JP2024034270A - Air battery using metallic copper or its alloy as an oxygen-reducing air electrode - Google Patents

Air battery using metallic copper or its alloy as an oxygen-reducing air electrode Download PDF

Info

Publication number
JP2024034270A
JP2024034270A JP2022138402A JP2022138402A JP2024034270A JP 2024034270 A JP2024034270 A JP 2024034270A JP 2022138402 A JP2022138402 A JP 2022138402A JP 2022138402 A JP2022138402 A JP 2022138402A JP 2024034270 A JP2024034270 A JP 2024034270A
Authority
JP
Japan
Prior art keywords
alloy
electrode
magnesium
oxygen
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022138402A
Other languages
Japanese (ja)
Inventor
光廣 佐想
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cross Technology Labo Co Ltd
Original Assignee
Cross Technology Labo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cross Technology Labo Co Ltd filed Critical Cross Technology Labo Co Ltd
Priority to JP2022138402A priority Critical patent/JP2024034270A/en
Publication of JP2024034270A publication Critical patent/JP2024034270A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】銅及びその合金を酸素還元空気極とするマグネシウム空気電池の提供。【解決手段】少なくとも導電性を付与する水溶性電解質を含み、酸素の供給を受けるアルカリ性電解液と、該電解液中に浸漬する金属銅又は銅合金をカソード電極とする酸素還元空気極と、金属銅より電極電位が卑なるマグネシウム金属又はその合金をアノード電極とする負極極とを備え、負極での酸化反応:2Mg→2Mg2++4e-と、正極での酸素の還元反応O2+2H2O+4e-→4OH-を利用して発電する、マグネシウム等の空気電池であって、電解液を構成する酸素供給源として過炭酸ナトリウム、電解質として塩化ナトリウムを槽内に保存し、使用時に水等を供給して電解液を調製し、非常用電源として利用できる。【選択図】図1[Problem] To provide a magnesium air battery using copper or its alloy as an oxygen reduction air electrode. [Solution] An alkaline electrolyte containing at least a water-soluble electrolyte imparting conductivity and supplied with oxygen; an oxygen-reducing air electrode having a cathode electrode made of metallic copper or a copper alloy immersed in the electrolytic solution; It is equipped with a negative electrode that uses magnesium metal or its alloy, which has an electrode potential lower than that of copper, as an anode electrode, and utilizes the oxidation reaction at the negative electrode: 2Mg→2Mg2++4e- and the reduction reaction of oxygen O2+2H2O+4e-→4OH- at the positive electrode. It is an air battery made of magnesium or other fuel that generates electricity using a battery that stores sodium percarbonate as an oxygen supply source and sodium chloride as an electrolyte in a tank, and prepares the electrolyte by supplying water, etc. when in use. , can be used as an emergency power source. [Selection diagram] Figure 1

Description

本発明は金属銅又はその合金を空気極とする新規な非常用電源として利用できる空気電池に関する。 The present invention relates to an air battery that can be used as a new emergency power source using metallic copper or its alloy as an air electrode.

一般に空気電池の代表としてマグネシウム空気電池は、金属マグネシウムを負極(アノード)に使用する一方、炭素電極を正極(カソード)に使用し、マグネシウムの酸化反応2Mg→2Mg2++4e-と、空気中の酸素の還元反応O+2HO+4e- →4OHを利用して発電する電池をいい、電解液に食塩水が使用され、自己放電を防ぐため、電解液をアルカリ性とする。そのため、負極表面が不動態化しやすいので、発生する水酸化マグネシウムを溶解する補助剤を添加したり、陰極に難燃性マグネシウム合金を用いて長時間発電を行えるように工夫している。 In general, magnesium air batteries, which are representative of air batteries, use metallic magnesium for the negative electrode (anode) and carbon electrodes for the positive electrode (cathode ) . A battery that generates electricity using the reduction reaction O 2 +2H 2 O+4e - →4OH - , and uses saline as the electrolyte, which is made alkaline to prevent self-discharge. As a result, the surface of the negative electrode tends to become passivated, so measures have been taken to enable long-term power generation by adding an auxiliary agent to dissolve the generated magnesium hydroxide and using a flame-retardant magnesium alloy for the cathode.

しかしながら、かかる空気電池において大電流を取り出すためには、空気電池の電気化学的反応に影響を与える,反応速度を制限している要因を取り除く必要がある。その要因の
一つはアノードでのマグネシウムのイオン化速度ではなく、カソードでの酸素の吸収速度にあるとされており、高効率で酸素の吸収が行える空気極カソードの開発が急務である。
However, in order to extract a large current from such an air battery, it is necessary to remove the factors that affect the electrochemical reaction of the air battery and limit the reaction rate. One of the reasons for this is said to be not the magnesium ionization rate at the anode, but the oxygen absorption rate at the cathode, and there is an urgent need to develop an air cathode that can absorb oxygen with high efficiency.

従来、空気電池の空気極としては高効率で酸素の吸収が可能な多孔質カーボンを用い、その改良を行うのが一般的であった(特許文献1)。 Conventionally, it has been common to use porous carbon, which can absorb oxygen with high efficiency, as the air electrode of an air battery, and to make improvements thereto (Patent Document 1).

特開2014-220107号JP2014-220107

本発明者は、金属銅を水中に浸漬すると、銅表面で水の分解が起こり、それが過酸化水素の添加により著しくなる現象を発見した。本発明者は、これに着目し、銅及びその合金を空気極として使用するとともに、過酸化水素により酸素の供給を行う空気電池を完成するに至った。すなわち、本発明はマグネシウムをアノードとし、銅をカソードとする単なる化学電池でなく、アルカリ電解液中で銅をカソード極とし、過酸化水素中の酸素を活物質とする空気電池の構成を提供することを課題とする。 The present inventor discovered a phenomenon in which when metal copper is immersed in water, water decomposition occurs on the surface of the copper, and this becomes more significant when hydrogen peroxide is added. The present inventor has focused on this and has completed an air battery that uses copper and its alloy as an air electrode and supplies oxygen with hydrogen peroxide. That is, the present invention provides not only a chemical battery with magnesium as an anode and copper as a cathode, but also an air battery with copper as a cathode in an alkaline electrolyte and oxygen in hydrogen peroxide as an active material. That is the issue.

本発明は、図1に概略するように、少なくとも導電性を付与する水溶性電解質を含み、酸素又は酸素供給化合物の供給を受けるアルカリ性電解液と、該電解液中に浸漬する金属銅又は銅合金を空気極とする一方、金属銅より電極電位が卑なるマグネシウム金属或いはその合金を負極極とし、
負極での酸化反応:2Mg→2Mg2++4e-と、
正極での酸素の還元反応O+2HO+4e-→4OH-を利用して発電する、ことを特
徴とするマグネシウム空気電池にある。
As schematically illustrated in FIG. 1, the present invention comprises an alkaline electrolyte that includes at least a water-soluble electrolyte that imparts electrical conductivity and is supplied with oxygen or an oxygen-supplying compound, and metallic copper or a copper alloy that is immersed in the electrolyte. is used as the air electrode, while magnesium metal or its alloy, which has an electrode potential less noble than metal copper, is used as the negative electrode,
Oxidation reaction at negative electrode: 2Mg→2Mg 2+ +4e - ,
A magnesium air battery is characterized in that it generates electricity by utilizing the oxygen reduction reaction O 2 +2H 2 O+4e - →4OH - at the positive electrode.

本発明においては、カソード電極である金属銅表面での過酸化水素から供給される酸素の還元反応を利用するため、アノード電極を板状となし、その両面に金属銅又は合金板を間隔をおいて対抗配置してなる電極構成を少なくとも1組備えるのがよい。 In the present invention, in order to utilize the reduction reaction of oxygen supplied from hydrogen peroxide on the surface of metal copper, which is the cathode electrode, the anode electrode is formed into a plate shape, and metal copper or alloy plates are placed on both sides at intervals. It is preferable to provide at least one set of electrode configurations arranged opposite to each other.

本発明によれば、カソード電極である金属銅表面で以下の反応により酸素は還元され、水酸化イオンが生ずるが、O+2HO+4e-→4OH-
それに止まらず、カソード電極である金属銅表面で水素及び酸素に分解するらしく、その反応に特有な発熱する現象が見られる。他方、電解質と過酸化水素を含む水溶性電解液はほぼ中性域にあるので、アノード極を構成するマグネシウムはほぼ1昼夜で全体の~5%以下が溶解するのみで、希硫酸を電解液として用いる化学電池のボルタ電池の場合に比して極めて小さい。そして、ボルタ電池ではおよそ1時間で銅表面は不動態化して発電が停止するのに対し、本発明においては酸素が電解液中に存在する限り、1昼夜発電は継続するので、単にアノード極が溶解する化学電池でなく、銅電極表面で、酸素が還元されるマグネシウム空気電池を形成していると、認められる。また、電解液を食塩等を含む電解質と酸素供給源として過炭酸ナトリウムとを組み合わせて構成すると、使用時に水又は海水を添加して電解液を調整できるので、保存用の非常用電源となる。
According to the present invention, oxygen is reduced by the following reaction on the surface of metal copper, which is the cathode electrode, and hydroxide ions are generated, but O 2 +2H 2 O+4e - →4OH -
Not only that, but it seems to decompose into hydrogen and oxygen on the surface of the metal copper that is the cathode electrode, and a heat generation phenomenon unique to this reaction is observed. On the other hand, since the aqueous electrolyte containing the electrolyte and hydrogen peroxide is in the almost neutral range, only ~5% or less of the magnesium that makes up the anode dissolves in about a day and night, and dilute sulfuric acid is dissolved in the electrolyte. It is extremely small compared to the chemical battery used as a voltaic cell. In a voltaic cell, the copper surface becomes passivated and power generation stops in about one hour, but in the present invention, power generation continues all day and night as long as oxygen is present in the electrolyte, so the anode simply It is recognized that a magnesium-air battery is formed in which oxygen is reduced on the surface of the copper electrode, rather than a chemical battery that dissolves. Furthermore, if the electrolytic solution is composed of a combination of an electrolyte containing salt or the like and sodium percarbonate as an oxygen supply source, the electrolytic solution can be adjusted by adding water or seawater during use, so it becomes an emergency power source for storage.

本発明の基本電池反応を示す概念図である。FIG. 2 is a conceptual diagram showing the basic battery reaction of the present invention. 本発明ではアノード電極とカソード電極が接触しても短絡しない電気二重層が形成される説明図である。FIG. 2 is an explanatory diagram showing how an electric double layer is formed that does not cause a short circuit even when an anode electrode and a cathode electrode come into contact with each other in the present invention. スペーサを介した銅カソード電極を示す斜視図である。FIG. 3 is a perspective view showing a copper cathode electrode with a spacer interposed therebetween. (A)で示す銅カソード電極とマグネシウム電極とをスペーサを介して重ね合わせた電極構成を示す端面図である。FIG. 3 is an end view showing an electrode configuration in which a copper cathode electrode and a magnesium electrode shown in FIG. 1A are overlapped with each other via a spacer.

本発明では、図1に示すように、Mgアノード電極とCuカソード電極を過酸化水素を含むアルカリ性電解液に浸漬して対向配置してなる。アノード電極/過酸化水素を含むアルカリ性電解液/カソード電極の構成における起電力であって、その金属空気電池の反応は次の通りである。
アノード側の酸化反応を2Mg→2Mg2+ + 4e-と、
他方、カソード側の還元反応をO+HO+4e-→4OH- となる。
本発明では、金属空気電池のカソード側の還元反応を促進するために、電解液に過酸化水素を添加し、アノード側負極に比べてカソード側正極のイオン化進行速度が劣る原因を改善した。すなわち、金属銅はCu+2H→Cu2++2OH+2OH-
及び Cu+2OH→Cu2++2OH-と一部過酸化水素に溶けるが、Haber u. Willstatter連鎖によって過酸化水素の分解を促進するからであると思われる(非特許文献3)。
In the present invention, as shown in FIG. 1, an Mg anode electrode and a Cu cathode electrode are immersed in an alkaline electrolyte containing hydrogen peroxide and placed facing each other. The electromotive force in the configuration of anode electrode/alkaline electrolyte containing hydrogen peroxide/cathode electrode, and the reaction of the metal-air battery is as follows.
The oxidation reaction on the anode side is 2Mg→2Mg 2+ + 4e - ,
On the other hand, the reduction reaction on the cathode side becomes O 2 +H 2 O+4e →4OH .
In the present invention, in order to promote the reduction reaction on the cathode side of a metal-air battery, hydrogen peroxide is added to the electrolytic solution to improve the cause of the inferior ionization rate of the cathode side positive electrode compared to the anode side negative electrode. In other words, metallic copper is Cu+2H 2 O 2 →Cu 2+ +2OH+2OH -
This is thought to be because Cu+2OH→Cu 2+ +2OH - , which partially dissolves in hydrogen peroxide, promotes the decomposition of hydrogen peroxide through the Haber u. Willstatter chain (Non-Patent Document 3).

本発明においては、前記水溶性電解液に過酸化水素の一部又は全部を過炭酸ナトリウムにより供給するのが好ましい。具体的には、0.5から2.0モルのアルカリ金属又はアルカリ土類金属ハロゲン化塩、特に塩化ナトリウムを含む中性又はアルカリ性水溶液に対し数%から十数%の過酸化水素水(体積%)又は過炭酸ナトリウム(重量%)を添加するのが好ましい。 In the present invention, it is preferable that part or all of the hydrogen peroxide be supplied to the aqueous electrolyte using sodium percarbonate. Specifically, several percent to ten-odd percent hydrogen peroxide solution (by volume) is added to a neutral or alkaline aqueous solution containing 0.5 to 2.0 moles of an alkali metal or alkaline earth metal halide salt, especially sodium chloride. %) or sodium percarbonate (wt%).

アノード電極がマグネシウム又はその合金からなり、
(-)Mg/NaCl+H/Cu(+)の電池構成をとることにより、銅カソード電極との間に過酸化水素又はそれが分解したヒドロキシラジカルを分解するに必要な分解電圧を与える。マグネシウム電極として金属マグネシウムだけでなく、MAZ61及びMAZ31のマグネシウム/アルミニウム/亜鉛からなる合金を使用し、アノード電極の消費を抑制することができる。
the anode electrode is made of magnesium or an alloy thereof,
By adopting a battery configuration of (-)Mg/NaCl+H 2 O 2 /Cu (+), the decomposition voltage necessary to decompose hydrogen peroxide or the hydroxyl radicals decomposed by it can be applied between the copper cathode electrode and the copper cathode electrode. give. By using not only metallic magnesium but also magnesium/aluminum/zinc alloys such as MAZ61 and MAZ31 as the magnesium electrode, consumption of the anode electrode can be suppressed.

前記アノード電極とカソード電極とを交互にスペーサを介して一定の間隔をもって対向配置し、アノード電極とカソード電極との接触部に過酸化水素を含む水溶性電解液により電気二重層キャパシタを形成する(図2)が、前記スペーサがT字形をなし、カソード電極
と同じ金属銅又は銅合金からなり(図3A)、対極マグネシウム電極表面にスペーサを介
して一定間隔を隔てる銅電極で挟持すると形成される(図3B)。
The anode electrodes and the cathode electrodes are alternately arranged opposite to each other at a constant interval with spacers interposed therebetween, and an electric double layer capacitor is formed at the contact portion between the anode electrode and the cathode electrode with an aqueous electrolyte containing hydrogen peroxide. Figure 2) is formed when the spacer has a T-shape and is made of the same metallic copper or copper alloy as the cathode electrode (Figure 3A), and is sandwiched between copper electrodes spaced at regular intervals on the surface of the counter electrode magnesium electrode via a spacer. (Figure 3B).

(性能比較)
銅電極を使用して図2に示す概念の双極子電気二重層キャパシタがある電池を実施した。容量3000mlの上方開放型直方体プラスチック容器を用いる。図3Aに示す、1mm厚み、縦横100×100mmの銅カソード電極板10に銅電極板をT字形に切り出し、端部を折り曲げて形成したスペーサSを取り付ける。このカソード電極板でスペーサSを介して2mm厚みの縦横100×100mmのMgアノード電極板20の両側を挟みつける。3枚の銅カソード電極板10で、2枚のMgアノード電極板20はスペーサSを介して交互に挟みつけると、図3Bに示す上部端面図の状態となる。この組み合わせ電極を使うと図2に示す双極子電気二重層キャパシタを構成する。
(Performance comparison)
A cell with a dipole electric double layer capacitor of the concept shown in FIG. 2 was implemented using copper electrodes. A top-opening rectangular plastic container with a capacity of 3000 ml is used. A spacer S formed by cutting a copper electrode plate into a T-shape and bending the end portion is attached to a copper cathode electrode plate 10 having a thickness of 1 mm and a size of 100×100 mm shown in FIG. 3A. This cathode electrode plate is used to sandwich a 2 mm thick Mg anode electrode plate 20 measuring 100×100 mm on both sides with a spacer S interposed therebetween. When the three copper cathode electrode plates 10 and the two Mg anode electrode plates 20 are sandwiched alternately with spacers S in between, the state shown in the upper end view shown in FIG. 3B is obtained. When this combination of electrodes is used, a dipole electric double layer capacitor shown in FIG. 2 is constructed.

プラスチック容器にはおよそ1500mlの純水に塩化ナトリウム0.5モル/l以上、
好ましくは1.5モル/l以上2モル/l以下の電解液を調整し、これに過炭酸ナトリウム50~100gと30%過酸化水素水50mlを加える。電池反応は一定時間過ぎると、過酸化水素が消費され、電球が減少するので、2~3時間ごとに10mlの30%過酸化水素水を添加する。アノード電極としては、マグネシウム電極に代え、MAZ61又はMAZ31を含むマグネシウム/アルミニウム/亜鉛合金電極を使用することができる。また、上記実施例では 前記酸素の供給を受けるアルカリ性電解液に過酸化水素水を供給したが、過酸化水素水に代え、過炭酸ナトリウムを使用してもよく、過酸化水素と併用してもよい。
In a plastic container, add at least 0.5 mol/l of sodium chloride to approximately 1,500 ml of pure water.
Preferably, an electrolytic solution of 1.5 mol/l or more and 2 mol/l or less is prepared, and 50 to 100 g of sodium percarbonate and 50 ml of 30% hydrogen peroxide are added thereto. After a certain period of time, the battery reaction consumes hydrogen peroxide and the number of bulbs decreases, so add 10ml of 30% hydrogen peroxide every 2 to 3 hours. As the anode electrode, a magnesium/aluminum/zinc alloy electrode containing MAZ61 or MAZ31 can be used instead of the magnesium electrode. Furthermore, in the above embodiment, hydrogen peroxide solution was supplied to the alkaline electrolyte that receives the supply of oxygen, but sodium percarbonate may be used instead of hydrogen peroxide solution, or sodium percarbonate may be used in combination with hydrogen peroxide. good.

本件実施例においては、以下の反応式に基づき、
過酸化水素が、アノードでH+2HO+2e-→2HO+2OH-に分解する一方、カソードでH+2OH-→O+2HO+2e-の分解を起こす。これだけで
なく、アルカリ性電解液での金属酸化反応がアノードでMg→Mg2++2e-となり、
カソード側での酸素を還元してイオン化する反応がO+2HO+4e-→4OH-と典型的な金属空気電池反応が起こる。事実、過酸化水素の供給による電池反応に伴って1.5V、電流3.0Aの起電力が得られ、電解液中のpHは向上し、OH-が増加する現象が見られた。
In this example, based on the following reaction formula,
Hydrogen peroxide decomposes to H 2 O 2 +2H 2 O+2e →2H 2 O+2OH at the anode, while it decomposes to H 2 O 2 +2OH →O 2 +2H 2 O+2e at the cathode. In addition to this, the metal oxidation reaction in the alkaline electrolyte changes from Mg to Mg 2+ +2e - at the anode.
The reaction of reducing and ionizing oxygen on the cathode side is O 2 +2H 2 O+4e - →4OH - , which is a typical metal-air battery reaction. In fact, as a result of the battery reaction caused by the supply of hydrogen peroxide, an electromotive force of 1.5 V and a current of 3.0 A was obtained, the pH in the electrolyte was improved, and OH - was observed to increase.

以上の実験結果を考察すると、多孔質炭素電極に代え、銅又はその合金が過酸化水素を含むアルカリ性電解液中で電池として機能し、1コンパートメント構造のマグネシウム空気電池として新規で有用な構成を提供することができるので、画期的である。例えば、少なくともマグネシウム又はその合金からなるアノード電極板と、銅又はその合金からなるカソード電極板とを図3Bのように組み合わせ、図1に示す電解液槽に、酸素供給源として過炭酸ナトリウムと、電解質として塩化ナトリウムを収納して保存しておき、使用時に水又は海水を投入することにより、電池として機能させることができるので、非常用電源として利用することができる。なお、上記実施例ではマグネシウム又はその合金をアノード電極としたが、これに代えて、アルミニウム又はその合金、あるいは亜鉛又はその合金を使用することができる。 Considering the above experimental results, copper or its alloy functions as a battery in an alkaline electrolyte containing hydrogen peroxide instead of a porous carbon electrode, providing a new and useful configuration for a one-compartment magnesium-air battery. This is revolutionary because it can be done. For example, an anode electrode plate made of at least magnesium or its alloy and a cathode electrode plate made of copper or its alloy are combined as shown in FIG. 3B, and sodium percarbonate is added as an oxygen source to the electrolytic solution tank shown in FIG. By storing and storing sodium chloride as an electrolyte and adding water or seawater during use, it can be made to function as a battery, so it can be used as an emergency power source. In the above embodiments, magnesium or its alloy was used as the anode electrode, but aluminum or its alloy, or zinc or its alloy could be used instead.

Claims (6)

少なくとも導電性を付与する水溶性電解質を含み、酸素の供給を受けるアルカリ性電解液と、該電解液中に浸漬する金属銅又は銅合金をカソード電極とする酸素還元空気極と、金属銅より電極電位が卑なるマグネシウム金属又はその合金をアノード電極とする負極極とを備え、
負極での酸化反応:2Mg→2Mg2++4e-と、
正極での酸素の還元反応O+2HO+4e- →4OH-を利用して発電する、ことを特徴とするマグネシウム空気電池。
An alkaline electrolyte that contains at least a water-soluble electrolyte that imparts conductivity and is supplied with oxygen, an oxygen-reducing air electrode that has a cathode made of metallic copper or a copper alloy immersed in the electrolytic solution, and an electrode potential higher than that of metallic copper. and a negative electrode using a base magnesium metal or an alloy thereof as an anode electrode,
Oxidation reaction at negative electrode: 2Mg→2Mg 2+ +4e - ,
A magnesium air battery characterized in that it generates electricity by utilizing the oxygen reduction reaction O 2 +2H 2 O+4e - →4OH - at the positive electrode.
アノード電極がMAZ61又はMAZ31を含むマグネシウム/アルミニウム/亜鉛合金電極である請求項1記載のマグネシウム空気電池。 The magnesium air battery according to claim 1, wherein the anode electrode is a magnesium/aluminum/zinc alloy electrode containing MAZ61 or MAZ31. 前記酸素の供給を受けるアルカリ性電解液が過炭酸ナトリウム及び/又は過酸化水素を含む請求項1記載のマグネシウム空気電池。 The magnesium air battery according to claim 1, wherein the alkaline electrolyte to which the oxygen is supplied contains sodium percarbonate and/or hydrogen peroxide. 少なくともマグネシウム又はその合金からなるアノード電極板と、銅又はその合金からなるカソード電極板と、過炭酸ナトリウム粉末と電解質とを、収納容器に収納してなり、使用時に水又は海水を投入して作動させることを特徴とする非常用電源。 An anode electrode plate made of at least magnesium or an alloy thereof, a cathode electrode plate made of copper or an alloy thereof, sodium percarbonate powder and an electrolyte are stored in a storage container, and when used, water or seawater is poured into the container. An emergency power supply characterized by: マグネシウム又はその合金からなるアノード電極板に代えて、亜鉛又はアルミニウムあるいはその合金を用いる請求項1記載の空気電池。 2. The air battery according to claim 1, wherein zinc, aluminum, or an alloy thereof is used in place of the anode electrode plate made of magnesium or an alloy thereof. マグネシウム又はその合金からなるアノード電極板に代えて、亜鉛又はアルミニウムあるいはその合金を用いる請求項4記載の非常用電源。 5. The emergency power source according to claim 4, wherein zinc, aluminum, or an alloy thereof is used in place of the anode electrode plate made of magnesium or an alloy thereof.
JP2022138402A 2022-08-31 2022-08-31 Air battery using metallic copper or its alloy as an oxygen-reducing air electrode Pending JP2024034270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022138402A JP2024034270A (en) 2022-08-31 2022-08-31 Air battery using metallic copper or its alloy as an oxygen-reducing air electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022138402A JP2024034270A (en) 2022-08-31 2022-08-31 Air battery using metallic copper or its alloy as an oxygen-reducing air electrode

Publications (1)

Publication Number Publication Date
JP2024034270A true JP2024034270A (en) 2024-03-13

Family

ID=90193805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022138402A Pending JP2024034270A (en) 2022-08-31 2022-08-31 Air battery using metallic copper or its alloy as an oxygen-reducing air electrode

Country Status (1)

Country Link
JP (1) JP2024034270A (en)

Similar Documents

Publication Publication Date Title
ES2733323T3 (en) Solid electrolyte compound alkaline ion conductor
US8617766B2 (en) Method for co-generation of electric energy and hydrogen
EP2929586B1 (en) Anaerobic aluminum-water electrochemical cell
US20170288287A1 (en) Rechargeable aluminum-air electrochemical cell
US8304121B2 (en) Primary aluminum hydride battery
JP2022068077A (en) One-compartment type aqueous solution fuel cell with metallic copper as cathode electrode
KR100864024B1 (en) Hydrogen generating apparatus and fuel cell system using the same
WO2023033068A1 (en) Air battery in which metallic copper or alloy thereof serves as oxygen reducing air electrode
JP2024034270A (en) Air battery using metallic copper or its alloy as an oxygen-reducing air electrode
JP5737727B2 (en) Magnesium battery
WO2022225066A1 (en) Air electrode having hydrogen peroxide-containing electric double layer, and metal-air battery using same
KR20240056730A (en) Air battery using metallic copper or its alloy as the oxygen reduction cathode
WO2023033071A1 (en) Combustion method for hydrogen peroxide fuel cell using cathode electrode that is formed of copper or copper alloy
WO2023033070A1 (en) Cathode electrode formed of copper or copper alloy
JP5140496B2 (en) Electrolyte solution for hydrogen generator and hydrogen generator
TWI532242B (en) Electrochemical cell
JP2017004934A (en) Aluminum-manganese electrochemical cell
JP2024034273A (en) Cathode electrode made of copper or copper alloy
WO2023033113A1 (en) Battery having electronic conduction function via electric double layer capacitor
KR100685907B1 (en) The method of an electrode use the inorganic
US20130088184A1 (en) Battery device utilizing oxidation and reduction reactions to produce electric potential
CA2510371A1 (en) Hydrogen generation system
JP2024034840A (en) Battery with electron conduction function via electric double layer capacitor
JP2023061404A (en) Battery with avalanche amplification function
US20240088486A1 (en) Electrolyte additives for energy conversion devices and energy conversion devices thereof

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20220916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221109

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20240213