JP2024032019A - Operation method of health information detection device and health information detection device - Google Patents
Operation method of health information detection device and health information detection device Download PDFInfo
- Publication number
- JP2024032019A JP2024032019A JP2023203818A JP2023203818A JP2024032019A JP 2024032019 A JP2024032019 A JP 2024032019A JP 2023203818 A JP2023203818 A JP 2023203818A JP 2023203818 A JP2023203818 A JP 2023203818A JP 2024032019 A JP2024032019 A JP 2024032019A
- Authority
- JP
- Japan
- Prior art keywords
- detection device
- information detection
- blood pressure
- biological information
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 118
- 230000036541 health Effects 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 37
- 230000036772 blood pressure Effects 0.000 claims abstract description 68
- 206010012601 diabetes mellitus Diseases 0.000 claims abstract description 36
- 238000012545 processing Methods 0.000 claims abstract description 28
- 210000000707 wrist Anatomy 0.000 claims abstract description 22
- 238000004458 analytical method Methods 0.000 claims abstract description 20
- 230000008859 change Effects 0.000 claims abstract description 11
- 238000004364 calculation method Methods 0.000 claims description 16
- 210000000467 autonomic pathway Anatomy 0.000 claims description 10
- 230000007704 transition Effects 0.000 claims description 10
- 230000005540 biological transmission Effects 0.000 claims description 9
- 238000012937 correction Methods 0.000 claims description 7
- 230000035487 diastolic blood pressure Effects 0.000 claims description 7
- 230000035488 systolic blood pressure Effects 0.000 claims description 7
- 230000008035 nerve activity Effects 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 4
- 230000000747 cardiac effect Effects 0.000 claims description 2
- 230000000284 resting effect Effects 0.000 claims 1
- 238000012216 screening Methods 0.000 abstract description 15
- 238000010586 diagram Methods 0.000 description 13
- 230000006870 function Effects 0.000 description 7
- 101100441224 Candida albicans (strain SC5314 / ATCC MYA-2876) JAB1 gene Proteins 0.000 description 6
- 101100329574 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) csn-5 gene Proteins 0.000 description 6
- 101150017452 RRI1 gene Proteins 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 239000008280 blood Substances 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 230000005674 electromagnetic induction Effects 0.000 description 3
- 238000009207 exercise therapy Methods 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 101150079982 RRI2 gene Proteins 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 238000009530 blood pressure measurement Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 235000005911 diet Nutrition 0.000 description 2
- 230000037213 diet Effects 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 210000004247 hand Anatomy 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 210000005036 nerve Anatomy 0.000 description 2
- 230000029058 respiratory gaseous exchange Effects 0.000 description 2
- 230000002889 sympathetic effect Effects 0.000 description 2
- 201000004569 Blindness Diseases 0.000 description 1
- 208000032841 Bulimia Diseases 0.000 description 1
- 206010006550 Bulimia nervosa Diseases 0.000 description 1
- 208000002177 Cataract Diseases 0.000 description 1
- 208000007342 Diabetic Nephropathies Diseases 0.000 description 1
- 208000032131 Diabetic Neuropathies Diseases 0.000 description 1
- 206010012689 Diabetic retinopathy Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 208000004044 Hypesthesia Diseases 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 208000008589 Obesity Diseases 0.000 description 1
- 206010042209 Stress Diseases 0.000 description 1
- 208000006011 Stroke Diseases 0.000 description 1
- 206010000891 acute myocardial infarction Diseases 0.000 description 1
- 230000002567 autonomic effect Effects 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000004958 brain cell Anatomy 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 208000033679 diabetic kidney disease Diseases 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002565 electrocardiography Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 230000003862 health status Effects 0.000 description 1
- 230000003054 hormonal effect Effects 0.000 description 1
- 208000034783 hypoesthesia Diseases 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000003907 kidney function Effects 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 231100000862 numbness Toxicity 0.000 description 1
- 235000020824 obesity Nutrition 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 210000005037 parasympathetic nerve Anatomy 0.000 description 1
- 238000009774 resonance method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 201000000980 schizophrenia Diseases 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000004148 unit process Methods 0.000 description 1
Images
Landscapes
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
- Medical Treatment And Welfare Office Work (AREA)
Abstract
Description
本発明は、被験者の健康状態や身体の異常を検出する健康情報検出方法及び装置に関し、特に糖尿病のリスク提示、ストレス状況のスクリーニング及び正確な血圧値を提供する健康情報検出装置の作動方法及び健康情報検出装置に関する。 The present invention relates to a health information detection method and device for detecting the health status and physical abnormalities of a subject, and in particular to a method and device for operating a health information detection device that provides diabetes risk presentation, stress status screening, and accurate blood pressure values. The present invention relates to an information detection device.
従来、各種センサを内蔵した生体情報検出装置を被験者のリストに装着し、被験者の血圧等を検出して健康を管理する装置やシステムが提案されている。例えば特開2016-134131号公報(特許文献1)に示される情報処理システムでは主として糖尿病を対象とし、リストに装着された生体情報検出装置から、血圧や脈拍等の生体情報を取得する情報取得部と、取得した生体情報を記憶する記憶部と、生体情報に基づいて処理を行う処理部とを含み、処理部は、生体情報に基づいて、被験者が糖質燃焼ゾーンに入った状態で行った運動情報の判定処理を行い、判定処理の結果を日付情報及び時刻情報の少なくとも一方を含む時間情報に関連づけた情報を、糖尿病の運動療法情報として表示する処理を行っている。 Conventionally, devices and systems have been proposed that manage the health of a subject by attaching a biological information detection device containing various sensors to the subject's wrist and detecting the subject's blood pressure and the like. For example, the information processing system disclosed in Japanese Patent Application Laid-Open No. 2016-134131 (Patent Document 1) mainly targets diabetes, and an information acquisition unit acquires biological information such as blood pressure and pulse rate from a biological information detection device attached to a wrist. , a storage unit that stores the acquired biological information, and a processing unit that performs processing based on the biological information, and the processing unit performs processing while the subject is in the carbohydrate burning zone based on the biological information. Processing is performed to determine exercise information, and information in which the results of the determination process are associated with time information including at least one of date information and time information is displayed as exercise therapy information for diabetes.
しかしながら、特許文献1のシステムでは、脈拍数から血糖値を検出しており、正確性において問題がある。また、ストレスや心電波形といった健康に影響する要因を検出しておらず、健康管理において万全ではない。また、特開2017-63997号公報(特許文献2)では、脈拍や呼吸などを生体情報として検出して生体機能を検査しているが、センサが大がかりで睡眠中に検査するようになっている不都合がある。
However, the system of
本発明は上述のような事情よりなされたものであり、本発明の目的は、小型で腕のリストに簡単に装着可能であり、検出した心電信号及び脈拍のデータ処理と解析を行い、糖尿病のリスクの提示機能、ストレス状況のスクリーニング機能、動的変化に対しても精度の高い血圧検出機能を具備した健康情報検出方法及び装置を提供することにある。 The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a small-sized device that can be easily attached to the wrist of the arm, and to process and analyze detected electrocardiographic signals and pulses. It is an object of the present invention to provide a health information detection method and device that have a risk presentation function, a stress situation screening function, and a blood pressure detection function that is highly accurate even in response to dynamic changes.
本発明は、健康情報検出装置の作動方法及び健康情報検出装置に関し、本発明の上記目的は、生体情報検出部を備え、被験者のリストに装着可能な生体情報検出装置本体と、解析処理部と、を具備し、前記生体情報検出装置本体の前部若しくは後部には、心電信号を得るための鉤状の第1電極が設けられ、前記第1電極は、前記生体情報検出装置本体をリストに装着した時に、被験者の皮膚に接するか若しくは押圧する構造となっており、前記生体情報検出装置本体の上側表面にも他方の手を当てて心電信号を得るための突出した少なくとも2個以上の第2電極が設けられる健康情報検出装置の作動方法であって、前記解析処理部は、前記生体情報検出装置本体からの心電信号データ及び脈拍データを処理して、予め定めた表に対応した、糖尿病リスクの表示とストレス状況の表示とを行うと共に、血圧計で測定された血圧データを基に血圧値を演算して表示する、ことにより達成される。 The present invention relates to a method of operating a health information detection device and a health information detection device. , a hook-shaped first electrode for obtaining an electrocardiogram signal is provided at the front or rear of the biological information detection device main body, and the first electrode At least two or more protruding parts that are structured to touch or press against the subject's skin when worn on the body, and to obtain electrocardiographic signals by placing the other hand on the upper surface of the body of the biological information detection device. A method of operating a health information detection device provided with a second electrode, wherein the analysis processing unit processes electrocardiographic signal data and pulse data from the body of the biological information detection device to correspond to a predetermined table. This is achieved by displaying the diabetes risk and stress status, as well as calculating and displaying the blood pressure value based on blood pressure data measured with a blood pressure monitor.
本発明に係る健康情報検出方法及び装置によれば、小型の生体情報検出装置を腕部(リスト)に簡単に被験者に装着可能であり、生体情報検出装置で検出した心電信号及び脈拍のデータ処理と解析を行い、健康問題にとって重要な糖尿病,ストレス及び血圧に対して、糖尿病のリスクの提示、ストレス状況のスクリーニング、血圧の動的変化に対しても精度の高い血圧値を提供できる。 According to the health information detection method and device according to the present invention, a small biological information detection device can be easily attached to the arm (wrist) of a subject, and electrocardiographic signals and pulse rate data detected by the biological information detection device can be easily attached to the subject. Through processing and analysis, it can provide highly accurate blood pressure values for diabetes, stress, and blood pressure, which are important health issues, as well as presenting the risk of diabetes, screening for stress situations, and dynamic changes in blood pressure.
生体情報の検出は心電信号及び脈拍の2つであり、生体情報検出のためのセンサが少なくて済み、しかも健康に重要な糖尿病、ストレス及び血圧に対する情報を同時に提供できる。血圧に関しては従来の血圧計(血圧測定装置)の血圧データを(オンライン若しくはオフラインで)用いて演算処理し、より正確な血圧値を提供できる。 Detection of biological information consists of two types: electrocardiogram signals and pulse rates, so fewer sensors are required for detecting biological information, and information on diabetes, stress, and blood pressure, which are important for health, can be provided at the same time. Regarding blood pressure, blood pressure data from a conventional sphygmomanometer (blood pressure measurement device) is used for calculation processing (online or offline), and more accurate blood pressure values can be provided.
糖尿病は、血液中のブドウ糖濃度(血糖、血糖値)が高い状態を指す病名である。糖尿病を放置すると、糖尿病神経障害、糖尿病網膜症、糖尿病腎症といった種々の合併症を引き起こし、手足のしびれや失明、白内障、腎機能の低下等、重篤な症状に繋がる恐れがある。そのため、糖尿病の検出や治療を行うシステムの重要性は非常に高く、例えば糖尿病の検出(判定)を行うものとして、特開2006-87603号公報等の手法が開示されている。また、糖尿病の治療手法は、病因や進行度に応じて異なるものであるが、食事療法、運動療法及び薬事療法が知られており、特に初期段階では食事療法と運動療法が重要となる。かかる状況から、被験者に対する糖尿病リスクの提示は、健康にとって非常に重要な要素である。 Diabetes is a disease name that refers to a state in which the concentration of glucose in the blood (blood sugar, blood sugar level) is high. If diabetes is left untreated, it can lead to various complications such as diabetic neuropathy, diabetic retinopathy, and diabetic nephropathy, which can lead to serious symptoms such as numbness in the hands and feet, blindness, cataracts, and decreased kidney function. Therefore, a system for detecting and treating diabetes is extremely important, and for example, a method for detecting (determining) diabetes has been disclosed in Japanese Patent Application Laid-Open No. 2006-87603. Treatment methods for diabetes vary depending on the cause and degree of progression, but diet therapy, exercise therapy, and pharmaceutical therapy are known, and diet therapy and exercise therapy are particularly important in the early stages. Under these circumstances, presenting the risk of diabetes to subjects is a very important element for health.
また、ストレスが命を奪いかねない脅威となっている報告もあり、人を死に至らしめることがあるストレスは「キラーストレス」と称されている。キラーストレスによって身体が過剰に反応し、脳細胞や血管が破壊されて死亡する可能性が高い病気を患ってしまう。ストレスはネガティブなことだけとは限らず、ポジティブな人が、個人的成功や長期休暇、レクリエーションの増加もストレスになり得ることが知られている。急性心筋梗塞や脳卒中も、ストレスが原因の1つになっているとする報告例もあり、過剰なストレスはホルモンバランスの崩れや過食症を引き起こし、結果的に肥満や糖尿病、高血圧へと発展する可能性があり、未然に防止するためのスクリーニングが重要となっている。 In addition, there are reports that stress poses a threat that can take away people's lives, and stress that can lead to death is called "killer stress." Killer stress causes the body to overreact, causing brain cells and blood vessels to be destroyed, resulting in a disease with a high possibility of death. Stress is not limited to negative things; it is known that for positive people, personal success, long vacations, and increased recreation can also be stressful. There are also reports that stress is one of the causes of acute myocardial infarction and stroke, and excessive stress causes hormonal imbalance and bulimia, which eventually leads to obesity, diabetes, and high blood pressure. There is a possibility of this happening, so screening to prevent it from happening is important.
更に、血圧値が人の健康にとって極めて重要な要素であることは周知の事実であり、如何に正確に血圧を測定できるかが問題となっている。 Furthermore, it is a well-known fact that blood pressure values are extremely important factors for human health, and how accurately blood pressure can be measured has become a problem.
本発明は、生体情報としての脈拍データ及び心電信号データに基づき、上述した糖尿病リスクの提示機能及びストレス・スクリーニング機能を提案すると共に、従来の血圧計乃至は血圧測定装置の血圧データ(オンライン若しくはオフライン)を用いて、回帰処理等の演算処理により、より正確な血圧値の測定を提案するものである。血圧に関しては、特に動的変化に対して検出精度を高めている。 The present invention proposes the above-mentioned diabetes risk presentation function and stress screening function based on pulse data and electrocardiographic signal data as biological information, and also proposes the blood pressure data of conventional blood pressure monitors or blood pressure measuring devices (online or It proposes more accurate measurement of blood pressure values through arithmetic processing such as regression processing using offline methods. Regarding blood pressure, the detection accuracy is particularly high for dynamic changes.
図1は、本発明に用いる生体情報検出装置本体100の外観構成と,生体情報検出装置本体100を載置台200の充電箇所201に載置して内臓バッテリを充電する様子を示しており、生体情報検出装置本体100は図2に示すように、長形状のバンド101A及び101Bをマジックテープ(登録商標)102で係止して、被験者の腕部(リスト)に装着されて利用される。図2では、左手のリストに生体情報検出装置本体100を装着した様子を示しているが、右手のリストに装着するようにしても良い。
FIG. 1 shows the external configuration of a biological information detection device
図2の利用形態では、生体情報検出装置本体100から検出された生体情報が無線送信される場合を示しており、図2(A)のシステムは、生体情報検出装置本体100から生体情報が送信され、解析処理部300が直接生体情報を受信して、パソコン等で成る解析処理部300がデータ処理して解析した健康情報を出力するようになっている。また、図2(B)のシステムでは、生体情報検出装置本体100からの生体情報がネットワーク1を経て解析処理部300に入力されている。ネットワーク1は、移動通信網、インターネット等の公衆網、或いは固定電話網等を含むことができ、WAN(Wide Area Network)やLAN(Local Area Network)などにより実現することができ、有線・無線を問わない。また、図2(C)のシステムは、端末装置2を経てネットワーク1に接続され、ネットワーク1に解析処理部300が接続された例を示している。
The usage mode in FIG. 2 shows a case where biometric information detected from the biometric information detection device
いずれの場合も、従来公知の血圧計(例えば市販されている電子式血圧測定装置)で測定された血圧データも、オンライン若しくはオフラインで解析処理部300に入力される。オンラインの場合には、測定された血圧値をディジタル信号で、そのまま有線若しくは無線で入力し、オフラインの場合には、その測定された血圧値を被験者」やオペレータ等が手入力する。また、図2では、生体情報検出装置本体100から生体情報が無線で出力される例を示しているが、有線や光通信でも良い。血圧計からの血圧データについても同様である。
In either case, blood pressure data measured with a conventionally known blood pressure monitor (for example, a commercially available electronic blood pressure measuring device) is also input to the
生体情報検出装置本体100は、後述するようなメモリ等の電子素子やバッテリを内蔵しており、生体情報検出装置本体100を載置台200の充電箇所201に載置することにより、内臓バッテリ(130)が充電される。充電は、金属接点やコネクタ等を介さずに実施できる非接触充電方式で実施される。また、生体情報検出装置本体100は、充電時にメモリに蓄積された生体情報を読み出して外部に出力する手段(ACAT(Automatic Charge And Transmission))を備えている。
The biological information detection device
生体情報検出装置本体100は外観が平板で矩形状の筐体であり、両サイドに、被験者のリストに巻回して装着するための革、布、ゴム等で成るバンド101A及び101Bを備えており、バンド101A及び101Bの各表面には、リスト寸法に合わせてリストに密着させて装着するためのマジックテープ(登録商標)102A及び102Bが層設されている。また、生体情報検出装置本体100の前部(若しくは後部)には、心電信号を得るための鉤状の第1電極110が設けられると共に、上側表面にも他方の手を当てて心電信号を得るための突出した第2電極111及び112が設けられている。生体情報検出装置本体100の上面には、検出と同時に情報を出力する同時送信モードと、検出した情報を一旦メモリに記憶した後に出力する記憶送信モードとを切り換えるためのモード切換スイッチ113が設けられている。
The biological information detection device
なお、第1電極110は、生体情報検出装置本体100をリストに装着した時に、被験者の皮膚に接するか若しくは押圧する構造となっている。また、生体情報検出装置本体100の上面に2個の111及び112の電極を設けた例を示しているが、電極110と合わせて少なくとも2個以上であれば、任意の数の電極とすることができる。
Note that the
図3を参照して、生体情報検出装置本体100及び載置台200の構成例を説明する。
With reference to FIG. 3, a configuration example of the biological information detection device
生体情報検出装置本体100は生体情報検出部120を有しており、生体情報検出部120は脈拍センサ121及び心電信号センサ122で構成されている。脈拍センサ121は被検者の脈拍を測定し、所定時間間隔で脈拍データHRを出力し、心電信号センサ122は3個の電極110~112により被験者の心電信号ECを所定時間間隔で出力する。本例では、心電信号センサ122は3つの電極を有しており、被検者の心電信号を検出するために、それぞれの電極を被検者の身体(本例では、左腕リストに1ヶ所、右手に2ヶ所)に接触させて電位(電位信号)を測定し、測定された3つの電位差を所定時間間隔で心電信号データECとして出力する。測定される電位信号は微弱であり、心電信号センサ122内部の増幅器等で増幅されるので、ノイズの影響を受け易い。よって、ノイズの影響を低減しS/N比を向上させるために、電極や増幅器等は近接して配置される。
The biological information detection device
生体情報検出部120から出力される脈拍データHR及び心電信号データECは制御部140に入力され、制御部140は、入力された脈拍データHR及び心電信号データECを、データ毎に予め設定されたメモリ141内の領域にそれぞれ格納する。なお、脈拍データHR及び心電信号データECのメモリ141への格納方法は、データ毎に予め設定された領域に格納する方法に限られるのではなく、領域を設定せず、各データを区別する識別子を脈拍データHR及び心電信号データECにそれぞれ付加し、その識別子と共にメモリ141に格納する方法等でも良い。
The pulse data HR and electrocardiographic signal data EC output from the biological
また、生体情報検出装置本体100には、各素子に電力を供給するバッテリ130が内臓されており、バッテリ130は充電入力部131を介して充電される。充電入力部131による充電開始時には充電開始信号CSが出力され、充電開始信号CSは制御部140に入力される。
Further, the biological information detection device
本例では、生体情報検出装置本体100を載置台200に載置してバッテリ130を充電する例を示しているが、バッテリ130に接続された充電用端子を設け、パソコンのUSB端子に充電用端子を挿入してバッテリ130を接触式に充電するようにしても良い。
In this example, the biological information
モード切換スイッチ113により同時送信モードが設定されている場合には、制御部140は検出された生体情報RSAをメモリ141に記憶することなく送信部142に送信し、送信部142は生体情報RSを外部に出力する。モード切換スイッチ113により記憶送信モードが設定されている場合には、生体情報RSAを一旦メモリ141に記憶し、その後随時情報を読み出して送信部142に送信し、送信部142は生体情報RSを外部に出力する。この場合、検出された生体情報RSAをメモリ141に記憶すると同時に外部に無線送信することも、メモリ141に記憶するだけということもできる。送信部142は、入力された生体情報RSAを外部の解析処理部300が受信可能な形式に変換し、生体情報RSとして無線送信する。無線送信の方式として、ワイファイ(Wi-Fi)方式やブルートゥース(Blue tooth(登録商標))方式等を使用する。
When the simultaneous transmission mode is set by the
解析処理部300はパソコン等で構築され、受信した生体情報RS及び血圧計400からの血圧データBSを基に、被験者の健康状態や身体の異常等を解析する。これに関しては詳細に後述する。
The
載置台200には、生体情報検出装置本体100のバッテリ130を充電するための充電出力部202が設けられており、載置台200に生体情報検出装置本体100を載置した時に、生体情報検出装置本体100の充電入力部131と、載置台200の充電出力部202とが丁度対向するように配置され、バッテリ130を非接触で充電することができる。即ち、生体情報検出装置本体100を載置台200に載置し、充電入力部131と充電出力部202を近接させると、生体情報検出装置本体100が必要とする電力が電磁誘導を利用した方式(電磁誘導方式)により供給される。充電入力部131と充電出力部202はそれぞれコイルを有しており、充電出力部202のコイルに電流が流れると磁束が発生し、その磁束に誘導されて、充電入力部131のコイルに電流が流れ、充電が行われる。非接触充電方式として、電磁誘導方式ではなく、共鳴方式等を使用しても良い。また、充電される電源としては、ニッケルカドミウム電池、リチウムイオン電池等の二次電池やスーパーキャパシタ(電気二重層コンデンサ)等を使用する。
The mounting table 200 is provided with a charging
また、載置台200には、生体情報検出装置本体100内の送信部142から無線送信される生体情報RSを受信する通信部203が設けられており、生体情報検出装置本体100のバッテリ130を充電している時に、メモリ141に記憶された生体情報RSAを送信部142が無線送信し、その生体情報RSAを通信部203が受信し、受信された生体情報RSBは通信部203より外部に出力される。これにより、生体情報を検出する環境や条件に合わせた生体情報の取得が可能となり、生体情報検出装置本体100の充電とメモリ141に蓄積された生体情報の取得を同時に行うことができる。
Further, the mounting table 200 is provided with a
図4は解析処理部300の構成例を示しており、脈拍データHR及び心電信号データECを含む生体情報RSは入力部310に入力され、入力部310を経てピーク検出部311に入力される。ピーク検出部311において脈拍データHR及び心電信号データECの各ピークが検出され、検出されたピーク信号PSはピーク間隔検出部312及び血圧演算部340に入力される。ピーク間隔検出部312はピーク信号PSに基づいて各データのピーク間隔RPIを検出し、ピーク間隔RPIを示すピーク間隔信号IPSは糖尿病リスク判定部320、ストレス・スクリーニング部330及び血圧演算部340に入力されて演算処理される。また、血圧計400からの血圧データBSは、血圧演算部340にオンライン若しくはオフラインで入力される。そして、糖尿病リスク判定部320からの判定信号DJ1、ストレス・スクリーニング部330からの判定信号DJ2及び血圧演算部340からの判定信号DJ3は出力部350を経て、被験者の健康情報DJとして出力される。
FIG. 4 shows a configuration example of the
図5は心電信号センサ122の構成例を示しており、3個の電極110~112と電位差算出部122Aとで構成されている。3個の電極110~112は被検者の身体に接触若しくは押圧されて、その接触部分の電位を測定し、電位データe1、e2、e3をそれぞれ出力する。電極110が左手のリストに接触若しくは押圧されるとすれば、電極111及び112は右手の近接した2点に接触若しくは押圧されることになる。各電位データe1、e2及びe3は電位差算出部122Aに入力され、電位差算出部122Aは下記数1又は数2に従って電位差を算出し、所定間隔で心電信号データECを出力する。
(数1)
EC={(e1-e2)+(e1-e3)}/2
(数2)
EC=e1-(e2+e3)/2
このような構成において、生体情報検出装置本体100を図2に示すように、被験者の例えば左腕のリストにバンド101A及び101Bにより巻回して装着すると共に、右手を生体情報検出装置本体100の上に添える。生体情報検出装置本体100を右手に装着した場合には、左手を生体情報検出装置本体100の上に載置して添えることになる。これにより、生体情報検出装置本体100は、脈拍センサ121から脈拍データHRを取得すると共に、心電信号センサ122から心電信号データECを取得する。脈拍データHR及び心電信号データECは制御部140に入力され、送信部142を経て解析処理部300の入力部310に送信されると共に、メモリ141に記憶される。情報の送信は、モード切換スイッチ113のモードに従って行われる。
FIG. 5 shows an example of the configuration of the
(Number 1)
EC={(e1-e2)+(e1-e3)}/2
(Number 2)
EC=e1-(e2+e3)/2
In such a configuration, as shown in FIG. 2, the biological information detection device
入力部310からの生体情報RSCはピーク検出部311に入力され、図6に示されるように、脈拍データHRのピークR11,R12,・・・R1n及び心電信号データECのピークR21,R22,・・・R2nが検出され、各ピークを示すピーク信号PSがピーク間隔検出部312及び血圧演算部340に入力され、図7に示すように各ピークのピーク間隔RRI1、RRI2,RRI3,・・・が検出され、ピーク間隔信号IPSとして糖尿病リスク提示部320、ストレス・スクリーニング部330及び血圧演算部340に入力される。
The biological information RSC from the
心電信号データECと脈拍データHR入力は相関関係があり(脈拍データHRは心電信号データECから遅れを持っている)、図7(A)及び(B)は脈拍データHRの波形例を示しているが、心電信号データECも同様なことが言える。ピーク検出部311は脈拍データHRのピークR11,R12,R13,R14を検出し、このピーク信号PSはピーク間隔検出部312に入力される。ピーク間隔検出部312はピークの間隔、つまりピークR11とピークR12の間隔RRI1、ピークR12とピークR13のピーク間隔RRI2、ピークR13とピークR14の間隔RRI3(以下同様)を順次検出し、これらピーク間隔RRI1、・・・を示すピーク間隔信号IPSが糖尿病リスク提示部320、ストレス・スクリーニング部330及び血圧演算部340に入力される。
There is a correlation between the electrocardiogram signal data EC and the pulse data HR input (the pulse data HR has a delay from the electrocardiogram signal data EC), and FIGS. 7(A) and (B) show waveform examples of the pulse data HR. However, the same can be said of the electrocardiographic signal data EC. The
心電検査時に、呼吸による脈拍数(心拍数)の変動の程度(図7のピーク間隔RRI1~RRI3)を測定することで、自律神経障害の評価を行うことができる。即ち、心臓副交感神経機能は呼気時に作用し、吸気時に変化しないので、脈拍数の変化率(RRI:RR Interval)を測定することで、自律神経障害の評価を行うことができる。図8は、自律神経活動度(CVRR)と交感神経の関係を示す特性図であり、自律神経のストレス度を判定することができる。 Autonomic nerve disorder can be evaluated by measuring the degree of variation in pulse rate (heart rate) due to breathing (peak intervals RRI1 to RRI3 in FIG. 7) during electrocardiography. That is, since the cardiac parasympathetic nerve function acts during expiration and does not change during inspiration, autonomic nerve disorder can be evaluated by measuring the rate of change in pulse rate (RRI: RR Interval). FIG. 8 is a characteristic diagram showing the relationship between the autonomic nerve activity level (CVRR) and the sympathetic nerves, and the stress level of the autonomic nerves can be determined.
そこで、糖尿病リスク判定部320は、心電信号データEC若しくは脈拍データHRのピーク信号PS及びピーク間隔信号IPSに基づいてピーク間隔の変化率RRIVを求め、変化率RRIVからCVRR(Coefficient of Variation of RR Interval)と称される自律神経の活動度を正規化した係数を演算し、その係数CVRRから糖尿病のリスク提示を行う(CVRRの算出は、数3を参照)。図7の波形図において、正常な被験者は図7(A)に示すようにピーク間隔RRI1~RRI3はバラツクが、異常な被験者は図7(B)に示すようにピーク間隔RRI1~RRI3がほぼ均一でバラツキがない。また、東大医学部附属病院検査部の糖尿病教室の発表によると、係数CVRRの平均値と糖尿病との間には下記表1のような関係がある。即ち、30~59歳では、健常者の値は「3.5%」と高く、糖尿病患者では「2.2%」以下と低くなっており、60歳以上でも、健常者の値は「2.8%」と高く、糖尿病患者では「1.7%」以下と低くなっている。
Therefore, the diabetes
係数CVRRの演算方法は公知であるが、ピーク間隔の分散値をσとし、ピーク間隔の平均値をMとすると、下記数3で表わされる。
The calculation method for the coefficient CVRR is well known, and it is expressed by the
上記数3で演算される係数CVRRを表1若しくは図9のデータと比較し、糖尿病リスク判定部320は、糖尿病のリスクを指示する判定信号DJ1を出力する。糖尿病のリスクとしているのは、本発明装置が医療機器ではなく、ヘルス機器としての健康情報検出装置であることと、「逆は真ならず」であり、本装置で演算された数値であっても、中には自律神経統合失調症やうつ病の可能性があるからである。しかし、糖尿病と診断された人々の係数CVRRは、表1の数値に殆どが入ることが分かっている。
The coefficient CVRR calculated using
ストレス・スクリーニング部330は、心電信号データEC若しくは脈拍データHRのピーク信号PS及びピーク間隔信号IPSに基づいてピーク間隔の変化率を求め、変化率から係数CVRRを演算し、その係数CVRRから自律神経のストレスのスクリーニングを行う。即ち、上述した糖尿病の場合と同様に、心電信号データEC若しくは脈拍データHRのピーク信号PS及びピーク間隔信号IPSに基づいてピーク間隔の変化率RRIVを求め、変化率RRIVからCVRRと称される自律神経の活動度を正規化した係数CVRRを演算する。この係数CVRRが5%以上ではストレスは感じられず、健康的に良好であり、4~5%においても正常と判断される。しかし、係数CVRRが4%未満になると、何らかのストレス症状が現われる。従って、ストレス・スクリーニング部330は、下記表2に従ってスクリーニングの判定信号DJ2を出力する。係数CVRRに対するストレスは、詳細には図10に示されるようになっているので、図10に従って判定信号DJ2を出力しても良い。
The
(数4)
Tpn=R1n-R2n
数4で求められたパルス遷移時間Tpnを用いて、収縮期血圧(最高血圧)BPS及び拡張期血圧(最低血圧)BPDを下記数5と回帰式で表記する。近似は最小自乗法により判定するが直線ではなく、事前に指定した関数の回帰式を求める場合もある(回帰方程式)。
(Number 4)
Tpn=R1n-R2n
Using the pulse transition time Tpn obtained by Equation 4, the systolic blood pressure (systolic blood pressure) BPS and diastolic blood pressure (diastolic blood pressure) BPD are expressed using Equation 5 below and a regression equation. Approximation is determined by the method of least squares, but instead of a straight line, a regression equation of a prespecified function may be found (regression equation).
仮に上記回帰式が1本では相関が低い時、例えば図11に示すように年齢等の条件によりデータDTに差異が出るときは、更に年齢に応じた回帰式を追加し、A及びBの2本の回帰式とする。例えば20歳以下と20歳以上を別々の回帰式(図11では、Aが20歳以下,Bが20歳以上)で演算する。 If the correlation is low with only one regression equation above, for example, if there are differences in the data DT due to conditions such as age, as shown in Figure 11, then add a regression equation according to age and use the two regression equations A and B. Let's use the book's regression equation. For example, separate regression equations are calculated for those under 20 years old and those over 20 years old (in FIG. 11, A is under 20 years old and B is over 20 years old).
更に急激な運動後の血圧上昇に関しては、脈拍数に応じた補正値を導入する。先ず図12に示すように、脈拍数HRの平均値HRmを求め、次いで運動等により急激に上昇した脈拍数HRh(t)を求め、下記数6の補正値を演算する。ただし、γは実数値から決定する。 Furthermore, regarding the rapid increase in blood pressure after exercise, a correction value is introduced according to the pulse rate. First, as shown in FIG. 12, the average value HRm of the pulse rate HR is determined, then the pulse rate HRh(t) which has suddenly increased due to exercise or the like is determined, and the correction value shown in Equation 6 below is calculated. However, γ is determined from a real value.
更に、上述では生体情報検出装置本体100に3個(側面に1個、上面に2個)の電極110~112を設け、左右の手を使用して測定するようにしているが、図13に示すように生体情報検出装置本体100の底面に2個の電極110A及び110Bを設けて底面から突出させ、生体情報検出装置本体100を腕部に装着したときに、2個の電極110A及び110Bが皮膚に押圧若しくは密着する構造であっても良い。電極が2つあれば,例えば“e1-e2”の検出により心電信号データECを得ることができる。
Furthermore, in the above description, three
100 生体情報検出装置本体
101A,101B バンド
110、111、112 電極
113 モード切換スイッチ
120 生体情報検出部
121 脈拍センサ
122 心電信号センサ
130 バッテリ
140 制御部
200 載置台
201 充電箇所
202 充電出力部
203 通信部
300 解析処理部
310 入力部
311 ピーク検出部
312 ピーク間隔検出部
320 糖尿病リスク判定部
330 ストレス・スクリーニング部
340 血圧演算部
400 血圧計(血圧測定装置)
Claims (12)
生体情報検出装置を被験者の片方のリストに装着し、一つの検出点とし、前記生体情報検出装置本体の前部、若しくは後部には、心電信号の流れを感知し得るための鈎状の第1電極が設けられ、前記第1電極は、前記生体情報検出装置本体をリストに装着した時に、被験者の片方の検出点の片方の検出点皮膚に自動的に接するか押圧する構造となっており、
前記生体情報検出装置の上側表面にも、被験者のもう片方の手を当てて心電信号の流れを形成し、電位を検出する人の第二の検出点として、突出した少なくとも2個以上の第2電極が、検出の確実性を増すために設けられ、
前記生体情報検出装置から発信した心電信号データ、および搭載された脈拍計から脈拍データを受信し、前記受信した心電データ及び脈拍データのピーク時間を検出し、両者のピーク間隔時間(Tpn)を計算し、前記ピーク間隔時間(Tpn)に基づいて、血圧値を計算して表示し、
前記心電信号データ、若しくは前記脈拍データのピーク間隔(RRI)の変化(ΔRRI)を用いて、自律神経活動度係数(CVRR)を計算し、前記CVRRの数値から判断される糖尿病リスクとストレス状況を求め、表示することを特徴とする健康情報検出装置の作動方法。 In order to measure the electrocardiogram by measuring the potential difference between two points on the human body, it has two potential detection points.
The biological information detection device is attached to one wrist of the subject, serving as one detection point, and a hook-shaped groove is installed at the front or rear of the body of the biological information detection device to sense the flow of electrocardiographic signals. One electrode is provided, and the first electrode is structured to automatically contact or press the skin of one detection point of the subject when the body of the biological information detection device is attached to the wrist. ,
At least two or more protruding points are also placed on the upper surface of the biological information detection device as second detection points for the person who applies the subject's other hand to form an electrocardiographic signal flow and detect the potential. two electrodes are provided to increase the reliability of detection;
The electrocardiogram signal data transmitted from the biological information detection device and the pulse data from the on-board pulse meter are received, the peak time of the received electrocardiogram data and pulse data is detected, and the peak interval time (Tpn) between the two is detected. and calculate and display a blood pressure value based on the peak interval time (Tpn),
The autonomic nerve activity coefficient (CVRR) is calculated using the electrocardiogram signal data or the change in peak interval (RRI) (ΔRRI) of the pulse data, and the diabetes risk and stress situation are determined from the CVRR value. 1. A method of operating a health information detection device characterized by determining and displaying.
(式1)
EC=e1-(e2+e3)/2 The second electrode has two electrodes, and the electrocardiographic signal data EC is expressed as follows (where e1 is the measured potential of the first electrode and (e2, e3) are the measured potentials of the second electrode). 2. The method of operating a health information detection device according to claim 1, using equation 1).
(Formula 1)
EC=e1-(e2+e3)/2
解析処理部の血圧演算部に、脈拍計からの脈波のピーク時間(TPP)と心電計からの心拍波形のピーク時間(TPE)を入力し、両者の差としてのパルス遷移時間Tpn(=Tpp-Tpe)を求め、前記パルス遷移時間Tpnを用いて、最高血圧BPS、及び最低血圧BPDを下記(式2)で計算し、
(式2)
前記(式2)の(αs、βs)と(αd、βd)は既存の信頼出来る血圧計を用いて、ランダムに抽出した被験者から、被験者の血圧を一定時間において、数回採取し、測定した血圧データBSを用いて、最小二乗法でフィッティングして決定し、
その後、BPS並びに、BPDを前記パルス遷移時間、Tpnの平均分散とフィッティング係数を計算し、それを前記(式2)の式で求めた血圧値と比較し、その妥当性を最小二乗法でチェックする、請求項1または2に記載の健康情報検出装置の作動方法。 The blood pressure value is
Input the pulse wave peak time (TPP) from the pulsometer and the heartbeat waveform peak time (TPE) from the electrocardiograph into the blood pressure calculation section of the analysis processing section, and calculate the pulse transition time Tpn (= Tpp-Tpe), and using the pulse transition time Tpn, calculate the systolic blood pressure BPS and diastolic blood pressure BPD using the following (Equation 2),
(Formula 2)
(αs, βs) and (αd, βd) in the above (Equation 2) are obtained by measuring the blood pressure of randomly selected subjects several times over a certain period of time using an existing reliable blood pressure monitor. Determine by fitting using the least squares method using blood pressure data BS,
Then, calculate BPS and BPD, the pulse transition time, the average variance of Tpn, and the fitting coefficient, compare them with the blood pressure value obtained using the formula (Equation 2), and check the validity using the least squares method. 3. The method of operating the health information detection device according to claim 1 or 2.
(式3)
次いで、前記補正係数γを静止時の血圧に乗算して、運動時の血圧を算出する、請求頃1~3のいずれか1頃に記載の健康情報検出装置の作動方法。 Blood pressure during exercise increases compared to when at rest, but this is corrected using the following (Equation 3), and a correction coefficient is calculated based on the average value HRm of heart rate HR and heart rate HRh (t) during exercise. Calculate γ(t) using the formula (Equation 3) below, and
(Formula 3)
The method for operating a health information detection device according to any one of claims 1 to 3, wherein the blood pressure during exercise is calculated by multiplying the resting blood pressure by the correction coefficient γ.
前記被験者の片方のリストに装着された前記生体情報検出装置本体に、前記被験者が他方の手を接触若しくは押圧させることにより、前記心電信号データ及び前記脈拍データを取得する請求項1乃至4のいずれか1項に記載の健康情報検出装置の作動方法。 The biological information detection device includes:
5. The electrocardiographic signal data and the pulse rate data are acquired by the subject touching or pressing the other hand of the biological information detection device body attached to one of the wrists of the subject. A method for operating the health information detection device according to any one of the items.
(式1)
EC=e1-(e2+e3)/2 The second electrode has two electrodes, and the electrocardiographic signal data EC is expressed as follows (where e1 is the measured potential of the first electrode and (e2, e3) are the measured potentials of the second electrode). The health information detection device according to claim 7, which uses equation 1).
(Formula 1)
EC=e1-(e2+e3)/2
前記解析処理部の血圧演算部に、ピーク検出部からの脈波のピーク信号PS(時間Tpp)を入力すると共に、前記心電信号データECのピークから前記心拍データHRのピークの時間(Tpe)迄のパルス遷移時間Tpn(=Tpp-Tpe)を求め、前記パルス遷移時間Tpnを用いて、最高血圧BPS及び最低血圧BPDを下記(式2)と回帰式で表記し、
(式2)
前記(式2)内の(αs、βs)と(αd、βd)を既存の血圧計を用いて、ランダムに抽出した被験者から被験者の血圧を一定時間において数回採取し測定した前記血圧データBSを用いて、最小二乗法でフィッティング後、最高血圧BPS及び最低血圧BPD、パルス遷移時間Tpnの平均分散とフィッティング係数を計算し、それに前記回帰式で求めた血圧値とを比較し、その妥当性を最小二乗法でチェックする、請求項7又は8に記載の健康情報検出装置。 The potential is
The pulse wave peak signal PS (time Tpp) from the peak detection unit is input to the blood pressure calculation unit of the analysis processing unit, and the time (Tpe) from the peak of the electrocardiogram signal data EC to the peak of the heart rate data HR is input. Find the pulse transition time Tpn (=Tpp-Tpe), and use the pulse transition time Tpn to express the systolic blood pressure BPS and diastolic blood pressure BPD in the following (Equation 2) and regression equation,
(Formula 2)
(α s , β s ) and (α d , β d ) in the above (Equation 2) were measured using an existing sphygmomanometer to collect blood pressure from randomly selected subjects several times over a certain period of time. After fitting using the least squares method using the blood pressure data BS, calculate the average variance and fitting coefficient of the systolic blood pressure BPS, diastolic blood pressure BPD, pulse transition time Tpn, and compare them with the blood pressure value obtained by the regression equation. , the health information detection device according to claim 7 or 8, wherein the validity thereof is checked by a least squares method.
(式3)
前記補正値を静止時の血圧に乗算して、変動時の血圧を算出する、請求項9に記載の健康情報検出装置。 Regarding the increase in blood pressure after exercise, a correction coefficient γ is calculated using the following formula (Equation 3) based on the average value HRm of heart rate HR and heart rate HRh(t) during exercise, and
(Formula 3)
The health information detection device according to claim 9, wherein the blood pressure at rest is multiplied by the correction value to calculate the blood pressure at the time of fluctuation.
The health information detection device according to claim 11, wherein the transmission and reception is performed via a terminal device and a network.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023203818A JP2024032019A (en) | 2019-11-29 | 2023-12-01 | Operation method of health information detection device and health information detection device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019216477A JP7402495B2 (en) | 2019-11-29 | 2019-11-29 | Operating method of health information detection device and health information detection device |
JP2023203818A JP2024032019A (en) | 2019-11-29 | 2023-12-01 | Operation method of health information detection device and health information detection device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019216477A Division JP7402495B2 (en) | 2019-11-29 | 2019-11-29 | Operating method of health information detection device and health information detection device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024032019A true JP2024032019A (en) | 2024-03-08 |
Family
ID=76086049
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019216477A Active JP7402495B2 (en) | 2019-11-29 | 2019-11-29 | Operating method of health information detection device and health information detection device |
JP2023203818A Pending JP2024032019A (en) | 2019-11-29 | 2023-12-01 | Operation method of health information detection device and health information detection device |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019216477A Active JP7402495B2 (en) | 2019-11-29 | 2019-11-29 | Operating method of health information detection device and health information detection device |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP7402495B2 (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3785529B2 (en) | 2000-12-06 | 2006-06-14 | カシオ計算機株式会社 | Blood pressure measurement system and blood pressure value calculation device |
JP3643561B2 (en) | 2002-02-08 | 2005-04-27 | コーリンメディカルテクノロジー株式会社 | Lower limb upper limb blood pressure index measuring device |
JPWO2014184868A1 (en) | 2013-05-14 | 2017-02-23 | 株式会社東芝 | Electronic device and biological signal measuring method |
JP2016154754A (en) | 2015-02-25 | 2016-09-01 | セイコーエプソン株式会社 | Biological information measurement device |
US10772569B2 (en) | 2015-11-20 | 2020-09-15 | Tata Consultancy Services Limited | Device and method to detect diabetes in a person using pulse palpation signal |
JP6649060B2 (en) | 2015-11-30 | 2020-02-19 | 株式会社人間と科学の研究所 | Mental and physical condition diagnosis support device and biological information management system |
JP7049895B2 (en) | 2018-04-05 | 2022-04-07 | オムロンヘルスケア株式会社 | Blood pressure measuring device |
-
2019
- 2019-11-29 JP JP2019216477A patent/JP7402495B2/en active Active
-
2023
- 2023-12-01 JP JP2023203818A patent/JP2024032019A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
JP2021083917A (en) | 2021-06-03 |
JP7402495B2 (en) | 2023-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4243605B2 (en) | Autonomic nerve inspection device | |
US9655532B2 (en) | Wearable physiological monitoring and notification system based on real-time heart rate variability analysis | |
US8700137B2 (en) | Cardiac performance monitoring system for use with mobile communications devices | |
KR100927643B1 (en) | Unrestrained sleep state determination device | |
JP4754447B2 (en) | Biological analysis apparatus and program | |
JP5327458B2 (en) | Mental stress evaluation, device using it and its program | |
CN111818850B (en) | Pressure evaluation device, pressure evaluation method, and storage medium | |
US20170215782A1 (en) | Method for determining a depression state and depression state determination device | |
JP6579890B2 (en) | Fatigue meter | |
Seeberg et al. | A novel method for continuous, noninvasive, cuff-less measurement of blood pressure: evaluation in patients with nonalcoholic fatty liver disease | |
EP3533389A1 (en) | Methods and systems for measuring a stress indicator, and for determining a level of stress in an individual | |
US20200113454A1 (en) | Vibration sensing device | |
JP2017063966A (en) | Fatigue degree meter | |
RU2442531C2 (en) | Means of remote humain state monitoring | |
US20200359909A1 (en) | Monitoring device including vital signals to identify an infection and/or candidates for autonomic neuromodulation therapy | |
US20180055373A1 (en) | Monitoring device to identify candidates for autonomic neuromodulation therapy | |
JP2014061079A (en) | Autonomic nervous function evaluation apparatus and program | |
US20030097075A1 (en) | Automated and remote controlled method and system for assessing function of autonomic nervous system | |
JP5592323B2 (en) | Autonomic nerve function diagnosis apparatus and program | |
EP3417771A1 (en) | A method for monitoring blood pressure, and a device thereof | |
WO2019230235A1 (en) | Stress evaluation device, stress evaluation method, and program | |
Arulvallal et al. | Design and development of wearable device for continuous monitoring of sleep apnea disorder | |
JP7402495B2 (en) | Operating method of health information detection device and health information detection device | |
Cosoli et al. | Indirect estimation of breathing rate through wearable devices | |
TW201442685A (en) | Household emotional analyzer for measuring physiological signals and method using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20231201 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231206 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240821 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240828 |