JP2024031860A - Rod-shaped composite body made of fiber-reinforced thermoplastic resin, and manufacturing method of the same - Google Patents

Rod-shaped composite body made of fiber-reinforced thermoplastic resin, and manufacturing method of the same Download PDF

Info

Publication number
JP2024031860A
JP2024031860A JP2023130182A JP2023130182A JP2024031860A JP 2024031860 A JP2024031860 A JP 2024031860A JP 2023130182 A JP2023130182 A JP 2023130182A JP 2023130182 A JP2023130182 A JP 2023130182A JP 2024031860 A JP2024031860 A JP 2024031860A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
fiber
reinforcing
rod
reinforced thermoplastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023130182A
Other languages
Japanese (ja)
Inventor
優 八塚
Yu Hachitsuka
憲治 伊藤
Kenji Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Original Assignee
Ube Exsymo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Exsymo Co Ltd filed Critical Ube Exsymo Co Ltd
Publication of JP2024031860A publication Critical patent/JP2024031860A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

To provide a rod-shaped composite body made of a fiber-reinforced thermoplastic resin which is excellent in bending strength, and a manufacturing method of the same.SOLUTION: There are provided a rod-shaped composite body made of a fiber-reinforced thermoplastic resin which includes at least a reinforcement layer formed of a fiber bundle for reinforcement impregnated with a thermoplastic resin, and one or two or more coating layers for coating the outermost side of the reinforcement layer with a thermoplastic resin, wherein the reinforcement layer is in a state where twisting is applied, and a volume content ratio of the fiber for reinforcement is 20% or more and 80% or less with respect to the whole reinforcement layer; and a manufacturing method of the same.SELECTED DRAWING: Figure 1

Description

本発明は、繊維強化熱可塑性樹脂製ロッド状複合体及びその製造方法に関する。より詳しくは、曲げ強力に優れた、繊維強化熱可塑性樹脂製ロッド状複合体及びその製造方法に関する。 The present invention relates to a fiber-reinforced thermoplastic resin rod-shaped composite and a method for manufacturing the same. More specifically, the present invention relates to a fiber-reinforced thermoplastic resin rod-shaped composite having excellent bending strength and a method for manufacturing the same.

強化用繊維を合成樹脂で結着した繊維強化熱硬化性樹脂(FRP)製物品は、強度が高く且つ軽量であるという点から、金属製物品に代わる材料として、自動車部材、電子部品、農林資材、建築材、家具等の幅広い分野で利用されている。このFRP技術を使用した製品の一つであるガラスロービング等の長繊維束を強化用繊維とし、熱硬化性樹脂をマトリックスとするパイプ、ロッド、線状物等も古くから各種産業分野で使用されている。 Articles made of fiber-reinforced thermosetting resin (FRP), which is made by binding reinforcing fibers with synthetic resin, are both strong and lightweight, so they are used as an alternative to metal articles in automobile parts, electronic parts, and agricultural and forestry materials. It is used in a wide range of fields such as construction materials, furniture, etc. One of the products using this FRP technology, pipes, rods, linear objects, etc. that use long fiber bundles such as glass roving as reinforcing fibers and thermosetting resin as a matrix have been used in various industrial fields for a long time. ing.

ここで、例えば、特許文献1には、長尺の強化用繊維束に溶融樹脂を含浸させると共に、撚り機によってその軸心を中心にして回転させ、上記強化用繊維束に撚りを与えることを特徴とする繊維強化樹脂ストランドの製造方法が開示されている。 For example, Patent Document 1 discloses that a long reinforcing fiber bundle is impregnated with a molten resin and rotated around its axis by a twisting machine to give twist to the reinforcing fiber bundle. Disclosed is a method for producing characteristic fiber-reinforced resin strands.

また、特許文献2には、複数の強化繊維束同士を撚り合わせながら溶融された熱可塑性樹脂中を引き抜くことで強化繊維の周りに前記熱可塑性樹脂が被覆されたストランドを形成し、当該ストランドを所定長さに切断してペレットを得る長繊維強化熱可塑性樹脂ペレットの製造方法であって、前記熱可塑性樹脂の溶融粘度をメルトフローレート=500~1500g/10minに調整し、前記ストランドの引き抜き方向に対する強化繊維束の撚り角θを0°<θ≦50°として、前記ストランドを引き抜くことを特徴とする長繊維強化熱可塑性樹脂ペレットの製造方法が開示されている。 Furthermore, Patent Document 2 discloses that a plurality of reinforcing fiber bundles are twisted together and pulled out of a melted thermoplastic resin to form a strand in which the thermoplastic resin is coated around the reinforcing fibers, and the strand is A method for producing long fiber-reinforced thermoplastic resin pellets obtained by cutting into predetermined lengths to obtain pellets, the method comprising: adjusting the melt viscosity of the thermoplastic resin to a melt flow rate of 500 to 1500 g/10 min, and drawing the strands in the drawing direction. A method for producing long fiber-reinforced thermoplastic resin pellets is disclosed, which is characterized in that the strands are pulled out with the twist angle θ of the reinforcing fiber bundle set to 0°<θ≦50°.

特開平05-169445号公報Japanese Patent Application Publication No. 05-169445 特開2011-62971号公報JP2011-62971A

しかしながら、従来の製造方法で製造された繊維強化熱可塑性樹脂製ロッド状複合体は、曲げ強力が低く、更なる曲げ強力の改善を行う必要があった。 However, fiber-reinforced thermoplastic resin rod-shaped composites manufactured by conventional manufacturing methods have low bending strength, and it is necessary to further improve the bending strength.

そこで、本発明では、このような実情に鑑み、曲げ強力に優れた、繊維強化熱可塑性樹脂製ロッド状複合体及びその製造方法を提供することを主目的とする。 In view of these circumstances, the main object of the present invention is to provide a fiber-reinforced thermoplastic resin rod-shaped composite having excellent bending strength and a method for manufacturing the same.

本願発明者らが鋭意実験検討を行った結果、繊維強化熱可塑性樹脂製ロッド状複合体の構造に着目することで、曲げ強力に優れた、繊維強化熱可塑性樹脂製ロッド状複合体及びその製造方法を見出し、本発明を完成させるに至った。 As a result of intensive experimental studies by the inventors of the present application, by focusing on the structure of the fiber-reinforced thermoplastic resin rod-shaped composite, we found a fiber-reinforced thermoplastic resin rod-shaped composite with excellent bending strength and its production. They discovered a method and completed the present invention.

すなわち、本発明では、まず、熱可塑性樹脂を含浸させた強化用繊維束により形成された強化層と、前記強化層の最外側を熱可塑性樹脂により被覆する1又は2以上の被覆層と、を少なくとも備え、前記強化層は、撚りが付与された状態であり、前記強化用繊維の体積含有比率は、強化層全体に対して20%以上80%以下である、繊維強化熱可塑性樹脂製ロッド状複合体を提供する。
本発明では、前記最外側を被覆する熱可塑性樹脂が、強化用繊維束へ含浸させた熱可塑性樹脂の溶融開始温度以下であるか、又は前記最外側を被覆する熱可塑性樹脂の溶融開始温度が、200℃以下であってもよい。
That is, in the present invention, first, a reinforcing layer formed of a reinforcing fiber bundle impregnated with a thermoplastic resin, and one or more coating layers covering the outermost side of the reinforcing layer with a thermoplastic resin. At least the reinforcing layer is in a twisted state, and the volume content ratio of the reinforcing fibers is 20% or more and 80% or less with respect to the entire reinforcing layer. Provide complexes.
In the present invention, the thermoplastic resin covering the outermost side has a melting start temperature lower than or equal to the melting start temperature of the thermoplastic resin impregnated into the reinforcing fiber bundle, or the thermoplastic resin covering the outermost side has a melting start temperature of , 200°C or lower.

また、本発明では、熱可塑性樹脂を含浸させた強化用繊維束により形成された強化層と、前記強化層の最外側を熱可塑性樹脂により被覆する1又は2以上の被覆層と、を少なくとも備え、前記強化層は、撚りが付与された状態であり、前記強化用繊維の体積含有比率は、強化層全体に対して20%以上80%以下である、繊維強化熱可塑性樹脂製ロッド状複合体の製造方法であって、強化用繊維束に熱可塑性樹脂を含浸した後、熱可塑性樹脂を含浸させた強化用繊維束に撚りを付与する工程Aと、前記工程Aの後、撚りが付与された熱可塑性樹脂を含浸させた強化用繊維束を冷却し、強化層を作製する工程Bと、を少なくとも行う、繊維強化熱可塑性樹脂製ロッド状複合体の製造方法も提供する。 Further, the present invention includes at least a reinforcing layer formed of a reinforcing fiber bundle impregnated with a thermoplastic resin, and one or more coating layers covering the outermost side of the reinforcing layer with a thermoplastic resin. , the reinforcing layer is in a twisted state, and the volume content ratio of the reinforcing fibers is 20% or more and 80% or less with respect to the entire reinforcing layer, a rod-shaped composite made of fiber-reinforced thermoplastic resin. The manufacturing method includes a step A of impregnating a reinforcing fiber bundle with a thermoplastic resin, and then imparting a twist to the reinforcing fiber bundle impregnated with the thermoplastic resin; The present invention also provides a method for manufacturing a fiber-reinforced thermoplastic resin rod-shaped composite body, which comprises at least performing step B of cooling a reinforcing fiber bundle impregnated with a thermoplastic resin to form a reinforcing layer.

本発明によれば、曲げ強力に優れた、繊維強化熱可塑性樹脂製ロッド状複合体及びその製造方法を提供することができる。
なお、ここに記載された効果は、必ずしも限定されるものではなく、本明細書中に記載されたいずれかの効果であってもよい。
According to the present invention, it is possible to provide a fiber-reinforced thermoplastic resin rod-shaped composite having excellent bending strength and a method for manufacturing the same.
Note that the effects described here are not necessarily limited, and may be any of the effects described in this specification.

本発明に係る繊維強化熱可塑性樹脂製ロッド状複合体1の構造を模式的に示す図である。1 is a diagram schematically showing the structure of a fiber-reinforced thermoplastic resin rod-shaped composite body 1 according to the present invention. 本発明に係る製造方法の概略を模式的に示す図である。1 is a diagram schematically showing an outline of a manufacturing method according to the present invention. 熱加工性確認試験で用いた円形金属物を示す図面代用写真である。This is a photograph substituted for a drawing showing a circular metal object used in a heat workability confirmation test. 比較例3の製造方法の概略を模式的に示す図である。3 is a diagram schematically showing an outline of a manufacturing method of Comparative Example 3. FIG.

以下、本発明を実施するための好適な形態について、図面を参照しながら詳細に説明する。
なお、以下に説明する実施形態は、本発明の代表的な実施形態の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。
Hereinafter, preferred embodiments for carrying out the present invention will be described in detail with reference to the drawings.
Note that the embodiment described below is an example of a typical embodiment of the present invention, and the scope of the present invention should not be interpreted narrowly thereby.

1.繊維強化熱可塑性樹脂製ロッド状複合体1
図1は、本発明に係る繊維強化熱可塑性樹脂製ロッド状複合体1の構造を模式的に示す図である。本発明に係る繊維強化熱可塑性樹脂製ロッド状複合体1(以下、単に「本発明に係る複合体1」とも称する。)は、強化層11と、1又は2以上の被覆層12と、を少なくとも備える。
1. Fiber-reinforced thermoplastic resin rod-shaped composite 1
FIG. 1 is a diagram schematically showing the structure of a fiber-reinforced thermoplastic resin rod-shaped composite 1 according to the present invention. A fiber-reinforced thermoplastic resin rod-shaped composite 1 according to the present invention (hereinafter also simply referred to as "composite 1 according to the present invention") includes a reinforcing layer 11 and one or more coating layers 12. At least be prepared.

本発明に係る複合体1は、ロッド状であり、ここでいう「ロッド状」とは、具体的には、その断面が円形、又は楕円形などの扁平形状となる形状をいう。 The composite body 1 according to the present invention is rod-shaped, and the term "rod-shaped" here specifically refers to a shape whose cross section is circular or flat, such as an ellipse.

本発明に係る複合体1は、上記の構造を有することにより、曲げ強力に優れていることから、金属製物品に代わる材料として、これまで以上に、自動車部材、電子部品、農林資材、建築材、家具等の幅広い分野で利用されることが期待できる。以下、各層について、詳細に説明する。 Since the composite body 1 according to the present invention has the above structure and has excellent bending strength, it is being used more than ever as a material to replace metal articles in automobile parts, electronic parts, agricultural and forestry materials, and construction materials. It is expected that it will be used in a wide range of fields such as furniture. Each layer will be explained in detail below.

(1)強化層11
強化層11は、図1に示すように、熱可塑性樹脂111を含浸させた強化用繊維束112により形成される層である。強化用繊維に熱可塑性樹脂を含浸させたものは、一般的に、繊維強化熱可塑性樹脂(FRTP)と称される。
(1) Reinforcement layer 11
As shown in FIG. 1, the reinforcing layer 11 is a layer formed of reinforcing fiber bundles 112 impregnated with a thermoplastic resin 111. A reinforcing fiber impregnated with a thermoplastic resin is generally referred to as a fiber reinforced thermoplastic resin (FRTP).

<強化用繊維束112>
強化用繊維束112としては、例えば、連続長繊維束、繊維編組物(例えば、織物、編物、組物など)の形態を有する基材であることが好ましい。これらを用いることで、連続含浸性、被覆層の連続形成性が確保でき、生産性に優れた被覆層を有する繊維強化熱可塑性樹脂製ロッド状複合体1の製造が可能となる。
<Reinforcing fiber bundle 112>
The reinforcing fiber bundle 112 is preferably a base material in the form of, for example, a continuous long fiber bundle or a fiber braid (for example, a woven fabric, a knitted fabric, a braided fabric, etc.). By using these materials, continuous impregnation and continuous formation of the coating layer can be ensured, and it becomes possible to manufacture the fiber-reinforced thermoplastic resin rod-shaped composite 1 having the coating layer with excellent productivity.

強化用繊維束112を構成する繊維としては、例えば、オレフィン系繊維、アラミド繊維、液晶ポリエステル(LCP)繊維等の有機繊維;ガラス繊維;炭素繊維等の無機繊維;チラノ繊維等のセラミック繊維;ボロン繊維、銅、ステンレス等の金属繊維;アモルファス繊維等を用いることができるが、本発明ではこれらの中でも特に、ガラス繊維及び/又は炭素繊維を用いることが好ましい。また、本発明では、これらの混織物等を用いることもできる。 Examples of the fibers constituting the reinforcing fiber bundle 112 include organic fibers such as olefin fibers, aramid fibers, and liquid crystal polyester (LCP) fibers; glass fibers; inorganic fibers such as carbon fibers; ceramic fibers such as tyranno fibers; Although fibers, metal fibers such as copper and stainless steel; amorphous fibers, etc. can be used, in the present invention, among these, it is particularly preferable to use glass fibers and/or carbon fibers. In addition, in the present invention, these mixed fabrics can also be used.

ガラス繊維としては、例えば、ガラス繊維モノフィラメント、ガラス繊維ストランド、ガラス繊維ロービング、ガラス繊維ヤーン等の長繊維を用いることができるが、本発明ではこれらの中でも特に、ガラス繊維ロービング及び/又はガラス繊維ヤーンを用いることが好ましい。また、ガラス繊維織物、ガラス繊維組物、ガラス繊維編物等のガラス繊維編組物も適用可能である。なお、ガラス繊維は、エポキシシランカップリング剤、アクリルシランカップリング剤等の表面処理剤で表面処理を行ったものでもよい。また、ガラス繊維のガラス組成としては、例えば、Eガラス、Sガラス、Cガラス等が挙げられ、本発明ではこれらの中でも特に、Eガラスが好ましい。また、ガラス繊維モノフィラメントの断面は円形でも、楕円形等の扁平形状でもよい。 As the glass fiber, for example, long fibers such as glass fiber monofilament, glass fiber strand, glass fiber roving, and glass fiber yarn can be used, but in the present invention, among these, in particular, glass fiber roving and/or glass fiber yarn can be used. It is preferable to use Furthermore, glass fiber braided materials such as glass fiber fabrics, glass fiber braids, and glass fiber knitted materials are also applicable. Note that the glass fiber may be surface-treated with a surface treatment agent such as an epoxy silane coupling agent or an acrylic silane coupling agent. Further, examples of the glass composition of the glass fiber include E glass, S glass, and C glass, and among these, E glass is particularly preferred in the present invention. Further, the cross section of the glass fiber monofilament may be circular or flat, such as an ellipse.

ガラス繊維ロービングとしては、直径3~100μmのガラス繊維モノフィラメントが100~5,000本束ねられたガラス繊維束を、3~500本更に束ねたものが好ましい。 The glass fiber roving is preferably a glass fiber bundle in which 100 to 5,000 glass fiber monofilaments with a diameter of 3 to 100 μm are bundled, and 3 to 500 glass fibers are further bundled.

炭素繊維としては、コールタールピッチや石油ピッチを原料にした「ピッチ系」と、ポリアクリロニトリルを原料とする「PAN系」と、セルロース繊維を原料とする「レーヨン系」の3種類があり、本発明では、どの炭素繊維も用いることができる。 There are three types of carbon fiber: ``pitch type'' made from coal tar pitch or petroleum pitch, ``PAN type'' made from polyacrylonitrile, and ``rayon type'' made from cellulose fiber. Any carbon fiber can be used in the invention.

強化用繊維束112は、必要に応じて、周知の方法により所望の尺長に織り上げるか組み上げるか又は編み上げるか等の方法により調製しておくことができ、又は、長尺のものをロールに巻き取って使用してもよい。また、強化用繊維への樹脂の含浸性を高めるためや、強化用繊維中の水分を除去させるために、強化用繊維束112を加熱してもよい。 The reinforcing fiber bundle 112 can be prepared by weaving, braiding, or knitting into a desired length using well-known methods, or by winding a long one into a roll, as necessary. You can take it and use it. Further, the reinforcing fiber bundle 112 may be heated in order to improve the impregnation of the reinforcing fibers with the resin or to remove moisture from the reinforcing fibers.

強化用繊維(束)112の体積含有比率は、強化層11全体に対して20%以上80%以下であることが好ましく、40%以上60%以下であることがより好ましい。体積含有比率が20%より低くなると、強化用繊維による補強効果が低くなる。逆に、体積含有比率が80%を超えると、樹脂量が少ないために、曲げ強力に悪影響を生じる。 The volume content ratio of the reinforcing fibers (bundle) 112 is preferably 20% or more and 80% or less, more preferably 40% or more and 60% or less, based on the entire reinforcing layer 11. When the volume content ratio is lower than 20%, the reinforcing effect of the reinforcing fibers becomes low. Conversely, if the volume content ratio exceeds 80%, the bending strength will be adversely affected due to the small amount of resin.

<強化層11に用いられる熱可塑性樹脂111>
強化層11に用いられるマトリックス樹脂としての熱可塑性樹脂111としては、例えば、ポリプロピレン(PP)、ポリエチレン(PE)、ポリイソブチレン(PIB)等のポリオレフィン系樹脂;ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PENp)、液晶ポリエステル(LCP)等のポリエステル系樹脂;ポリスチレン(PS)、アクリロニトリル-スチレン樹脂(AS)、アクリロニトリル-ブタジエン-スチレン樹脂(ABS)、アクリロニトリル-アクリル-スチレン樹脂(AAS)、アクリロニトリル・エチレンプロピレンゴム・スチレン(AES)等のスチレン系樹脂;ウレタン樹脂等が挙げられる。また、その他にも、ポリビニルアルコール(PVA)、ポリオキシメチレン(POM)、ポリアミド(PA)、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフェニレンスルフィド(PPS)、ポリフェニレンエーテル(PPE)、変性PPE、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリスルホン(PSU)、変性PSU、ポリエーテルスルホン(PES)、ポリケトン(PK)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリアリレート(PAR)、ポリエーテルニトリル(PEN)等が挙げられる。
<Thermoplastic resin 111 used for reinforcing layer 11>
Examples of the thermoplastic resin 111 as a matrix resin used in the reinforcing layer 11 include polyolefin resins such as polypropylene (PP), polyethylene (PE), and polyisobutylene (PIB); polyethylene terephthalate (PET), polybutylene terephthalate ( Polyester resins such as PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PENp), and liquid crystal polyester (LCP); polystyrene (PS), acrylonitrile-styrene resin (AS), acrylonitrile-butadiene-styrene resin (ABS) ), styrenic resins such as acrylonitrile-acrylic-styrene resin (AAS), acrylonitrile-ethylene-propylene rubber-styrene (AES); urethane resins, and the like. In addition, polyvinyl alcohol (PVA), polyoxymethylene (POM), polyamide (PA), polycarbonate (PC), polymethyl methacrylate (PMMA), polyvinyl chloride (PVC), polyphenylene sulfide (PPS), polyphenylene Ether (PPE), modified PPE, polyimide (PI), polyamideimide (PAI), polyetherimide (PEI), polysulfone (PSU), modified PSU, polyethersulfone (PES), polyketone (PK), polyetherketone ( PEK), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyarylate (PAR), polyethernitrile (PEN), and the like.

本発明ではこれらの中でも特に、ポリカーボネート、アクリロニトリル-スチレン樹脂、ポリプロピレン、及びポリビニルアルコールからなる群より選ばれるいずれか1種以上であることが好ましく、ポリカーボネート及び/又はアクリロニトリル-スチレン樹脂であることがより好ましい。 In the present invention, it is particularly preferable to use one or more selected from the group consisting of polycarbonate, acrylonitrile-styrene resin, polypropylene, and polyvinyl alcohol, and more preferably polycarbonate and/or acrylonitrile-styrene resin. preferable.

<強化層11における撚り>
本発明において、強化層11は、撚りが付与された状態である。撚りの方向については、一方向撚り(S撚り又はZ撚り)、又はSZ撚りのいずれであってもよい。撚りを付与する位置については、含浸槽出口から被覆工程の間であれば、どこの工程であってもよいが、例えば、後述する本発明に係る製造方法における工程Aにて行うことができる。また、撚りを付与する方法についても、特に限定されない。
<Twisting in reinforcing layer 11>
In the present invention, the reinforcing layer 11 is in a twisted state. The direction of twist may be either unidirectional twist (S twist or Z twist) or SZ twist. The twist may be applied at any step between the outlet of the impregnating tank and the coating step, but it can be applied, for example, at step A in the manufacturing method according to the present invention, which will be described later. Furthermore, the method for imparting twist is not particularly limited.

撚りを付与する際に、撚りのピッチ幅としては、800mm以下であることが好ましく、500mm以下であることがより好ましく、300mm以下であることが更に好ましく、200mm以下であることが特に好ましい。撚りのピッチ幅が800mmより大きいと、含浸させた熱可塑性樹脂の軟化によって、曲げたときFRTPロッド補強繊維の外周側と内周側の張力差が要因で座屈や白化が生じる。 When twisting is applied, the twist pitch width is preferably 800 mm or less, more preferably 500 mm or less, even more preferably 300 mm or less, and particularly preferably 200 mm or less. If the twist pitch width is larger than 800 mm, the softening of the impregnated thermoplastic resin causes buckling or whitening due to the difference in tension between the outer circumferential side and the inner circumferential side of the FRTP rod reinforcing fiber when bent.

(2)被覆層12
被覆層12は、前記強化層11の最外側を熱可塑性樹脂により被覆する1又は2以上の層である。なお、図1では、被覆層12が1層の場合を描写しているが、本発明においては、被覆層12は2層以上であってもよい。被覆層12が2層以上である場合の構造としては、例えば、強化層11を覆う第1の被覆層12の一部又は全部を第2以上の被覆層12で順に覆う構造等が挙げられる。
(2) Covering layer 12
The covering layer 12 is one or more layers that cover the outermost part of the reinforcing layer 11 with a thermoplastic resin. In addition, although FIG. 1 depicts the case where the covering layer 12 is one layer, in this invention, the covering layer 12 may be two or more layers. An example of a structure in which there are two or more coating layers 12 is a structure in which part or all of the first coating layer 12 covering the reinforcing layer 11 is sequentially covered with a second or more coating layer 12.

<被覆層12に用いられる熱可塑性樹脂>
被覆層12に用いられる熱可塑性樹脂としては、例えば、ポリプロピレン(PP)、ポリエチレン(PE)、ポリイソブチレン(PIB)等のポリオレフィン系樹脂;ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PENp)、液晶ポリエステル(LCP)等のポリエステル系樹脂;ポリスチレン(PS)、アクリロニトリル-スチレン樹脂(AS)、アクリロニトリル-ブタジエン-スチレン樹脂(ABS)、アクリロニトリル-アクリル-スチレン樹脂(AAS)、アクリロニトリル・エチレンプロピレンゴム・スチレン(AES)等のスチレン系樹脂;ウレタン樹脂等が挙げられる。また、その他にも、ポリビニルアルコール(PVA)、ポリオキシメチレン(POM)、ポリアミド(PA)、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフェニレンスルフィド(PPS)、ポリフェニレンエーテル(PPE)、変性PPE、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリスルホン(PSU)、変性PSU、ポリエーテルスルホン(PES)、ポリケトン(PK)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリアリレート(PAR)、ポリエーテルニトリル(PEN)等が挙げられる。
<Thermoplastic resin used for coating layer 12>
Examples of the thermoplastic resin used in the coating layer 12 include polyolefin resins such as polypropylene (PP), polyethylene (PE), and polyisobutylene (PIB); polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polytriester. Polyester resins such as methylene terephthalate (PTT), polyethylene naphthalate (PENp), and liquid crystal polyester (LCP); polystyrene (PS), acrylonitrile-styrene resin (AS), acrylonitrile-butadiene-styrene resin (ABS), acrylonitrile-acrylic - Styrenic resins such as styrene resin (AAS) and acrylonitrile/ethylene propylene rubber/styrene (AES); urethane resins and the like. In addition, polyvinyl alcohol (PVA), polyoxymethylene (POM), polyamide (PA), polycarbonate (PC), polymethyl methacrylate (PMMA), polyvinyl chloride (PVC), polyphenylene sulfide (PPS), polyphenylene Ether (PPE), modified PPE, polyimide (PI), polyamideimide (PAI), polyetherimide (PEI), polysulfone (PSU), modified PSU, polyethersulfone (PES), polyketone (PK), polyetherketone ( PEK), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyarylate (PAR), polyethernitrile (PEN), and the like.

本発明ではこれらの中でも特に、ポリカーボネート及び/又はポリオレフィン系樹脂であることが好ましい。また、本発明では、前記最外側を被覆する熱可塑性樹脂(被覆層12に用いられる熱可塑性樹脂)は、強化用繊維束112へ含浸させた熱可塑性樹脂111(強化層11に用いられる熱可塑性樹脂111)の溶融開始温度以下であるか、又は前記最外側を被覆する熱可塑性樹脂の溶融開始温度が、200℃以下であることが好ましい。被覆層12に用いられる熱可塑性樹脂の溶融開始温度がマトリックス樹脂の溶融開始温度より高いと被覆を行った際に、強化用繊維と熱可塑性樹脂の複合体が融解してしまい物性に悪影響がある。ただし、溶融開始温度が200℃以下の熱可塑性樹脂であれば、たとえマトリックス樹脂の溶融開始温度以上であったとしても、冷却が短時間で行えることから、物性への影響がほとんどないため、悪影響を及ぼすことがない。 Among these, polycarbonate and/or polyolefin resins are particularly preferred in the present invention. Further, in the present invention, the thermoplastic resin covering the outermost layer (the thermoplastic resin used for the covering layer 12) is the thermoplastic resin 111 impregnated into the reinforcing fiber bundle 112 (the thermoplastic resin used for the reinforcing layer 11). It is preferable that the melting start temperature of the resin 111) or the melting start temperature of the thermoplastic resin covering the outermost layer is 200° C. or less. If the melting start temperature of the thermoplastic resin used for the coating layer 12 is higher than the melting start temperature of the matrix resin, the composite of reinforcing fibers and thermoplastic resin will melt when coating is performed, which will have a negative effect on physical properties. . However, if the thermoplastic resin has a melting start temperature of 200°C or lower, even if it is higher than the melting start temperature of the matrix resin, it can be cooled in a short time, so there is almost no effect on the physical properties, so there is no negative effect. It will not cause any adverse effects.

2.繊維強化熱可塑性樹脂製ロッド状複合体1の製造方法
図2は、本発明に係る製造方法の概略を模式的に示す図である。本発明に係る製造方法は、上述した本発明に係る複合体1の製造方法であって、工程Aと、工程Bと、を少なくとも行う。また、必要に応じて、その他の工程C、工程D等を行ってもよい。以下、各工程について、詳細に説明する。
2. Manufacturing method of fiber-reinforced thermoplastic resin rod-shaped composite 1 FIG. 2 is a diagram schematically showing an outline of the manufacturing method according to the present invention. The manufacturing method according to the present invention is a method for manufacturing the composite body 1 according to the present invention described above, in which at least Step A and Step B are performed. Further, other steps C, D, etc. may be performed as necessary. Each step will be explained in detail below.

(1)工程C
本工程は必須の工程ではないが、本発明に係る製造方法において行われてもよい。工程Cでは、強化用繊維束Fを引取可能とする工程である。具体的には、強化用繊維束Fを所要本数クリール10より引き出し、必要に応じて、強化用繊維束Fに張力調整手段を介して、未昇温の予熱装置内に通し(不図示)、強化用繊維束F群を引出し、冷却水を満たしていない冷却槽を経て(不図示)、引取装置20により強化用繊維束F群を引取可能とする。
(1) Process C
Although this step is not an essential step, it may be performed in the manufacturing method according to the present invention. In step C, the reinforcing fiber bundle F is made available for collection. Specifically, the required number of reinforcing fiber bundles F are pulled out from the creel 10, and if necessary, the reinforcing fiber bundles F are passed through a tension adjusting means into a preheating device whose temperature is not raised (not shown). The reinforcing fiber bundles F group are pulled out and passed through a cooling tank not filled with cooling water (not shown), so that the reinforcing fiber bundles F group can be taken up by the take-up device 20.

(2)工程A
工程Aでは、強化用繊維束Fに熱可塑性樹脂を含浸した後、熱可塑性樹脂を含浸させた強化用繊維束Fに撚りを付与する。具体的には、引取装置20を駆動して、繊維強化用繊維束F群を所定の速度で引取りながら、強化用繊維束Fに対して張力調整手段を介して1本当たり所定の張力を負荷し、予熱装置を昇温して強化用繊維束Fを加熱しつつ溶融押出機30を駆動して、クロスヘッドダイに熱可塑性樹脂を供給し、含浸槽40内にて各強化用繊維束Fと溶融した熱可塑性樹脂を接触させ、各強化用繊維束Fに熱可塑性樹脂を含浸させて、含浸槽40内絞りで径を整えながら、大気圧以下又は加圧下にて長繊維強化用繊維束Fを線状物として押出被覆する。次いで、該線状物に対して、撚りを付与する。本発明に係る製造方法において、撚りの方向については、一方向撚り(S撚り又はZ撚り)、又はSZ撚りのいずれであってもよい。なお、工程A~Bにて作製される強化層11全体に対する前記強化用繊維の体積含有比率は、従来公知の方法により、当業者により適宜自由に設定されるが、本発明では、20%以上80%以下であることが好ましく、40%以上60%以下であることがより好ましい。
(2) Process A
In step A, after the reinforcing fiber bundle F is impregnated with a thermoplastic resin, the reinforcing fiber bundle F impregnated with the thermoplastic resin is twisted. Specifically, the pulling device 20 is driven to take over the group of fiber reinforcing fiber bundles F at a predetermined speed, while applying a predetermined tension to each reinforcing fiber bundle F via the tension adjustment means. The melt extruder 30 is driven while heating the reinforcing fiber bundles F by raising the temperature of the preheating device, supplying the thermoplastic resin to the crosshead die, and forming each reinforcing fiber bundle in the impregnation tank 40. F and a molten thermoplastic resin are brought into contact with each other, each reinforcing fiber bundle F is impregnated with the thermoplastic resin, and while the diameter is adjusted by a diaphragm in the impregnation tank 40, the long fiber reinforcing fibers are formed under atmospheric pressure or below or under pressure. Bundle F is extrusion coated as a wire. Next, twisting is applied to the linear object. In the manufacturing method according to the present invention, the direction of twist may be either unidirectional twist (S twist or Z twist) or SZ twist. Note that the volume content ratio of the reinforcing fibers to the entire reinforcing layer 11 produced in steps A to B can be freely set as appropriate by a person skilled in the art by a conventionally known method, but in the present invention, it is set at 20% or more. It is preferably 80% or less, and more preferably 40% or more and 60% or less.

(3)工程B
工程Bでは、前記工程Aの後、撚りが付与された熱可塑性樹脂を含浸させた強化用繊維束Fを冷却し、強化層11を作製する。具体的には、撚りが付与された線状物を、風冷、水冷、又はミスト噴射からなる群より選ばれるいずれか1つ以上の方法により冷却し、撚りを賦形し、強化層11を作製する。
(3) Process B
In step B, after the step A, the reinforcing fiber bundle F impregnated with the twisted thermoplastic resin is cooled, and the reinforcing layer 11 is produced. Specifically, the twisted linear material is cooled by any one or more methods selected from the group consisting of air cooling, water cooling, or mist spraying, and the twist is formed to form the reinforcing layer 11. Create.

本工程では、工程Aの後、撚りが付与された熱可塑性樹脂を含浸させた強化用繊維束Fを冷却固化していることから、強化用繊維束Fへ樹脂含浸を行う前に強化用繊維束Fに撚りを与えた場合と比較して、効率良く撚りを付与できる。強化用繊維束Fに撚りを与える場合、繊維が絡まるなど加工性が悪い。含浸固化後に撚りを付与することで、空隙の発生を防ぎより高密度にすることができる。なお、工程Bでは、撚り機により、更に撚りが付与されてもよい。 In this process, after step A, the reinforcing fiber bundle F impregnated with the twisted thermoplastic resin is cooled and solidified, so before impregnating the reinforcing fiber bundle F with resin, the reinforcing fiber Twisting can be applied more efficiently than when twisting is applied to the bundle F. When twisting the reinforcing fiber bundle F, the processability is poor as the fibers get tangled. By applying twist after impregnation and solidification, it is possible to prevent the generation of voids and achieve higher density. Note that in step B, twisting may be further applied using a twisting machine.

(4)工程D
工程Dでは、作製された強化層11の最外層に熱可塑性樹脂を被覆し、被覆層12を作製する。具体的には、溶融押出機30を駆動して、クロスヘッドダイに熱可塑性樹脂を供給し、強化層11の最外層に該熱可塑性樹脂を接触させて、加圧下にてロッド状となるように押出被覆する。次いで、従来公知の法により冷却固化させて、繊維強化熱可塑性樹脂製ロッド状複合体1を作製する。作製した本発明に係る複合体1は、図2に示すように、必要に応じて、引取機を用いて引取してもよい。この場合、引取機には、図2に示すように、撚り機構が付いていてもよい。
(4) Process D
In step D, the outermost layer of the produced reinforcing layer 11 is coated with a thermoplastic resin to produce the covering layer 12. Specifically, the melt extruder 30 is driven to supply thermoplastic resin to the crosshead die, and the thermoplastic resin is brought into contact with the outermost layer of the reinforcing layer 11 so that it becomes rod-shaped under pressure. extrusion coating. Next, the fiber-reinforced thermoplastic resin rod-shaped composite 1 is produced by cooling and solidifying by a conventionally known method. The produced composite body 1 according to the present invention may be collected using a collection machine as required, as shown in FIG. In this case, the pulling machine may be equipped with a twisting mechanism, as shown in FIG.

以下、実施例に基づいて本発明を更に詳細に説明する。
なお、以下に説明する実施例は、本発明の代表的な実施例の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。
Hereinafter, the present invention will be explained in more detail based on Examples.
It should be noted that the embodiments described below are merely representative embodiments of the present invention, and the scope of the present invention should not be construed narrowly thereby.

<繊維強化熱可塑性樹脂製ロッド状複合体の作製>
実施例1~10、並びに比較例1及び2については、上述した工程C→工程A→工程B→工程Dの順に行って、繊維強化熱可塑性樹脂製ロッド状複合体作製した。
<Production of rod-shaped composite made of fiber-reinforced thermoplastic resin>
For Examples 1 to 10 and Comparative Examples 1 and 2, fiber-reinforced thermoplastic resin rod-shaped composites were produced by carrying out the above-mentioned steps C→Step A→Step B→Step D.

図4は、比較例3の製造方法の概略を模式的に示す図である。すなわち、工程Dを行わずに引取工程のみを行った以外は、実施例1~10、並びに比較例1及び2と同様の製造方法にて、繊維強化熱可塑性樹脂製ロッド状複合体作製した。 FIG. 4 is a diagram schematically showing the outline of the manufacturing method of Comparative Example 3. That is, a fiber-reinforced thermoplastic resin rod-shaped composite was produced by the same manufacturing method as in Examples 1 to 10 and Comparative Examples 1 and 2, except that only the take-up step was performed without performing Step D.

各実施例及び各比較例の、強化用繊維(束)の体積含有比率、撚り方向、撚りピッチ、及び作製に用いた樹脂種については、下記表1又は表2に示す。なお、各実施例及び各比較例においては、いずれも、上述した通り、強化用繊維束を構成する繊維として好ましい繊維であるガラス繊維を用いている。 The volume content ratio of the reinforcing fibers (bundles), the twisting direction, the twisting pitch, and the resin species used in the preparation of each Example and each Comparative Example are shown in Table 1 or Table 2 below. In addition, in each Example and each Comparative Example, as mentioned above, glass fiber, which is a preferable fiber as the fiber constituting the reinforcing fiber bundle, is used.

<評価>
作製した各繊維強化熱可塑性樹脂製ロッド状複合体について、3点曲げ試験、及び熱加工性確認試験を行った。
<Evaluation>
A three-point bending test and a heat processability confirmation test were conducted on each of the produced fiber-reinforced thermoplastic resin rod-shaped composites.

[3点曲げ試験]
100mm長さにカットした各繊維強化熱可塑性樹脂製ロッド状複合体(N=5)について、万能試験機を使用し、支点間距離は繊維強化熱可塑性樹脂製ロッド状複合体径×20mm、速度5.0mm/minの条件で3点曲げ試験を行い、N=5の平均値を測定値とした。
[3-point bending test]
For each fiber-reinforced thermoplastic resin rod-shaped composite (N = 5) cut into a length of 100 mm, a universal testing machine was used, and the distance between the fulcrums was the diameter of the fiber-reinforced thermoplastic resin rod-shaped composite × 20 mm, and the speed was A three-point bending test was conducted under the condition of 5.0 mm/min, and the average value of N=5 was taken as the measured value.

評価方法としては、得られた測定値を下記の評価と照らし合わせた。
300N≦F:〇
250N≦F<300N:△
F<250N:×
As an evaluation method, the obtained measured values were compared with the evaluation below.
300N≦F:〇250N≦F<300N:△
F<250N:×

なお、本願発明者らが、別途、特開平05-169445号公報に開示された繊維強化ストランドについても上述した方法で3点曲げ試験を行ったところ、結果は約200Nであった。 The inventors of the present application separately conducted a three-point bending test on the fiber-reinforced strand disclosed in JP-A-05-169445 using the method described above, and the result was about 200N.

[熱加工性確認試験]
図3に示した円形金属物(直径600mm)へ各繊維強化熱可塑性樹脂製ロッド状複合体を沿わせて固定し、135℃に加熱したオーブン内へ投入し、1時間加熱した後、常温で1時間以上放置し、円形金属物より各繊維強化熱可塑性樹脂製ロッド状複合体を取り外して評価を行った。
[Heat workability confirmation test]
Each fiber-reinforced thermoplastic resin rod composite was fixed along the circular metal object (diameter 600 mm) shown in Figure 3, placed in an oven heated to 135°C, heated for 1 hour, and then left at room temperature. After being left for more than 1 hour, each fiber-reinforced thermoplastic resin rod-shaped composite was removed from the circular metal object and evaluated.

評価方法としては、得られた各繊維強化熱可塑性樹脂製ロッド状複合体の状態を下記の評価と照らし合わせた。
賦形が完璧であり、座屈(折れや白化など)がない:◎
座屈がない:〇
座屈がある:×
なお、ここでいう「賦形が完璧である」とは、固定治具(=図3に示した円形金属物)から取り外した際に、繊維強化熱可塑性樹脂製ロッド状複合体の形状は変化しないことをいう。
As an evaluation method, the condition of each fiber-reinforced thermoplastic resin rod-shaped composite obtained was compared with the following evaluation.
Perfect shaping and no buckling (bentness, whitening, etc.): ◎
No buckling: 〇 Buckling: ×
Note that "the shape is perfect" here means that the shape of the fiber-reinforced thermoplastic resin rod-shaped composite changes when it is removed from the fixing jig (= the circular metal object shown in Figure 3). It means not to do something.

<評価>
各評価結果を、下記表1及び表2に示す。
<Evaluation>
The results of each evaluation are shown in Tables 1 and 2 below.

<考察>
実施例1~10の繊維強化熱可塑性樹脂製ロッド状複合体は、比較例1~3の繊維強化熱可塑性樹脂製ロッド状複合体と比較して、曲げ強力に優れていた。また、実施例1~10の繊維強化熱可塑性樹脂製ロッド状複合体は、比較例1及び2の繊維強化熱可塑性樹脂製ロッド状複合体と比較して、熱加工性にも優れていた。したがって、熱可塑性樹脂を含浸させた強化用繊維束により形成された強化層と、前記強化層の最外側を熱可塑性樹脂により被覆する1又は2以上の被覆層と、を少なくとも備え、前記強化層は、撚りが付与された状態であり、前記強化用繊維の体積含有比率は、強化層全体に対して20%以上80%以下とすることで、曲げ強力に優れた繊維強化熱可塑性樹脂製ロッド状複合体を提供できることが分かった。
<Consideration>
The fiber-reinforced thermoplastic resin rod-shaped composites of Examples 1 to 10 were superior in bending strength compared to the fiber-reinforced thermoplastic resin rod-shaped composites of Comparative Examples 1 to 3. Furthermore, the fiber-reinforced thermoplastic resin rod-shaped composites of Examples 1 to 10 were also superior in thermal processability compared to the fiber-reinforced thermoplastic resin rod-shaped composites of Comparative Examples 1 and 2. Therefore, the reinforcing layer includes at least a reinforcing layer formed of a reinforcing fiber bundle impregnated with a thermoplastic resin, and one or more coating layers that cover the outermost side of the reinforcing layer with a thermoplastic resin. is in a twisted state, and the volume content ratio of the reinforcing fibers is 20% or more and 80% or less with respect to the entire reinforcing layer, thereby providing a fiber-reinforced thermoplastic resin rod with excellent bending strength. It has been found that it is possible to provide a complex with a similar shape.

本発明によれば、曲げ強力に優れた、繊維強化熱可塑性樹脂製ロッド状複合体及びその製造方法を提供することを主目的とする。したがって、曲げ強力に優れているという特徴を生かし、金属製物品に代わる材料として、これまで以上に、自動車部材、電子部品、農林資材、建築材、家具等の幅広い分野で利用されることが期待できる。 According to the present invention, the main object is to provide a fiber-reinforced thermoplastic resin rod-shaped composite having excellent bending strength and a method for manufacturing the same. Therefore, by taking advantage of its excellent bending strength, it is expected that it will be used more than ever before in a wide range of fields such as automobile parts, electronic parts, agricultural and forestry materials, construction materials, furniture, etc. as a material that replaces metal products. can.

1:繊維強化熱可塑性樹脂製ロッド状複合体
11:強化層
111:強化層11に用いられる熱可塑性樹脂(マトリックス樹脂)
112、F:強化用繊維束
12:被覆層
1: Fiber-reinforced thermoplastic resin rod-shaped composite 11: Reinforced layer 111: Thermoplastic resin (matrix resin) used for the reinforced layer 11
112, F: Reinforcing fiber bundle 12: Covering layer

Claims (3)

熱可塑性樹脂を含浸させた強化用繊維束により形成された強化層と、
前記強化層の最外側を熱可塑性樹脂により被覆する1又は2以上の被覆層と、
を少なくとも備え、
前記強化層は、撚りが付与された状態であり、
前記強化用繊維の体積含有比率は、強化層全体に対して20%以上80%以下である、繊維強化熱可塑性樹脂製ロッド状複合体。
a reinforcing layer formed by reinforcing fiber bundles impregnated with thermoplastic resin;
one or more coating layers that cover the outermost side of the reinforcing layer with a thermoplastic resin;
comprising at least
The reinforcing layer is in a twisted state,
A rod-shaped composite made of fiber-reinforced thermoplastic resin, wherein the volume content ratio of the reinforcing fibers is 20% or more and 80% or less with respect to the entire reinforcing layer.
前記最外側を被覆する熱可塑性樹脂が、強化用繊維束へ含浸させた熱可塑性樹脂の溶融開始温度以下である、又は前記最外側を被覆する熱可塑性樹脂の溶融開始温度が、200℃以下である、請求項1に記載の繊維強化熱可塑性樹脂製ロッド状複合体。 The thermoplastic resin covering the outermost side is below the melting start temperature of the thermoplastic resin impregnated into the reinforcing fiber bundle, or the melting start temperature of the thermoplastic resin covering the outermost side is 200°C or below. The fiber-reinforced thermoplastic resin rod-shaped composite according to claim 1. 熱可塑性樹脂を含浸させた強化用繊維束により形成された強化層と、前記強化層の最外側を熱可塑性樹脂により被覆する1又は2以上の被覆層と、を少なくとも備え、前記強化層は、撚りが付与された状態であり、前記強化用繊維の体積含有比率は、強化層全体に対して20%以上80%以下である、繊維強化熱可塑性樹脂製ロッド状複合体の製造方法であって、
強化用繊維束に熱可塑性樹脂を含浸した後、熱可塑性樹脂を含浸させた強化用繊維束に撚りを付与する工程Aと、
前記工程Aの後、撚りが付与された熱可塑性樹脂を含浸させた強化用繊維束を冷却し、強化層を作製する工程Bと、
を少なくとも行う、繊維強化熱可塑性樹脂製ロッド状複合体の製造方法。
At least a reinforcing layer formed of a reinforcing fiber bundle impregnated with a thermoplastic resin, and one or more coating layers covering the outermost side of the reinforcing layer with a thermoplastic resin, the reinforcing layer comprising: A method for producing a fiber-reinforced thermoplastic resin rod-shaped composite, wherein the reinforcing fiber is in a twisted state and the volume content ratio of the reinforcing fiber is 20% or more and 80% or less with respect to the entire reinforcing layer, ,
After impregnating the reinforcing fiber bundle with a thermoplastic resin, a step A of imparting twist to the reinforcing fiber bundle impregnated with the thermoplastic resin;
After the step A, a step B of cooling the reinforcing fiber bundle impregnated with a twisted thermoplastic resin to produce a reinforcing layer;
A method for producing a rod-shaped composite made of fiber-reinforced thermoplastic resin, the method comprising:
JP2023130182A 2022-08-25 2023-08-09 Rod-shaped composite body made of fiber-reinforced thermoplastic resin, and manufacturing method of the same Pending JP2024031860A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022134011 2022-08-25
JP2022134011 2022-08-25

Publications (1)

Publication Number Publication Date
JP2024031860A true JP2024031860A (en) 2024-03-07

Family

ID=90106300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023130182A Pending JP2024031860A (en) 2022-08-25 2023-08-09 Rod-shaped composite body made of fiber-reinforced thermoplastic resin, and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2024031860A (en)

Similar Documents

Publication Publication Date Title
JP6164591B2 (en) Reinforcing fiber / resin fiber composite for producing continuous fiber reinforced thermoplastic resin composite material and method for producing the same
JP3777145B2 (en) Glass fiber reinforced thermoplastic resin pellet and method for producing the same
JP7340521B2 (en) Continuous fiber reinforced thermoplastic resin composite material and its manufacturing method
US10626235B2 (en) Flexible composite prepreg materials
EP2377675A1 (en) Impregnation assembly and method for manufacturing a composite structure reinforced with long fibers
JP5919755B2 (en) Manufacturing method of fiber material
KR20140015462A (en) Continious fiber reinforced thermoplastic rod and pultrusion method for its manufacture
EP2376272B1 (en) Method of moulding fibre reinforced theromplastic composite tubes
CN104781316A (en) Composite base
TWI532594B (en) Thermoplastic resin reinforced sheet material and method for manufacture thereof
JP6863581B2 (en) Method for manufacturing long fiber reinforced thermoplastic resin linear material
US20200061934A1 (en) Fiber precursor
CN110281550A (en) A kind of preparation method that weaving continuous fiber reinforced thermoplastic prepreg tape and product
JP6083239B2 (en) Fiber-reinforced plastic and method for producing the same
JPH01298257A (en) In-line densification of knitted structure
JP3620103B2 (en) Method for producing resin-coated reinforcing fiber yarn
CN108262981B (en) Bistable shell structure with C-shaped section and continuous manufacturing method thereof
JP2024031860A (en) Rod-shaped composite body made of fiber-reinforced thermoplastic resin, and manufacturing method of the same
JPH06114830A (en) Manufacture of continuous glass-fiber reinforced thermoplastic resin pellet
WO2024161767A1 (en) Fiber-reinforced resin composite and method for producing same
JP2018016733A (en) Long fiber reinforced thermoplastic resin linear article and manufacturing method therefor
JP3386158B2 (en) Molding materials and filament wound moldings
JP3672043B2 (en) Thermoplastic composite continuous molding and continuous molding method
JP6677392B2 (en) Long fiber reinforced thermoplastic resin wire for vehicle seats
JP3317358B2 (en) Composite reinforcing fiber material impregnated with thermoplastic resin