JP2024027063A - Brushless acyclic generator - Google Patents

Brushless acyclic generator Download PDF

Info

Publication number
JP2024027063A
JP2024027063A JP2022139552A JP2022139552A JP2024027063A JP 2024027063 A JP2024027063 A JP 2024027063A JP 2022139552 A JP2022139552 A JP 2022139552A JP 2022139552 A JP2022139552 A JP 2022139552A JP 2024027063 A JP2024027063 A JP 2024027063A
Authority
JP
Japan
Prior art keywords
rotor
conductors
magnetic material
rotating shaft
donut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022139552A
Other languages
Japanese (ja)
Inventor
輝彦 大保
Teruhiko Daiho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2022139552A priority Critical patent/JP2024027063A/en
Publication of JP2024027063A publication Critical patent/JP2024027063A/en
Pending legal-status Critical Current

Links

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

To provide a brushless acyclic generator which is equipped with a rotor made of a plurality of conductors on one rotating shaft and connected in series, and which eliminates friction loss at a power collection part on the outer periphery.SOLUTION: A brushless acyclic generator has: a disk-shaped rotor made of magnetic material, supported by a rotating shaft made of magnetic material; and a rotor that is a pair of donut-shaped conductors that sandwich both sides of the rotor from the outside, and whose diameter is slightly shorter than the diameter of the rotor made of the magnetic material. Furthermore, a pair of donut-shaped magnets with their magnetic field directions relative to NN (or SS) is installed to sandwich the rotor made of the two donut-shaped conductors from the outside so that these rotors rotate as one, and a series connection can be made by providing a connecting passage on the outer periphery of the disk made of magnetic material to connect the outer periphery of the rotor made of right and left conductors with a copper wire. Also, by providing bearings on both the right and left sides of the inner peripheral part of the rotor, which is integrated with the rotor consisting of the right and left conductors, and by connecting the inner peripheral part of the rotor consisting of the right and left conductors with the right and left bearings, respectively, a brushless acyclic generator can be provided.SELECTED DRAWING: Figure 2

Description

本発明は集電部にブラシを使わないブラシレス単極発電機であって、地球温暖化防止に適応される単極発電機に関する。 The present invention relates to a brushless unipolar generator that does not use a brush in a current collector, and which is adapted to prevent global warming.

単極発電機は図4aで示すように非常に単純な機構である。静止している磁石が作る磁場の中を銅のような導体の回転板を回転させると、回転板の中心部と外周部との半径に電位差が生じ、回転板の回転方向によって電流は遠心方向か求心方向へと流れる。また回転板と磁石が一緒に回転しても同じように回転板の半径方向に電位差が発生する。しかし、回転板が静止し磁石が回転すると電位差は発生しないので、電流は流れない。重要な条件は磁場の中で導体の回転板が回転運動をすることである。 A monopolar generator is a very simple mechanism as shown in Figure 4a. When a rotating plate made of a conductor such as copper is rotated in a magnetic field created by a stationary magnet, a potential difference is created between the center and the outer radius of the rotating plate, and the current flows in the centrifugal direction depending on the direction of rotation of the rotating plate. Or it flows in the centripetal direction. Furthermore, even if the rotary plate and the magnet rotate together, a potential difference similarly occurs in the radial direction of the rotary plate. However, when the rotating plate is stationary and the magnet rotates, no potential difference is generated, so no current flows. The important condition is that the rotating plate of conductors undergoes rotational motion in the magnetic field.

また、非特許文献1で述べているように「低電圧大電流の直流機として、その原理はFaradayの昔から知られていたものである。しかし、その歴史が古い割合に実用の実績が少ないのは、従来集電に炭素ブラシを使用していたため、高速回転面から大電流を効率よく安定に集電することが困難であったことに基因している」。しかし「電解工業の電源としては,交流電源からシリコン整流器などの変流装置を通して直流を得る方式に比較して、タービン駆動の単極発電機の場合は直接に直流を得ることができ、しかも効率が高いので発電原価が安く経済的になる」と述べている。回転板とブラシとの摩擦により集電接点が摩耗し易く、ブラシの寿命が短くなるとともに、電気的接触抵抗が大きくなるという問題が有るため現在では単極発電機はあまり用いられていなが、電解分野では貢献できる。 Furthermore, as stated in Non-Patent Document 1, ``As a low-voltage, high-current DC machine, its principle has been known since Faraday's time.However, given its long history, there is little practical experience. This is because carbon brushes have traditionally been used to collect current, making it difficult to efficiently and stably collect large currents from high-speed rotating surfaces. However, ``as a power source for the electrolytic industry, compared to the method of obtaining direct current from an alternating current power source through a current transformer such as a silicon rectifier, a turbine-driven unipolar generator can obtain direct current directly, and is more efficient. Since the energy consumption is high, the cost of power generation is low and economical." Currently, single-pole generators are not widely used because the current collector contacts are easily worn out due to friction between the rotating plate and the brushes, shortening the life of the brushes and increasing electrical contact resistance. We can contribute in the field of electrolysis.

特開平09-238458号広報Publication of JP-A-09-238458 特開2001-286117号広報Publication of JP-A-2001-286117

J-STAGEトップ/電氣學會雜誌/89巻(1969)972号/書誌「単極直流機の最近の進歩」 仲村 節男 https://doi.org/10.11526/ieejjournal1888.89.1617J-STAGE Top/Electrical Society Magazine/Volume 89 (1969) No. 972/Bibliography "Recent Progress in Single-Polar DC Machines" Setsuo Nakamura https://doi. org/10.11526/ieeejjournal1888.89.1617

特許文献1で、従来の単極発電機は「回転子の外周速度が大きいため、回転子との摩擦により集電接点が摩耗し易く、寿命が短くなるとともに、電気的接触抵抗が大きくなり、電圧降下が大きくなって、大きな出力電圧(電流)を得ることができない」と述べ、更に「その構造上、一つの回転軸に複数の回転子を備えて直列接続させることが困難であり、よって複数の単極発電機による大電流(大電力)を得ることが困難である」と述べている。本発明も単極発電機に関する解決しようとする課題は同じである。しかし、解決するための手段は異なる。Patent Document 1 states that conventional unipolar generators have the following problems: ``Due to the high circumferential speed of the rotor, the current collection contacts are likely to wear out due to friction with the rotor, shortening their lifespan and increasing electrical contact resistance. ``Due to its structure, it is difficult to connect multiple rotors in series on one rotating shaft. It is difficult to obtain large current (large power) from multiple unipolar generators.'' The present invention also has the same problem to solve regarding unipolar generators. However, the means to solve the problem are different.

先ずは本発明の基本原理を述べる。単極発電機の特徴は、図4で示すように磁場の方向を一方向に定めて、銅のような導体である回転板を磁場内に置き、時計回りか反時計回りに回転させると、フレミングの右手の法則に従い、回転板の中で電流の流れる方向は遠心方向か求心方向へ流れる。それ故、図1で示すように、一つの回転軸上の二つの導体である回転板の回転方向を統一し、それぞれの回転板内の磁場の方向を右方向と左方向に異なるように設置すると、二つの回転板内の電流の流れる方向はフレミングの右手の法則が示すように遠心方向と求心方向に異なって流れる。それ故、二つの同じ方向に回転する回転板の外周を導体で連結すれば電流は内周から外周へ流れ、更に外周から内周へと直流電流の直列接続ができる。 First, the basic principle of the present invention will be described. The characteristics of a monopolar generator are as shown in Figure 4, when the direction of the magnetic field is set in one direction, a rotating plate made of a conductor such as copper is placed in the magnetic field, and rotated clockwise or counterclockwise. According to Fleming's right-hand rule, the direction of current flow in a rotating plate is either centrifugal or centripetal. Therefore, as shown in Fig. 1, the rotating directions of the rotating plates, which are two conductors on one rotating shaft, are unified, and the magnetic field directions within each rotating plate are set to be different to the right and left. Then, as shown by Fleming's right-hand rule, the currents flow in different directions in the two rotating plates: the centrifugal direction and the centrifugal direction. Therefore, if the outer peripheries of two rotary plates rotating in the same direction are connected with a conductor, current will flow from the inner periphery to the outer periphery, and a direct current can be connected in series from the outer periphery to the inner periphery.

また、電気の流れる方向は、図1が示すように左の回転板は内周から外周へ流れ、そして、そこからもう一方である右の回転板の外周へ導かれ、そして内周へ戻るので、集電は回転軸の近くで出来る。そこで集電に軸受を利用すればブラシを用いなくても、又特許文献2で示すように複数の回転軸を必要としなくても集電はできる。 Also, as shown in Figure 1, the direction of electricity flow is from the inner circumference of the left rotary plate to the outer circumference, and from there it is guided to the outer circumference of the other right rotary plate, and then returns to the inner circumference. , current collection can be done near the rotation axis. Therefore, if a bearing is used for current collection, current collection can be performed without using a brush or without requiring a plurality of rotating shafts as shown in Patent Document 2.

本発明の単極発電機では一つの回転軸に偶数個の導体である回転板を設け、磁場の方向を相対させることで直列接続が可能になり、更には軸受を利用し集電すると、集電接点が摩耗することなく電圧降下を回避できる。 In the unipolar generator of the present invention, series connection is possible by installing an even number of rotating plates, which are conductors, on one rotating shaft and making the directions of the magnetic fields opposite each other. Voltage drop can be avoided without wearing out the electrical contacts.

本発明の単極発電機の基本概念を示す。The basic concept of the unipolar generator of the present invention is shown. 本発明の単極発電機実施の一例を示す。1 shows an example of a monopolar generator implementation of the present invention. 本発明の集電に用いる軸受けの一例を示す。An example of a bearing used for current collection of the present invention is shown. 本発明の単極発電機の原理を示す。1 illustrates the principle of the monopolar generator of the present invention.

先([0002])に単極発電機の最大の特徴は磁場の中の導体である銅円板5が回転すると、その半径に電位差が発生することを述べた。電位差が発生すると銅円板5の半径に沿って、遠心方向か求心方向に電流が流れる。さて、銅円板5の銅原子は29個の電子を持っている。そして銅原子の最外殻(N)には1個の自由電子がある。電子のスピン軸方向は通常ランダムであるが、磁場内では図4cが示すように電子のスピン軸の方向は全てが同じ磁場方向に揃う。そして電子のスピン(自転)する方向は反時計回りである。そこで銅円板5も反時計回りに回転させると自由電子に掛かる力は遠心方向になり、銅円板5が時計回りになると自由電子に掛かる力は求心方向になる。(ここで、「電流」の流れる方向は自由電子の移動する方向とは逆方向であると表現されていることに留意。)全ての「自由電子にかかる力」の方向が電位差(電圧)を生む事になる。それ故に、銅円板5は静止し、磁石が作る磁場だけが回転しても銅円板5の「半径」に電位差は生まれない。電位差が「半径」に生じる為には「磁場の中の全ての自由電子の反時計回りのスピン(自転)に、時計回りか反時計回りの公転運動がなければならない」。 As mentioned earlier ([0002]), the most important feature of a unipolar generator is that when the copper disk 5, which is a conductor in a magnetic field, rotates, a potential difference is generated in its radius. When a potential difference occurs, a current flows along the radius of the copper disk 5 in either a centrifugal direction or a centripetal direction. Now, the copper atom of the copper disk 5 has 29 electrons. There is one free electron in the outermost shell (N) of the copper atom. The directions of the spin axes of electrons are usually random, but in a magnetic field, the directions of the spin axes of electrons are all aligned in the same direction of the magnetic field, as shown in FIG. 4c. The direction in which electrons spin (rotate) is counterclockwise. Therefore, if the copper disk 5 is also rotated counterclockwise, the force applied to the free electrons will be in the centrifugal direction, and if the copper disk 5 is rotated clockwise, the force applied to the free electrons will be in the centripetal direction. (Note here that the direction in which the "current" flows is expressed as being opposite to the direction in which the free electrons move.) The direction of all "forces on the free electrons" is the potential difference (voltage). It will give birth. Therefore, even if the copper disk 5 is stationary and only the magnetic field generated by the magnet rotates, no potential difference is created in the "radius" of the copper disk 5. In order for a potential difference to occur in a ``radius,'' ``the counterclockwise spin (rotation) of all free electrons in the magnetic field must have either clockwise or counterclockwise orbital motion.''

そこで、図2で示すように一つの磁性体の回転軸4に、強磁性体の鉄円板6を取り付け、次に該鉄円板6を中心とするように、左右にドーナッツ状の導体である銅円板5(表面は絶縁されている)をそれぞれ取り付け、更に該銅円板5の外側に、磁極が互いにNN(又はSS)と向き合うようにドーナッツ状の磁石7を左右に取り付ければ、互いの磁石7は反発することなく強磁性体の鉄円板6に強く引き付けられ、銅円板5の中を強力な磁束1が生じ、銅円板5の中の全ての自由電子のスピン軸は磁場方向に揃う。そして、これらを図1で示すようにすべての回転板を同じ方向に回転させると、左側の銅円板5aの中で電流3は遠心方向3aに流れ、右側の銅円板5bの中では電流3は求心方向3bに流れ、該二枚の銅円板5の外周部を導体で接続すれば、一方の銅円板5aの内周からもう一方の銅円板5bの内周へと直流電流3は流れるので、直列接続ができ、電圧を高めることが出来る。 Therefore, as shown in FIG. 2, a ferromagnetic iron disc 6 is attached to one magnetic rotating shaft 4, and then donut-shaped conductors are placed on the left and right sides of the iron disc 6. If a certain copper disk 5 (the surface is insulated) is attached to each, and donut-shaped magnets 7 are attached to the left and right outside of the copper disk 5 so that the magnetic poles face NN (or SS), The magnets 7 are strongly attracted to the ferromagnetic iron disk 6 without repelling each other, and a strong magnetic flux 1 is generated in the copper disk 5, which changes the spin axis of all free electrons in the copper disk 5. are aligned in the direction of the magnetic field. When all the rotating plates are rotated in the same direction as shown in Fig. 1, the current 3 flows in the centrifugal direction 3a in the copper disk 5a on the left, and the current 3 flows in the centripetal direction 3b, and if the outer circumferences of the two copper disks 5 are connected with a conductor, a direct current flows from the inner circumference of one copper disk 5a to the inner circumference of the other copper disk 5b. 3 flows, so they can be connected in series and the voltage can be increased.

次に図3で示す集電に用いる軸受8を説明する。先ずは図3で示す回転軸4の周りを絶縁体9で覆い、次に絶縁体9の周りに導体10で覆い、これら回転軸4、絶縁体9及び導体10は一体となって回転するようにし、そこに軸受8(円筒ころ軸受:シンドリカルローラーベアリング)を取り付ければ、回転軸4、絶縁体9、導体10及び軸受8の内輪8aは一体となって回転する。該軸受8の外輪8bは静止し、内輪8aと外輪8bの間にある円筒ころ8cは坂を転がるように回転し、集電接点が摩耗することはない。 Next, the bearing 8 used for current collection shown in FIG. 3 will be explained. First, the rotation shaft 4 shown in FIG. 3 is covered with an insulator 9, and then the insulator 9 is covered with a conductor 10, so that the rotation shaft 4, the insulator 9, and the conductor 10 rotate as one. If the bearing 8 (cylindrical roller bearing: cylindrical roller bearing) is attached thereto, the rotating shaft 4, the insulator 9, the conductor 10, and the inner ring 8a of the bearing 8 rotate as one. The outer ring 8b of the bearing 8 is stationary, and the cylindrical rollers 8c between the inner ring 8a and the outer ring 8b rotate as if rolling on a slope, so that the current collecting contacts do not wear out.

軸受8に玉軸受(ボールベアリング)を用いと集電部が複数の点になるが、円筒ころ軸受を用いると集電部は複数の線となる。さらに多くの線を求めるなら、糸状ころ軸受(ニードルローラーベアリング)を用いると大きな電流が無理なく集電出来る。 If a ball bearing is used as the bearing 8, the current collecting portion will be a plurality of points, but if a cylindrical roller bearing is used, the current collecting portion will be a plurality of lines. If you want even more wires, you can easily collect large currents by using thread roller bearings (needle roller bearings).

次に電流の流れを図2及び図3で示す。先ずは図2にある左の銅円板5aの内周部から外周部へと遠心方向に電流3aが発生し、次に右の銅円板5bの外周部へ流れ、そこから求心方向に電流3bが内周部へと流れ、右の軸受8へ流れる。銅円板5bの内周部から流れた電流3は図3で示す回転軸4と共に回転する導体10、内輪8aへ流れ、そこから静止している外輪8bへと流れる。集電に用いられる軸受8には荷重をかけていないので大きな負荷はかからない。尚、本来の荷重を受ける軸受は図示されていない。 Next, the flow of current is shown in FIGS. 2 and 3. First, a current 3a is generated in a centrifugal direction from the inner circumference to the outer circumference of the left copper disk 5a in FIG. 3b flows to the inner circumference and flows to the right bearing 8. The current 3 flowing from the inner circumference of the copper disk 5b flows to the conductor 10 rotating together with the rotating shaft 4 shown in FIG. 3, to the inner ring 8a, and from there to the stationary outer ring 8b. Since no load is applied to the bearing 8 used for current collection, no large load is applied. Note that the bearing that receives the original load is not shown.

しかし注意する点は、二枚の銅円板5を外周部で、鉄円板6を跨ぎ接続するには、図2で示すように磁性体の鉄円板6の外周部から外向き(又は内向き)の強烈な磁場を横切ることになり、非常に大きな抵抗を受けることになる。そこで強烈な磁場を横切る為には該鉄円板6の外周に接続通路(穴、又は溝)11を施し、該接続通路11を電流が通過するようにすれば磁場の影響を受けることなく、直列接続ができる。 However, it should be noted that in order to connect two copper disks 5 at the outer periphery and across the iron disk 6, as shown in FIG. It will cross a strong magnetic field (inward), and will encounter extremely large resistance. Therefore, in order to cross the strong magnetic field, a connecting passage (hole or groove) 11 is provided on the outer periphery of the iron disk 6, and if the current is allowed to pass through the connecting passage 11, it will not be affected by the magnetic field. Can be connected in series.

また、本発明の単極発電では自由電子が流れる方向は遠心方向と求心方向の組み合わせであるので、二つの銅円板5の外周を複数個所で繋げればより多くの電子(電流)が流れやすくなる。 In addition, in the monopolar power generation of the present invention, the direction in which free electrons flow is a combination of the centrifugal direction and the centripetal direction, so if the outer circumferences of the two copper disks 5 are connected at multiple points, more electrons (current) will flow. It becomes easier.

更には、より高い電圧を求めるには図2で示す左右一枚ずつの銅円板5の一組だけでなく、さらに多くの銅円板5の組み合わせにすることで多くの直列接続が可能になり、電圧を上げることができる。電気の全ては自由電子の流れに掛かる電位差(V)と、その電子の流量(A)の問題になる。 Furthermore, in order to obtain a higher voltage, many series connections can be made by combining not only one pair of copper disks 5 on the left and right sides as shown in Fig. 2, but also more copper disks 5. Therefore, the voltage can be increased. Everything about electricity is a matter of the potential difference (V) applied to the flow of free electrons and the flow rate (A) of the electrons.

単極発電機の特徴である直流の低電圧と高電流を求める分野の一つに水電解がある。昨今の地球温暖化防止のための一つとして水を電気分解し、水素を得る技術(水電解)があるが、現在の技術は非特許文献1が述べたように、交流を直流に変換しているのであまり効率は良くない。しかし、単極発電機のように低電圧で電子の流量(A)が多くなれば、水素の発生量が多くなるので、水電解では有利である。 Water electrolysis is one of the fields that requires the low voltage and high current of direct current, which are the characteristics of unipolar generators. As one of the recent efforts to prevent global warming, there is a technology to electrolyze water to obtain hydrogen (water electrolysis), but as stated in Non-Patent Document 1, the current technology is to convert alternating current into direct current. Therefore, the efficiency is not very good. However, if the flow rate (A) of electrons is large at low voltage like a unipolar generator, the amount of hydrogen generated increases, which is advantageous in water electrolysis.

又、昨今は二酸化炭素を排出するガソリン車ではなく、電気自動車(BEV)の普及が求められ、二次電池(充電池)に充電する際にも直流の低電圧・高電流が求められる。そして現在、電気自動車を駆動するモーターは磁石が回転子で、コイルが固定子のモーターで、走行中はモーターであるが、減速時にはジェネレーター(発電機)として発電し、モータージェネレーター(MG)と呼ばれている。発電された交流をダイオードなどによって整流することで直流にして鉛蓄電池などに一旦充電し、後で二次電池に充電している。 In addition, recently there has been a demand for electric vehicles (BEVs) to be popularized instead of gasoline vehicles that emit carbon dioxide, and low DC voltage and high current are required when charging secondary batteries (rechargeable batteries). Currently, the motor that drives an electric car is a motor with a magnet as a rotor and a coil as a stator, and while it is a motor while driving, it generates electricity as a generator when decelerating, and is called a motor generator (MG). It is. The generated alternating current is rectified by a diode, etc. to turn it into direct current, which is used to charge a lead-acid battery, etc., and later to charge a secondary battery.

一方、単極発電機は固定子を持たず、回転子だけで直流電気を発電するので走行中の運動量が大きな電気自動車を減速させることなく走行中に発電し、二次電池に充電できる車載直流発電機となればゲームチェンジャーとなり得る。 On the other hand, a single-pole generator does not have a stator and generates DC electricity only with the rotor, so it can generate electricity while driving without slowing down an electric car with a large amount of momentum, and can charge the secondary battery. A generator could be a game changer.

1 磁場 2 回転方向
3 電流 3a 遠心方向の電流 3b 求心方向の電流
4 回転軸 5 銅円盤 6 鉄円盤
7 磁石
8 軸受 8a 内輪 8b 外輪 8c円筒ころ
9 絶縁材
10 導体
11 接続通路(穴、又は溝)
1 Magnetic field 2 Rotation direction 3 Current 3a Centrifugal current 3b Centripetal current 4 Rotating shaft 5 Copper disk 6 Iron disk 7 Magnet 8 Bearing 8a Inner ring 8b Outer ring 8c Cylindrical roller 9 Insulating material 10 Conductor 11 Connection passage (hole or groove) )

Claims (3)

磁性体からなる回転軸と、
前記回転軸に支持された磁性体からなる一枚の円板状の回転子と、
前記磁性体からなる回転子の両面を外から挟む、二枚一組となるドーナツ状の導体であって、直径が前記磁性体からなる回転子の直径よりもやや短い回転子と、
更に前記二枚のドーナツ状の導体からなる回転子を外から挟むように、磁場の方向をNN(又はSS)と相対させた一対のドーナツ状の磁石を取り付け、
前記二枚の導体からなる回転子の外周側で互いが、前記磁性体からなる回転子を跨いで通電できるように、一つ又は複数の接続通路(穴、又は溝)を設け直列接続し、
前記一枚の磁性体からなる回転子と、前記二枚の導体からなる回転子と、前記二枚の磁石の全てが一体の回転子となる単極発電機。
A rotating shaft made of magnetic material,
a disc-shaped rotor made of a magnetic material supported by the rotating shaft;
a rotor that is a pair of donut-shaped conductors that sandwich both sides of the rotor made of the magnetic material from the outside, and whose diameter is slightly shorter than the diameter of the rotor made of the magnetic material;
Furthermore, a pair of donut-shaped magnets with the direction of the magnetic field facing the NN (or SS) are attached so as to sandwich the rotor made of the two donut-shaped conductors from the outside,
One or more connecting passages (holes or grooves) are provided on the outer periphery of the rotor made of the two conductors so that the rotor made of the magnetic material can be energized across the rotor, and the two conductors are connected in series;
A unipolar generator in which the rotor made of the one magnetic material, the rotor made of the two conductors, and the two magnets all form an integrated rotor.
請求項1の単極発電機であって、前記回転軸に支持されている前記一体の回転子の左右両側に軸受を取り付け、前記回転軸と前記軸受が通電しないように絶縁体を挟み、左側の前記導体からなる回転子の内周と、前記左側の軸受けの内輪とを通電し、
右側の前記導体からなる回転子の内周と、前期右側の軸受けの内輪とを通電し、
外部からの集電は、前記左右の軸受けの外輪から集電するブラシレス単極発電機。
2. The unipolar generator according to claim 1, wherein bearings are attached to both left and right sides of the integral rotor supported by the rotating shaft, and an insulator is sandwiched between the rotating shaft and the bearings so that the rotating shaft and the bearings are not energized. energizing the inner periphery of the rotor made of the conductor and the inner ring of the left bearing;
energize the inner circumference of the rotor made of the conductor on the right side and the inner ring of the bearing on the right side,
The brushless single-pole generator collects current from the outside from the outer rings of the left and right bearings.
請求項2のブラシレス単極発電機であって、前記二枚一組のドーナツ状の導体からなる回転子を複数組作り、
前記複数組の導体からなる左右の回転子の電気的な接続は前記磁性体からなる回転子の外周側と内周側に前記接続通路を作ることで更に長い直列接続を持つブラシレス単極発電機。
3. The brushless single-pole generator according to claim 2, wherein a plurality of rotors each made of the two donut-shaped conductors are made,
Electrical connection between the left and right rotors made of the plurality of sets of conductors is achieved by creating the connection passages on the outer and inner circumferential sides of the rotor made of magnetic material, thereby creating a brushless single-pole generator with a longer series connection. .
JP2022139552A 2022-08-16 2022-08-16 Brushless acyclic generator Pending JP2024027063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022139552A JP2024027063A (en) 2022-08-16 2022-08-16 Brushless acyclic generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022139552A JP2024027063A (en) 2022-08-16 2022-08-16 Brushless acyclic generator

Publications (1)

Publication Number Publication Date
JP2024027063A true JP2024027063A (en) 2024-02-29

Family

ID=90038574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022139552A Pending JP2024027063A (en) 2022-08-16 2022-08-16 Brushless acyclic generator

Country Status (1)

Country Link
JP (1) JP2024027063A (en)

Similar Documents

Publication Publication Date Title
US12046935B2 (en) Systems and methods for battery impedance matching to facilitate improved battery charging
US8581559B2 (en) Systems, methods, and apparatus for a homopolar generator charger with integral rechargeable battery
US6323573B1 (en) High-efficiency inductor-alternator
US8188633B2 (en) Integrated composite electromechanical machines
US3293470A (en) Electromagnetic machines
CN111541351B (en) Double-stator single-rotor axial magnetic field hybrid excitation synchronous motor
JP2011504089A (en) Generator / induction motor with concentric multi-stage rotors
RU2533886C1 (en) Brushless direct current motor
JPWO2003094329A1 (en) Power generator and torque multiplier
JP2024027063A (en) Brushless acyclic generator
CN110474493B (en) Synchronous electro-magnetic motor and application thereof
KR102195432B1 (en) One Body Electric Driving and Electric Power Generating Apparatus
US6064135A (en) Electromechanical machine and armature structure therefor
CN112968542A (en) Brushless claw-pole motor structure
JP2007037357A (en) Three pole dc motor with power generation function of homopolar machine assistance
JP6947953B1 (en) Faraday paradox generator
CN217087736U (en) Novel brushless motor
RU2435286C1 (en) Multi-disc unipolar dc machine without sliding contacts
CA2617361C (en) Continuous direct current generator
RU2716815C1 (en) Improved permanent magnet generator
US20240072623A1 (en) Improved intrinsically adapting variable generators and motors
JP2010284068A (en) Generator (fdg)
SU1288836A1 (en) Arc-stator drive
CA2335820A1 (en) Electro mechanical machine and armature structure therefor
JP2003047226A (en) Coilless magnet generator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221006