JP2024032255A - Method for producing liquid crystal polymer fine particles - Google Patents

Method for producing liquid crystal polymer fine particles Download PDF

Info

Publication number
JP2024032255A
JP2024032255A JP2022135821A JP2022135821A JP2024032255A JP 2024032255 A JP2024032255 A JP 2024032255A JP 2022135821 A JP2022135821 A JP 2022135821A JP 2022135821 A JP2022135821 A JP 2022135821A JP 2024032255 A JP2024032255 A JP 2024032255A
Authority
JP
Japan
Prior art keywords
liquid crystal
water
crystal polymer
resin
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022135821A
Other languages
Japanese (ja)
Inventor
忍 石津
Shinobu Ishizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ueno Fine Chemicals Industry Ltd
Original Assignee
Ueno Fine Chemicals Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ueno Fine Chemicals Industry Ltd filed Critical Ueno Fine Chemicals Industry Ltd
Priority to JP2022135821A priority Critical patent/JP2024032255A/en
Publication of JP2024032255A publication Critical patent/JP2024032255A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

To provide a method for producing liquid crystal polymer fine particles having a smooth surface state, a spherical shape and a small particle diameter.SOLUTION: There is provided a method for producing liquid crystal polymer fine particles having an average particle diameter of 0.01 to 100 μm, which comprises: a step of mixing a resin composition comprising 100 pts.mass of a water-soluble resin and 0.1 to 150 pts.mass of a liquid crystal polymer with a solvent to dissolve the water-soluble resin contained in the resin composition to obtain a liquid crystal polymer fine particle dispersion in a water-soluble resin solution; and a step of removing the water-soluble resin solution from the dispersion.SELECTED DRAWING: Figure 1

Description

本発明は、液晶ポリマー微粒子の製造方法に関する。 The present invention relates to a method for producing liquid crystal polymer fine particles.

樹脂の微粒子や粉末は、コーティング用粉体材料、成形体製造用粉体材料、添加剤等の種々の用途に用いられている。液晶ポリマーは、高剛性及び高弾性を有するとともに、耐熱性、耐衝撃性、耐薬品性、及びガスバリア性等に優れているため、その微粒子や粉末は、耐熱性や機械強度等が求められる分野におけるコーティング材料、成形体製造用粉体材料、及び、添加剤等への応用が期待されている。 Resin fine particles and powders are used for various purposes such as powder materials for coatings, powder materials for producing molded bodies, and additives. Liquid crystal polymers have high rigidity and elasticity, as well as excellent heat resistance, impact resistance, chemical resistance, gas barrier properties, etc., so their fine particles and powders are suitable for fields where heat resistance, mechanical strength, etc. are required. It is expected to be applied to coating materials, powder materials for molded body production, additives, etc.

液晶ポリマーの粒子は一般に、固体の液晶ポリマーを粉砕することによって製造される。例えば、特許文献1には、流動開始温度が200℃以上270℃以下の液晶ポリエステルを粉砕して得られ、平均粒径が0.5~50μmであることを特徴とするマイクロパウダーが提案されている。 Liquid crystal polymer particles are generally produced by grinding solid liquid crystal polymers. For example, Patent Document 1 proposes a micropowder obtained by pulverizing a liquid crystal polyester having a flow start temperature of 200°C or more and 270°C or less and having an average particle size of 0.5 to 50 μm. There is.

特開2003-268121号公報JP2003-268121A

しかしながら、液晶ポリマーは分子が長軸方向に沿って高度に分子配向する特徴を有しているため、粉砕機で機械的に粉砕した場合は、液晶ポリマーがフィブリル状または繊維状となりやすく、球状の粒子が得られなかった。 However, since liquid crystal polymers have the characteristic that the molecules are highly oriented along the long axis direction, when mechanically crushed using a crusher, the liquid crystal polymers tend to become fibrillar or fibrous, resulting in spherical shapes. No particles were obtained.

本発明の目的は、表面状態が滑らかで球状かつ粒径の小さい液晶ポリマー微粒子の製造方法を提供することにある。また、本発明の別の目的は生産性が向上した液晶ポリマー微粒子の製造方法を提供することにある。 An object of the present invention is to provide a method for producing liquid crystal polymer fine particles having a smooth surface, a spherical shape, and a small particle size. Another object of the present invention is to provide a method for producing liquid crystal polymer fine particles with improved productivity.

本発明者らは上記課題に鑑み、鋭意検討した結果、水溶性樹脂100質量部および液晶ポリマー0.1~150質量部を含有する樹脂組成物を、溶媒で水溶性樹脂を溶解させることにより、球状かつ粒径の小さい液晶ポリマー微粒子を効率よく得ることが可能であることを見出し、本発明を完成させるに至った。 In view of the above-mentioned problems, the present inventors conducted extensive studies and found that a resin composition containing 100 parts by mass of a water-soluble resin and 0.1 to 150 parts by mass of a liquid crystal polymer was prepared by dissolving the water-soluble resin in a solvent. The inventors have discovered that it is possible to efficiently obtain liquid crystal polymer fine particles that are spherical and have a small particle size, and have completed the present invention.

すなわち本発明は、以下の好適な態様を包含する。
〔1〕水溶性樹脂100質量部および液晶ポリマー0.1~150質量部を含む樹脂組成物を、溶媒と混合して該樹脂組成物に含まれる水溶性樹脂を溶解させて、水溶性樹脂溶液中の液晶ポリマー微粒子分散液を得る工程、および
該分散液から水溶性樹脂溶液を除去する工程、
を含む、平均粒子径0.01~100μmの液晶ポリマー微粒子の製造方法。
〔2〕水溶性樹脂は、水溶性ポリエステル樹脂、水溶性ポリアクリル酸樹脂、水溶性エポキシ樹脂、水溶性フェノール樹脂、水溶性ユリア樹脂、水溶性メラミン樹脂、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレンオキシド、ポリアクリルアミド、カルボキシメチルセルロースからなる群から選択される一種以上を含む、〔1〕に記載の方法。
〔3〕水溶性樹脂は水溶性ポリエステル樹脂である、〔1〕に記載の方法。
〔4〕液晶ポリマーは、式[I]および式[II]
で表される繰返し単位を含む全芳香族液晶ポリマーである、〔1〕~〔3〕のいずれかに記載の方法。
〔5〕液晶ポリマーは、式[I]~式[IV]
[式中、
ArおよびArは、それぞれ1種または2種以上の2価の芳香族基を表し、p、q、rおよびsは、それぞれ、液晶ポリマー中での各繰返し単位の組成比(モル%)であり、以下の条件を満たす:
0.5≦p/q、
5≦r≦35、および
5≦s≦35]
で表される繰返し単位を含む全芳香族液晶ポリマーである、〔1〕~〔4〕の何れかに記載の方法。
〔6〕式[III]および/または式[IV]は、ArおよびArが、互いに独立して、式(1)~(4)
からなる群から選択される芳香族基である繰返し単位の1種または2種以上を含む全芳香族液晶ポリマーである、〔5〕に記載の方法。
〔7〕液晶ポリマーの結晶融解温度は170~250℃である、〔1〕~〔6〕の何れかに記載の方法。
〔8〕樹脂組成物は水溶性樹脂と液晶ポリマーとを含む溶融混練物である、〔1〕~〔7〕の何れかに記載の方法。
〔9〕溶媒は、水と親水性有機溶媒との混合溶媒、または水の単独溶媒である、〔1〕~〔8〕の何れかに記載の方法。
〔10〕樹脂組成物と混合する溶媒の量は、水溶性樹脂100質量部に対して100~5000質量部である、〔1〕~〔9〕の何れかに記載の方法。
〔11〕水溶性樹脂100質量部および液晶ポリマー0.1~150質量部を含有し、水溶性樹脂が溶媒中に溶解し、かつ平均粒子径0.01~100μmであり、平均球形度が1.8以下である液晶ポリマー微粒子が水溶性樹脂溶液中に分散してなる、液晶ポリマー微粒子分散液。
〔12〕溶媒は、水と親水性有機溶媒との混合溶媒、または水の単独溶媒である、〔11〕に記載の分散液。
That is, the present invention includes the following preferred embodiments.
[1] A water-soluble resin solution is prepared by mixing a resin composition containing 100 parts by mass of a water-soluble resin and 0.1 to 150 parts by mass of a liquid crystal polymer with a solvent to dissolve the water-soluble resin contained in the resin composition. a step of obtaining a liquid crystal polymer fine particle dispersion in the liquid crystal polymer, and a step of removing a water-soluble resin solution from the dispersion,
A method for producing liquid crystal polymer fine particles having an average particle diameter of 0.01 to 100 μm, including:
[2] Water-soluble resins include water-soluble polyester resin, water-soluble polyacrylic acid resin, water-soluble epoxy resin, water-soluble phenol resin, water-soluble urea resin, water-soluble melamine resin, polyvinyl alcohol, polyvinylpyrrolidone, polyethylene oxide, and polyvinyl pyrrolidone. The method according to [1], comprising one or more selected from the group consisting of acrylamide and carboxymethyl cellulose.
[3] The method according to [1], wherein the water-soluble resin is a water-soluble polyester resin.
[4] Liquid crystal polymer has formula [I] and formula [II]
The method according to any one of [1] to [3], which is a wholly aromatic liquid crystal polymer containing a repeating unit represented by:
[5] Liquid crystal polymer has formula [I] to formula [IV]
[In the formula,
Ar 1 and Ar 2 each represent one or more divalent aromatic groups, and p, q, r and s each represent the composition ratio (mol%) of each repeating unit in the liquid crystal polymer. and satisfies the following conditions:
0.5≦p/q,
5≦r≦35, and 5≦s≦35]
The method according to any one of [1] to [4], which is a wholly aromatic liquid crystal polymer containing a repeating unit represented by:
[6] In formula [III] and/or formula [IV], Ar 1 and Ar 2 independently represent formulas (1) to (4)
The method according to [5], which is a wholly aromatic liquid crystal polymer containing one or more types of repeating units that are aromatic groups selected from the group consisting of:
[7] The method according to any one of [1] to [6], wherein the liquid crystal polymer has a crystal melting temperature of 170 to 250°C.
[8] The method according to any one of [1] to [7], wherein the resin composition is a melt-kneaded product containing a water-soluble resin and a liquid crystal polymer.
[9] The method according to any one of [1] to [8], wherein the solvent is a mixed solvent of water and a hydrophilic organic solvent, or a sole solvent of water.
[10] The method according to any one of [1] to [9], wherein the amount of the solvent mixed with the resin composition is 100 to 5,000 parts by mass based on 100 parts by mass of the water-soluble resin.
[11] Contains 100 parts by mass of a water-soluble resin and 0.1 to 150 parts by mass of a liquid crystal polymer, the water-soluble resin is dissolved in the solvent, the average particle size is 0.01 to 100 μm, and the average sphericity is 1 A liquid crystal polymer fine particle dispersion liquid comprising liquid crystal polymer fine particles having a particle diameter of .8 or less dispersed in a water-soluble resin solution.
[12] The dispersion according to [11], wherein the solvent is a mixed solvent of water and a hydrophilic organic solvent, or a single solvent of water.

本発明によれば、球状かつ粒径の小さい液晶ポリマー微粒子を効率よく得ることができる。 According to the present invention, liquid crystal polymer fine particles having a spherical shape and a small particle size can be efficiently obtained.

実施例1で得られた液晶ポリマー微粒子の走査型電子顕微鏡(SEM)写真である。1 is a scanning electron microscope (SEM) photograph of liquid crystal polymer fine particles obtained in Example 1. 比較例2で粉砕させた液晶ポリマーペレット粉砕物のマイクロスコープ写真である。2 is a microscope photograph of the pulverized liquid crystal polymer pellets pulverized in Comparative Example 2.

本発明の液晶ポリマー微粒子の製造方法に使用する樹脂組成物は、水溶性樹脂および液晶ポリマーを含んでなる。 The resin composition used in the method for producing liquid crystal polymer fine particles of the present invention comprises a water-soluble resin and a liquid crystal polymer.

本発明に使用する水溶性樹脂は、95℃における水100gに対して1g以上溶解する樹脂のことをいう。水溶性樹脂は、95℃における水100gに対して5g以上溶解する樹脂であることが好ましく、10g以上溶解する樹脂であることがより好ましく、30g以上溶解する樹脂であることがさらに好ましい。 The water-soluble resin used in the present invention refers to a resin that dissolves 1 g or more in 100 g of water at 95°C. The water-soluble resin is preferably a resin that dissolves 5 g or more in 100 g of water at 95° C., more preferably a resin that dissolves 10 g or more, and even more preferably a resin that dissolves 30 g or more.

本発明に使用する水溶性樹脂としては、水酸基、カルボキシル基、スルホ基、アミノ基などの親水性の官能基を有する樹脂が好ましく、具体例としては、水溶性ポリエステル樹脂、水溶性ポリアクリル酸樹脂、水溶性エポキシ樹脂、水溶性フェノール樹脂、水溶性ユリア樹脂、水溶性メラミン樹脂、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレンオキシド、ポリアクリルアミドおよびカルボキシメチルセルロースからなる群から選択される一種以上が挙げられる。親水性の官能基は金属塩基となっていてもよく、金属カチオンとしては、例えばリチウムイオン、ナトリウムイオン、カリウムイオン、ルビジウムイオン、セシウムイオン等のアルカリ金属イオンなどの1価の金属カチオン;マグネシウムイオン、カルシウムイオン、ストロンチウムイオン、バリウムイオン等のアルカリ土類金属イオンなどの2価の金属カチオンなどが挙げられる。 The water-soluble resin used in the present invention is preferably a resin having a hydrophilic functional group such as a hydroxyl group, a carboxyl group, a sulfo group, or an amino group. Specific examples include water-soluble polyester resin, water-soluble polyacrylic acid resin, etc. , water-soluble epoxy resin, water-soluble phenol resin, water-soluble urea resin, water-soluble melamine resin, polyvinyl alcohol, polyvinylpyrrolidone, polyethylene oxide, polyacrylamide, and carboxymethylcellulose. The hydrophilic functional group may be a metal base, and examples of metal cations include monovalent metal cations such as alkali metal ions such as lithium ions, sodium ions, potassium ions, rubidium ions, and cesium ions; magnesium ions; , divalent metal cations such as alkaline earth metal ions such as calcium ions, strontium ions, and barium ions.

これらのうち、本発明において使用される水溶性樹脂としては、水溶性ポリエステル樹脂、水溶性ポリアクリル酸樹脂、水溶性エポキシ樹脂、水溶性フェノール樹脂、ポリビニルアルコールが好ましく、水溶性ポリエステル樹脂、水溶性ポリアクリル酸樹脂、ポリビニルアルコールがより好ましく、水溶性ポリエステル樹脂が特に好ましい。これら水溶性樹脂は、単独でまたは2種以上を混合して用いることができる。 Among these, the water-soluble resin used in the present invention is preferably a water-soluble polyester resin, a water-soluble polyacrylic acid resin, a water-soluble epoxy resin, a water-soluble phenol resin, or a polyvinyl alcohol. Polyacrylic acid resin and polyvinyl alcohol are more preferred, and water-soluble polyester resin is particularly preferred. These water-soluble resins can be used alone or in combination of two or more.

本発明に使用する液晶ポリマーとは、当業者にサーモトロピック液晶ポリマーと呼ばれる、異方性溶融相を形成する液晶ポリエステルまたは液晶ポリエステルアミドである。 The liquid crystal polymers used in the present invention are liquid crystal polyesters or liquid crystal polyester amides which form an anisotropic melt phase and are referred to by those skilled in the art as thermotropic liquid crystal polymers.

液晶ポリマーの異方性溶融相の性質は直交偏向子を利用した通常の偏向検査法、すなわち、ホットステージに載せた試料を窒素雰囲気下で観察することにより確認できる。 The nature of the anisotropic melt phase of a liquid crystal polymer can be confirmed by the usual polarization inspection method using orthogonal polarizers, that is, by observing a sample placed on a hot stage under a nitrogen atmosphere.

本発明に使用する液晶ポリマーを構成する繰返し単位としては、芳香族オキシカルボニル繰返し単位、芳香族ジカルボニル繰返し単位、芳香族ジオキシ繰返し単位、芳香族アミノオキシ繰返し単位、芳香族ジアミノ繰返し単位、芳香族アミノカルボニル繰返し単位およびこれらの組合せなどが挙げられる。 The repeating units constituting the liquid crystal polymer used in the present invention include aromatic oxycarbonyl repeating units, aromatic dicarbonyl repeating units, aromatic dioxy repeating units, aromatic aminooxy repeating units, aromatic diamino repeating units, and aromatic diamino repeating units. and aminocarbonyl repeat units and combinations thereof.

芳香族オキシカルボニル繰返し単位を与える単量体の具体例としては、例えば、芳香族ヒドロキシカルボン酸である、4-ヒドロキシ安息香酸、3-ヒドロキシ安息香酸、2-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸、5-ヒドロキシ-2-ナフトエ酸、3-ヒドロキシ-2-ナフトエ酸、4’-ヒドロキシフェニル-4-安息香酸、3’-ヒドロキシフェニル-4-安息香酸、4’-ヒドロキシフェニル-3-安息香酸など、およびそれらのアルキル、アルコキシまたはハロゲン置換体、ならびにこれらのアシル化物、エステル誘導体、酸ハロゲン化物などのエステル形成性誘導体が挙げられる。これらの中では4-ヒドロキシ安息香酸および6-ヒドロキシ-2-ナフトエ酸が、得られる液晶ポリマーの機械物性、耐熱性、結晶融解温度、成形性を適度なレベルに調整しやすいことから好ましい。 Specific examples of monomers providing aromatic oxycarbonyl repeating units include aromatic hydroxycarboxylic acids such as 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 2-hydroxybenzoic acid, and 6-hydroxy-2 -Naphthoic acid, 5-hydroxy-2-naphthoic acid, 3-hydroxy-2-naphthoic acid, 4'-hydroxyphenyl-4-benzoic acid, 3'-hydroxyphenyl-4-benzoic acid, 4'-hydroxyphenyl- Examples include 3-benzoic acid and the like, alkyl, alkoxy or halogen-substituted products thereof, and ester-forming derivatives thereof such as acylated products, ester derivatives, and acid halides. Among these, 4-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid are preferred because the mechanical properties, heat resistance, crystal melting temperature, and moldability of the resulting liquid crystal polymer can be easily adjusted to appropriate levels.

芳香族ジカルボニル繰返し単位を与える単量体の具体例としては、例えば、芳香族ジカルボン酸であるテレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸、1,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、4,4’-ジカルボキシビフェニルなど、およびそれらのアルキル、アルコキシまたはハロゲン置換体、ならびにこれらのエステル誘導体、酸ハロゲン化物などのエステル形成性誘導体が挙げられる。これらの中ではテレフタル酸、イソフタル酸および2,6-ナフタレンジカルボン酸が、得られる液晶ポリマーの機械物性、耐熱性、結晶融解温度、成形性を適度なレベルに調整しやすいことから好ましい。 Specific examples of monomers providing aromatic dicarbonyl repeating units include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, 2,6-naphthalene dicarboxylic acid, 1,6-naphthalene dicarboxylic acid, and 2,7 - Naphthalene dicarboxylic acid, 1,4-naphthalene dicarboxylic acid, 4,4'-dicarboxybiphenyl, etc., their alkyl, alkoxy or halogen substituted products, and ester-forming derivatives thereof such as their ester derivatives and acid halides. Can be mentioned. Among these, terephthalic acid, isophthalic acid and 2,6-naphthalene dicarboxylic acid are preferred because the mechanical properties, heat resistance, crystal melting temperature and moldability of the resulting liquid crystal polymer can be easily adjusted to appropriate levels.

芳香族ジオキシ繰返し単位を与える単量体の具体例としては、例えば、芳香族ジオールであるハイドロキノン、レゾルシン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、1,4-ジヒドロキシナフタレン、4,4’-ジヒドロキシビフェニル、3,3’-ジヒドロキシビフェニル、3,4’-ジヒドロキシビフェニル、4,4’-ジヒドロキシビフェニルエーテルなど、およびそれらのアルキル、アルコキシまたはハロゲン置換体、ならびにこれらのアシル化物などのエステル形成性誘導体が挙げられる。これらの中ではハイドロキノンおよび4,4’-ジヒドロキシビフェニルが、重合時の反応性、得られる液晶ポリマーの機械物性、耐熱性、結晶融解温度、成形性を適度なレベルに調整しやすいことから好ましい。 Specific examples of monomers providing aromatic dioxy repeating units include hydroquinone, which is an aromatic diol, resorcinol, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 1, 4-dihydroxynaphthalene, 4,4'-dihydroxybiphenyl, 3,3'-dihydroxybiphenyl, 3,4'-dihydroxybiphenyl, 4,4'-dihydroxybiphenyl ether, and alkyl, alkoxy or halogen substituted products thereof, and ester-forming derivatives such as acylated products thereof. Among these, hydroquinone and 4,4'-dihydroxybiphenyl are preferred because they allow easy adjustment of reactivity during polymerization, mechanical properties, heat resistance, crystal melting temperature, and moldability of the resulting liquid crystal polymer to appropriate levels.

芳香族アミノオキシ繰返し単位、芳香族ジアミノ繰返し単位および芳香族アミノカルボニル繰返し単位を与える単量体としては、芳香族ヒドロキシアミン、芳香族ジアミンおよび芳香族アミノカルボン酸などが挙げられる。 Monomers providing aromatic aminooxy repeating units, aromatic diamino repeating units, and aromatic aminocarbonyl repeating units include aromatic hydroxyamines, aromatic diamines, aromatic aminocarboxylic acids, and the like.

本発明に使用する液晶ポリマーは本発明の目的を損なわない範囲で、芳香族オキシジカルボニル繰返し単位やチオエステル結合を含むものであってもよい。チオエステル結合を与える単量体としては、メルカプト芳香族カルボン酸、および芳香族ジチオールおよびヒドロキシ芳香族チオールなどが挙げられる。これらの単量体の使用量は、芳香族オキシカルボニル繰返し単位、芳香族ジカルボニル繰返し単位、芳香族ジオキシ繰返し単位、芳香族アミノオキシ繰返し単位、芳香族ジアミノ繰返し単位および芳香族アミノカルボニル繰返し単位を与える単量体などの合計量を含む全体に対して10モル%以下であるのが好ましい。 The liquid crystal polymer used in the present invention may contain an aromatic oxydicarbonyl repeating unit or a thioester bond as long as the object of the present invention is not impaired. Examples of monomers that provide a thioester bond include mercapto aromatic carboxylic acids, aromatic dithiols, and hydroxyaromatic thiols. The amounts of these monomers used include aromatic oxycarbonyl repeating units, aromatic dicarbonyl repeating units, aromatic dioxy repeating units, aromatic aminooxy repeating units, aromatic diamino repeating units, and aromatic aminocarbonyl repeating units. The amount is preferably 10 mol % or less based on the total amount including the monomers and the like to be provided.

これらの繰り返し単位を組み合わせた共重合体には、単量体の構成や組成比、共重合体中での各繰り返し単位のシークエンス分布によっては、異方性溶融相を形成するものとしないものが存在するが、本発明に使用する液晶ポリマーは異方性溶融相を形成する共重合体に限られる。 Depending on the monomer composition, composition ratio, and sequence distribution of each repeating unit in the copolymer, some copolymers made by combining these repeating units may or may not form an anisotropic melt phase. However, the liquid crystal polymers used in the present invention are limited to copolymers that form an anisotropic melt phase.

本発明に使用する液晶ポリマーは、2種以上の液晶ポリマーをブレンドしたものであってもよい。 The liquid crystal polymer used in the present invention may be a blend of two or more types of liquid crystal polymers.

本発明に使用する液晶ポリマーの示差走査熱量計により測定される結晶融解温度は380℃以下であることが好ましく、より好ましくは350℃以下であり、さらに好ましくは150~300℃であり、特に好ましくは170~250℃である。 The crystal melting temperature of the liquid crystal polymer used in the present invention as measured by a differential scanning calorimeter is preferably 380°C or lower, more preferably 350°C or lower, still more preferably 150 to 300°C, particularly preferably is 170-250°C.

液晶ポリマーの結晶融解温度が上記温度範囲であることによって、溶媒との混合に供する樹脂組成物中でマトリクスとして好適に存在する水溶性樹脂に液晶ポリマーが均一に分散しやすくなり、得られる液晶ポリマー微粒子は粒径が小さくかつ均一なものとなる。 When the crystal melting temperature of the liquid crystal polymer is within the above temperature range, the liquid crystal polymer is easily dispersed uniformly in the water-soluble resin that is suitably present as a matrix in the resin composition to be mixed with the solvent, and the resulting liquid crystal polymer is The fine particles have a small and uniform particle size.

本発明において、樹脂組成物中に含まれる水溶性樹脂と液晶ポリマーの結晶融解温度は、その差が100℃以下であることが樹脂組成物中での液晶ポリマーの均一分散の点から好ましく、80℃以下であることがより好ましく、50℃以下であることがさらに好ましい。 In the present invention, the difference in crystal melting temperature between the water-soluble resin and the liquid crystal polymer contained in the resin composition is preferably 100°C or less from the viewpoint of uniform dispersion of the liquid crystal polymer in the resin composition. The temperature is more preferably at most 50°C, and even more preferably at most 50°C.

なお、本明細書および特許請求の範囲において、「結晶融解温度」とは、示差走査熱量計(Differential Scanning Calorimeter、以下DSCと略す)によって、昇温速度20℃/分で測定した際の結晶融解ピーク温度から求めたものである。より具体的には、液晶ポリマーの試料を、室温から20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm1)の観測後、Tm1より20~50℃高い温度で10分間保持し、次いで、20℃/分の降温条件で室温まで試料を冷却した後に、再度20℃/分の昇温条件で測定した際の吸熱ピークを観測し、そのピークトップを示す温度を液晶ポリマーの結晶融解温度とする。測定用機器としては、例えば、セイコーインスツルメンツ(株)製Exstar6000等を使用することができる。 In this specification and claims, "crystal melting temperature" refers to the crystal melting temperature measured by a differential scanning calorimeter (hereinafter abbreviated as DSC) at a heating rate of 20°C/min. It is calculated from the peak temperature. More specifically, after observing the endothermic peak temperature (Tm1) observed when measuring a liquid crystal polymer sample under heating conditions of 20°C/min from room temperature, the sample was heated at a temperature 20 to 50°C higher than Tm1 for 10 min. After holding the sample for 20 minutes, the sample was cooled to room temperature under the temperature decreasing condition of 20℃/min, and the endothermic peak was observed when the sample was measured again under the temperature increasing condition of 20℃/min. Let it be the crystalline melting temperature of the polymer. As the measuring device, for example, Exstar 6000 manufactured by Seiko Instruments Co., Ltd. can be used.

本発明に使用する液晶ポリマーの溶融粘度(キャピラリーレオメーターで測定、結晶融解温度+40℃、1000s-1)は、1~1000Pa・sが好ましく、5~500Pa・sがより好ましい。 The melt viscosity (measured with a capillary rheometer, crystal melting temperature +40° C., 1000 s −1 ) of the liquid crystal polymer used in the present invention is preferably 1 to 1000 Pa·s, more preferably 5 to 500 Pa·s.

溶融粘度が1Pa・s未満であると樹脂組成物中で液晶ポリマーが均一に分散しにくくなる傾向があり、1000Pa・sを超えるとやはり均一に分散しにくくなる傾向がある。 When the melt viscosity is less than 1 Pa·s, the liquid crystal polymer tends to be difficult to disperse uniformly in the resin composition, and when it exceeds 1000 Pa·s, it also tends to be difficult to disperse uniformly.

本発明に使用する液晶ポリマーとしては、全芳香族液晶ポリマーが好適に使用され、式[I]および式[II]
で表される繰返し単位を含む全芳香族液晶ポリマーがより好適に使用される。
As the liquid crystal polymer used in the present invention, wholly aromatic liquid crystal polymers are preferably used, and formula [I] and formula [II]
A wholly aromatic liquid crystal polymer containing a repeating unit represented by is more preferably used.

本発明に使用する液晶ポリマーとしては、式[I]~式[IV]
[式中、
ArおよびArは、それぞれ1種または2種以上の2価の芳香族基を表し、p、q、rおよびsは、それぞれ、液晶ポリマー中での各繰返し単位の組成比(モル%)であり、以下の条件を満たすものである:
0.5≦p/q、
5≦r≦35、および
5≦s≦35]
で表される繰返し単位を含む全芳香族液晶ポリマーがさらに好適に使用される。
The liquid crystal polymers used in the present invention include formulas [I] to [IV]
[In the formula,
Ar 1 and Ar 2 each represent one or more divalent aromatic groups, and p, q, r and s each represent the composition ratio (mol%) of each repeating unit in the liquid crystal polymer. and satisfies the following conditions:
0.5≦p/q,
5≦r≦35, and 5≦s≦35]
A wholly aromatic liquid crystal polymer containing a repeating unit represented by is more preferably used.

本発明の一実施形態では、式[I]および式[II]で表される繰り返し単位を、少なくとも以下のモル比(p/q)、および場合により以下のpとqの合計の組成比および/またはpとqのそれぞれの組成比(モル%)で含むことにより、機械物性、耐熱性および成形加工性を適度なレベルに調整した全芳香族液晶ポリマーを好適に得ることができる。 In one embodiment of the present invention, the repeating units represented by formula [I] and formula [II] have at least the following molar ratio (p/q), and optionally the following total composition ratio of p and q and By including p and q in their respective composition ratios (mol %), it is possible to suitably obtain a wholly aromatic liquid crystal polymer with mechanical properties, heat resistance, and moldability adjusted to appropriate levels.

上記の本発明の一実施形態において、上記式[I]に係る組成比p(モル%)と式[II]に係る組成比q(モル%)のモル比(p/q)は、0.6~12がより好ましく、0.8~10がさらに好ましい。 In one embodiment of the present invention described above, the molar ratio (p/q) between the composition ratio p (mol%) according to the formula [I] and the composition ratio q (mol%) according to the formula [II] is 0. 6 to 12 is more preferable, and 0.8 to 10 is even more preferable.

上記の本発明の一実施形態において、pとqの合計の組成比は、30~90モル%が好ましく、35~85モル%がより好ましく、40~80モル%がさらに好ましい。 In the embodiment of the present invention described above, the total composition ratio of p and q is preferably 30 to 90 mol%, more preferably 35 to 85 mol%, and even more preferably 40 to 80 mol%.

上記の本発明の一実施形態において、式[I]に係る組成比pと式[II]に係る組成比qは、それぞれ、2~60モル%が好ましく、5~55モル%がより好ましい。 In the above embodiment of the present invention, the composition ratio p according to formula [I] and the composition ratio q according to formula [II] are each preferably from 2 to 60 mol%, more preferably from 5 to 55 mol%.

本発明の別の一実施形態では、式[I]および式[II]で表される繰り返し単位を、少なくとも以下のモル比(p/q)、および場合により以下のpとqの合計の組成比および/またはpとqのそれぞれの組成比(モル%)で含むことにより、前記範囲の結晶融解温度を示す全芳香族液晶ポリマーを好適に得ることができる。 In another embodiment of the present invention, the repeating units represented by formula [I] and formula [II] have a molar ratio (p/q) of at least the following, and optionally a composition of the following sum of p and q: By containing p and q in their respective composition ratios (mol %), a wholly aromatic liquid crystal polymer exhibiting a crystal melting temperature within the above range can be suitably obtained.

上記の本発明の一実施形態において、上記式[I]に係る組成比p(モル%)と式[II]に係る組成比q(モル%)のモル比(p/q)は、0.6~1.8がより好ましく、0.8~1.6がさらに好ましい。 In one embodiment of the present invention described above, the molar ratio (p/q) between the composition ratio p (mol%) according to the formula [I] and the composition ratio q (mol%) according to the formula [II] is 0. 6 to 1.8 is more preferable, and 0.8 to 1.6 is even more preferable.

上記の本発明の一実施形態において、pとqの合計の組成比は、50~90モル%が好ましく、60~85モル%がより好ましく、70~82モル%がさらに好ましい。 In the embodiment of the present invention described above, the total composition ratio of p and q is preferably 50 to 90 mol%, more preferably 60 to 85 mol%, and even more preferably 70 to 82 mol%.

上記の本発明の一実施形態において、式[I]に係る組成比pと式[II]に係る組成比qは、それぞれ、20~60モル%が好ましく、30~55モル%がより好ましい。 In the above embodiment of the present invention, the composition ratio p according to formula [I] and the composition ratio q according to formula [II] are each preferably from 20 to 60 mol%, more preferably from 30 to 55 mol%.

また、本発明に好適に使用される全芳香族液晶ポリマーについて、式[III]に係る組成比rと式[IV]に係る組成比sは、それぞれ、5~35モル%が好ましく、7~33モル%がより好ましく、10~30モル%がさらに好ましい。rとsは、等モル量であるのが好ましい。 Further, regarding the wholly aromatic liquid crystal polymer suitably used in the present invention, the composition ratio r according to formula [III] and the composition ratio s according to formula [IV] are preferably 5 to 35 mol%, and 7 to 7 mol%. 33 mol% is more preferable, and 10 to 30 mol% is even more preferable. Preferably, r and s are equimolar amounts.

上記の繰返し単位において、例えばAr(またはAr)が2種以上の2価の芳香族基を表すとは、式[III](または[IV])で表される繰返し単位が全芳香族液晶ポリマー中に2価の芳香族基の種類に応じて2種以上含まれることを意味する。この場合、式[III]に係る組成比r(または式[IV]に係る組成比s)は、2種以上の繰返し単位を合計した組成比を表す。 In the above repeating unit, for example, Ar 1 (or Ar 2 ) represents two or more types of divalent aromatic groups means that the repeating unit represented by formula [III] (or [IV]) is wholly aromatic. This means that two or more types of divalent aromatic groups are contained in the liquid crystal polymer depending on the type. In this case, the composition ratio r according to the formula [III] (or the composition ratio s according to the formula [IV]) represents the total composition ratio of two or more types of repeating units.

式[I]で表される繰返し単位を与える単量体の具体例としては、例えば、4-ヒドロキシ安息香酸およびこのアシル化物、エステル誘導体、酸ハロゲン化物などのエステル形成性誘導体が挙げられる。 Specific examples of the monomer providing the repeating unit represented by formula [I] include, for example, 4-hydroxybenzoic acid and its ester-forming derivatives such as acylated products, ester derivatives, and acid halides.

式[II]で表される繰返し単位を与える単量体の具体例としては、例えば、6-ヒドロキシ-2-ナフトエ酸およびこのアシル化物、エステル誘導体、酸ハロゲン化物などのエステル形成性誘導体が挙げられる。 Specific examples of the monomer providing the repeating unit represented by formula [II] include 6-hydroxy-2-naphthoic acid and its acylated products, ester derivatives, acid halides, and other ester-forming derivatives. It will be done.

式[III]で表される繰返し単位を与える単量体の具体例としては、例えば、芳香族ジオールであるハイドロキノン、レゾルシン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、1,4-ジヒドロキシナフタレン、4,4’-ジヒドロキシビフェニル、3,3’-ジヒドロキシビフェニル、3,4’-ジヒドロキシビフェニル、4,4’-ジヒドロキシビフェニルエーテル、およびそれらのアルキル、アルコキシまたはハロゲン置換体、ならびにこれらのアシル化物などのエステル形成性誘導体が挙げられる。 Specific examples of the monomer providing the repeating unit represented by formula [III] include hydroquinone, which is an aromatic diol, resorcinol, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 1,6- Dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 4,4'-dihydroxybiphenyl, 3,3'-dihydroxybiphenyl, 3,4'-dihydroxybiphenyl, 4,4'-dihydroxybiphenyl ether, and their alkyl, alkoxy or Examples include ester-forming derivatives such as halogen-substituted products and acylated products thereof.

式[IV]で表される繰返し単位を与える単量体の具体例としては、例えば、芳香族ジカルボン酸であるテレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸、1,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、4,4’-ジカルボキシビフェニル、およびそれらのアルキル、アルコキシまたはハロゲン置換体、ならびにこれらのエステル誘導体、酸ハロゲン化物などのエステル形成性誘導体が挙げられる。 Specific examples of monomers providing repeating units represented by formula [IV] include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, and 1,6-naphthalenedicarboxylic acid. , 2,7-naphthalene dicarboxylic acid, 1,4-naphthalene dicarboxylic acid, 4,4'-dicarboxybiphenyl, and alkyl, alkoxy or halogen substituted products thereof, and ester derivatives and acid halides thereof. and sexual derivatives.

また、本発明に好適に使用される全芳香族液晶ポリマーのなかでも、式[III]および式[IV]で表される繰返し単位に係るArおよびArが、互いに独立して、式(1)~(4)
で表される芳香族基からなる群から選択される1種または2種以上を含む全芳香族液晶ポリマーが、さらに好適に使用される。
Moreover, among the wholly aromatic liquid crystal polymers preferably used in the present invention, Ar 1 and Ar 2 related to the repeating units represented by formula [III] and formula [IV] are independently of each other, 1)-(4)
A wholly aromatic liquid crystal polymer containing one or more selected from the group consisting of aromatic groups represented by the following is more preferably used.

これらの中でも、式[III]で表される繰返し単位としては、式(1)および式(3)で表される芳香族基が、すなわち、これら繰返し単位を与える単量体として、ハイドロキノンおよび4,4’-ジヒドロキシビフェニルならびにこれらのエステル形成性誘導体を用いることが、重合時の反応性および得られる全芳香族液晶ポリマーの機械物性、耐熱性、結晶融解温度および成形加工性を適度なレベルに調整しやすいことから特に好ましい。 Among these, as the repeating unit represented by formula [III], aromatic groups represented by formula (1) and formula (3) are used, that is, as monomers providing these repeating units, hydroquinone and 4 , 4'-dihydroxybiphenyl and their ester-forming derivatives bring the reactivity during polymerization and the mechanical properties, heat resistance, crystal melting temperature, and moldability of the resulting wholly aromatic liquid crystal polymer to appropriate levels. This is particularly preferred because it is easy to adjust.

また、式[IV]で表される繰返し単位としては、式(1)、式(2)および式(4)で表される芳香族基が、すなわち、これら繰返し単位を与える単量体として、テレフタル酸、イソフタル酸および2,6-ナフタレンジカルボン酸ならびにこれらのエステル形成性誘導体を用いることが、得られる全芳香族液晶ポリマーの機械物性、耐熱性、結晶融解温度および成形加工性を適度なレベルに調整しやすいことから特に好ましい。 Further, as the repeating unit represented by formula [IV], aromatic groups represented by formula (1), formula (2), and formula (4) are used, that is, as monomers providing these repeating units, The use of terephthalic acid, isophthalic acid, 2,6-naphthalene dicarboxylic acid, and ester-forming derivatives thereof allows the mechanical properties, heat resistance, crystal melting temperature, and moldability of the resulting wholly aromatic liquid crystal polymer to be maintained at appropriate levels. It is particularly preferred because it is easy to adjust.

上記の繰返し単位において、例えばAr(またはAr)が2種以上の芳香族基を含むとは、式[III](または[IV])で表される繰返し単位が全芳香族液晶ポリマー中に2価の芳香族基の種類に応じて2種以上含まれることを意味する。すなわち、式[III]および/または式[IV]は、ArおよびArが、互いに独立して、式(1)~(4)からなる群から選択される芳香族基である繰返し単位の1種または2種以上を含む全芳香族液晶ポリマーが好ましい。この場合、式[III]に係る組成比r(または式[IV]に係る組成比s)は、2種以上の繰返し単位を合計した組成比を表す。 In the above repeating unit, for example, Ar 1 (or Ar 2 ) contains two or more types of aromatic groups means that the repeating unit represented by formula [III] (or [IV]) is present in the wholly aromatic liquid crystal polymer. This means that two or more types are included depending on the type of divalent aromatic group. That is, formula [III] and/or formula [IV] are repeating units in which Ar 1 and Ar 2 are independently aromatic groups selected from the group consisting of formulas (1) to (4). A wholly aromatic liquid crystal polymer containing one or more types is preferred. In this case, the composition ratio r according to the formula [III] (or the composition ratio s according to the formula [IV]) represents the total composition ratio of two or more types of repeating units.

一つの好ましい態様において、p/qは0.5~2.0であり、sおよびrはそれぞれ5~15であり、式[III]および式[IV]で表される繰返し単位は、式[III]中のArおよび式[IV]中のArが、式(1)で表される芳香族基である。 In one preferred embodiment, p/q is 0.5 to 2.0, s and r are each 5 to 15, and the repeating units represented by formula [III] and formula [IV] are represented by formula [ Ar 1 in [III] and Ar 2 in formula [IV] are aromatic groups represented by formula (1).

また、別の好ましい態様において、p/qは0.5~2.0であり、sおよびrはそれぞれ5~15であり、式[III]および式[IV]で表される繰返し単位は、式[III]中のArが式(3)で表される芳香族基であり、[IV]中のArが式(2)および式(4)で表される芳香族基である。 In another preferred embodiment, p/q is 0.5 to 2.0, s and r are each 5 to 15, and the repeating units represented by formula [III] and formula [IV] are Ar 1 in formula [III] is an aromatic group represented by formula (3), and Ar 2 in [IV] is an aromatic group represented by formula (2) and formula (4).

本発明に好適に使用される全芳香族液晶ポリマーにおいて繰返し単位の組成比の合計[p+q+r+s]が100モル%であることが好ましいが、本発明の目的を損なわない範囲において、他の繰返し単位をさらに含有してもよい。 In the wholly aromatic liquid crystal polymer suitably used in the present invention, the total composition ratio of repeating units [p+q+r+s] is preferably 100 mol%, but other repeating units may be added to the extent that does not impair the purpose of the present invention. It may further contain.

本発明に好適に使用される全芳香族液晶ポリマーを構成する他の繰返し単位を与える単量体としては、他の芳香族ヒドロキシカルボン酸、芳香族ヒドロキシアミン、芳香族ジアミン、芳香族アミノカルボン酸、芳香族ヒドロキシジカルボン酸、芳香族メルカプトカルボン酸、芳香族ジチオール、芳香族メルカプトフェノールおよびこれらの組合せなどが挙げられる。 Monomers providing other repeating units constituting the wholly aromatic liquid crystal polymer preferably used in the present invention include other aromatic hydroxycarboxylic acids, aromatic hydroxyamines, aromatic diamines, and aromatic aminocarboxylic acids. , aromatic hydroxydicarboxylic acids, aromatic mercaptocarboxylic acids, aromatic dithiols, aromatic mercaptophenols, and combinations thereof.

他の芳香族ヒドロキシカルボン酸の具体例としては、例えば、3-ヒドロキシ安息香酸、2-ヒドロキシ安息香酸、5-ヒドロキシ-2-ナフトエ酸、3-ヒドロキシ-2-ナフトエ酸、4’-ヒドロキシフェニル-4-安息香酸、3’-ヒドロキシフェニル-4-安息香酸、4’-ヒドロキシフェニル-3-安息香酸およびそれらのアルキル、アルコキシまたはハロゲン置換体、ならびにこれらのアシル化物、エステル誘導体、酸ハロゲン化物などのエステル形成性誘導体が挙げられる。 Specific examples of other aromatic hydroxycarboxylic acids include 3-hydroxybenzoic acid, 2-hydroxybenzoic acid, 5-hydroxy-2-naphthoic acid, 3-hydroxy-2-naphthoic acid, 4'-hydroxyphenyl -4-benzoic acid, 3'-hydroxyphenyl-4-benzoic acid, 4'-hydroxyphenyl-3-benzoic acid and their alkyl, alkoxy or halogen substituted products, as well as their acylated products, ester derivatives and acid halides Examples include ester-forming derivatives such as.

他の繰返し単位を与える単量体である芳香族ヒドロキシアミンの具体例としては、例えば、4-アミノフェノール、3-アミノフェノール、4-アミノ-1-ナフトール、5-アミノ-1-ナフトール、8-アミノ-2-ナフトール、4-アミノ-4’-ヒドロキシビフェニルなどの芳香族ヒドロキシアミンおよびそれらのアルキル、アルコキシまたはハロゲン置換体、ならびにこれらのアシル化物などのアミドおよびエステル形成性誘導体が挙げられる。 Specific examples of aromatic hydroxyamines that are monomers providing other repeating units include 4-aminophenol, 3-aminophenol, 4-amino-1-naphthol, 5-amino-1-naphthol, 8 -Aromatic hydroxyamines such as -amino-2-naphthol and 4-amino-4'-hydroxybiphenyl, alkyl, alkoxy or halogen substituted products thereof, and amide and ester forming derivatives such as acylated products thereof.

他の繰返し単位を与える単量体である芳香族ジアミンの具体例としては、例えば、1,4-ジアミノベンゼン、1,3-ジアミノベンゼン、1,5-ジアミノナフタレン、1,8-ジアミノナフタレンなどの芳香族ジアミンおよびそれらのアルキル、アルコキシまたはハロゲン置換体、ならびにこれらのアシル化物などのアミド形成性誘導体が挙げられる。 Specific examples of aromatic diamines that are monomers providing other repeating units include 1,4-diaminobenzene, 1,3-diaminobenzene, 1,5-diaminonaphthalene, 1,8-diaminonaphthalene, etc. amide-forming derivatives such as aromatic diamines and their alkyl, alkoxy or halogen substituted products, and acylated products thereof.

他の繰返し単位を与える単量体である芳香族アミノカルボン酸の具体例としては、例えば、4-アミノ安息香酸、3-アミノ安息香酸、6-アミノ-2-ナフトエ酸などの芳香族アミノカルボン酸およびそれらのアルキル、アルコキシまたはハロゲン置換体、ならびにこれらのアシル化物、エステル誘導体、酸ハロゲン化物などのアミドおよびエステル形成性誘導体が挙げられる。 Specific examples of aromatic aminocarboxylic acids that are monomers providing other repeating units include aromatic aminocarboxylic acids such as 4-aminobenzoic acid, 3-aminobenzoic acid, and 6-amino-2-naphthoic acid. Included are acids and their alkyl, alkoxy or halogen substituted products, as well as their acylated products, ester derivatives, amide and ester forming derivatives such as acid halides.

他の繰返し単位を与える単量体である芳香族ヒドロキシジカルボン酸の具体例としては、例えば、3-ヒドロキシ-2,7-ナフタレンジカルボン酸、4-ヒドロキシイソフタル酸、および5-ヒドロキシイソフタル酸などのヒドロキシ芳香族ジカルボン酸およびそれらのアルキル、アルコキシまたはハロゲン置換体、ならびにこれらのアシル化物、エステル誘導体、酸ハロゲン化物などのエステル形成性誘導体が挙げられる。 Specific examples of aromatic hydroxydicarboxylic acids that are monomers providing other repeating units include 3-hydroxy-2,7-naphthalene dicarboxylic acid, 4-hydroxyisophthalic acid, and 5-hydroxyisophthalic acid. Examples thereof include hydroxyaromatic dicarboxylic acids and alkyl, alkoxy or halogen substituted products thereof, and ester-forming derivatives thereof such as acylated products, ester derivatives, and acid halides.

他の繰返し単位を与える単量体である芳香族メルカプトカルボン酸の具体例としては、例えば、4-メルカプト安息香酸、3-メルカプト安息香酸、2-メルカプト安息香酸、6-メルカプト-2-ナフトエ酸、5-メルカプト-2-ナフトエ酸、3-メルカプト-2-ナフトエ酸などの芳香族メルカプトカルボン酸およびそれらのアルキル、アルコキシまたはハロゲン置換体、ならびにこれらのアシル化物、エステル誘導体、酸ハロゲン化物などのチオエステルおよびエステル形成性誘導体が挙げられる。 Specific examples of aromatic mercaptocarboxylic acids that are monomers providing other repeating units include 4-mercaptobenzoic acid, 3-mercaptobenzoic acid, 2-mercaptobenzoic acid, and 6-mercapto-2-naphthoic acid. , 5-mercapto-2-naphthoic acid, aromatic mercaptocarboxylic acids such as 3-mercapto-2-naphthoic acid, their alkyl, alkoxy or halogen substituted products, and their acylated products, ester derivatives, acid halides, etc. Mention may be made of thioesters and ester-forming derivatives.

他の繰返し単位を与える単量体である芳香族ジチオールの具体例としては、例えば、1,2-ベンゼンジチオール、1,3-ベンゼンジチオール、1,4-ベンゼンジチオール、2,6-ナフタレンジチオール、2,7-ナフタレンジチオール、1,6-ナフタレンジチールなどの芳香族ジチオールおよびそれらのアルキル、アルコキシまたはハロゲン置換体、ならびにこれらのアシル化物などのチオエステル形成性誘導体が挙げられる。 Specific examples of aromatic dithiols that are monomers providing other repeating units include 1,2-benzenedithiol, 1,3-benzenedithiol, 1,4-benzenedithiol, 2,6-naphthalenedithiol, Examples include aromatic dithiols such as 2,7-naphthalenedithiol and 1,6-naphthalenedithyl, alkyl, alkoxy or halogen substituted products thereof, and thioester-forming derivatives such as acylated products thereof.

他の繰返し単位を与える単量体である芳香族メルカプトフェノールの具体例としては、4-メルカプトフェノール、3-メルカプトフェノール、2-メルカプトフェノール、6-メルカプト-2-ナフトール、7-メルカプト-2-ナフトール、5-メルカプト-2-ナフトールなどの芳香族メルカプトフェノールおよびそれらのアルキル、アルコキシまたはハロゲン置換体、ならびにこれらのアシル化物などのチオエステルおよびエステル形成性誘導体が挙げられる。 Specific examples of aromatic mercaptophenol, which is a monomer providing other repeating units, include 4-mercaptophenol, 3-mercaptophenol, 2-mercaptophenol, 6-mercapto-2-naphthol, and 7-mercapto-2-mercaptophenol. Examples include aromatic mercaptophenols such as naphthol and 5-mercapto-2-naphthol, alkyl, alkoxy or halogen substituted products thereof, and thioesters and ester-forming derivatives such as acylated products thereof.

これらの他の単量体成分から与えられる繰返し単位の組成比の合計は、繰返し単位全体において、10モル%以下であるのが好ましい。 The total composition ratio of repeating units provided by these other monomer components is preferably 10 mol % or less based on the total repeating units.

以下、本発明に使用する液晶ポリマーの製造方法について説明する。 Hereinafter, a method for manufacturing the liquid crystal polymer used in the present invention will be explained.

本発明に使用する液晶ポリマーの製造方法に特に制限はなく、前記の単量体の組合せからなるエステル結合やアミド結合などを形成させる公知の重縮合方法、例えば溶融アシドリシス法を使用することができる。 There is no particular restriction on the method for producing the liquid crystal polymer used in the present invention, and known polycondensation methods for forming ester bonds, amide bonds, etc. made of the above-mentioned combination of monomers, such as the melt acidolysis method, can be used. .

溶融アシドリシス法とは、本発明で使用する液晶ポリマーの製造方法に使用するのに好ましい方法であり、この方法は、最初に単量体を加熱して反応物質の溶融液を形成し、続いて反応を続けて溶融ポリマーを得るものである。なお、縮合の最終段階で副生する揮発物(例えば、酢酸、水など)の除去を容易にするために真空を適用してもよい。 Melt acidolysis is the preferred method for producing the liquid crystalline polymers used in the present invention, in which the monomers are first heated to form a melt of the reactants, followed by The reaction is continued to obtain a molten polymer. Note that a vacuum may be applied to facilitate the removal of volatile by-products (eg, acetic acid, water, etc.) in the final stage of condensation.

溶融アシドリシス法において、液晶ポリマーを製造する際に使用する重合性単量体成分は、常温において、ヒドロキシル基および/またはアミノ基をアシル化した変性形態、すなわち低級アシル化物として反応に供することもできる。低級アシル基は炭素原子数2~5のものが好ましく、炭素原子数2または3のものがより好ましい。特に好ましくは前記単量体のアセチル化物を反応に使用する方法が挙げられる。 In the melt acidolysis method, the polymerizable monomer component used to produce the liquid crystal polymer can be subjected to the reaction as a modified form in which hydroxyl groups and/or amino groups are acylated, that is, as a lower acylated product, at room temperature. . The lower acyl group preferably has 2 to 5 carbon atoms, more preferably 2 or 3 carbon atoms. Particularly preferred is a method in which an acetylated product of the above monomer is used in the reaction.

単量体のアシル化物は、別途アシル化して予め合成したものを用いてもよいし、液晶ポリマーの製造時に単量体に無水酢酸等のアシル化剤を加えて反応系内で生成せしめることもできる。 The acylated monomer may be acylated separately and synthesized in advance, or may be generated in the reaction system by adding an acylating agent such as acetic anhydride to the monomer during production of the liquid crystal polymer. can.

また、反応時、必要に応じて触媒を用いてもよい。 Further, during the reaction, a catalyst may be used as necessary.

触媒の具体例としては、例えば、有機スズ化合物(ジブチルスズオキシドなどのジアルキルスズオキシド、ジアリールスズオキシドなど)、二酸化チタン、三酸化アンチモン、有機チタン化合物(アルコキシチタンシリケート、チタンアルコキシドなど)、カルボン酸のアルカリおよびアルカリ土類金属塩(酢酸カリウム、酢酸ナトリウムなど)、ルイス酸(BFなど)、ハロゲン化水素などの気体状酸触媒(HClなど)などが挙げられる。 Specific examples of catalysts include organic tin compounds (dialkyltin oxides such as dibutyltin oxide, diaryltin oxides, etc.), titanium dioxide, antimony trioxide, organic titanium compounds (alkoxytitanium silicates, titanium alkoxides, etc.), carboxylic acid Examples include alkali and alkaline earth metal salts (potassium acetate, sodium acetate, etc.), Lewis acids (BF3 , etc.), gaseous acid catalysts such as hydrogen halides (HCl, etc.), and the like.

触媒の使用割合は、単量体全量に対して通常1~1000ppm、好ましくは2~100ppmである。 The proportion of the catalyst used is usually 1 to 1000 ppm, preferably 2 to 100 ppm, based on the total amount of monomers.

このようにして重縮合反応されて得られた液晶ポリマーは、溶融状態で重合反応槽より抜き出された後に、ペレット状、フレーク状、または粉末状に加工される。 The liquid crystal polymer obtained by the polycondensation reaction in this manner is extracted from the polymerization reaction tank in a molten state, and then processed into pellets, flakes, or powder.

本発明に使用する樹脂組成物における、液晶ポリマーの含有量は、水溶性樹脂100質量部に対し、0.1~150質量部であり、好ましくは1~100質量部、より好ましくは5~90質量部、さらに好ましくは10~85質量部、特に好ましくは20~80質量部、最も好ましくは25~75質量部である。 The content of the liquid crystal polymer in the resin composition used in the present invention is 0.1 to 150 parts by weight, preferably 1 to 100 parts by weight, more preferably 5 to 90 parts by weight, based on 100 parts by weight of the water-soluble resin. Parts by weight, more preferably 10 to 85 parts by weight, particularly preferably 20 to 80 parts by weight, most preferably 25 to 75 parts by weight.

液晶ポリマーの含有量が0.1質量部未満であると、得られる液晶ポリマー微粒子の量が少なくなり、150質量部を超えると液晶ポリマー微粒子が得られない。 If the content of the liquid crystal polymer is less than 0.1 part by mass, the amount of liquid crystal polymer fine particles obtained will be small, and if it exceeds 150 parts by mass, no liquid crystal polymer fine particles will be obtained.

水溶性樹脂および液晶ポリマーの相溶性を向上させ、最終的に得られる液晶ポリマー粉末の粒径を制御する目的で、相溶化剤を添加してもよい。相溶化剤を添加する場合、その添加量は、水溶性樹脂100重量部に対して、好ましくは0.01~10質量部、より好ましくは0.1~5質量部である。 A compatibilizer may be added for the purpose of improving the compatibility between the water-soluble resin and the liquid crystal polymer and controlling the particle size of the liquid crystal polymer powder finally obtained. When adding a compatibilizer, the amount added is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, based on 100 parts by weight of the water-soluble resin.

本発明に使用する樹脂組成物は、無機および/または有機充填材、相溶化剤以外の他の添加剤、他の樹脂成分等は含有しないことが好ましい。 The resin composition used in the present invention preferably does not contain inorganic and/or organic fillers, additives other than the compatibilizer, and other resin components.

本発明に使用する樹脂組成物は、水溶性樹脂および液晶ポリマー、場合によっては、相溶化剤を混合し、バンバリーミキサー、ニーダー、一軸もしくは二軸押出機などを用いて、液晶ポリマーの結晶融解温度近傍から結晶融解温度+40℃の温度条件で溶融混練して得ることができる。すなわち、本発明の好適な一実施形態では、樹脂組成物は水溶性樹脂と液晶ポリマーとを含む溶融混練物である。 The resin composition used in the present invention is prepared by mixing a water-soluble resin and a liquid crystal polymer, and in some cases, a compatibilizer, and using a Banbury mixer, kneader, single-screw or twin-screw extruder, etc. It can be obtained by melting and kneading at a temperature of +40° C. to the crystal melting temperature from the vicinity. That is, in a preferred embodiment of the present invention, the resin composition is a melt-kneaded product containing a water-soluble resin and a liquid crystal polymer.

本発明の液晶ポリマー微粒子の製造方法は、まず溶解工程において、上述した水溶性樹脂100質量部および液晶ポリマー0.1~150質量部を含む樹脂組成物を、溶媒と混合して樹脂組成物に含まれる水溶性樹脂を溶解させる(溶解工程)。樹脂組成物の中で水溶性樹脂を溶媒に溶解させることによって、水溶性樹脂溶液を分散媒とする液晶ポリマー微粒子の分散液が得られる。 In the method for producing liquid crystal polymer fine particles of the present invention, first, in the dissolution step, a resin composition containing 100 parts by mass of the above-mentioned water-soluble resin and 0.1 to 150 parts by mass of liquid crystal polymer is mixed with a solvent to form a resin composition. The water-soluble resin contained is dissolved (dissolution step). By dissolving the water-soluble resin in a solvent in the resin composition, a dispersion of liquid crystal polymer fine particles using the water-soluble resin solution as a dispersion medium can be obtained.

溶解工程で用いる溶媒としては、水溶性樹脂を溶解し、かつ、液晶ポリマーを溶解しない溶媒であり、水と親水性有機溶媒との混合溶媒、または水の単独溶媒であるのが好ましく、安価であり、安全性も高いことから水の単独溶媒が最も好ましい。水と親水性有機溶媒との混合溶媒は、水を20%以上含むものが好ましく、40%以上がより好ましく、60%以上がさらに好ましく、80%以上が特に好ましい。親水性有機溶剤としては、例えばメタノール、エタノール、1-プロパノール、2-プロパノール、1,2-プロパンジオール等のアルコール;プロピレングリコールモノメチルエーテル、エチルセロソルブ、n-ブチルセロソルブ等のグリコールエーテル;アセトン、メチルエチルケトン等のケトンなどが挙げられる。 The solvent used in the dissolution step is a solvent that dissolves the water-soluble resin but does not dissolve the liquid crystal polymer, and is preferably a mixed solvent of water and a hydrophilic organic solvent, or a single solvent of water, which is inexpensive. Water is the most preferable sole solvent because it is highly safe. The mixed solvent of water and a hydrophilic organic solvent preferably contains 20% or more of water, more preferably 40% or more, even more preferably 60% or more, and particularly preferably 80% or more. Examples of hydrophilic organic solvents include alcohols such as methanol, ethanol, 1-propanol, 2-propanol, and 1,2-propanediol; glycol ethers such as propylene glycol monomethyl ether, ethyl cellosolve, and n-butyl cellosolve; acetone, methyl ethyl ketone, etc. Examples include ketones.

溶媒の使用量は、用いる溶媒の種類によって異なるため特に限定されないが、水溶性樹脂が溶解する溶媒量を適宜選択すればよく、例えば、水溶性樹脂100質量部に対して溶媒100~5000質量部である。 The amount of the solvent to be used is not particularly limited as it varies depending on the type of solvent used, but the amount of the solvent in which the water-soluble resin is dissolved may be appropriately selected. It is.

溶解工程における温度は、用いる溶媒の種類および溶媒量によって異なるため特に限定されないが、水溶性樹脂が溶解する温度で実施すればよく、例えば20~200℃である。 The temperature in the dissolution step is not particularly limited as it varies depending on the type and amount of solvent used, but it may be carried out at a temperature at which the water-soluble resin is dissolved, for example 20 to 200°C.

本発明において、水溶性樹脂溶液中の液晶ポリマー微粒子分散液は、ついで分散媒の除去工程に供され、水溶性樹脂が溶媒中に溶解した溶液を除去する。 In the present invention, the liquid crystal polymer fine particle dispersion in the water-soluble resin solution is then subjected to a dispersion medium removal step to remove the solution in which the water-soluble resin is dissolved in the solvent.

除去工程は、好適には、液晶ポリマー微粒子の分散液をろ過又は遠心分離等により固液分離することによって行われる。固液分離に際し、適宜溶媒を注いで液晶ポリマー微粒子を洗浄するのが好ましい。固液分離の際に用いる溶媒としては、水溶性樹脂の溶解に用いた溶媒と同様のものが好ましい。 The removal step is preferably performed by solid-liquid separation of the liquid crystal polymer fine particle dispersion by filtration, centrifugation, or the like. During solid-liquid separation, it is preferable to wash the liquid crystal polymer fine particles by pouring a solvent as appropriate. The solvent used in solid-liquid separation is preferably the same as the solvent used to dissolve the water-soluble resin.

固液分離によって回収された液晶ポリマー微粒子は、例えば、常圧下において溶媒の沸点以上で加熱乾燥するか、減圧下で乾燥し、溶媒を留去することによって、高純度の液晶ポリマー微粒子を得ることができる。 The liquid crystal polymer fine particles recovered by solid-liquid separation can be dried by heating above the boiling point of the solvent under normal pressure, or by drying under reduced pressure and distilling off the solvent to obtain high purity liquid crystal polymer fine particles. Can be done.

本発明において、液晶ポリマー微粒子とは、液晶ポリマーが平均粒子径0.01~100μmの状態で存在することを意味し、0.05~50μmであることが好ましく、0.1~10μmであることがより好ましく、0.1~5μmであることがさらに好ましい。液晶ポリマーの平均粒子径が上記範囲にあることでコーティング材料、成形体用粉体材料、添加剤等の種々の用途に好適に用いることができる。 In the present invention, liquid crystal polymer fine particles mean that liquid crystal polymer exists in a state with an average particle size of 0.01 to 100 μm, preferably 0.05 to 50 μm, and preferably 0.1 to 10 μm. is more preferable, and even more preferably 0.1 to 5 μm. When the average particle diameter of the liquid crystal polymer is within the above range, it can be suitably used for various purposes such as coating materials, powder materials for molded bodies, and additives.

平均粒子径は、走査型電子顕微鏡(SEM)で撮影した液晶ポリマー微粒子のSEM画像を観察し、任意に選択した100個以上の液晶ポリマー微粒子の最長軸の長さの平均値を用いて算出される。 The average particle diameter is calculated by observing SEM images of liquid crystal polymer fine particles taken with a scanning electron microscope (SEM) and using the average value of the longest axis length of 100 or more randomly selected liquid crystal polymer fine particles. Ru.

本発明の液晶ポリマー微粒子の平均球形度は1.8以下であることが好ましく、1.5以下であることがより好ましく、1.3以下であることがさらに好ましく、1.2以下であることが特に好ましく、1~1.1であることが最も好ましい。ここで、球形度とは、粒子(微粒子)の最長軸と最短軸の比率をいう。 The average sphericity of the liquid crystal polymer fine particles of the present invention is preferably 1.8 or less, more preferably 1.5 or less, even more preferably 1.3 or less, and 1.2 or less. is particularly preferred, and most preferably 1 to 1.1. Here, sphericity refers to the ratio of the longest axis to the shortest axis of a particle (fine particle).

好適な実施形態において、本発明の方法によって製造される液晶ポリマー微粒子は、平均粒子径が0.01~100μmであり、平均球形度が1.8以下である。 In a preferred embodiment, the liquid crystal polymer fine particles produced by the method of the present invention have an average particle diameter of 0.01 to 100 μm and an average sphericity of 1.8 or less.

本発明の液晶ポリマー微粒子は、平均球形度が1.8以下のものを90%以上含有するのが好ましく、95%以上含有するのがより好ましく、98%以上含有するのがさらに好ましい。 The liquid crystal polymer fine particles of the present invention preferably contain 90% or more of particles having an average sphericity of 1.8 or less, more preferably 95% or more, and even more preferably 98% or more.

平均球形度は、走査型電子顕微鏡(SEM)で撮影した液晶ポリマー微粒子のSEM画像を観察し、任意に選択した100個以上の液晶ポリマー微粒子の最長軸/最短軸の値の平均値を用いて算出される。 The average sphericity is determined by observing SEM images of liquid crystal polymer particles taken with a scanning electron microscope (SEM) and using the average value of the longest axis/shortest axis of 100 or more arbitrarily selected liquid crystal polymer particles. Calculated.

本発明において、得られた液晶ポリマー微粒子を再び溶媒に分散させて液晶ポリマー微粒子分散液(溶媒を分散媒とする分散液)としてもよい。すなわち、好適な実施形態において、このような液晶ポリマー微粒子分散液は、平均粒子径が0.01~100μmであり、平均球形度が1.8以下である液晶ポリマー微粒子が溶媒中に分散してなるものである。 In the present invention, the obtained liquid crystal polymer fine particles may be dispersed in a solvent again to form a liquid crystal polymer fine particle dispersion (a dispersion liquid using a solvent as a dispersion medium). That is, in a preferred embodiment, such a liquid crystal polymer fine particle dispersion includes liquid crystal polymer fine particles having an average particle diameter of 0.01 to 100 μm and an average sphericity of 1.8 or less dispersed in a solvent. It is what it is.

また、本発明の別の好適な実施形態において、溶解工程において得られた液晶ポリマー微粒子分散液(水溶性樹脂溶液を分散媒とする分散液)をそのまま用いてもよい。すなわち、本発明は、水溶性樹脂100質量部および液晶ポリマー0.1~150質量部を含有し、水溶性樹脂が溶媒中に溶解し、かつ平均粒子径が0.01~100μmであり、平均球形度が1.8以下である液晶ポリマー微粒子が水溶性樹脂溶液中に分散してなる、液晶ポリマー微粒子分散液にも関する。 In another preferred embodiment of the present invention, the liquid crystal polymer fine particle dispersion obtained in the dissolution step (a dispersion using a water-soluble resin solution as a dispersion medium) may be used as it is. That is, the present invention contains 100 parts by mass of a water-soluble resin and 0.1 to 150 parts by mass of a liquid crystal polymer, the water-soluble resin is dissolved in a solvent, and the average particle diameter is 0.01 to 100 μm, and the average particle diameter is 0.01 to 100 μm. The present invention also relates to a liquid crystal polymer fine particle dispersion in which liquid crystal polymer fine particles having a sphericity of 1.8 or less are dispersed in a water-soluble resin solution.

上述したような製造方法によって得られた液晶ポリエステル微粒子または液晶ポリマー微粒子分散液は、種々の用途に適用することができる。例えば、静電塗装用の粉体塗料、コーティング材料、絶縁用有機フィラー、摺動材の原料、成形体用粉体材料、添加剤等が挙げられる。 The liquid crystal polyester fine particles or liquid crystal polymer fine particle dispersion obtained by the above-described production method can be applied to various uses. Examples include powder coatings for electrostatic coating, coating materials, organic fillers for insulation, raw materials for sliding materials, powder materials for molded bodies, additives, and the like.

液晶ポリマー微粒子分散液の溶媒としては、水溶性樹脂を溶解し、かつ、液晶ポリマーを溶解しない溶媒であり、水と親水性有機溶媒との混合溶媒、または水の単独溶媒であるのが好ましく、安価であり、安全性も高いことから水の単独溶媒が最も好ましい。水と親水性有機溶媒との混合溶媒は、水を20%以上含むものが好ましく、40%以上がより好ましく、60%以上がさらに好ましく、80%以上が特に好ましい。親水性有機溶剤としては、例えばメタノール、エタノール、1-プロパノール、2-プロパノール、1,2-プロパンジオール等のアルコール;プロピレングリコールモノメチルエーテル、エチルセロソルブ、n-ブチルセロソルブ等のグリコールエーテル;アセトン、メチルエチルケトン等のケトンなどが挙げられる。 The solvent for the liquid crystal polymer fine particle dispersion is a solvent that dissolves the water-soluble resin but does not dissolve the liquid crystal polymer, and is preferably a mixed solvent of water and a hydrophilic organic solvent or a sole solvent of water. Water is the most preferred sole solvent because it is inexpensive and highly safe. The mixed solvent of water and a hydrophilic organic solvent preferably contains 20% or more of water, more preferably 40% or more, even more preferably 60% or more, and particularly preferably 80% or more. Examples of hydrophilic organic solvents include alcohols such as methanol, ethanol, 1-propanol, 2-propanol, and 1,2-propanediol; glycol ethers such as propylene glycol monomethyl ether, ethyl cellosolve, and n-butyl cellosolve; acetone, methyl ethyl ketone, etc. Examples include ketones.

以下、本発明を実施例により詳細に説明するが、本発明はこれに限定されるものではない。 EXAMPLES Hereinafter, the present invention will be explained in detail with reference to Examples, but the present invention is not limited thereto.

実施例における各物性値は以下の方法によって測定した。 Each physical property value in Examples was measured by the following method.

〈結晶融解温度〉
セイコーインスツルメンツ(株)製の示差走査熱量計(DSC)Exstar6000を用いて測定を行った。液晶ポリマーの試料を、室温から20℃/分の昇温条件下で測定し、吸熱ピーク温度(Tm1)を観測した後、Tm1より20~50℃高い温度で10分間保持する。次いで、20℃/分の降温条件で室温まで試料を冷却した後に、再度20℃/分の昇温条件で測定した際の吸熱ピークを観測し、そのピークトップを示す温度を液晶ポリマーの結晶融解温度とする。
<Crystal melting temperature>
The measurement was performed using a differential scanning calorimeter (DSC) Exstar 6000 manufactured by Seiko Instruments. A liquid crystal polymer sample is measured under the condition of increasing the temperature from room temperature to 20° C./min, and after observing the endothermic peak temperature (Tm1), it is held at a temperature 20 to 50° C. higher than Tm1 for 10 minutes. Next, after cooling the sample to room temperature under the temperature decreasing condition of 20°C/min, the endothermic peak when measured again under the temperature increasing condition of 20°C/min was observed, and the temperature indicating the top of the peak was determined as the crystal melting temperature of the liquid crystal polymer. Temperature.

〈SEM〉
(株)日立ハイテク製の走査電子顕微鏡S-4300を用いてSEM画像を撮影した。
<SEM>
SEM images were taken using a scanning electron microscope S-4300 manufactured by Hitachi High-Tech Corporation.

〈平均粒子径〉
走査型電子顕微鏡(SEM)で撮影した液晶ポリマー微粒子のSEM画像を観察し、任意に選択した100個以上の液晶ポリマー微粒子の最長軸の長さの平均値を算出し、平均粒子径とした。
<Average particle size>
A SEM image of liquid crystal polymer fine particles taken with a scanning electron microscope (SEM) was observed, and the average value of the length of the longest axis of 100 or more arbitrarily selected liquid crystal polymer fine particles was calculated and used as the average particle diameter.

〈平均球形度〉
液晶ポリマー微粒子のSEM画像を観察し、任意に選択した100個以上の液晶ポリマー微粒子の最長軸/最短軸の値の平均値を用いて算出した。
<Average sphericity>
The SEM image of the liquid crystal polymer fine particles was observed, and the average value of the longest axis/shortest axis of 100 or more arbitrarily selected liquid crystal polymer fine particles was used for calculation.

〈IR〉
日本分光(株)製のフーリエ変換赤外分光光度計FT/IR-4600を用いて確認した。
<IR>
This was confirmed using a Fourier transform infrared spectrophotometer FT/IR-4600 manufactured by JASCO Corporation.

実施例において、下記の略号は以下の化合物を表す。
LCP:液晶ポリマー
POB:4-ヒドロキシ安息香酸
BON6:6-ヒドロキシ-2-ナフトエ酸
HQ:ハイドロキノン
BP:4,4’-ジヒドロキシビフェニル
TPA:テレフタル酸
IPA:イソフタル酸
NDA:2,6-ナフタレンジカルボン酸
In the examples, the following abbreviations represent the following compounds.
LCP: Liquid crystal polymer POB: 4-hydroxybenzoic acid BON6: 6-hydroxy-2-naphthoic acid HQ: Hydroquinone BP: 4,4'-dihydroxybiphenyl TPA: Terephthalic acid IPA: Isophthalic acid NDA: 2,6-naphthalene dicarboxylic acid

(水溶性樹脂)
水溶性樹脂として以下のものを使用した。
水溶性ポリエステル樹脂(水溶性樹脂1):互応化学工業社製プラスコート「Z-221」(ガラス転移温度:47℃、分子量:約14000、95℃の水100gに対する溶解度:60g)
水溶性ポリエステル樹脂(水溶性樹脂2):互応化学工業社製プラスコート「Z-561」(ガラス転移温度:64℃、分子量:約27000、95℃の水100gに対する溶解度:45g)
(Water-soluble resin)
The following water-soluble resins were used.
Water-soluble polyester resin (Water-soluble resin 1): Pluscoat “Z-221” manufactured by Goo Kagaku Kogyo Co., Ltd. (Glass transition temperature: 47°C, molecular weight: approximately 14,000, solubility in 100g of water at 95°C: 60g)
Water-soluble polyester resin (Water-soluble resin 2): Pluscoat “Z-561” manufactured by Goou Kagaku Kogyo Co., Ltd. (Glass transition temperature: 64°C, molecular weight: approximately 27,000, solubility in 100g of water at 95°C: 45g)

(液晶ポリマー1の合成)
トルクメーター付き攪拌装置および留出管を備えた反応容器に、POB、BON6、HQおよびTPAを総量6.5モルとなるように仕込み、さらに全モノマーの水酸基量(モル)に対して1.025倍モルの無水酢酸を仕込み、次の条件で脱酢酸重合を行った。窒素ガス雰囲気下に室温から150℃まで1時間かけて昇温し、同温度にて30分間保持した。次いで、副生する酢酸を留出させつつ210℃まで速やかに昇温し、同温度にて30分間保持した。その後、3時間かけて335℃まで昇温した後、30分かけて20mmHgにまで減圧した。所定のトルクを示した時点で重合反応を終了し、反応容器から内容物を取り出し、粉砕機により液晶ポリマー1のペレットを得た。重合時の留出酢酸量は、ほぼ理論値どおりであった。得られた液晶ポリマー1(LCP1)の結晶融解温度は218℃であった。
POB :359.5g(40モル部)
BON6:489.8g(40モル部)
HQ :71.7g(10モル部)
TPA :108.0g(10モル部)
(Synthesis of liquid crystal polymer 1)
Into a reaction vessel equipped with a stirring device equipped with a torque meter and a distillation tube, POB, BON6, HQ, and TPA were charged in a total amount of 6.5 mol, and further 1.025 mol based on the amount of hydroxyl groups (mol) of all monomers. Double the molar amount of acetic anhydride was charged, and acetic acid removal polymerization was performed under the following conditions. The temperature was raised from room temperature to 150° C. over 1 hour under a nitrogen gas atmosphere, and the temperature was maintained at the same temperature for 30 minutes. Next, the temperature was rapidly raised to 210° C. while distilling off acetic acid as a by-product, and the temperature was maintained at the same temperature for 30 minutes. Thereafter, the temperature was raised to 335° C. over 3 hours, and then the pressure was reduced to 20 mmHg over 30 minutes. The polymerization reaction was terminated when a predetermined torque was exhibited, the contents were taken out from the reaction vessel, and pellets of liquid crystal polymer 1 were obtained using a crusher. The amount of acetic acid distilled during the polymerization was almost the same as the theoretical value. The crystal melting temperature of the obtained liquid crystal polymer 1 (LCP1) was 218°C.
POB: 359.5g (40 mole parts)
BON6: 489.8g (40 mole parts)
HQ: 71.7g (10 mole parts)
TPA: 108.0g (10 mole parts)

(液晶ポリマー2の合成)
トルクメーター付き攪拌装置および留出管を備えた反応容器に、POB、BON6、BP、NDAおよびIPAを下記に示す組成比にて、総量6.5モルとなるように仕込み、さらに全モノマーの水酸基量(モル)に対して1.03倍モルの無水酢酸を仕込み、次の条件で脱酢酸重合を行った。窒素ガス雰囲気下に室温から150℃まで1時間で昇温し、同温度にて30分間保持した。次いで、副生する酢酸を留去させつつ210℃まで速やかに昇温し、同温度にて30分間保持した。その後、340℃まで4時間かけて昇温した後、80分かけて10mmHgまで減圧を行なった。所定のトルクを示した時点で重合反応を終了し、反応容器内容物を取り出し、粉砕機により液晶ポリマー2のペレットを得た。重合時の留出酢酸量は、ほぼ理論値どおりであった。得られた液晶ポリマー2(LCP2)の結晶融解温度は183℃であった。
POB :386.0g(43モル部)
BON6:403.6g(33モル部)
BP :145.2g(12モル部)
NDA :126.0g(9モル部)
IPA :32.4g(3モル部)
(Synthesis of liquid crystal polymer 2)
Into a reaction vessel equipped with a stirring device equipped with a torque meter and a distillation tube, POB, BON6, BP, NDA, and IPA were charged in the composition ratio shown below so that the total amount was 6.5 mol, and the hydroxyl groups of all monomers were added. 1.03 times the mole of acetic anhydride was charged, and acetic acid depolymerization was carried out under the following conditions. The temperature was raised from room temperature to 150° C. in 1 hour under a nitrogen gas atmosphere, and maintained at the same temperature for 30 minutes. Next, the temperature was rapidly raised to 210° C. while distilling off the by-produced acetic acid, and the temperature was maintained at the same temperature for 30 minutes. Thereafter, the temperature was raised to 340° C. over 4 hours, and then the pressure was reduced to 10 mmHg over 80 minutes. The polymerization reaction was terminated when a predetermined torque was exhibited, the contents of the reaction vessel were taken out, and pellets of liquid crystal polymer 2 were obtained using a pulverizer. The amount of acetic acid distilled during the polymerization was almost the same as the theoretical value. The crystal melting temperature of the obtained liquid crystal polymer 2 (LCP2) was 183°C.
POB: 386.0g (43 mole parts)
BON6: 403.6g (33 mole parts)
BP: 145.2g (12 mole parts)
NDA: 126.0g (9 mole parts)
IPA: 32.4g (3 mole parts)

(樹脂組成物の調製)
水溶性樹脂およびLCPを、表1に示す含有量となるように合計60gを配合して、(株)東洋精機製作所製ラボプラストミル3S150を用いて、表1に示すシリンダー温度において90rpmで10分間溶融混練して、内容物を取り出し、粉砕機で粉砕することにより、樹脂組成物のペレットを得た。
(Preparation of resin composition)
A total of 60 g of the water-soluble resin and LCP were blended to have the contents shown in Table 1, and the mixture was heated for 10 minutes at 90 rpm at the cylinder temperature shown in Table 1 using Laboplast Mill 3S150 manufactured by Toyo Seiki Seisakusho Co., Ltd. Pellets of the resin composition were obtained by melt-kneading, taking out the contents, and pulverizing with a pulverizer.

[実施例1]
樹脂組成物1のペレット5.0g、水45.0gを300mLの四ツ口フラスコに加え、攪拌しながら約95℃まで加熱、還流し、白色懸濁液(液晶ポリマー微粒子分散液)を得た。白色懸濁液を遠沈管に入れ、23℃、5000rpmで3時間遠心分離を行った。上澄み液はほぼ透明になったため、デカンテーションにて上澄み液を取り除いた。洗浄工程として70℃の水45.0gを加えて攪拌し、同条件で遠心分離を行い、上澄み液を取り除く操作を数回繰返した後、沈殿物を70℃で3時間真空乾燥を行い、液晶ポリマー微粒子1.9gを得た。得られた液晶ポリマー微粒子はIR(赤外分光法)によって液晶ポリマーであることを確認した。得られた液晶ポリマー微粒子をSEM観察し、平均粒子径と平均球形度を測定した。結果を表2に、SEM写真を図1に示す。
[Example 1]
5.0 g of pellets of resin composition 1 and 45.0 g of water were added to a 300 mL four-necked flask, and heated to about 95° C. and refluxed while stirring to obtain a white suspension (liquid crystal polymer fine particle dispersion). . The white suspension was placed in a centrifuge tube and centrifuged at 23° C. and 5000 rpm for 3 hours. Since the supernatant liquid became almost transparent, it was removed by decantation. As a washing step, 45.0 g of water at 70°C was added and stirred, centrifuged under the same conditions, and the supernatant liquid removed. After repeating the procedure several times, the precipitate was vacuum-dried at 70°C for 3 hours to form a liquid crystal. 1.9 g of polymer fine particles were obtained. The obtained liquid crystal polymer fine particles were confirmed to be liquid crystal polymer by IR (infrared spectroscopy). The obtained liquid crystal polymer fine particles were observed by SEM, and the average particle diameter and average sphericity were measured. The results are shown in Table 2, and the SEM photograph is shown in FIG.

[実施例2]
樹脂組成物1を樹脂組成物2に変更した以外は実施例1と同様に実施し、液晶ポリマー微粒子0.8gを得た。得られた液晶ポリマー微粒子の平均粒子径および平均球形度を測定した。結果を表2に示す。
[Example 2]
The same procedure as in Example 1 was carried out except that Resin Composition 1 was changed to Resin Composition 2, and 0.8 g of liquid crystal polymer fine particles were obtained. The average particle diameter and average sphericity of the obtained liquid crystal polymer fine particles were measured. The results are shown in Table 2.

[実施例3]
樹脂組成物1を樹脂組成物3に変更した以外は実施例1と同様に実施し、液晶ポリマー微粒子1.8gを得た。得られた液晶ポリマー微粒子の平均粒子径および平均球形度を測定した。結果を表2に示す。
[Example 3]
The same procedure as in Example 1 was carried out except that Resin Composition 1 was changed to Resin Composition 3, and 1.8 g of liquid crystal polymer fine particles were obtained. The average particle diameter and average sphericity of the obtained liquid crystal polymer fine particles were measured. The results are shown in Table 2.

[実施例4]
樹脂組成物1を樹脂組成物4に変更した以外は実施例1と同様に実施し、液晶ポリマー微粒子1.4gを得た。得られた液晶ポリマー微粒子の平均粒子径および平均球形度を測定した。結果を表2に示す。
[Example 4]
The same procedure as in Example 1 was carried out except that Resin Composition 1 was changed to Resin Composition 4, and 1.4 g of liquid crystal polymer fine particles were obtained. The average particle diameter and average sphericity of the obtained liquid crystal polymer fine particles were measured. The results are shown in Table 2.

[比較例1]
樹脂組成物5のペレット5.0gおよび水45.0gを300mLの四ツ口フラスコに加え、攪拌しながら約95℃まで加熱、1時間還流したが、ペレット形状のままであり、球状の微粒子は得られなかった。
[Comparative example 1]
5.0 g of pellets of resin composition 5 and 45.0 g of water were added to a 300 mL four-necked flask, heated to about 95°C with stirring, and refluxed for 1 hour, but the pellet shape remained and the spherical fine particles remained. I couldn't get it.

[比較例2]
液晶ポリマー1のペレット10.0gを(株)スギノマシン製ドライバーストDB-180Wを用いて回転数8000×8000min-1で粉砕させたが、繊維状の粉砕物となり、球状の微粒子は得られなかった。マイクロスコープ写真を図2に示す。
[Comparative example 2]
10.0 g of pellets of Liquid Crystal Polymer 1 were crushed using Dry Burst DB-180W manufactured by Sugino Machine Co., Ltd. at a rotation speed of 8000 x 8000 min -1 , but the result was a fibrous crushed product and no spherical fine particles were obtained. Ta. A microscope photograph is shown in Figure 2.

表2から明らかなように、実施例1~4で得られた液晶ポリマー微粒子は、いずれも平均粒子径0.01~100μmかつ平均球形度が1.8以下であり、球状の微粒子であることが理解される。 As is clear from Table 2, the liquid crystal polymer fine particles obtained in Examples 1 to 4 all have an average particle diameter of 0.01 to 100 μm and an average sphericity of 1.8 or less, and are spherical fine particles. is understood.

Claims (12)

水溶性樹脂100質量部および液晶ポリマー0.1~150質量部を含む樹脂組成物を、溶媒と混合して該樹脂組成物に含まれる水溶性樹脂を溶解させて、水溶性樹脂溶液中の液晶ポリマー微粒子分散液を得る工程、および
該分散液から水溶性樹脂溶液を除去する工程、
を含む、平均粒子径0.01~100μmの液晶ポリマー微粒子の製造方法。
A resin composition containing 100 parts by mass of a water-soluble resin and 0.1 to 150 parts by mass of a liquid crystal polymer is mixed with a solvent to dissolve the water-soluble resin contained in the resin composition. a step of obtaining a polymer fine particle dispersion; and a step of removing a water-soluble resin solution from the dispersion;
A method for producing liquid crystal polymer fine particles having an average particle diameter of 0.01 to 100 μm, including:
水溶性樹脂は水溶性ポリエステル樹脂、水溶性ポリアクリル酸樹脂、水溶性エポキシ樹脂、水溶性フェノール樹脂、水溶性ユリア樹脂、水溶性メラミン樹脂、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレンオキシド、ポリアクリルアミドおよびカルボキシメチルセルロースからなる群から選択される一種以上を含む、請求項1に記載の方法。 Water-soluble resins include water-soluble polyester resin, water-soluble polyacrylic acid resin, water-soluble epoxy resin, water-soluble phenol resin, water-soluble urea resin, water-soluble melamine resin, polyvinyl alcohol, polyvinylpyrrolidone, polyethylene oxide, polyacrylamide, and carboxymethyl cellulose. The method according to claim 1, comprising one or more selected from the group consisting of. 水溶性樹脂は水溶性ポリエステル樹脂である、請求項1に記載の方法。 2. The method of claim 1, wherein the water-soluble resin is a water-soluble polyester resin. 液晶ポリマーは、式[I]および式[II]
で表される繰返し単位を含む全芳香族液晶ポリマーである、請求項1に記載の方法。
The liquid crystal polymer has formula [I] and formula [II]
The method according to claim 1, which is a wholly aromatic liquid crystal polymer containing a repeating unit represented by:
液晶ポリマーは、式[I]~式[IV]
[式中、
ArおよびArは、それぞれ1種または2種以上の2価の芳香族基を表し、p、q、rおよびsは、それぞれ、液晶ポリマー中での各繰返し単位の組成比(モル%)であり、以下の条件を満たす:
0.5≦p/q、
5≦r≦35、および
5≦s≦35]
で表される繰返し単位を含む全芳香族液晶ポリマーである、請求項1に記載の方法。
The liquid crystal polymer has formula [I] to formula [IV]
[In the formula,
Ar 1 and Ar 2 each represent one or more divalent aromatic groups, and p, q, r and s each represent the composition ratio (mol%) of each repeating unit in the liquid crystal polymer. and satisfies the following conditions:
0.5≦p/q,
5≦r≦35, and 5≦s≦35]
The method according to claim 1, which is a wholly aromatic liquid crystal polymer containing a repeating unit represented by:
式[III]および/または式[IV]は、ArおよびArが、互いに独立して、式(1)~(4)
からなる群から選択される芳香族基である繰返し単位の1種または2種以上を含む全芳香族液晶ポリマーである、請求項5に記載の方法。
In formula [III] and/or formula [IV], Ar 1 and Ar 2 independently represent formulas (1) to (4).
6. The method according to claim 5, wherein the polymer is a wholly aromatic liquid crystal polymer containing one or more repeating units that are aromatic groups selected from the group consisting of:
液晶ポリマーの結晶融解温度は170~250℃である、請求項1に記載の方法。 The method according to claim 1, wherein the liquid crystal polymer has a crystalline melting temperature of 170 to 250°C. 樹脂組成物は水溶性樹脂と液晶ポリマーとを含む溶融混練物である、請求項1に記載の方法。 The method according to claim 1, wherein the resin composition is a melt-kneaded product containing a water-soluble resin and a liquid crystal polymer. 溶媒は、水と親水性有機溶媒との混合溶媒、または水の単独溶媒である、請求項1に記載の方法。 2. The method according to claim 1, wherein the solvent is a mixed solvent of water and a hydrophilic organic solvent, or a sole solvent of water. 樹脂組成物と混合する溶媒の量は、水溶性樹脂100質量部に対して100~5000質量部である、請求項1に記載の方法。 The method according to claim 1, wherein the amount of the solvent mixed with the resin composition is 100 to 5000 parts by mass based on 100 parts by mass of the water-soluble resin. 水溶性樹脂100質量部および液晶ポリマー0.1~150質量部を含有し、水溶性樹脂が溶媒中に溶解し、かつ平均粒子径が0.01~100μmであり、平均球形度が1.8以下である液晶ポリマー微粒子が水溶性樹脂溶液中に分散してなる、液晶ポリマー微粒子分散液。 Contains 100 parts by mass of a water-soluble resin and 0.1 to 150 parts by mass of a liquid crystal polymer, the water-soluble resin is dissolved in the solvent, the average particle diameter is 0.01 to 100 μm, and the average sphericity is 1.8 A liquid crystal polymer fine particle dispersion liquid comprising the following liquid crystal polymer fine particles dispersed in a water-soluble resin solution. 溶媒は、水と親水性有機溶媒との混合溶媒、または水の単独溶媒である、請求項11に記載の分散液。 The dispersion according to claim 11, wherein the solvent is a mixed solvent of water and a hydrophilic organic solvent, or a sole solvent of water.
JP2022135821A 2022-08-29 2022-08-29 Method for producing liquid crystal polymer fine particles Pending JP2024032255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022135821A JP2024032255A (en) 2022-08-29 2022-08-29 Method for producing liquid crystal polymer fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022135821A JP2024032255A (en) 2022-08-29 2022-08-29 Method for producing liquid crystal polymer fine particles

Publications (1)

Publication Number Publication Date
JP2024032255A true JP2024032255A (en) 2024-03-12

Family

ID=90193206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022135821A Pending JP2024032255A (en) 2022-08-29 2022-08-29 Method for producing liquid crystal polymer fine particles

Country Status (1)

Country Link
JP (1) JP2024032255A (en)

Similar Documents

Publication Publication Date Title
US6656386B2 (en) Wholly aromatic heat-stable liquid crystalline polyester resin composition with improved melt flowability
JP4758079B2 (en) Liquid crystal polyester resin and method for producing the same
JPS62220556A (en) Resin composition capable of exhibiting anisotropy in melting
JP5726610B2 (en) Method for producing liquid crystalline polyester
JPS62179780A (en) Light emitting element apparatus
JP6576802B2 (en) Liquid crystal polymer
JPS62143964A (en) Stabilized polyester resin composition
JP6763691B2 (en) Thermoplastic resin composition
JP4974501B2 (en) Liquid crystalline polyester resin composition
JP2014506952A (en) Method for producing wholly aromatic liquid crystal polyester resin, resin produced by the production method, and compound containing the resin
JP2024032255A (en) Method for producing liquid crystal polymer fine particles
JP6258771B2 (en) Liquid crystal polymer
JPH11322910A (en) Wholly aromatic thermotropic liquid crystal copolyester and its composition
JP7175834B2 (en) liquid crystal polyester resin
JP2838119B2 (en) Manufacturing method of aromatic polyester
JP2023168780A (en) Method for producing liquid crystal polymer particulate
JP5085863B2 (en) Liquid crystal polymer composition
WO2015178500A1 (en) Wholly aromatic liquid crystalline polyester resin and injection molded body of said resin composition
JP7083636B2 (en) Liquid crystal resin manufacturing method
JP6426994B2 (en) Method for producing liquid crystal polymer
JP6433211B2 (en) Liquid crystal polymer
JP4884920B2 (en) Liquid crystal polymer composition and molded article comprising the same
JPH1036492A (en) Production of wholly aromatic polyester
JP6695012B1 (en) Liquid crystalline resin manufacturing method
WO2003095520A1 (en) Method of preparing liquid crystalline polyester resin