 to 1600°C in an inert gas atmosphere. At least a step of mixing a carboxylic acid compound or a compound having a saccharide skeleton and heat-treating the mixture at 100°C to 300°C to obtain a carbonaceous material,
(a) Prior to the heat treatment in step (4) above, it includes a step of mixing a compound having a sugar skeleton, a mixture containing the compound, or a carbonized product of the mixture, and a phosphorus-containing compound. The present invention also provides a method for producing the above carbonaceous material.

また、本発明は、前記工程(4)を揮発性有機物の存在下で行う、または、前記工程(4)の後に、揮発性有機物の存在下でさらなる熱処理を行う工程(4’)をさらに含む、上記の炭素質材料の製造方法も提供する。なお、工程(4)を揮発性有機物の存在下で行う場合、または工程(4’)を行う場合、熱処理により発生した揮発性有機物に由来する揮発物質が存在するような条件となるように熱処理温度を設定する。揮発性有機物に由来する揮発物質は、工程(4)または工程(4’)において、炭素質材料表面に付着すると考えられるが、本発明はかかるメカニズムに何ら限定されない。 Further, the present invention further includes a step (4') of carrying out the step (4) in the presence of a volatile organic substance, or performing a further heat treatment in the presence of a volatile organic substance after the step (4). , also provides a method for manufacturing the above carbonaceous material. In addition, when performing step (4) in the presence of volatile organic substances, or when performing step (4'), the heat treatment is carried out under conditions such that volatile substances derived from volatile organic substances generated by heat treatment are present. Set temperature. Although it is thought that volatile substances derived from volatile organic substances adhere to the surface of the carbonaceous material in step (4) or step (4'), the present invention is not limited to such a mechanism.

工程(1)は、糖類骨格を有する化合物、及び窒素含有化合物を混合して混合物を得る工程である。原料として使用し得る糖類骨格を有する化合物としては、例えばグルコース、ガラクトース、マンノース、フルクトース、リボース、グルコサミンなどの単糖類や、スクロース、トレハロース、マルトース、セロビオース、マルチトール、ラクトビオン酸、ラクトサミンなどの二糖、デンプン、グリコーゲン、アガロース、ペクチン、セルロース、キチン、キトサン、オリゴ糖、キシリトールなどの多糖類が挙げられる。糖類骨格を有する化合物として、これらの1種の化合物を使用してもよいし、2種以上を組み合わせて使用してもよい。これらの糖類骨格を有する化合物の中で、大量入手が容易であるため、デンプンが好ましい。デンプンとしては、コーンスターチ、馬鈴薯デンプン、小麦デンプン、米デンプン、タピオカデンプン、サゴデンプン、甘藷デンプン、マイロスターチ、葛デンプン、わらびデンプン、蓮根デンプン、緑豆デンプン、片栗デンプンが例示される。これらのデンプンは、物理的、酵素的、又は化学的加工を施していてもよく、アルファ化デンプン、リン酸架橋デンプン、酢酸デンプン、ヒドロキシプロピルデンプン、酸化デンプン、デキストリンなどへ加工したデンプンであってもよい。入手性に加えて安価であることから、デンプンとして、コーンスターチ及び小麦デンプン、並びにこれらのアルファ化デンプンが好ましい。 Step (1) is a step of mixing a compound having a saccharide skeleton and a nitrogen-containing compound to obtain a mixture. Examples of compounds with a sugar skeleton that can be used as raw materials include monosaccharides such as glucose, galactose, mannose, fructose, ribose, and glucosamine, and disaccharides such as sucrose, trehalose, maltose, cellobiose, maltitol, lactobionic acid, and lactosamine. , starch, glycogen, agarose, pectin, cellulose, chitin, chitosan, oligosaccharides, xylitol, and other polysaccharides. As the compound having a saccharide skeleton, one type of these compounds may be used, or two or more types may be used in combination. Among these compounds having a saccharide skeleton, starch is preferred because it is easily available in large quantities. Examples of the starch include corn starch, potato starch, wheat starch, rice starch, tapioca starch, sago starch, sweet potato starch, mylostarch, kudzu starch, bracken starch, lotus root starch, mung bean starch, and potato starch. These starches may be physically, enzymatically, or chemically processed, and include starches processed into pregelatinized starch, phosphoric acid crosslinked starch, acetate starch, hydroxypropyl starch, oxidized starch, dextrin, etc. Good too. Corn starch, wheat starch, and pregelatinized starches thereof are preferred as starches because of their availability and low cost.

本発明の製造方法の好ましい一態様において、炭素質材料から得られる電極の密度を高めやすい観点からは、糖類骨格を有する化合物として、該化合物の粒子の断面を二次電子顕微鏡観察して得た画像において、断面積が3μm以上100μm以下の粒子を任意に20個選択した際に、1μm以上の空隙を有する粒子が、好ましくは3個以下、より好ましくは2個以下、さらに好ましくは1個以下である化合物を用いることが好ましい。このような空隙の少ない化合物を原料として用いて炭化物を製造する場合には、後述する工程(b)のような追加の処理は通常は不要である。 In a preferred embodiment of the production method of the present invention, from the viewpoint of easily increasing the density of an electrode obtained from a carbonaceous material, as a compound having a saccharide skeleton, a compound obtained by observing a cross section of a particle of the compound with a secondary electron microscope is used. In the image, when 20 particles with a cross-sectional area of 3 μm 2 to 100 μm 2 are arbitrarily selected, the number of particles having voids of 1 μm 2 or more is preferably 3 or less, more preferably 2 or less, and even more preferably Preferably, one or less compounds are used. When producing a carbide using such a compound with few voids as a raw material, additional treatment such as step (b) described below is usually not necessary.

工程(1)で使用し得る窒素含有化合物は、窒素原子を分子内に有する化合物であれば特に限定されないが、例えば塩化アンモニウム、硫酸アンモニウム、炭酸アンモニウム、硝酸アンモニウムなどの無機アンモニウム塩や、ギ酸アンモニウム、酢酸アンモニウム、蓚酸アンモニウム、クエン酸水素二アンモニウムなどの有機アンモニウム塩や、アニリン塩酸塩、アミノナフタレン塩酸塩などの芳香族アミン塩酸塩、メラミン、ピリミジン、ピリジン、ピロール、イミダゾール、インドール、尿素、シアヌル酸、ベンゾグアナミンなどの含窒素有機化合物が挙げられる。窒素含有化合物として、これらの1種の窒素含有化合物を使用してもよいし、2種以上を組み合わせて使用してもよい。これらの窒素含有化合物の中で、窒素元素が炭素質材料に多く取り込まれやすい観点から、分子内の窒素含有率が高い窒素含有化合物が好ましく、例えばメラミン及び尿素が好ましい。窒素含有化合物は、熱処理過程における糖類化合物との反応の観点からは、揮発温度が好ましくは100℃以上、より好ましくは150℃以上である化合物が好ましい。 The nitrogen-containing compound that can be used in step (1) is not particularly limited as long as it has a nitrogen atom in its molecule, but includes, for example, inorganic ammonium salts such as ammonium chloride, ammonium sulfate, ammonium carbonate, and ammonium nitrate, ammonium formate, and acetic acid. Organic ammonium salts such as ammonium, ammonium oxalate, diammonium hydrogen citrate, aromatic amine hydrochlorides such as aniline hydrochloride and aminonaphthalene hydrochloride, melamine, pyrimidine, pyridine, pyrrole, imidazole, indole, urea, cyanuric acid, Examples include nitrogen-containing organic compounds such as benzoguanamine. As the nitrogen-containing compound, one type of these nitrogen-containing compounds may be used, or two or more types may be used in combination. Among these nitrogen-containing compounds, nitrogen-containing compounds with a high intramolecular nitrogen content are preferred, from the viewpoint that a large amount of nitrogen element is easily incorporated into the carbonaceous material, and for example, melamine and urea are preferred. The nitrogen-containing compound is preferably a compound whose volatilization temperature is preferably 100°C or higher, more preferably 150°C or higher, from the viewpoint of reaction with the saccharide compound during the heat treatment process.

糖類骨格を有する化合物、及び窒素含有化合物の混合割合は特に限定されず、所望の特性を有する炭素質材料が得られるように適宜調整してよい。例えば、窒素含有化合物の量を増やすと、炭素質材料に含まれる窒素元素含有量が多くなる傾向がある。 The mixing ratio of the compound having a saccharide skeleton and the nitrogen-containing compound is not particularly limited, and may be adjusted as appropriate so as to obtain a carbonaceous material having desired characteristics. For example, increasing the amount of nitrogen-containing compounds tends to increase the nitrogen element content contained in the carbonaceous material.

本発明の好ましい一態様において、工程(1)で得られる混合物に含まれる糖類骨格を有する化合物の量は、糖類骨格を有する化合物、及び窒素含有化合物の合計量に基づいて、好ましくは50~99質量%、より好ましくは80~95質量%である。また、該混合物に含まれる窒素含有化合物の量は、糖類骨格を有する化合物、及び窒素含有化合物の合計量に基づいて、好ましくは1~30質量%、より好ましくは3~15質量%である。また、工程(1)において混合する窒素含有化合物の量は、原料として使用する糖類骨格を有する化合物におけるデンプン単糖ユニット1モルに対して、好ましくは0.03~0.30モル、より好ましくは0.05~0.20モル、さらに好ましくは0.07~0.15モルである。 In a preferred embodiment of the present invention, the amount of the compound having a saccharide skeleton contained in the mixture obtained in step (1) is preferably 50 to 99% based on the total amount of the compound having a saccharide skeleton and the nitrogen-containing compound. % by mass, more preferably 80 to 95% by mass. Further, the amount of the nitrogen-containing compound contained in the mixture is preferably 1 to 30% by mass, more preferably 3 to 15% by mass, based on the total amount of the compound having a saccharide skeleton and the nitrogen-containing compound. Further, the amount of the nitrogen-containing compound mixed in step (1) is preferably 0.03 to 0.30 mol, more preferably The amount is 0.05 to 0.20 mol, more preferably 0.07 to 0.15 mol.

工程(1)において、炭素前駆体及び窒素含有化合物を混合して混合物を得る際に、少なくとも1種の架橋剤をさらに混合してもよい。架橋剤は、原料として用いる糖類骨格を有する化合物を架橋可能な化合物であり、糖類化合物の加水分解反応や脱水反応と並行して進行する、糖類化合物の鎖間結合形成反応及び/又は糖類化合物と窒素含有化合物の反応を促進する触媒として作用したり、それ自身が、糖類化合物、及び/又は窒素含有化合物を架橋したりする。糖類骨格を有する化合物は、焼成工程において溶融、融着、発泡等する場合が多く、その結果、得られる炭素質材料は球状ではなく扁平な形状を有する場合が多い。架橋剤を用いて焼成を行う場合、原料同士の融着や発泡を抑制しやすく、その結果、得られる炭素質材料を用いて得られる電極の密度を向上させやすい。 In step (1), when the carbon precursor and the nitrogen-containing compound are mixed to obtain a mixture, at least one crosslinking agent may be further mixed. A crosslinking agent is a compound capable of crosslinking a compound having a saccharide skeleton used as a raw material, and is a compound that can crosslink a compound having a saccharide skeleton used as a raw material. It acts as a catalyst to promote the reaction of nitrogen-containing compounds, or itself crosslinks sugar compounds and/or nitrogen-containing compounds. Compounds having a saccharide skeleton are often melted, fused, foamed, etc. during the firing process, and as a result, the resulting carbonaceous material often has a flat shape rather than a spherical shape. When firing is performed using a crosslinking agent, it is easy to suppress the fusion and foaming of the raw materials, and as a result, it is easy to improve the density of the electrode obtained using the obtained carbonaceous material.

架橋剤を使用する場合、その種類は特に限定されないが、例えばギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、リノール酸、オレイン酸、などの脂肪族一価カルボン酸、安息香酸、サリチル酸、トルイル酸などの芳香族一価カルボン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、フマル酸、マレイン、フタル酸、テレフタル酸、等の多価カルボン酸;乳酸、酒石酸、クエン酸、リンゴ酸等のヒドロキシカルボン酸;エチレンジアミン四酢酸等のカルボン酸、p-トルエンスルホン酸、メタンスルホン酸等のスルホン酸;グリシン、アラニン、バリン、ロイシン、イソロイシン、セリン、トレオニン、システイン、メチオニン、アスパラギン、グルタミン、プロリン、フェニルアラニン、チロシン、トリプトファン等のアミノ酸;塩酸、硫酸等が挙げられる。架橋剤を使用する場合、これらの1種の架橋剤を使用してもよいし、2種以上を組み合わせて使用してもよい。これらの架橋剤の中で、熱処理して炭化物を得る工程での原料の溶融、発泡の抑制の観点から、多価カルボン酸やヒドロキシカルボン酸が好ましく、中でもコハク酸、アジピン酸、クエン酸がより好ましい。 When using a crosslinking agent, the type thereof is not particularly limited, but for example, formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, lauric acid, myristic acid, etc. acids, aliphatic monocarboxylic acids such as palmitic acid, stearic acid, linoleic acid, oleic acid, aromatic monocarboxylic acids such as benzoic acid, salicylic acid, toluic acid, oxalic acid, malonic acid, succinic acid, glutaric acid , adipic acid, fumaric acid, maleic acid, phthalic acid, terephthalic acid, etc.; hydroxycarboxylic acids such as lactic acid, tartaric acid, citric acid, malic acid, etc.; carboxylic acids such as ethylenediaminetetraacetic acid, p-toluenesulfonic acid , sulfonic acids such as methanesulfonic acid; amino acids such as glycine, alanine, valine, leucine, isoleucine, serine, threonine, cysteine, methionine, asparagine, glutamine, proline, phenylalanine, tyrosine, tryptophan; hydrochloric acid, sulfuric acid, etc. When using a crosslinking agent, one type of these crosslinking agents may be used, or two or more types may be used in combination. Among these crosslinking agents, polyhydric carboxylic acids and hydroxycarboxylic acids are preferred from the viewpoint of suppressing melting and foaming of raw materials in the step of heat treating to obtain carbide, and among them, succinic acid, adipic acid, and citric acid are more preferred. preferable.

さらに、架橋剤を使用する場合、その量は、混合物に含まれる糖類骨格を有する化合物、窒素含有化合物、及び架橋剤の合計量に基づいて、好ましくは1~30質量%、より好ましくは3~10質量%である。架橋剤を添加する場合、架橋剤の量を増やすと、炭素質材料の真密度が高くなる傾向がある。 Furthermore, when using a crosslinking agent, the amount thereof is preferably 1 to 30% by mass, more preferably 3 to 30% by mass, based on the total amount of the compound having a saccharide skeleton, the nitrogen-containing compound, and the crosslinking agent contained in the mixture. It is 10% by mass. When adding a crosslinking agent, increasing the amount of crosslinking agent tends to increase the true density of the carbonaceous material.

次に、工程(2)において、工程(1)で得た混合物を、不活性ガス雰囲気下、500~900℃で熱処理して炭化物を得る。工程(2)における熱処理温度は、好ましくは550~850℃、より好ましくは600~800℃である。また、上記の熱処理温度(到達温度)に到達するまでの昇温速度は、50℃/時間以上、好ましくは50℃/時間~200℃/時間である。また、熱処理時間は、到達温度での保持時間が通常5分以上であり、好ましくは5分~2時間、より好ましくは10分~1時間、さらに好ましくは30~1時間である。熱処理温度及び時間が上記の範囲内であれば、糖類骨格を有する化合物の炭化を制御しやすく、炭素質材料の上記の特性値を所望の範囲に調整しやすい。ここで、熱処理温度は、一定の温度であってよいが、上記範囲内であれば特に限定されない。工程(2)を第1焼成工程とも称する。 Next, in step (2), the mixture obtained in step (1) is heat-treated at 500 to 900° C. in an inert gas atmosphere to obtain a carbide. The heat treatment temperature in step (2) is preferably 550 to 850°C, more preferably 600 to 800°C. Further, the temperature increase rate until the above heat treatment temperature (achieved temperature) is reached is 50°C/hour or more, preferably 50°C/hour to 200°C/hour. The heat treatment time is usually 5 minutes or more, preferably 5 minutes to 2 hours, more preferably 10 minutes to 1 hour, and even more preferably 30 to 1 hour. When the heat treatment temperature and time are within the above ranges, it is easy to control the carbonization of the compound having a saccharide skeleton, and it is easy to adjust the above characteristic values of the carbonaceous material to a desired range. Here, the heat treatment temperature may be a constant temperature, but is not particularly limited as long as it is within the above range. Step (2) is also referred to as a first firing step.

工程(2)は、不活性ガス雰囲気下で行われる。該工程が不活性ガス雰囲気中で行われる限り、不活性ガスの積極的な供給が行われていても、行われていなくてもよい。不活性ガスとしては、例えば、アルゴンガス、ヘリウムガス、窒素ガスが挙げられ、好ましくは窒素ガスである。このような熱処理工程により、炭素質材料を与える前駆体である炭化物が得られる。 Step (2) is performed under an inert gas atmosphere. As long as the step is carried out in an inert gas atmosphere, the inert gas may or may not be actively supplied. Examples of the inert gas include argon gas, helium gas, and nitrogen gas, with nitrogen gas being preferred. Through such a heat treatment step, a carbide, which is a precursor for providing a carbonaceous material, is obtained.

工程(3)において、得られた炭化物を粉砕及び/又は分級する。粉砕及び分級の方法は特に限定されず、通常の方法、例えばボールミルやジェットミルを用いる方法等により行ってよい。炭化物を粉砕及び/又は分級することにより、工程(2)の熱処理によって生じた凝集物を解砕したり、除去することができる。 In step (3), the obtained carbide is crushed and/or classified. The method of pulverization and classification is not particularly limited, and may be carried out by a conventional method, such as a method using a ball mill or a jet mill. By pulverizing and/or classifying the carbide, aggregates generated by the heat treatment in step (2) can be disintegrated or removed.

工程(4)において、粉砕及び/又は分級された炭化物を、不活性ガス雰囲気下、1100~1600℃で熱処理する。工程(4)における熱処理温度は、好ましくは1200~1400℃、より好ましくは1210~1400℃、さらに好ましくは1230~1350℃、さらにより好ましくは1250~1300℃である。なお、本明細書において、1100~1600℃で熱処理するとは、1100~1600℃の温度を1分以上保持することを意味する。上記の熱処理温度(到達温度)に到達するまでの昇温速度は、50℃/時間以上、好ましくは50℃/時間~200℃/時間である。また、熱処理時間は、到達温度での保持時間が、1分以上、好ましくは5分~2時間、より好ましくは10分~1時間、さらに好ましくは10分~30分である。熱処理温度及び時間が上記の範囲内であれば、最終的に得られる炭素質材料の上記の特性値を所望の範囲に調整しやすい。ここで、熱処理温度は、一定の温度であってよいが、上記範囲内であれば特に限定されない。工程(4)を第2焼成工程とも称する。 In step (4), the pulverized and/or classified carbide is heat-treated at 1100 to 1600° C. in an inert gas atmosphere. The heat treatment temperature in step (4) is preferably 1200 to 1400°C, more preferably 1210 to 1400°C, even more preferably 1230 to 1350°C, even more preferably 1250 to 1300°C. Note that in this specification, heat treatment at 1100 to 1600°C means maintaining a temperature of 1100 to 1600°C for 1 minute or more. The temperature increase rate until the above heat treatment temperature (achieved temperature) is reached is 50°C/hour or more, preferably 50°C/hour to 200°C/hour. Further, the heat treatment time is such that the holding time at the final temperature is 1 minute or more, preferably 5 minutes to 2 hours, more preferably 10 minutes to 1 hour, and even more preferably 10 minutes to 30 minutes. If the heat treatment temperature and time are within the above range, the above characteristic values of the carbonaceous material finally obtained can be easily adjusted to a desired range. Here, the heat treatment temperature may be a constant temperature, but is not particularly limited as long as it is within the above range. Step (4) is also referred to as a second firing step.

工程(5)において、工程(4)で得られた熱処理物に対し、カルボン酸化合物または糖類骨格を有する化合物を混合し、100℃~300℃で熱処理することにより、本発明の炭素質材料を得ることができる。工程(5)を後熱処理工程とも称する。 In step (5), the carbonaceous material of the present invention is prepared by mixing a carboxylic acid compound or a compound having a saccharide skeleton with the heat-treated product obtained in step (4) and heat-treating the mixture at 100°C to 300°C. Obtainable. Step (5) is also referred to as a post-heat treatment step.

工程(5)で添加されるカルボン酸化合物は特に限定されないが、例えばギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、リノール酸、オレイン酸などの脂肪族一価カルボン酸、安息香酸、サリチル酸、トルイル酸などの芳香族一価カルボン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、フマル酸、マレイン酸、フタル酸、テレフタル酸などの多価カルボン酸、乳酸、酒石酸、クエン酸、リンゴ酸などのヒドロキシカルボン酸、エチレンジアミン四酢酸などのカルボン酸が挙げられる。カルボン酸化合物として、これらの1種の化合物を使用してもよいし、2種以上を組み合わせて使用してもよい。これらの添加剤の中で、熱処理時に揮発しにくいことや混合性を考慮し、アジピン酸、クエン酸、コハク酸がより好ましい。 The carboxylic acid compound added in step (5) is not particularly limited, but for example, formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, lauric acid. , aliphatic monocarboxylic acids such as myristic acid, palmitic acid, stearic acid, linoleic acid, oleic acid, aromatic monocarboxylic acids such as benzoic acid, salicylic acid, toluic acid, oxalic acid, malonic acid, succinic acid, glutaric acid. Examples include polyhydric carboxylic acids such as adipic acid, fumaric acid, maleic acid, phthalic acid, and terephthalic acid, hydroxycarboxylic acids such as lactic acid, tartaric acid, citric acid, and malic acid, and carboxylic acids such as ethylenediaminetetraacetic acid. As the carboxylic acid compound, one type of these compounds may be used, or two or more types may be used in combination. Among these additives, adipic acid, citric acid, and succinic acid are more preferred in view of their resistance to volatilization during heat treatment and their mixability.

工程(5)で添加する化合物には、糖類骨格を有する化合物を用いることもできる。糖類骨格を有する化合物としては、例えばグルコース、ガラクトース、マンノース、フルクトース、リボース、グルコサミンなどの単糖類や、スクロース、トレハロース、マルトース、セロビオース、マルチトール、ラクトビオン酸、ラクトサミンなどの二糖、デンプン、グリコーゲン、アガロース、ペクチン、セルロース、キチン、キトサン、オリゴ糖、キシリトールなどの多糖類が挙げられる。糖類骨格を有する化合物として、これらの1種の化合物を使用してもよいし、2種以上を組み合わせて使用してもよい。これらの糖類骨格を有する化合物の中で、入手性を考慮すると、グルコース、フルクトース、デンプンがより好ましい。 A compound having a saccharide skeleton can also be used as the compound added in step (5). Examples of compounds having a sugar skeleton include monosaccharides such as glucose, galactose, mannose, fructose, ribose, and glucosamine, disaccharides such as sucrose, trehalose, maltose, cellobiose, maltitol, lactobionic acid, and lactosamine, starch, glycogen, Examples include polysaccharides such as agarose, pectin, cellulose, chitin, chitosan, oligosaccharides, and xylitol. As the compound having a saccharide skeleton, one type of these compounds may be used, or two or more types may be used in combination. Among these compounds having a saccharide skeleton, glucose, fructose, and starch are more preferable in consideration of availability.

カルボン酸化合物または糖類骨格を有する化合物を添加し熱処理することによる効果の詳細は明らかでないが、カルボン酸化合物または糖類骨格を有する化合物が工程(4)で得られる熱処理物の表面と反応し、表面状態を変えることで塗工性を改善していることが考えられる。 Although the details of the effect of adding a carboxylic acid compound or a compound having a saccharide skeleton and heat treatment are not clear, the carboxylic acid compound or the compound having a saccharide skeleton reacts with the surface of the heat-treated product obtained in step (4), and the surface It is thought that coating properties are improved by changing the conditions.

工程(5)で添加されるカルボン酸化合物または糖類骨格を有する化合物の量に特に制限はないが、工程(4)で得られる熱処理物に対し5質量%以下が好ましい。添加する化合物の量が多いと、熱処理物の表面で反応するのみでなく、化合物自体の分解物が残存し、炭素質材料の性能低下の要因となる可能性がある。 The amount of the carboxylic acid compound or compound having a saccharide skeleton added in step (5) is not particularly limited, but is preferably 5% by mass or less based on the heat-treated product obtained in step (4). If the amount of the added compound is large, not only will it react on the surface of the heat-treated product, but also the decomposition products of the compound itself will remain, which may cause a decrease in the performance of the carbonaceous material.

工程(5)における熱処理温度は100℃~300℃である。適切な温度は使用する添加剤により異なるが、通常添加する化合物の融点あるいは分解温度以上の温度で行うことが好ましい。また、上記の熱処理温度(到達温度)に到達するまでの昇温速度は、50℃/時間以上、好ましくは50℃/時間~600℃/時間である。また、熱処理時間は、到達温度での保持時間が通常5分以上であり、好ましくは5分~10時間、より好ましくは10分~5時間、さらに好ましくは30~3時間である。熱処理温度及び時間が上記の範囲内であれば、熱処理物表面への添加した化合物の反応を制御しやすく、炭素質材料の特性値を所望の範囲に調整しやすい。ここで、熱処理温度は、一定の温度であってよいが、上記範囲内であれば特に限定されない。また、工程(5)は不活性ガス雰囲気下で行っても、酸素存在雰囲気下で行ってもよい。 The heat treatment temperature in step (5) is 100°C to 300°C. Although the appropriate temperature differs depending on the additive used, it is generally preferable to carry out the reaction at a temperature higher than the melting point or decomposition temperature of the added compound. Further, the rate of temperature increase until the above heat treatment temperature (achieved temperature) is reached is 50°C/hour or more, preferably 50°C/hour to 600°C/hour. The heat treatment time is usually 5 minutes or more, preferably 5 minutes to 10 hours, more preferably 10 minutes to 5 hours, and even more preferably 30 to 3 hours. When the heat treatment temperature and time are within the above ranges, it is easy to control the reaction of the compound added to the surface of the heat-treated product, and it is easy to adjust the characteristic values of the carbonaceous material to a desired range. Here, the heat treatment temperature may be a constant temperature, but is not particularly limited as long as it is within the above range. Further, step (5) may be performed under an inert gas atmosphere or under an oxygen-existing atmosphere.

本発明の製造方法は、工程(4)において1100~1600℃で熱処理を行う前に、糖類骨格を有する化合物、該化合物を含む混合物、又は、該混合物の炭化物と、リン含有化合物とを混合する工程(a)を含む。工程(a)を含む製造方法により炭素質材料を製造することによって、炭素質材料中にリン元素を含ませることができる。炭素質材料に窒素元素とリン元素が所定の量で存在し、かつ、水素元素含有量を所定の範囲にすることによって、理由は明らかではないが、重量あたりの高い放電容量と、優れた電流効率を有すると共に、繰り返しの充放電を経ても高い放電容量を維持することができる、蓄電デバイスに適した炭素質材料を提供することができる。 In the production method of the present invention, before performing heat treatment at 1100 to 1600°C in step (4), a compound having a saccharide skeleton, a mixture containing the compound, or a carbonized product of the mixture, and a phosphorus-containing compound are mixed. Including step (a). By manufacturing the carbonaceous material by the manufacturing method including step (a), the phosphorus element can be included in the carbonaceous material. The presence of nitrogen and phosphorus elements in the specified amounts in the carbonaceous material and the hydrogen element content within the specified range result in high discharge capacity per weight and excellent current, although the reason is not clear. It is possible to provide a carbonaceous material suitable for power storage devices that has efficiency and can maintain high discharge capacity even after repeated charging and discharging.

工程(a)は、工程(1)で使用する糖類骨格を有する化合物とリン含有化合物とを混合することにより行ってもよいし、工程(1)において糖類骨格を有する化合物及び窒素含有化合物を混合して混合物を得る際にリン含有化合物も共に混合することによって行ってもよいし、工程(1)で得た混合物とリン含有化合物とを混合することにより行ってもよいし、工程(2)で得た炭化物とリン含有化合物とを混合することにより行ってもよいし、工程(3)で得た粉砕及び/又は分級された炭化物とリン含有化合物とを混合することにより行ってもよい。 Step (a) may be carried out by mixing the compound having a saccharide skeleton and the phosphorus-containing compound used in step (1), or by mixing the compound having a saccharide skeleton and the nitrogen-containing compound in step (1). It may be carried out by also mixing the phosphorus-containing compound when obtaining the mixture in step (1), it may be carried out by mixing the mixture obtained in step (1) and the phosphorus-containing compound, or it may be carried out in step (2). It may be carried out by mixing the carbide obtained in step (3) and the phosphorus-containing compound, or it may be carried out by mixing the pulverized and/or classified carbide obtained in step (3) and the phosphorus-containing compound.

工程(a)で使用し得るリン含有化合物は、リン原子を分子内に有する化合物であれば特に限定されないが、例えば無機リン酸、有機リン酸、及びそれらの塩、有機リン、ホスホニウム塩などを使用することができる。リン含有化合物として、1種のリン含有化合物を使用してもよいし、2種以上を組み合わせて使用してもよい。 The phosphorus-containing compound that can be used in step (a) is not particularly limited as long as it has a phosphorus atom in its molecule, but includes, for example, inorganic phosphoric acid, organic phosphoric acid, salts thereof, organic phosphorus, phosphonium salts, etc. can be used. As the phosphorus-containing compound, one type of phosphorus-containing compound may be used, or two or more types may be used in combination.

無機リン酸としては、例えばリン酸、リン酸二水素塩、リン酸二水素アンモニウム、第一リン酸塩、第二リン酸塩、第三リン酸塩、ピロリン酸、ピロリン酸塩、トリポリリン酸、トリポリリン酸塩、亜リン酸、亜リン酸塩、次亜リン酸、次亜リン酸塩、五酸化二リン等が挙げられる。有機リン酸としては、ホスホン酸(ホスホン酸化合物)が挙げられ、ホスホン酸としては、例えば、ニトリロトリスメチレンホスホン酸、ホスフォノブタントリカルボン酸、メチルジホスホン酸、メチレンホスホン酸、エチリデンジホスホン酸、リン酸トリフェニル等が挙げられる。これらのリン酸が塩である場合、塩は、例えばアルカリ金属塩及び/又はアルカリ土類金属塩であってもよいし、アンモニウム塩であってもよい。有機リンとしては、例えばトリフェニルホスフィン、トリフェニルホスフィンオキシド、トリシクロヘキシルホスフィン、トリシクロヘキシルホスフィンオキシド、トリアルキルホスフィン、トリアルキルホスフィンオキシド等が挙げられる。ホスホニウム塩としては、例えばテトラアルキルホスホニウム塩、テトラフェニルホスホニウム塩等が挙げられる。これらの塩は、例えばハロゲン化物であってもよいし、硫酸塩であってもよいし、リン酸塩であってもよいし、酢酸塩であってもよい。これらのリン含有化合物の中で、リン元素が炭素質材料に多く取り込まれやすい観点から、分子内のリン含有率が高いリン酸、リン酸二水素アンモニウムが好ましい。リン含有化合物としては、熱処理過程における糖類化合物との反応の観点からは、揮発温度が好ましくは100℃以上、より好ましくは150℃以上である化合物が好ましい。 Examples of inorganic phosphoric acids include phosphoric acid, dihydrogen phosphate, ammonium dihydrogen phosphate, primary phosphate, secondary phosphate, tertiary phosphate, pyrophosphoric acid, pyrophosphate, tripolyphosphoric acid, Examples include tripolyphosphate, phosphorous acid, phosphite, hypophosphorous acid, hypophosphite, diphosphorus pentoxide, and the like. Examples of the organic phosphoric acid include phosphonic acid (phosphonic acid compound), and examples of the phosphonic acid include nitrilotrismethylenephosphonic acid, phosphonobutanetricarboxylic acid, methyldiphosphonic acid, methylenephosphonic acid, ethylidene diphosphonic acid, Examples include triphenyl phosphate. When these phosphoric acids are salts, the salts may be, for example, alkali metal salts and/or alkaline earth metal salts, or ammonium salts. Examples of the organic phosphorus include triphenylphosphine, triphenylphosphine oxide, tricyclohexylphosphine, tricyclohexylphosphine oxide, trialkylphosphine, and trialkylphosphine oxide. Examples of the phosphonium salts include tetraalkylphosphonium salts and tetraphenylphosphonium salts. These salts may be, for example, halides, sulfates, phosphates, or acetates. Among these phosphorus-containing compounds, phosphoric acid and ammonium dihydrogen phosphate, which have a high phosphorus content in the molecule, are preferred from the viewpoint that a large amount of the phosphorus element is easily incorporated into the carbonaceous material. The phosphorus-containing compound is preferably a compound whose volatilization temperature is preferably 100°C or higher, more preferably 150°C or higher, from the viewpoint of reaction with the sugar compound during the heat treatment process.

工程(a)においてリン含有化合物を混合する方法も特に限定されず、リン含有化合物が固体の場合、固体状のリン含有化合物と糖類骨格を有する化合物等を混合してもよい。また、リン含有化合物が例えば水溶性の場合には、リン含有化合物の水溶液と糖類骨格を有する化合物等とを混合してもよい。 The method of mixing the phosphorus-containing compound in step (a) is also not particularly limited, and when the phosphorus-containing compound is solid, the solid phosphorus-containing compound and a compound having a saccharide skeleton may be mixed. Further, when the phosphorus-containing compound is water-soluble, for example, an aqueous solution of the phosphorus-containing compound and a compound having a saccharide skeleton may be mixed.

工程(a)において混合するリン含有化合物の量は、最終的に上記範囲のリン元素含有量を有する炭素質材料が得られる限り特に限定されないが、例えば、糖類骨格を有する化合物、及び窒素含有化合物の合計量に基づいて、又は、工程(2)で得た炭化物の量に基づいて、好ましくは0.5~10質量%、より好ましくは0.6~8質量%である。また、工程(a)において混合するリン含有化合物の量は、原料として使用する糖類骨格を有する化合物におけるデンプン単糖ユニット1モルに対して、好ましくは0.001~0.20モル、より好ましくは0.005~0.15モル、さらに好ましくは0.01~0.10モルである。 The amount of the phosphorus-containing compound mixed in step (a) is not particularly limited as long as a carbonaceous material having a phosphorus element content in the above range is finally obtained, but for example, a compound having a saccharide skeleton and a nitrogen-containing compound or based on the amount of carbide obtained in step (2), preferably from 0.5 to 10% by mass, more preferably from 0.6 to 8% by mass. Further, the amount of the phosphorus-containing compound mixed in step (a) is preferably 0.001 to 0.20 mol, more preferably The amount is 0.005 to 0.15 mol, more preferably 0.01 to 0.10 mol.

また、工程(4)において、工程(3)から得られた粉砕及び/又は分級した炭化物に揮発性有機物を添加し、工程(4)に供してもよい。揮発性有機物は窒素等不活性ガスにより熱処理をする際(例えば500℃以上)において、ほとんど(例えば80%以上、好ましくは90%以上)炭化せず、揮発する(気化もしくは熱分解し、ガスになる)有機化合物を指す。揮発性有機物としては、特に限定されないが、例えば、熱可塑性樹脂、低分子有機化合物が挙げられる。具体的には、熱可塑性樹脂としては、ポリスチレン、ポリエチレン、ポリプロピレン、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸エステル等が挙げられる。なお、この明細書において、(メタ)アクリルとは、メタクリルとアクリルの総称である。また共重合体のような、熱可塑性樹脂を部分的に含有する樹脂であってもよく、このような樹脂としては、アクリロニトリル・塩素化ポリエチレン・スチレン共重合体(ACS樹脂)、アクリロニトリル・アクリル酸エステル・スチレン共重合体(AAS樹脂)、アクリロニトリル・エチレン・スチレン共重合体(AES樹脂)、スチレン・エチレン・プロピレン・スチレンブロック共重合体(SEPS樹脂)、スチレン・エチレン・ブチレン・スチレンブロック共重合体(SEBS樹脂)、スチレン・イソプレン・スチレンブロック共重合体(SIS樹脂)、スチレン・ブタジエン・スチレンブロック共重合体(SBS樹脂)、アクリロニトリル・スチレン共重合体(AS樹脂)、アクリロニトリル・ブタジエン・スチレン共重合体(ABS樹脂)などが挙げられる。低分子有機化合物としては、エチレン、プロパン、ヘキサン、トルエン、キシレン、メシチレン、スチレン、ナフタレン、フェナントレン、アントラセン、ピレン等が挙げられる。焼成温度下で揮発し、熱分解した場合に炭素前駆体の表面を酸化賦活しないものが好ましいことから、熱可塑性樹脂としてはポリスチレン、ポリエチレン、ポリプロピレン、ポリ(メタ)アクリル酸が好ましい。低分子有機化合物としては、さらに安全上の観点から常温下(たとえば20℃)において揮発性が小さいことが好ましく、ナフタレン、フェナントレン、アントラセン、ピレン等が好ましい。このような揮発性有機物を添加すると、本発明の特徴的な構造を維持しながら、水素元素含有量及び酸素元素含有量と比表面積とをより小さくできる点で好ましい。 Further, in step (4), a volatile organic substance may be added to the pulverized and/or classified carbide obtained from step (3), and the mixture may be subjected to step (4). When volatile organic substances are heat-treated with an inert gas such as nitrogen (e.g., at 500°C or higher), they do not carbonize (e.g., 80% or more, preferably 90% or more) but volatilize (evaporate or thermally decompose and turn into gas). ) Refers to organic compounds. Examples of volatile organic substances include, but are not limited to, thermoplastic resins and low-molecular organic compounds. Specifically, examples of the thermoplastic resin include polystyrene, polyethylene, polypropylene, poly(meth)acrylic acid, poly(meth)acrylic ester, and the like. Note that in this specification, (meth)acrylic is a general term for methacryl and acrylic. It may also be a resin that partially contains a thermoplastic resin, such as a copolymer, such as acrylonitrile/chlorinated polyethylene/styrene copolymer (ACS resin), acrylonitrile/acrylic acid, etc. Ester/styrene copolymer (AAS resin), acrylonitrile/ethylene/styrene copolymer (AES resin), styrene/ethylene/propylene/styrene block copolymer (SEPS resin), styrene/ethylene/butylene/styrene block copolymer Coalescence (SEBS resin), styrene-isoprene-styrene block copolymer (SIS resin), styrene-butadiene-styrene block copolymer (SBS resin), acrylonitrile-styrene copolymer (AS resin), acrylonitrile-butadiene-styrene Examples include copolymers (ABS resins). Examples of low-molecular organic compounds include ethylene, propane, hexane, toluene, xylene, mesitylene, styrene, naphthalene, phenanthrene, anthracene, pyrene, and the like. The thermoplastic resin is preferably polystyrene, polyethylene, polypropylene, or poly(meth)acrylic acid, since it is preferable to use one that volatilizes at the firing temperature and does not oxidize the surface of the carbon precursor when it is thermally decomposed. The low-molecular-weight organic compound preferably has low volatility at room temperature (for example, 20° C.) from the viewpoint of safety, and naphthalene, phenanthrene, anthracene, pyrene, etc. are preferable. Addition of such a volatile organic substance is preferable in that the hydrogen element content, oxygen element content, and specific surface area can be further reduced while maintaining the characteristic structure of the present invention.

また、揮発性有機物をガス化させて窒素等不活性ガスと混合して、工程(4)に供してもよい。揮発性有機物としては、特に限定されないが、低分子有機化合物が挙げられる。低分子有機化合物としては、エチレン、プロパン、ヘキサン、トルエン、キシレン、メシチレン、スチレン、ナフタレン、フェナントレン、アントラセン、ピレン等が挙げられる。低分子有機化合物としては、窒素等不活性ガスとの混合性の観点から揮発性が大きい化合物が好ましく、エチレン、プロパン、ヘキサン、トルエン等が好ましい。このような揮発性有機物を添加すると、本発明の特徴的な構造を維持しながら、水素元素含有量及び酸素元素含有量と比表面積をより小さくできる点で好ましい。 Alternatively, the volatile organic substance may be gasified and mixed with an inert gas such as nitrogen, and then subjected to step (4). Volatile organic substances include, but are not particularly limited to, low-molecular organic compounds. Examples of low-molecular organic compounds include ethylene, propane, hexane, toluene, xylene, mesitylene, styrene, naphthalene, phenanthrene, anthracene, pyrene, and the like. As the low-molecular organic compound, a compound with high volatility is preferable from the viewpoint of miscibility with an inert gas such as nitrogen, and ethylene, propane, hexane, toluene, etc. are preferable. Addition of such a volatile organic substance is preferable in that the hydrogen element content, oxygen element content, and specific surface area can be further reduced while maintaining the characteristic structure of the present invention.

上記のようにして、工程(4)において揮発性有機物を添加する場合、揮発性有機物が、炭素質材料の粒子の表面のラジカル活性点などを失活させると考えられる。このようなラジカル活性点は、通常、空気中の酸素と反応し、炭素質材料の酸素元素含有量を増加させる。本発明の好ましい一実施形態において、炭素質材料の酸素元素含有量が少ない場合、炭素質材料表面のラジカル反応サイトなどが少なく、酸化されにくくなっていると考えられ、繰返しの充放電において反応サイトとなり得るサイトが低減されると考えられる。その結果、炭素質材料のラジカル活性点などを揮発性有機物により失活させた場合には、繰り返しの充放電を経た後でも、より高い放電容量を維持しやすくなると考えられる。 When a volatile organic substance is added in step (4) as described above, it is thought that the volatile organic substance deactivates the radical active sites on the surface of the particles of the carbonaceous material. Such radical active sites usually react with oxygen in the air and increase the oxygen element content of the carbonaceous material. In a preferred embodiment of the present invention, when the oxygen element content of the carbonaceous material is low, it is thought that there are few radical reaction sites on the surface of the carbonaceous material, making it difficult to oxidize, and the reaction sites during repeated charging and discharging. It is thought that this will reduce the number of sites that can cause this. As a result, it is thought that when the radical active sites of the carbonaceous material are deactivated by volatile organic substances, it becomes easier to maintain a higher discharge capacity even after repeated charging and discharging.

また、工程(4)の後に、揮発性有機物質の存在下でさらなる熱処理を行う工程(4’)を行うこともできる。工程(4’)を行う場合、工程(4)で得られた炭素構造を維持させながら、炭素質材料の粒子の表面のラジカル活性点などをさらに低減させることができると考えられる。工程(4’)の熱処理温度は、1200℃未満であり、好ましくは700~1200℃未満、より好ましくは750~1100℃、さらに好ましくは800~1000℃である。工程(4)で得られた炭素構造を維持しやすく、高い放電容量が得られる観点から、工程(4’)の熱処理温度は上記の上限以下であることが好ましい。また、揮発性有機物を十分に分解させ、炭素質材料のラジカル活性点を失活させやすい観点からは、工程(4’)の熱処理温度は上記の下限以上であることが好ましい。工程(4’)の熱処理時間は、到達温度での保持時間が、好ましくは1分~1時間、より好ましくは10分~40分である。熱処理温度及び時間が上記の範囲内であれば、炭素質材料のラジカル活性点などをより低減させることができると考えられ、その結果、繰り返しの充放電を経た後でも、より高い放電容量を維持しやすくなると考えられる。 Further, after step (4), a step (4') of further heat treatment in the presence of a volatile organic substance can also be performed. When step (4') is performed, it is considered that the radical active sites on the surface of the carbonaceous material particles can be further reduced while maintaining the carbon structure obtained in step (4). The heat treatment temperature in step (4') is less than 1200°C, preferably from 700 to less than 1200°C, more preferably from 750 to 1100°C, even more preferably from 800 to 1000°C. From the viewpoint of easily maintaining the carbon structure obtained in step (4) and obtaining a high discharge capacity, the heat treatment temperature in step (4') is preferably at most the above upper limit. Further, from the viewpoint of sufficiently decomposing the volatile organic matter and easily deactivating the radical active sites of the carbonaceous material, the heat treatment temperature in step (4') is preferably equal to or higher than the above lower limit. The heat treatment time in step (4') is such that the holding time at the final temperature is preferably 1 minute to 1 hour, more preferably 10 minutes to 40 minutes. If the heat treatment temperature and time are within the above range, it is believed that the radical active sites of the carbonaceous material can be further reduced, and as a result, a higher discharge capacity is maintained even after repeated charging and discharging. It is thought that it will be easier to do.

上記の製造方法によって炭素質材料を製造する場合、該製造方法は、工程(1)~(5)に加えて、さらに、糖類骨格を有する化合物、及び窒素含有化合物を混合して混合物を得る工程(1)の前、工程(1)と同時、又は工程(1)の後に、糖類骨格を有する化合物を糊化させる工程(b)をさらに含んでもよい。工程(b)をさらに行う場合には、原料として用いる糖類骨格を有する化合物に含まれる空洞が閉じられ、その結果、最終的に得られる炭素質材料から形成した電極の密度を高めやすく、体積あたりの放電容量を高めやすくなる。 When producing a carbonaceous material by the above production method, in addition to steps (1) to (5), the production method further includes a step of mixing a compound having a sugar skeleton and a nitrogen-containing compound to obtain a mixture. Before (1), simultaneously with step (1), or after step (1), the method may further include a step (b) of gelatinizing the compound having a saccharide skeleton. When step (b) is further performed, the cavities contained in the compound having a saccharide skeleton used as a raw material are closed, and as a result, it is easy to increase the density of the electrode formed from the carbonaceous material finally obtained, and the density per volume is increased. It becomes easier to increase the discharge capacity of

工程(b)を行う場合、糊化の方法は特に限定されず、水の存在下で、糖類骨格を有する化合物を、単独で、又は、窒素含有化合物等との任意の混合物の状態で加熱する方法や、糖類骨格を有する化合物を、単独で、又は、窒素含有化合物等との任意の混合物の状態で、衝撃、圧潰、摩擦、及び/又はせん断の作用を有する機械的処理を施す方法が挙げられる。このような熱や外力がかかることにより、糖類骨格を有する化合物に含まれる空洞が閉塞される。上記の工程(b)における糊化は、例えば、糊化後の糖類骨格を有する化合物の粒子の断面を二次電子顕微鏡観察して得た画像において、断面積が3μm以上100μm以下の粒子を任意に20個選択した際に、1μm以上の空隙を有する粒子が所定の量以下、好ましくは3個以下、より好ましくは2個以下、さらに好ましくは1個以下となるまで行うことが好ましい。上記の顕微鏡観察は、糊化後の化合物に含まれる凝集物を粉砕、又は、分級により除去してから行ってよい。工程(b)を行う場合、上記のような工程(1)と任意の工程(b)とを経て得られた混合物を、工程(2)にて熱処理する。したがって、工程(b)を行う場合、該工程(b)は工程(2)の前に行われる工程である。 When performing step (b), the gelatinization method is not particularly limited, and the compound having a saccharide skeleton is heated in the presence of water, either alone or in any mixture with a nitrogen-containing compound, etc. methods, and methods in which a compound having a saccharide skeleton is subjected to mechanical treatment with the effects of impact, crushing, friction, and/or shearing, alone or in any mixture with a nitrogen-containing compound, etc. It will be done. By applying such heat and external force, cavities contained in the compound having a sugar skeleton are closed. In the gelatinization in the above step (b), for example, in an image obtained by observing a cross section of a compound having a sugar skeleton after gelatinization using a secondary electron microscope, particles having a cross-sectional area of 3 μm 2 or more and 100 μm 2 or less When 20 particles are arbitrarily selected, it is preferable to carry out the process until the number of particles having voids of 1 μm 2 or more becomes a predetermined amount or less, preferably 3 or less, more preferably 2 or less, still more preferably 1 or less. . The above-mentioned microscopic observation may be performed after the aggregates contained in the gelatinized compound are removed by crushing or classification. When performing step (b), the mixture obtained through step (1) and optional step (b) as described above is heat-treated in step (2). Therefore, when performing step (b), this step (b) is a step performed before step (2).

本発明の好ましい一態様において、本発明の製造方法は、工程(b)として次のような工程を含んでよい:
工程(1)の前に、糖類骨格を有する化合物に、該化合物の質量に対して5~50質量%の水を混合し、50~200℃の温度で1分~5時間加熱する工程(b1)、
工程(1)の前に、糖類骨格を有する化合物に、衝撃、圧潰、摩擦、及び/又はせん断の作用を有する機械的処理を施す工程(c1)、
工程(1)と同時に、もしくは工程(1)の後に、糖類骨格を有する化合物を含む混合物に、糖類骨格を有する化合物の質量に対して5~50質量%の水を混合し、50~200℃の温度で1分~5時間加熱する工程(b2)、及び/又は、
工程(1)と同時に、もしくは工程(1)の後に、糖類骨格を有する化合物を含む混合物に、衝撃、圧潰、摩擦、及び/又はせん断の作用を有する機械的処理を施す工程(c2)。
In a preferred embodiment of the present invention, the manufacturing method of the present invention may include the following steps as step (b):
Before step (1), a step (b1) of mixing a compound having a saccharide skeleton with 5 to 50% by mass of water based on the mass of the compound and heating it at a temperature of 50 to 200°C for 1 minute to 5 hours ),
Before step (1), a step (c1) of subjecting the compound having a saccharide skeleton to a mechanical treatment having the effects of impact, crushing, friction, and/or shearing;
At the same time as step (1) or after step (1), 5 to 50% by mass of water based on the mass of the compound having a saccharide skeleton is mixed with the mixture containing the compound having a saccharide skeleton, and the mixture is heated at 50 to 200°C. Step (b2) of heating at a temperature of 1 minute to 5 hours, and/or
Simultaneously with step (1) or after step (1), a step (c2) of subjecting the mixture containing a compound having a saccharide skeleton to a mechanical treatment having the effects of impact, crushing, friction, and/or shearing.

工程(b1)は、工程(1)の前に、糖類骨格を有する化合物に、該化合物の質量に対して5~50質量%の水を混合し、50~200℃の温度で1分~5時間加熱する工程である。糖類骨格を有する化合物に水を混合する際の水の量は、一定量以上は必要であるが、炭素質材料を製造する過程において、混合した水を留去させるのに必要なエネルギーを抑制する観点からは少ない方がよく、該化合物の質量に対して5~50質量%、好ましくは10~50質量%、より好ましくは10~30質量%である。また、加熱温度は50~200℃、好ましくは60~180℃、より好ましくは80~180℃である。さらに、加熱時間は1分~5時間、好ましくは3分~1時間、より好ましくは10分~30分である。 In step (b1), before step (1), a compound having a saccharide skeleton is mixed with 5 to 50% by mass of water based on the mass of the compound, and the mixture is heated at a temperature of 50 to 200°C for 1 to 5 minutes. This is a process of heating for a period of time. When mixing water with a compound having a sugar skeleton, a certain amount or more of water is required, but in the process of manufacturing carbonaceous materials, the energy required to distill off the mixed water can be suppressed. From a viewpoint, the smaller the better, and the amount is 5 to 50% by weight, preferably 10 to 50% by weight, and more preferably 10 to 30% by weight based on the weight of the compound. Further, the heating temperature is 50 to 200°C, preferably 60 to 180°C, more preferably 80 to 180°C. Further, the heating time is 1 minute to 5 hours, preferably 3 minutes to 1 hour, more preferably 10 minutes to 30 minutes.

工程(c1)は、工程(1)の前に、糖類骨格を有する化合物に、衝撃、圧潰、摩擦、及び/又はせん断の作用を有する機械的処理を施す工程である。衝撃、圧潰、摩擦、及び/又はせん断の作用を有する機械的処理において使用される装置としては、例えば粉砕機、押出機、製粉機、摩砕機、混練装置が挙げられる。処理時間等の処理条件は特に限定されないが、例えばボール振動ミルを用いる場合、20Hz、10分の処理条件が挙げられる。 Step (c1) is a step in which, prior to step (1), the compound having a sugar skeleton is subjected to mechanical treatment having the effects of impact, crushing, friction, and/or shearing. Devices used in mechanical processing with impact, crushing, friction, and/or shearing effects include, for example, crushers, extruders, flour mills, mills, kneading devices. Although processing conditions such as processing time are not particularly limited, for example, when using a ball vibrating mill, processing conditions of 20 Hz and 10 minutes can be mentioned.

工程(b2)は、工程(1)と同時に、もしくは工程(1)の後に、糖類骨格を有する化合物を含む混合物に、糖類骨格を有する化合物の質量に対して5~50質量%の水を混合し、50~200℃の温度で1分~5時間加熱する工程であり、工程(b1)に関して記載した好ましい態様等の記載が同様に当てはまる。 Step (b2) is, simultaneously with step (1) or after step (1), mixing 5 to 50% by mass of water with respect to the mass of the compound having a saccharide skeleton into the mixture containing the compound having a saccharide skeleton. This is a step of heating at a temperature of 50 to 200° C. for 1 minute to 5 hours, and the descriptions of preferred embodiments and the like described regarding step (b1) apply similarly.

工程(c2)は、工程(1)と同時に、もしくは工程(1)の後に、糖類骨格を有する化合物を含む混合物に、衝撃、圧潰、摩擦、及び/又はせん断の作用を有する機械的処理を施す工程であり、工程(c1)に関して記載した好ましい態様等の記載が同様に当てはまる。 In step (c2), simultaneously with step (1) or after step (1), the mixture containing the compound having a saccharide skeleton is subjected to mechanical treatment having the effects of impact, crushing, friction, and/or shearing. This is a step, and the descriptions of preferred embodiments and the like described with respect to step (c1) apply similarly.

本発明の炭素質材料、又は本発明の製造方法により得られる炭素質材料は、蓄電デバイス用の負極の活物質として好適に使用することができる。 The carbonaceous material of the present invention or the carbonaceous material obtained by the manufacturing method of the present invention can be suitably used as an active material of a negative electrode for an electricity storage device.

以下において、本発明の炭素質材料を用いて蓄電デバイス用の負極を製造する方法を具体的に述べる。負極は、例えば、炭素質材料に結合剤(バインダー)を添加し、適当な溶媒を適量添加した後、これらを混練し電極合剤を調製する。得られた電極合剤を、金属板等からなる集電板に塗布及び乾燥後、加圧成形することにより、蓄電デバイス用の負極、例えばリチウムイオン二次電池、ナトリウムイオン電池、リチウム硫黄電池、リチウム空気電池等の非水電解質二次電池用の負極を製造することができる。 Below, a method for manufacturing a negative electrode for an electricity storage device using the carbonaceous material of the present invention will be specifically described. For the negative electrode, for example, a binder is added to a carbonaceous material, an appropriate amount of a suitable solvent is added, and then these are kneaded to prepare an electrode mixture. The obtained electrode mixture is applied to a current collector plate made of a metal plate, etc., dried, and then pressure-molded to form a negative electrode for a power storage device, such as a lithium ion secondary battery, a sodium ion battery, a lithium sulfur battery, A negative electrode for non-aqueous electrolyte secondary batteries such as lithium-air batteries can be manufactured.

本発明の炭素質材料を用いることにより、重量あたりの高い放電容量と、優れた電流効率を有すると共に、繰り返しの充放電を経ても高い放電容量を維持することができる電極(負極)を製造することができる。電極により高い導電性を賦与することが所望される場合、必要に応じて、電極合剤の調製時に導電助剤を添加することができる。導電助剤としては、導電性のカーボンブラック、気相成長炭素繊維(VGCF)、ナノチューブ等を用いることができる。導電助剤の添加量は、使用する導電助剤の種類によっても異なるが、添加する量が少なすぎると期待する導電性が得られないことがあり、多すぎると電極合剤中の分散が悪くなることがある。このような観点から、導電助剤を添加する場合、その量は、活物質(炭素質材料)量+結合剤(バインダー)量+導電助剤量=100質量%としたとき、好ましくは0.5~10質量%、より好ましくは0.5~7質量%、さらに好ましくは0.5~5質量%である。結合剤としては、電解液と反応しないものであれば特に限定されないが、例えばPVDF(ポリフッ化ビニリデン)、ポリテトラフルオロエチレン、及びSBR(スチレン・ブタジエン・ラバー)とCMC(カルボキシメチルセルロース)との混合物等が挙げられる。中でもSBRとCMCとの混合物は、活物質表面に付着したSBRとCMCがリチウムイオン移動を阻害することが少なく、良好な入出力特性が得られるため好ましい。SBR等の水性エマルジョンやCMCを溶解し、スラリーを形成するために、水等の極性溶媒が好ましく用いられるが、PVDF等の溶剤性エマルジョンをN-メチルピロリドン等に溶解して用いることもできる。結合剤の添加量が多すぎると、得られる電極の抵抗が大きくなるため、電池の内部抵抗が大きくなり電池特性を低下させることがある。また、結合剤の添加量が少なすぎると、負極材料の粒子相互間及び集電材との結合が不十分になることがある。結合剤の好ましい添加量は、使用するバインダーの種類によっても異なるが、例えば溶媒に水を使用するバインダーでは、SBRとCMCとの混合物など、複数のバインダーを混合して使用することが多く、使用する全バインダーの総量として0.5~5質量%が好ましく、1~4質量%がより好ましい。一方、PVDF系のバインダーでは好ましくは3~13質量%であり、より好ましくは3~10質量%である。また、電極合剤中の炭素質材料の量は、80質量%以上が好ましく、90質量%以上がより好ましい。また、電極合剤中の炭素質材料の量は100質量%以下が好ましく、97質量%以下がより好ましい。 By using the carbonaceous material of the present invention, an electrode (negative electrode) that has a high discharge capacity per weight, excellent current efficiency, and can maintain high discharge capacity even after repeated charging and discharging is manufactured. be able to. If it is desired to impart higher conductivity to the electrode, a conductive additive can be added, if necessary, during preparation of the electrode mixture. As the conductive aid, conductive carbon black, vapor grown carbon fiber (VGCF), nanotube, etc. can be used. The amount of conductive aid added varies depending on the type of conductive aid used, but if the amount added is too small, the expected conductivity may not be obtained, and if it is too large, dispersion in the electrode mixture may be poor. It may happen. From this point of view, when adding a conductive aid, the amount thereof is preferably 0.5% when the amount of active material (carbonaceous material) + amount of binder + amount of conductive aid = 100% by mass. The amount is 5 to 10% by weight, more preferably 0.5 to 7% by weight, and even more preferably 0.5 to 5% by weight. The binder is not particularly limited as long as it does not react with the electrolyte, but examples include PVDF (polyvinylidene fluoride), polytetrafluoroethylene, and a mixture of SBR (styrene butadiene rubber) and CMC (carboxymethylcellulose). etc. Among them, a mixture of SBR and CMC is preferable because the SBR and CMC attached to the surface of the active material hardly inhibit the movement of lithium ions and good input/output characteristics can be obtained. A polar solvent such as water is preferably used to dissolve an aqueous emulsion such as SBR or CMC to form a slurry, but a solvent emulsion such as PVDF can also be used by dissolving it in N-methylpyrrolidone or the like. If the amount of binder added is too large, the resistance of the resulting electrode will increase, which may increase the internal resistance of the battery and deteriorate the battery characteristics. Furthermore, if the amount of the binder added is too small, the bond between particles of the negative electrode material and with the current collector may become insufficient. The preferred amount of the binder added varies depending on the type of binder used, but for example, in the case of a binder that uses water as a solvent, a mixture of multiple binders such as a mixture of SBR and CMC is often used; The total amount of all binders used is preferably 0.5 to 5% by mass, more preferably 1 to 4% by mass. On the other hand, in the case of a PVDF-based binder, the content is preferably 3 to 13% by mass, more preferably 3 to 10% by mass. Further, the amount of carbonaceous material in the electrode mixture is preferably 80% by mass or more, and more preferably 90% by mass or more. Further, the amount of carbonaceous material in the electrode mixture is preferably 100% by mass or less, more preferably 97% by mass or less.

本発明の炭素質材料はスラリーを作製した際の分散性に優れており、電極合剤を金属板等からなる集電板に塗布するの際の凝集を抑制することが可能である。 The carbonaceous material of the present invention has excellent dispersibility when preparing a slurry, and can suppress agglomeration when applying an electrode mixture to a current collector plate made of a metal plate or the like.

電極活物質層は、基本的には集電板の両面に形成されるが、必要に応じて片面に形成されていてもよい。電極活物質層が厚いほど、集電板やセパレータ等が少なくて済むため、高容量化には好ましい。しかし、対極と対向する電極面積が広いほど入出力特性の向上に有利なため、電極活物質層が厚すぎると入出力特性が低下することがある。活物質層の厚み(片面あたり)は、電池放電時の出力の観点から、好ましくは10~80μm、より好ましくは20~75μm、さらにより好ましくは30~75μmである。 The electrode active material layer is basically formed on both sides of the current collector plate, but may be formed on one side if necessary. The thicker the electrode active material layer is, the less current collector plates, separators, etc. are required, which is preferable for increasing capacity. However, since the wider the area of the electrode facing the counter electrode is, the more advantageous it is to improving the input/output characteristics, the input/output characteristics may deteriorate if the electrode active material layer is too thick. The thickness of the active material layer (per side) is preferably 10 to 80 μm, more preferably 20 to 75 μm, and even more preferably 30 to 75 μm, from the viewpoint of output during battery discharge.

本発明の炭素質材料を用いた蓄電デバイスは、重量あたりの高い放電容量、及び優れた電流効率を有すると共に、繰り返しの充放電を経ても高い放電容量を維持することができる。本発明の炭素質材料を用いて蓄電デバイス用の負極を形成する場合、正極材料、セパレータ、及び電解液などの電池を構成する他の材料は特に限定されることなく、蓄電デバイスとして従来使用され、あるいは提案されている種々の材料を使用することが可能である。 The electricity storage device using the carbonaceous material of the present invention has high discharge capacity per weight and excellent current efficiency, and can maintain high discharge capacity even after repeated charging and discharging. When forming a negative electrode for a power storage device using the carbonaceous material of the present invention, the positive electrode material, the separator, and other materials constituting the battery such as the electrolyte are not particularly limited, and are not limited to those conventionally used for power storage devices. Alternatively, it is possible to use various materials that have been proposed.

例えば、正極材料としては、層状酸化物系(LiMOと表されるもので、Mは金属:例えばLiCoO、LiNiO、LiMnO、又はLiNiCoMo(ここでx、y、zは組成比を表わす))、オリビン系(LiMPOで表され、Mは金属:例えばLiFePOなど)、スピネル系(LiMで表され、Mは金属:例えばLiMnなど)の複合金属カルコゲン化合物が好ましく、これらのカルコゲン化合物を必要に応じて混合して使用してもよい。これらの正極材料を適当なバインダーと電極に導電性を付与するための炭素材料とともに成形して、導電性の集電材上に層形成することにより正極が形成される。 For example, the positive electrode material may be a layered oxide (expressed as LiMO 2 , where M is a metal; for example, LiCoO 2 , LiNiO 2 , LiMnO 2 , or LiNix Co y Mo z O 2 (where x, y , z represents the composition ratio)), olivine type (represented by LiMPO4 , M is a metal such as LiFePO4 ), spinel type (represented by LiM2O4 , M is a metal such as LiMn2O4 , etc. ) ) are preferred, and these chalcogen compounds may be mixed and used if necessary. A positive electrode is formed by molding these positive electrode materials together with a suitable binder and a carbon material for imparting conductivity to the electrode, and forming a layer on a conductive current collector.

例えば蓄電デバイスが非水電解質二次電池である場合、非水溶媒型電解液は、一般に非水溶媒に電解質を溶解することにより形成される。非水溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジメトキシエタン、ジエトキシエタン、γ-ブチルラクトン、テトラヒドロフラン、2-メチルテトラヒドロフラン、スルホラン、又は1,3-ジオキソラン等の有機溶媒を、一種又は二種以上を組み合わせて用いることができる。また、電解質としては、LiClO、LiPF、LiBF、LiCFSO、LiAsF、LiCl、LiBr、LiB(C、又はLiN(SOCF等が用いられる。 For example, when the electricity storage device is a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte solution is generally formed by dissolving an electrolyte in a non-aqueous solvent. Examples of non-aqueous solvents include organic solvents such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, dimethoxyethane, diethoxyethane, γ-butyllactone, tetrahydrofuran, 2-methyltetrahydrofuran, sulfolane, or 1,3-dioxolane. These can be used alone or in combination of two or more. Further, as the electrolyte, LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiAsF 6 , LiCl, LiBr, LiB(C 6 H 5 ) 4 , LiN(SO 3 CF 3 ) 2 or the like is used.

また、蓄電デバイスが非水電解質二次電池である場合、非水電解質二次電池は、一般に上記のようにして形成した正極と負極とを必要に応じて透液性セパレータを介して対向させ、電解液中に浸漬させることにより形成される。このようなセパレータとしては、二次電池に通常用いられる不織布、その他の多孔質材料からなる透過性又は透液性のセパレータを用いることができる。あるいはセパレータの代わりに、もしくはセパレータと一緒に、電解液を含浸させたポリマーゲルからなる固体電解質を用いることもできる。 In addition, when the electricity storage device is a non-aqueous electrolyte secondary battery, the non-aqueous electrolyte secondary battery generally has a positive electrode and a negative electrode formed as described above facing each other with a liquid-permeable separator interposed therebetween as necessary. It is formed by immersing it in an electrolyte. As such a separator, a permeable or liquid-permeable separator made of nonwoven fabric or other porous material that is commonly used in secondary batteries can be used. Alternatively, a solid electrolyte made of a polymer gel impregnated with an electrolytic solution can also be used instead of or together with the separator.

本発明の炭素質材料は、例えば自動車などの車両に搭載される蓄電デバイス(典型的には車両駆動用非水電解質二次電池)用の炭素質材料として好適である。本発明において車両とは、通常、電動車両として知られるものや、燃料電池や内燃機関とのハイブリッド車など、特に限定されることなく対象とすることができるが、少なくとも上記電池を備えた電源装置と、該電源装置からの電源供給により駆動する電動駆動機構と、これを制御する制御装置とを備えるものである。車両は、さらに、発電ブレーキや回生ブレーキを備え、制動によるエネルギーを電気に変換して、前記非水電解質二次電池に充電する機構を備えていてもよい。 The carbonaceous material of the present invention is suitable, for example, as a carbonaceous material for an electricity storage device (typically a non-aqueous electrolyte secondary battery for driving a vehicle) mounted on a vehicle such as an automobile. In the present invention, the term "vehicle" refers to a vehicle that is generally known as an electric vehicle, a hybrid vehicle with a fuel cell or an internal combustion engine, etc., without any particular limitation, but at least a power supply device equipped with the above-mentioned battery. The apparatus includes: an electric drive mechanism that is driven by power supplied from the power supply device; and a control device that controls the electric drive mechanism. The vehicle may further include a generating brake or a regenerative brake, and a mechanism for converting energy from braking into electricity and charging the non-aqueous electrolyte secondary battery.

以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。なお、以下に炭素質材料及びそれを用いた負極の物性の測定方法を記載するが、実施例を含めて、本明細書中に記載する物性及び測定(又は、物性値及び測定値)は、以下の方法により求めた値に基づくものである。 EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but these are not intended to limit the scope of the present invention. The carbonaceous material and the method for measuring the physical properties of a negative electrode using the same are described below, but the physical properties and measurements (or physical property values and measured values) described in this specification, including the examples, are as follows: It is based on the value obtained by the following method.

(水素、酸素及び窒素元素含有量)
株式会社堀場製作所製、酸素・窒素・水素分析装置EMGA-930を用いて、不活性ガス溶解法に基づいて元素分析を行った。
当該装置の検出方法は、酸素:不活性ガス融解-非分散型赤外線吸収法(NDIR)、窒素:不活性ガス融解-熱伝導法(TCD)、水素:不活性ガス融解-非分散型赤外線吸収法(NDIR)であり、校正は、(酸素・窒素)Niカプセル、TiH(H標準試料)、SS-3(O標準試料)、SiN(N標準試料)で行い、前処理として250℃、約10分で水分量を測定した試料20mgをNiカプセルに取り、元素分析装置内で30秒脱ガスした後に測定した。試験は3検体で分析し、平均値を分析値とした。上記のようにして、試料中の水素、酸素及び窒素元素含有量を得た。
(Hydrogen, oxygen and nitrogen element content)
Elemental analysis was performed based on the inert gas dissolution method using an oxygen/nitrogen/hydrogen analyzer EMGA-930 manufactured by Horiba, Ltd.
The detection methods of this device are: oxygen: inert gas melting - non-dispersive infrared absorption method (NDIR), nitrogen: inert gas melting - thermal conduction method (TCD), hydrogen: inert gas melting - non-dispersive infrared absorption method. (NDIR), and calibration was performed using (oxygen/nitrogen) Ni capsules, TiH 2 (H standard sample), SS-3 (O standard sample), and SiN (N standard sample), and pretreatment at 250°C. 20 mg of the sample whose water content was measured in about 10 minutes was placed in a Ni capsule, degassed for 30 seconds in an elemental analyzer, and then measured. Three samples were analyzed in the test, and the average value was taken as the analytical value. The hydrogen, oxygen, and nitrogen element contents in the sample were obtained as described above.

(リン元素含有量)
株式会社リガク製。ZSX Primus-μを用いて、蛍光X線分析法に基づいて分析を行った。
上部照射方式用ホルダーを用い、試料測定面積を直径30mmの円周内とした。被測定試料2.0gとポリマーバインダ2.0g(Chemplex社製 Spectro Blend44μ Powder)とを乳鉢で混合し、成形機に入れた。成形機に15tonの荷重を1分間かけて、直径40mmのペレットを作製した。作製したペレットをポリプロピレン製のフィルムで包み、試料ホルダーに設置して測定を行った。X線源は30kV、100mAに設定した。リンKα線の強度からリン元素含有量を求めるため、分光結晶にGe(111)、検出器にガスフロー型比例係数管を使用し、2θが137~144°の範囲を、走査速度4°/分で測定した。
(phosphorus element content)
Manufactured by Rigaku Co., Ltd. Analysis was performed using ZSX Primus-μ based on fluorescent X-ray analysis.
Using a holder for the top irradiation method, the sample measurement area was set within the circumference of a circle with a diameter of 30 mm. 2.0 g of a sample to be measured and 2.0 g of a polymer binder (Spectro Blend 44μ Powder manufactured by Chemplex) were mixed in a mortar and placed in a molding machine. A load of 15 tons was applied to the molding machine for 1 minute to produce pellets with a diameter of 40 mm. The produced pellets were wrapped in a polypropylene film, placed in a sample holder, and measured. The X-ray source was set at 30 kV and 100 mA. In order to determine the phosphorus element content from the intensity of the phosphorus Kα ray, we used Ge (111) as the spectroscopic crystal and a gas flow type proportional coefficient tube as the detector, and scanned the range of 2θ from 137 to 144 degrees at a scanning speed of 4 degrees/ Measured in minutes.

(X線回折測定によるBragg式を用いた平均面間隔d002測定)
「株式会社リガク製MiniFlexII」を用い、後述する実施例及び比較例で調製した炭素質材料の粉体を試料ホルダーに充填し、Niフィルターにより単色化したCuKα線を線源とし、X線回折図形を得た。回折図形のピーク位置は重心法(回折線の重心位置を求め、これに対応する2θ値でピーク位置を求める方法)により求め、標準物質用高純度シリコン粉末の(111)面の回折ピークを用いて補正した。CuKα線の波長λを0.15418nmとし、以下に記すBraggの公式によりd002を算出した。
(Measurement of average interplanar spacing d 002 using Bragg equation by X-ray diffraction measurement)
Using "MiniFlex II manufactured by Rigaku Co., Ltd.", a sample holder was filled with carbonaceous material powder prepared in the Examples and Comparative Examples described later, and CuKα rays made monochromatic by a Ni filter were used as a radiation source, and an X-ray diffraction pattern was obtained. I got it. The peak position of the diffraction pattern was determined by the centroid method (a method of determining the centroid position of the diffraction line and calculating the peak position using the corresponding 2θ value), using the diffraction peak of the (111) plane of high-purity silicon powder for standard material. I corrected it. The wavelength λ of the CuKα ray was set to 0.15418 nm, and d 002 was calculated using Bragg's formula described below.

Figure 2024037197000001
Figure 2024037197000001

(レーザー散乱法による粒度分布)
炭化物の平均粒子径(粒度分布)は、以下の方法により測定した。試料5mgを界面活性剤(和光純薬工業株式会社製「ToritonX100」)が5質量%含まれた2mL水溶液に投入し、超音波洗浄器で10分以上処理し、水溶液中に分散させた。この分散液を用いて粒度分布を測定した。粒度分布測定は、粒子径・粒度分布測定装置(マイクロトラック・ベル株式会社製「マイクロトラックMT3300EXII」)を用いて行った。D50は、累積体積が50%となる粒子径であり、この値を平均粒子径として用いた。
(Particle size distribution by laser scattering method)
The average particle diameter (particle size distribution) of the carbide was measured by the following method. 5 mg of the sample was added to 2 mL of an aqueous solution containing 5% by mass of a surfactant ("Toriton Particle size distribution was measured using this dispersion. The particle size distribution measurement was performed using a particle size/particle size distribution measuring device (Microtrac MT3300EXII, manufactured by Microtrac Bell Co., Ltd.). D50 is the particle diameter at which the cumulative volume is 50%, and this value was used as the average particle diameter.

(ラマンスペクトル)
ラマン分光器(ナノフォトン社製「レーザーラマン顕微鏡Ramanforce」)を用い、炭素質材料である測定対象粒子を観測台ステージ上にセットし、対物レンズの倍率を20倍とし、ピントを合わせ、アルゴンイオンレーザ光を照射しながら測定した。測定条件の詳細は以下のとおりである。得られたラマンスペクトルから、1360cm-1付近のピークの半値幅、及び1650cm-1付近のピークの半値幅を決定した。
アルゴンイオンレーザ光の波長:532nm
試料上のレーザーパワー:100-300W/cm
分解能:5-7cm-1
測定範囲:150-4000cm-1
測定モード:XY Averaging
露光時間:20秒
積算回数:2回
ピーク強度測定:ベースライン補正 Polynom-3次で自動補正
ピークサーチ&フィッテイング処理 GaussLoren
(Raman spectrum)
Using a Raman spectrometer (Laser Raman Microscope Ramanforce, manufactured by Nanophoton), set the particle to be measured, which is a carbonaceous material, on the observation stage, set the objective lens to 20x magnification, focus, and collect argon ions. Measurements were made while irradiating with laser light. Details of the measurement conditions are as follows. From the obtained Raman spectrum, the half-width of the peak around 1360 cm −1 and the half-width of the peak around 1650 cm −1 were determined.
Argon ion laser light wavelength: 532nm
Laser power on sample: 100-300W/ cm2
Resolution: 5-7cm -1
Measuring range: 150-4000cm -1
Measurement mode: XY Averaging
Exposure time: 20 seconds Integration count: 2 Peak intensity measurement: Baseline correction Automatic correction with Polynom-3rd order
Peak search & fitting processing GaussLoren

(実施例1)
デンプン(コーンスターチ)100質量部とメラミン11.6質量部(デンプン単糖ユニット1モルに対して0.15モル)、アジピン酸7.6質量部(デンプン単糖ユニット1モルに対して0.08モル)、リン酸二水素アンモニウム4質量部(デンプン単糖ユニット1モルに対して0.06モル)をサンプル瓶にいれ振り混ぜることで混合物を得た(工程1及び工程a)。得られた混合物を、窒素ガス雰囲気中、600℃まで昇温した。この際、600℃までの昇温速度は600℃/時間(10℃/分)とした。次いで、窒素ガス気流下、600℃で30分間熱処理し炭化処理を行うことにより炭化物を得た(工程2)。この際、窒素ガスの供給量は、デンプン10gあたり0.5L/分であった。その後、得られた炭化物をボールミルを用いて粉砕することにより、D50が5.5μmの粉砕した炭化物を得た(工程3)。次に、粉砕した炭化物とポリスチレン(積水化成品工業株式会社製、平均粒子径400μm)を、質量比1:0.1となるように100mlの容器にいれ、2Hzで5分間振とうすることにより混合した。得られた混合物を、1250℃まで昇温し、1250℃で30分間熱処理する高温焼成処理を行うことにより熱処理物を得た(工程4)。この際、1250℃までの昇温速度は600℃/時間(10℃/分)とした。上記の昇温及び熱処理は窒素ガス気流下で行った。窒素ガスの供給量は、粉砕した炭化物5gあたり3L/分であった。続いて熱処理物100質量部に対し、1質量部のアジピン酸を添加しサンプル瓶にいれ振り混ぜることで混合し、窒素ガス雰囲気中150℃まで昇温した。この際、150℃までの昇温速度は600℃/時間(10℃/分)とした。150℃で1時間、後熱処理を行うことにより炭素質材料を得た(工程5)。
(Example 1)
100 parts by mass of starch (cornstarch), 11.6 parts by mass of melamine (0.15 mol per mol of starch monosaccharide unit), 7.6 parts by mass of adipic acid (0.08 parts by mass per 1 mol of starch monosaccharide unit) mol), 4 parts by mass of ammonium dihydrogen phosphate (0.06 mol per 1 mol of starch monosaccharide unit) was placed in a sample bottle and mixed to obtain a mixture (Step 1 and Step a). The resulting mixture was heated to 600° C. in a nitrogen gas atmosphere. At this time, the temperature increase rate up to 600°C was 600°C/hour (10°C/min). Next, a carbide was obtained by performing a carbonization treatment by heat treatment at 600° C. for 30 minutes under a nitrogen gas flow (Step 2). At this time, the amount of nitrogen gas supplied was 0.5 L/min per 10 g of starch. Thereafter, the obtained carbide was pulverized using a ball mill to obtain a pulverized carbide having a D50 of 5.5 μm (Step 3). Next, the crushed carbide and polystyrene (manufactured by Sekisui Plastics Co., Ltd., average particle size 400 μm) were placed in a 100 ml container at a mass ratio of 1:0.1, and the mixture was shaken at 2 Hz for 5 minutes. Mixed. The resulting mixture was heated to 1250°C and subjected to a high-temperature firing process in which it was heat-treated at 1250°C for 30 minutes to obtain a heat-treated product (Step 4). At this time, the temperature increase rate up to 1250°C was 600°C/hour (10°C/min). The above temperature increase and heat treatment were performed under a nitrogen gas stream. The amount of nitrogen gas supplied was 3 L/min per 5 g of pulverized carbide. Subsequently, 1 part by mass of adipic acid was added to 100 parts by mass of the heat-treated product, the mixture was poured into a sample bottle and mixed by shaking, and the temperature was raised to 150° C. in a nitrogen gas atmosphere. At this time, the rate of temperature increase up to 150°C was 600°C/hour (10°C/min). A carbonaceous material was obtained by performing post-heat treatment at 150° C. for 1 hour (Step 5).

(実施例2)
工程(5)における添加剤をアジピン酸に代えてクエン酸とした以外は実施例1と同様に工程(1)~(5)を行い、炭素質材料を得た。
(Example 2)
Steps (1) to (5) were carried out in the same manner as in Example 1, except that citric acid was used instead of adipic acid as the additive in step (5), to obtain a carbonaceous material.

(実施例3)
工程(5)における添加剤をアジピン酸に代えてグルコースとした以外は実施例1と同様に工程(1)~(5)を行い、炭素質材料を得た。
(Example 3)
Steps (1) to (5) were carried out in the same manner as in Example 1, except that glucose was used instead of adipic acid as the additive in step (5), to obtain a carbonaceous material.

(実施例4)
工程(5)における添加剤をアジピン酸に代えてフルクトースとし、工程(5)における熱処理温度を130℃、熱処理時間を3時間とした以外は実施例1と同様に工程(1)~(5)を行い、炭素質材料を得た。
(Example 4)
Steps (1) to (5) were carried out in the same manner as in Example 1, except that the additive in step (5) was replaced with fructose, and the heat treatment temperature in step (5) was 130°C and the heat treatment time was 3 hours. A carbonaceous material was obtained.

(比較例1)
デンプン(コーンスターチ)100質量部とメラミン11.6質量部(デンプン単糖ユニット1モルに対して0.15モル)、アジピン酸7.6質量部(デンプン単糖ユニット1モルに対して0.08モル)、リン酸二水素アンモニウム4質量部(デンプン単糖ユニット1モルに対して0.06モル)をサンプル瓶にいれ振り混ぜることで混合物を得た(工程1及び工程a)。得られた混合物を、窒素ガス雰囲気中、600℃まで昇温した。この際、600℃までの昇温速度は600℃/時間(10℃/分)とした。次いで、窒素ガス気流下、600℃で30分間熱処理することにより炭化処理を行うことにより炭化物を得た(工程2)。この際、窒素ガスの供給量は、デンプン10gあたり0.5L/分であった。その後、得られた炭化物をボールミルを用いて粉砕することにより、D50が5.5μmの粉砕した炭化物を得た(工程3)。次に、粉砕した炭化物およびポリスチレン(積水化成品工業株式会社製、平均粒子径400μm)を、質量比1:0.1となるように100mlの容器にいれ、2Hzで5分間振とうすることにより混合した。得られた混合物を、1250℃まで昇温し、1250℃で30分間熱処理する高温焼成処理を行うことにより炭素質材料を得た(工程4)。この際、1250℃までの昇温速度は600℃/時間(10℃/分)とした。上記の昇温及び熱処理は窒素ガス気流下で行った。窒素ガスの供給量は、粉砕した炭化物5gあたり3L/分であった。
(Comparative example 1)
100 parts by mass of starch (cornstarch), 11.6 parts by mass of melamine (0.15 mol per mol of starch monosaccharide unit), 7.6 parts by mass of adipic acid (0.08 parts by mass per 1 mol of starch monosaccharide unit) mol), 4 parts by mass of ammonium dihydrogen phosphate (0.06 mol per 1 mol of starch monosaccharide unit) was placed in a sample bottle and mixed to obtain a mixture (Step 1 and Step a). The resulting mixture was heated to 600° C. in a nitrogen gas atmosphere. At this time, the temperature increase rate up to 600°C was 600°C/hour (10°C/min). Next, a carbide was obtained by performing a carbonization treatment by performing a heat treatment at 600° C. for 30 minutes under a nitrogen gas flow (Step 2). At this time, the amount of nitrogen gas supplied was 0.5 L/min per 10 g of starch. Thereafter, the obtained carbide was pulverized using a ball mill to obtain a pulverized carbide having a D50 of 5.5 μm (Step 3). Next, the crushed carbide and polystyrene (manufactured by Sekisui Plastics Co., Ltd., average particle size 400 μm) were placed in a 100 ml container at a mass ratio of 1:0.1, and the mixture was shaken at 2 Hz for 5 minutes. Mixed. A carbonaceous material was obtained by performing a high-temperature firing process in which the resulting mixture was heated to 1250°C and heat-treated at 1250°C for 30 minutes (Step 4). At this time, the temperature increase rate up to 1250°C was 600°C/hour (10°C/min). The above temperature increase and heat treatment were performed under a nitrogen gas stream. The amount of nitrogen gas supplied was 3 L/min per 5 g of pulverized carbide.

(比較例2)
デンプン(コーンスターチ)100質量部とメラミン5.4質量部(デンプン単糖ユニット1モルに対して0.07モル)、アジピン酸3.8質量部(デンプン単糖ユニット1モルに対して0.04モル)、リン酸二水素アンモニウム2質量部(デンプン単糖ユニット1モルに対して0.03モル)をサンプル瓶に入れ振り混ぜることで混合物を得た(工程1及び工程a)。得られた混合物を、窒素ガス雰囲気中、600℃まで昇温した。この際、600℃までの昇温速度は600℃/時間(10℃/分)とした。次いで、窒素ガス気流下、600℃で30分間熱処理し炭化処理を行うことにより炭化物を得た(工程2)。この際、窒素ガスの供給量は、デンプン10gあたり0.5L/分であった。その後、得られた炭化物をボールミルで粉砕することにより、D50が5.5μmの粉砕した炭化物を得た(工程3)。得られた粉砕した炭化物を、1150℃まで昇温し、1150℃で60分間熱処理する高温焼成処理を行うことにより炭素質材料を得た(工程4)。この際、1150℃までの昇温速度は600℃/時間(10℃/分)とした。上記の昇温および熱処理は窒素ガス気流下で行った。窒素ガスの供給量は、粉砕した炭化物5gあたり3L/分であった。
(Comparative example 2)
100 parts by mass of starch (corn starch), 5.4 parts by mass of melamine (0.07 mol per mol of starch monosaccharide unit), 3.8 parts by mass of adipic acid (0.04 parts by mass per 1 mol of starch monosaccharide unit) mol), 2 parts by mass of ammonium dihydrogen phosphate (0.03 mol per mol of starch monosaccharide unit) was placed in a sample bottle and shaken to obtain a mixture (Step 1 and Step a). The resulting mixture was heated to 600° C. in a nitrogen gas atmosphere. At this time, the temperature increase rate up to 600°C was 600°C/hour (10°C/min). Next, a carbide was obtained by performing a carbonization treatment by heat treatment at 600° C. for 30 minutes under a nitrogen gas flow (Step 2). At this time, the amount of nitrogen gas supplied was 0.5 L/min per 10 g of starch. Thereafter, the obtained carbide was pulverized with a ball mill to obtain a pulverized carbide having a D50 of 5.5 μm (Step 3). The resulting pulverized carbide was heated to 1150°C and subjected to a high-temperature firing process in which it was heat-treated at 1150°C for 60 minutes to obtain a carbonaceous material (Step 4). At this time, the temperature increase rate up to 1150°C was 600°C/hour (10°C/min). The above temperature increase and heat treatment were performed under a nitrogen gas stream. The amount of nitrogen gas supplied was 3 L/min per 5 g of pulverized carbide.

(比較例3)
デンプン(コーンスターチ)100質量部とメラミン11.6質量部(デンプン単糖ユニット1モルに対して0.15モル)、アジピン酸7.6質量部(デンプン単糖ユニット1モルに対して0.08モル)、リン酸二水素アンモニウム4質量部(デンプン単糖ユニット1モルに対して0.06モル)をサンプル瓶にいれ振り混ぜることで混合物を得た(工程1及び工程a)。得られた混合物を、窒素ガス雰囲気中、600℃まで昇温した。この際、600℃までの昇温速度は600℃/時間(10℃/分)とした。次いで、窒素ガス気流下、600℃で30分間熱処理することにより炭化処理を行うことにより炭化物を得た(工程2)。この際、窒素ガスの供給量は、デンプン10gあたり0.5L/分であった。その後、得られた炭化物をボールミルで粉砕することにより、D50が5.5μmの粉砕した炭化物を得た(工程3)。得られた粉砕した炭化物を1100℃まで昇温し、1100℃で60分間熱処理する高温焼成処理工程(工程4)を行い、炭素質材料を得た。この際、1100℃までの昇温速度は600℃/時間(10℃/分)とした。上記の昇温及び熱処理は窒素ガス気流下で行った。窒素ガスの供給量は、粉砕した炭化物5gあたり3L/分であった。
(Comparative example 3)
100 parts by mass of starch (cornstarch), 11.6 parts by mass of melamine (0.15 mol per mol of starch monosaccharide unit), 7.6 parts by mass of adipic acid (0.08 parts by mass per 1 mol of starch monosaccharide unit) mol), 4 parts by mass of ammonium dihydrogen phosphate (0.06 mol per 1 mol of starch monosaccharide unit) was placed in a sample bottle and mixed to obtain a mixture (Step 1 and Step a). The resulting mixture was heated to 600° C. in a nitrogen gas atmosphere. At this time, the temperature increase rate up to 600°C was 600°C/hour (10°C/min). Next, a carbide was obtained by performing a carbonization treatment by performing a heat treatment at 600° C. for 30 minutes under a nitrogen gas flow (Step 2). At this time, the amount of nitrogen gas supplied was 0.5 L/min per 10 g of starch. Thereafter, the obtained carbide was pulverized with a ball mill to obtain a pulverized carbide having a D50 of 5.5 μm (Step 3). The resulting pulverized carbide was heated to 1100° C. and subjected to a high-temperature firing process (step 4) in which it was heat-treated at 1100° C. for 60 minutes to obtain a carbonaceous material. At this time, the rate of temperature increase up to 1100°C was 600°C/hour (10°C/min). The above temperature increase and heat treatment were performed under a nitrogen gas stream. The amount of nitrogen gas supplied was 3 L/min per 5 g of pulverized carbide.

(比較例4)
デンプン(コーンスターチ)100質量部とメラミン2質量部(デンプン単糖ユニット1モルに対して0.026モル)、アジピン酸7.6質量部(デンプン単糖ユニット1モルに対して0.08モル)、リン酸二水素アンモニウム4質量部(デンプン単糖ユニット1モルに対して0.06モル)をサンプル瓶に入れ振り混ぜることで混合物を得た(工程1及び工程a)。得られた混合物を、窒素ガス雰囲気中、600℃まで昇温した。この際、600℃までの昇温速度は600℃/時間(10℃/分)とした。次いで、窒素ガス気流下、600℃で30分間熱処理することにより炭化処理を行うことにより炭化物を得た(工程2)。この際、窒素ガスの供給量は、デンプン10gあたり0.5L/分であった。その後、得られた炭化物をボールミルで粉砕することにより、D50が5.5μmの粉砕した炭化物を得た(工程3)。得られた粉砕した炭化物を、1200℃まで昇温し、1200℃で60分間熱処理する高温焼成処理を行うことにより炭素質材料を得た(工程4)。この際、1200℃までの昇温速度は600℃/時間(10℃/分)とした。上記の昇温および熱処理は窒素ガス気流下で行った。窒素ガスの供給量は、粉砕した炭化物5gあたり3L/分であった。
(Comparative example 4)
100 parts by mass of starch (cornstarch), 2 parts by mass of melamine (0.026 mol per mol of starch monosaccharide unit), 7.6 parts by mass of adipic acid (0.08 mol per mol of starch monosaccharide unit) , 4 parts by mass of ammonium dihydrogen phosphate (0.06 mol per mol of starch monosaccharide unit) was placed in a sample bottle and shaken to obtain a mixture (Step 1 and Step a). The resulting mixture was heated to 600° C. in a nitrogen gas atmosphere. At this time, the temperature increase rate up to 600°C was 600°C/hour (10°C/min). Next, a carbide was obtained by performing a carbonization treatment by performing a heat treatment at 600° C. for 30 minutes under a nitrogen gas flow (Step 2). At this time, the amount of nitrogen gas supplied was 0.5 L/min per 10 g of starch. Thereafter, the obtained carbide was pulverized with a ball mill to obtain a pulverized carbide having a D50 of 5.5 μm (Step 3). The resulting pulverized carbide was heated to 1200° C. and subjected to a high-temperature firing process in which it was heat-treated at 1200° C. for 60 minutes to obtain a carbonaceous material (Step 4). At this time, the temperature increase rate up to 1200°C was 600°C/hour (10°C/min). The above temperature increase and heat treatment were performed under a nitrogen gas stream. The amount of nitrogen gas supplied was 3 L/min per 5 g of pulverized carbide.

(電極の作製)
各実施例及び比較例で得た炭素質材料をそれぞれ用いて、以下の手順に従って負極を作製した。
炭素質材料95質量部、導電性カーボンブラック(TIMCAL製「Super-P(登録商標)」)2質量部、カルボキシメチルセルロース(CMC)1質量部、スチレン・ブタジエン・ラバー(SBR)2質量部及び水90質量部を混合し、スラリーを得た。得られたスラリーを厚さ15μmの銅箔に塗布し、乾燥後プレスして、直径14mmで打ち抜き厚さ45μmの電極を得た。
(Preparation of electrode)
Using the carbonaceous materials obtained in each example and comparative example, a negative electrode was produced according to the following procedure.
95 parts by mass of carbonaceous material, 2 parts by mass of conductive carbon black ("Super-P (registered trademark)" manufactured by TIMCAL), 1 part by mass of carboxymethyl cellulose (CMC), 2 parts by mass of styrene-butadiene rubber (SBR), and water. 90 parts by mass were mixed to obtain a slurry. The obtained slurry was applied to a 15 μm thick copper foil, dried and then pressed to obtain a punched electrode with a diameter of 14 mm and a thickness of 45 μm.

(重量あたりの放電容量及び電流効率)
上記で作製した電極を作用極とし、金属リチウムを対極及び参照極として使用した。溶媒として、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートを、体積比で1:1:1となるように混合して用いた。この溶媒に、LiPFを1mol/L溶解し、電解質として用いた。セパレータにはポリプロピレン膜を使用した。アルゴン雰囲気下のグローブボックス内でコインセルを作製した。
上記構成のリチウム二次電池について、充放電試験装置(東洋システム株式会社製、「TOSCAT」)を用いて、充放電試験を行った。リチウムのドーピングは、活物質質量に対し70mA/gの速度で行い、リチウム電位に対して1mVになるまでドーピングした。さらにリチウム電位に対して1mVの定電圧を印加して、活物質質量に対し2mA/gの速度になった段階でドーピングを終了した。このときの容量を充電容量とした。次いで、活物質質量に対し70mA/gの速度で、リチウム電位に対して1.5Vになるまで脱ドーピングを行い、このとき充電した容量を初期充電容量(mAh)、放電した容量を初期放電容量(mAh)とした。得られた初期充電容量と初期放電容量を、それぞれ負極の重量で除して、得られた値を重量あたりの充電容量(mAh/g)と重量あたりの放電容量(mAh/g)とした(初期充放電の評価)。また、初期放電容量を、初期充電容量で除して、得られた値の百分率を電流効率(%)とした。
(discharge capacity and current efficiency per weight)
The electrode produced above was used as a working electrode, and metallic lithium was used as a counter electrode and a reference electrode. As a solvent, ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate were mixed and used in a volume ratio of 1:1:1. 1 mol/L of LiPF 6 was dissolved in this solvent and used as an electrolyte. A polypropylene membrane was used as the separator. A coin cell was fabricated in a glove box under an argon atmosphere.
A charge/discharge test was conducted on the lithium secondary battery having the above configuration using a charge/discharge test device (manufactured by Toyo System Co., Ltd., "TOSCAT"). Lithium doping was performed at a rate of 70 mA/g relative to the mass of the active material, and doping was performed until the lithium potential became 1 mV. Furthermore, a constant voltage of 1 mV was applied to the lithium potential, and doping was completed when the rate reached 2 mA/g relative to the mass of the active material. The capacity at this time was defined as the charging capacity. Next, dedoping is performed at a rate of 70 mA/g relative to the mass of the active material until the lithium potential becomes 1.5 V, and the charged capacity at this time is called the initial charge capacity (mAh), and the discharged capacity is called the initial discharge capacity. (mAh). The obtained initial charge capacity and initial discharge capacity were each divided by the weight of the negative electrode, and the obtained values were defined as the charge capacity per weight (mAh/g) and the discharge capacity per weight (mAh/g). initial charge/discharge evaluation). Further, the initial discharge capacity was divided by the initial charge capacity, and the percentage of the obtained value was defined as current efficiency (%).

(繰返しの充放電後の容量維持率及び全効率)
〈繰返しの充放電後の容量維持率〉
上記の初期充放電評価条件を10回繰り返し実施した後に得られた放電容量を繰返しの充放電後の放電容量とした。また、以下の式により繰返しの充放電後の容量維持率を算出した。
繰返しの充放電後の容量維持率(%)=繰返しの充放電後の放電容量(mAh/g)/初期放電容量(mAh/g)×100
(Capacity retention rate and total efficiency after repeated charging and discharging)
<Capacity retention rate after repeated charging and discharging>
The discharge capacity obtained after repeating the above initial charge/discharge evaluation conditions 10 times was defined as the discharge capacity after repeated charge/discharge. In addition, the capacity retention rate after repeated charging and discharging was calculated using the following formula.
Capacity retention rate after repeated charging and discharging (%) = Discharge capacity after repeated charging and discharging (mAh/g)/Initial discharge capacity (mAh/g) x 100

〈繰返しの充放電後の全効率〉
以下の式により繰り返しの充放電後の全効率を算出した。全効率は初回の充放電による劣化および繰り返しの充放電による劣化の両方を示す指標となる。
全効率(%)=繰返しの充放電後の容量維持率(%)×電流効率(%)/100
<Total efficiency after repeated charging and discharging>
The total efficiency after repeated charging and discharging was calculated using the following formula. The total efficiency is an index that indicates both the deterioration due to the first charge/discharge and the deterioration due to repeated charge/discharge.
Total efficiency (%) = Capacity retention rate after repeated charging and discharging (%) x Current efficiency (%) / 100

(塗工性評価)
炭素質材料95質量部、導電性カーボンブラック(TIMCAL製「Super-P(登録商標)」)2質量部、カルボキシメチルセルロース(CMC)1質量部、スチレン・ブタジエン・ラバー(SBR)2質量部及び水90質量部を混合し、スラリーを得た。得られたスラリーを、ドクターブレードを用いて厚さ15μmの銅箔5枚にそれぞれ10cm×10cmの面積に塗工し、80℃で30分乾燥した。得られた塗工膜を目視観察して確認されたブツの数(5枚平均)が0~1個の場合を◎、2~5個の場合を〇、6個以上の場合を△とした。
(Coatability evaluation)
95 parts by mass of carbonaceous material, 2 parts by mass of conductive carbon black ("Super-P (registered trademark)" manufactured by TIMCAL), 1 part by mass of carboxymethyl cellulose (CMC), 2 parts by mass of styrene-butadiene rubber (SBR), and water. 90 parts by mass were mixed to obtain a slurry. The obtained slurry was applied to an area of 10 cm x 10 cm on five copper foils each having a thickness of 15 μm using a doctor blade, and dried at 80° C. for 30 minutes. When the number of spots (average of 5 sheets) confirmed by visual observation of the obtained coating film was 0 to 1, it was rated ◎, when it was 2 to 5, it was rated, and when it was 6 or more, it was rated △. .

実施例及び比較例で得た炭素質材料について、上記の測定方法に従い、窒素元素含有量、水素元素含有量、酸素元素含有量(元素分析)、リン元素含有量、炭素面間隔(d002)、1360cm-1付近のピークの半値幅、及び1650cm-1付近のピークの半値幅を測定した結果を表1及び表2に示す。さらに、得られた電池について測定した、重量あたりの放電容量及び電流効率、及び繰返しの充放電後の容量維持率及び全効率、塗工性評価も表2に示す。 Regarding the carbonaceous materials obtained in Examples and Comparative Examples, nitrogen element content, hydrogen element content, oxygen element content (elemental analysis), phosphorus element content, and carbon spacing (d 002 ) were determined according to the above measurement method. , the half-width of the peak around 1360 cm −1 and the half-width of the peak around 1650 cm −1 are shown in Tables 1 and 2. Furthermore, Table 2 also shows the discharge capacity and current efficiency per weight, the capacity retention rate and total efficiency after repeated charging and discharging, and the coating property evaluation, which were measured for the obtained battery.

Figure 2024037197000002
Figure 2024037197000002

Figure 2024037197000003
Figure 2024037197000003

各実施例の炭素質材料を用いて作製した電池は、高い重量あたりの放電容量を有すると共に、優れた電流効率を示したのみならず炭素質材料の塗工性にも優れていた。また、10回の繰返し充放電後も放電容量が高く、容量維持率及び全効率も高い結果を示した。一方で、所定の窒素元素含有量、水素元素含有量、及び/又はリン元素含有量を満たさない、各比較例の炭素質材料を用いて作製した電池では、重量あたりの放電容量や電流効率が十分に高いものではない、又は全効率が低いか、塗工性に改善の余地のある結果であった。
The batteries produced using the carbonaceous materials of each example not only had a high discharge capacity per weight and exhibited excellent current efficiency, but also had excellent coatability of the carbonaceous material. Further, even after repeated charging and discharging 10 times, the discharge capacity was high, and the capacity retention rate and overall efficiency were also high. On the other hand, batteries fabricated using the carbonaceous materials of each comparative example that do not meet the specified nitrogen element content, hydrogen element content, and/or phosphorus element content have lower discharge capacity and current efficiency per weight. The results were either not sufficiently high, or the total efficiency was low, or there was room for improvement in coatability.

Claims (7)

元素分析による、窒素元素含有量が1.0質量%以上であり、酸素元素含有量が0.60質量%以上2.0質量%以下であり、水素元素含有量が0.1質量%以下であり、蛍光X線分析によるリン元素含有量が0.1質量%以上2.0質量%以下である、炭素質材料。 According to elemental analysis, the nitrogen element content is 1.0 mass% or more, the oxygen element content is 0.60 mass% or more and 2.0 mass% or less, and the hydrogen element content is 0.1 mass% or less. A carbonaceous material having a phosphorus element content of 0.1% by mass or more and 2.0% by mass or less as determined by X-ray fluorescence analysis. X線回折測定による炭素面間隔(d002)が3.65Å以上である、請求項1に記載の炭素質材料。 The carbonaceous material according to claim 1, having a carbon plane spacing (d 002 ) of 3.65 Å or more as measured by X-ray diffraction. レーザーラマン分光法により観測されるラマンスペクトルにおいて、1360cm-1付近のピークの半値幅の値が210cm-1以上である、請求項1に記載の炭素質材料。 The carbonaceous material according to claim 1, wherein in a Raman spectrum observed by laser Raman spectroscopy, the half-width value of a peak near 1360 cm -1 is 210 cm -1 or more. 蓄電デバイスの負極用炭素質材料である、請求項1に記載の炭素質材料。 The carbonaceous material according to claim 1, which is a carbonaceous material for a negative electrode of an electricity storage device. 請求項1~4のいずれかに記載の炭素質材料を含む、蓄電デバイス用負極。 A negative electrode for a power storage device, comprising the carbonaceous material according to any one of claims 1 to 4. 請求項5に記載の蓄電デバイス用負極を含む、蓄電デバイス。 An electricity storage device comprising the negative electrode for an electricity storage device according to claim 5. 以下の工程:
(1)糖類骨格を有する化合物、及び窒素含有化合物を混合して混合物を得る工程、
(2)前記混合物を、不活性ガス雰囲気下、500~900℃で熱処理して炭化物を得る工程、
(3)前記炭化物を粉砕及び/又は分級する工程
(4)粉砕及び/又は分級された前記炭化物を、不活性ガス雰囲気下、1100~1600℃で熱処理する工程、及び
(5)前記熱処理物にカルボン酸化合物または糖類骨格を有する化合物を混合し、100℃~300℃で熱処理して炭素質材料を得る工程
を少なくとも含み、
(a)前記工程(4)における熱処理よりも前に、糖類骨格を有する化合物、該化合物を含む混合物、又は、該混合物の炭化物と、リン含有化合物とを混合する工程
を含む、請求項1~4のいずれかに記載の炭素質材料の製造方法。
The following steps:
(1) A step of mixing a compound having a sugar skeleton and a nitrogen-containing compound to obtain a mixture;
(2) heat-treating the mixture at 500 to 900°C under an inert gas atmosphere to obtain a carbide;
(3) a step of pulverizing and/or classifying the carbide; (4) a step of heat-treating the pulverized and/or classified carbide at 1100 to 1600°C in an inert gas atmosphere; At least a step of mixing a carboxylic acid compound or a compound having a saccharide skeleton and heat-treating the mixture at 100°C to 300°C to obtain a carbonaceous material,
(a) Prior to the heat treatment in step (4), the step includes a step of mixing a compound having a sugar skeleton, a mixture containing the compound, or a carbonized product of the mixture, and a phosphorus-containing compound. 4. The method for producing a carbonaceous material according to any one of 4.
JP2022141826A 2022-09-07 2022-09-07 Carbonaceous material, negative electrode for power storage device, power storage device, and method for manufacturing carbonaceous material Pending JP2024037197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022141826A JP2024037197A (en) 2022-09-07 2022-09-07 Carbonaceous material, negative electrode for power storage device, power storage device, and method for manufacturing carbonaceous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022141826A JP2024037197A (en) 2022-09-07 2022-09-07 Carbonaceous material, negative electrode for power storage device, power storage device, and method for manufacturing carbonaceous material

Publications (1)

Publication Number Publication Date
JP2024037197A true JP2024037197A (en) 2024-03-19

Family

ID=90300303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022141826A Pending JP2024037197A (en) 2022-09-07 2022-09-07 Carbonaceous material, negative electrode for power storage device, power storage device, and method for manufacturing carbonaceous material

Country Status (1)

Country Link
JP (1) JP2024037197A (en)

Similar Documents

Publication Publication Date Title
DE202018006938U1 (en) Electroactive Materials for Metal Ion Batteries
JP6647457B2 (en) Carbonaceous material for negative electrode active material of nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing carbonaceous material
TWI644859B (en) Manufacturing method of carbonaceous material for non-aqueous electrolyte secondary battery
US10388984B2 (en) Method for producing graphite powder for negative electrode materials for lithium ion secondary batteries
JP6456474B2 (en) Method for producing mixed negative electrode material for nonaqueous electrolyte secondary battery and mixed negative electrode material for nonaqueous electrolyte secondary battery obtained by the production method
WO2019009332A1 (en) Carbon material for negative electrode active material for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary battery negative electrode, non-aqueous electrolyte secondary battery, and carbon material production method
EP3780185A1 (en) Negative electrode material for nonaqueous secondary batteries, negative electrode for nonaqueous secondary batteries, and nonaqueous secondary battery
JP6463875B2 (en) Carbonaceous material for negative electrode active material of nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing carbonaceous material
CN115699360A (en) Composite particle, method for producing same, and use thereof
WO2023058500A1 (en) Carbonaceous material, negative electrode for power storage devices, power storage device, and method for producing carbonaceous material
El-Khalfaouy et al. A scalable approach for synthesizing olivine structured LiMn 1− x Co x PO 4/C high-voltage cathodes
JP2016178049A (en) Carbonaceous material for lithium ion secondary battery
JP2024037197A (en) Carbonaceous material, negative electrode for power storage device, power storage device, and method for manufacturing carbonaceous material
JP6885503B1 (en) Positive electrode material for lithium ion secondary batteries, positive electrode for lithium ion secondary batteries, lithium ion secondary batteries
WO2022059646A1 (en) Carbonaceous material suitable for negative electrode active material of power storage device, negative electrode for power storage device, and power storage device
WO2023008328A1 (en) Carbonaceous material, negative electrode for power storage devices, power storage device, and method for producing carbonaceous material
CN118055903A (en) Carbonaceous material, negative electrode for electricity storage device, and method for producing carbonaceous material
WO2020071547A1 (en) Carbonaceous material, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, method for producing carbonaceous material, carbide and method for producing carbide
JP2017182887A (en) Conductive assistant of electrode for nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2022003000A (en) Carbonaceous material, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing carbonaceous material, and carbide and method for producing carbide