JP2024024220A - Grid stabilization system and grid stabilization method - Google Patents

Grid stabilization system and grid stabilization method Download PDF

Info

Publication number
JP2024024220A
JP2024024220A JP2022126890A JP2022126890A JP2024024220A JP 2024024220 A JP2024024220 A JP 2024024220A JP 2022126890 A JP2022126890 A JP 2022126890A JP 2022126890 A JP2022126890 A JP 2022126890A JP 2024024220 A JP2024024220 A JP 2024024220A
Authority
JP
Japan
Prior art keywords
power
received
grid
consumer
stabilization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022126890A
Other languages
Japanese (ja)
Inventor
幸雄 高野
Yukio Takano
孝行 長倉
Takayuki Nagakura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2022126890A priority Critical patent/JP2024024220A/en
Publication of JP2024024220A publication Critical patent/JP2024024220A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a grid stabilization system and a grid stabilization method that avoids grid frequency fluctuations and power outages by controlling the rate of change of power received at consumers in response to changes in a grid condition.
SOLUTION: The grid stabilization system is for stabilizing an on-premise power system 13 when the premise power system 13 that is disconnected from a commercial power grid 10 is in stand-alone operation and the entire grid is in low inertia. The grid stabilization system has low-inertia grid detection means (power receiving power detection unit 41) that detects that the entire grid to which the premise power system 13 is connected has become low inertia, a backup power source 21 with a PCS 23 that is connected to the premise power system 13 and controls charging and discharging of a power storage device 22, and a power receiving power monitoring and control device 40 that controls the output power from the backup power source 21 to the premise power system 13 to adjust the rate of change of the power receiving power to a predetermined value so that the fluctuation of the frequency of the premise power system 13 is within an acceptable range on the basis of at least the power receiving power detection value.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、電力系統の慣性に起因して負荷量の急変時に系統周波数の変動や停電が発生するのを防止するための系統安定化システム及び系統安定化方法に関する。特に、本発明は、電力系統に事故が発生して単独運転状態になった場合や、離島や僻地における小規模の独立電力系統のように、本来的に低慣性の電力系統において負荷量が急変した際の安定化を図る技術に関する。 The present invention relates to a grid stabilization system and a grid stabilization method for preventing grid frequency fluctuations and power outages from occurring when the load changes suddenly due to the inertia of the power grid. In particular, the present invention can be applied to power systems that inherently have low inertia, such as when an accident occurs in a power system resulting in islanding, or when a sudden change in load occurs in a power system that inherently has low inertia, such as a small-scale independent power system on a remote island or remote area. Related to technology for stabilizing the situation.

例えば、特許文献1には、送配電系統に事故が発生し、それまで送配電系統から受電していた工場の構内電力系統が単独運転状態になった場合に、構内電力系統内部の需給バランスを調整しながら負荷への電力供給を継続する技術が開示されている。
この特許文献1では、複数台の発電機及び負荷を有する構内電力系統が送電系統から遮断されて単独運転状態になると、両系統間の連系線の潮流状態に基づいて構内電力系統の安定化に必要な調整量(総発電量と総負荷量との差)を算出する。そして、総発電量と総負荷量との乖離率が所定値以上である場合には、両者の大小関係(潮流の順逆)に応じて高優先度の負荷を遮断し、或いは、上記調整量を各発電機に按分する等の対策を講じることにより、需給バランスを調整しつつ構内電力系統の安定化を図っている。
For example, Patent Document 1 discloses that when an accident occurs in the power transmission and distribution system and the on-premises power system of a factory that had been receiving power from the power transmission and distribution system becomes isolated, the supply and demand balance within the on-premises power system is A technique is disclosed that continues supplying power to a load while making adjustments.
In Patent Document 1, when an on-premises power system having multiple generators and loads is cut off from the power transmission system and becomes in an isolated state, the on-premises power system is stabilized based on the power flow state of the interconnection line between both systems. Calculate the amount of adjustment required (difference between total power generation and total load). If the deviation rate between the total power generation amount and the total load amount is greater than a predetermined value, the high-priority load is shut off depending on the magnitude relationship between the two (order or reverse of the power flow), or the above adjustment amount is adjusted. By taking measures such as apportioning power to each generator, we are striving to stabilize the on-site power system while adjusting the supply and demand balance.

また、特許文献2には、外部サーバ内の電力系統監視部が電力系統の安定度(慣性、予備力等)を常時監視し、系統事故により商用電源が脱落して系統安定度が低下した時に、単独運転系統を構成する需要家内のPCSを運転して分散型電源から負荷に給電することにより、単独運転系統の周波数を安定化させる技術が開示されている。 Furthermore, in Patent Document 2, a power system monitoring unit in an external server constantly monitors the stability of the power system (inertia, reserve power, etc.), and when a commercial power supply is disconnected due to a system accident and the system stability decreases, , a technique has been disclosed for stabilizing the frequency of an islanding system by operating a PCS in a consumer that constitutes the islanding system and supplying power to a load from a distributed power source.

特開2020-5336号公報([0010]~[0026]、図1~図3等)JP 2020-5336 ([0010] to [0026], Figures 1 to 3, etc.) 特開2019-201453号公報([0013]~[0105]、図1~図4等)JP2019-201453A ([0013] to [0105], Figures 1 to 4, etc.)

図4は、大規模火力発電機等からなる商用電力系統10と回路遮断器12との間で事故が発生し、回路遮断器12の動作によって商用電力系統10から解列された送電系統11を介して、工場20の構内電力系統13が単独運転系統となった場合の構成図である。商用電力系統10は、規模が十分に大きく、慣性も十分に大きいと想定する。
この系統構成は、特許文献1,2により想定されている系統事故の発生時と基本的に同一である。
FIG. 4 shows a power transmission system 11 that has been disconnected from the commercial power system 10 due to the operation of the circuit breaker 12 due to an accident occurring between a commercial power system 10 consisting of a large-scale thermal power generator, etc., and a circuit breaker 12. It is a configuration diagram when the in-plant power system 13 of the factory 20 becomes an isolated system. It is assumed that the commercial power system 10 has a sufficiently large scale and a sufficiently large inertia.
This system configuration is basically the same as that assumed in Patent Documents 1 and 2 when a system accident occurs.

図4において、30は送電系統11に接続された分散型電源であり、例えば、太陽電池31とその直流出力を所定の大きさ及び周波数の交流電力に変換する電力変換器としてのPCS(Power Conditioning System)32との組み合わせ、または、図示されていないディーゼル発電機等により構成されている。この分散型電源30は、工場20の構内設備として設置される場合もある。 In FIG. 4, reference numeral 30 denotes a distributed power source connected to the power transmission system 11, such as a PCS (Power Conditioning System) 32, or a diesel generator (not shown) or the like. This distributed power source 30 may be installed as a facility within the factory 20.

工場20の構内に設置されたバックアップ電源21は、蓄電池やキャパシタ等の蓄電装置22と、蓄電装置22の充放電を制御して構内電力系統13と蓄電装置22との間で電力を授受するための電力変換器としてのPCS23と、から構成されている。
また、構内電力系統13には交流電動機等の負荷が接続されている。
A backup power supply 21 installed on the premises of the factory 20 is used to control the charging and discharging of the power storage device 22 such as a storage battery or a capacitor, and to transfer power between the on-premise power system 13 and the power storage device 22. The PCS 23 serves as a power converter.
Further, a load such as an AC motor is connected to the on-site power system 13.

いま、回路遮断器12が動作しておらず、商用電力系統10に接続されている場合には、送電系統11の慣性が十分大きいため、図5に示すように、仮に時刻tで負荷量が急減して工場20の受電電力が急減しても、受電電力の周波数は矢印aに示す如くそれほど変動せず、許容レベル(周波数の大きさの許容値、または周波数の変動幅の許容値)の範囲に収まっている。 If the circuit breaker 12 is not operating and is connected to the commercial power system 10, the inertia of the power transmission system 11 is sufficiently large, so as shown in FIG . Even if the power received by the factory 20 suddenly decreases due to a sudden decrease in the received power, the frequency of the received power does not fluctuate much as shown by arrow a, and the frequency of the received power does not fluctuate much as shown by arrow a, resulting in a permissible level (permissible value of frequency size or permissible value of frequency fluctuation width). is within the range of

しかし、例えば商用電力系統10と回路遮断器12との間で事故が発生して回路遮断器12が動作し、構内電力系統13が単独運転系統になった場合、PCS32が擬似同期発電機としての制御機能を備えていない時や分散型電源30が小容量ディーゼル発電機である時には、構内電力系統13は低慣性状態となる。 However, if, for example, an accident occurs between the commercial power system 10 and the circuit breaker 12 and the circuit breaker 12 operates and the on-premises power system 13 becomes an islanding system, the PCS 32 becomes a pseudo synchronous generator. When the control function is not provided or when the distributed power source 30 is a small-capacity diesel generator, the on-premise power system 13 is in a low inertia state.

図6は、低慣性状態において、負荷量が急変することで受電電力が急減した際の波形である。
このとき、分散型電源30の出力は時刻t以後、直ちには立ち上がらないものとし、バックアップ電源21の出力は時刻tの前後にわたって不変(ゼロ)であると仮定している。
FIG. 6 shows waveforms when received power suddenly decreases due to a sudden change in load amount in a low inertia state.
At this time, it is assumed that the output of the distributed power source 30 does not rise immediately after time t1 , and that the output of the backup power source 21 remains unchanged (zero) before and after time t1 .

この場合、構内電力系統13の周波数は図6における矢印bのように変動して許容レベルを超えてしまい、図示されていない継電器等が動作して負荷24が停電するおそれがあった。
すなわち、従来では、系統慣性の低下に応じた対策が採られていないため、構内電力系統13の安定化対策が不十分であった。
In this case, the frequency of the on-premises power system 13 fluctuates as shown by arrow b in FIG. 6 and exceeds an allowable level, which may cause a relay (not shown) to operate and cause a power outage to the load 24.
That is, in the past, measures to stabilize the on-premise power system 13 were insufficient because no measures were taken in response to the decrease in system inertia.

そこで、本発明の解決課題は、需要家の受電電力変化率を調整することにより、負荷量の急変時における電力系統の周波数の変動や停電を回避すること、特に、低慣性系統を安定的に維持可能とした系統安定化システム及び系統安定化方法を提供することにある。 Therefore, the problem to be solved by the present invention is to avoid fluctuations in the frequency of the power system and power outages when the load changes suddenly by adjusting the rate of change in the power received by consumers, and in particular to stabilize the low-inertia system. An object of the present invention is to provide a grid stabilization system and a grid stabilization method that can be maintained.

上記課題を解決するため、本発明の系統安定化システムは、商用電力系統に接続された需要家の構内電力系統を安定化するための系統安定化システムであって、
前記商用電力系統から前記需要家が受電する電力を検出する受電電力検出手段と、
前記構内電力系統に接続され、かつ、蓄電装置を充放電制御する電力変換器を備えたバックアップ電源と、
少なくとも前記受電電力検出手段による検出値に基づいて前記バックアップ電源から前記構内電力系統に供給する電力を制御することにより、前記需要家の受電電力の変化率を所定値に調整する受電電力監視制御手段と、
を有するものである。
より詳しくは、前記需要家内の負荷量の急変時に前記構内電力系統の周波数の変動が許容範囲に収まるように、前記需要家の受電電力検出値及び前記構内電力系統が繋がる系統全体の慣性の大きさに基づいて、蓄電装置を充放電制御可能なバックアップ電源から前記構内電力系統に供給される電力を制御することにより、前記需要家の受電電力の変化率を所定値に調整するものである。
In order to solve the above-mentioned problems, the grid stabilization system of the present invention is a grid stabilization system for stabilizing the on-premises power system of a consumer connected to a commercial power system, which includes:
Received power detection means for detecting power received by the consumer from the commercial power system;
a backup power source that is connected to the on-premise power system and includes a power converter that controls charging and discharging of the power storage device;
Received power monitoring and control means for adjusting the rate of change in the received power of the customer to a predetermined value by controlling the power supplied from the backup power source to the on-premises power system based on at least a value detected by the received power detecting means. and,
It has the following.
More specifically, in order to keep the fluctuation in the frequency of the on-premises power system within an allowable range when the load within the consumer suddenly changes, the inertia of the entire system to which the on-premises power system is connected is determined. Based on this, the rate of change in the power received by the customer is adjusted to a predetermined value by controlling the power supplied to the on-premise power system from a backup power source that can control charging and discharging of the power storage device.

また、本発明の系統安定化システムは、前記構内電力系統が繋がる系統全体が低慣性状態になったことを検出する低慣性系統検出手段を更に備え、
前記低慣性系統検出手段により前記系統全体が低慣性になったことを検出した状態で前記負荷量が急変した時に、前記受電電力監視制御手段によって前記需要家の受電電力の変化率を所定値に調整するものである。
Further, the grid stabilization system of the present invention further includes a low inertia system detection means for detecting that the entire system to which the on-premises power system is connected has entered a low inertia state,
When the load amount suddenly changes while the low inertia system detection means detects that the entire system has become low inertia, the received power monitoring and control means adjusts the rate of change in the received power of the consumer to a predetermined value. It is something to be adjusted.

更に、本発明の系統安定化方法は、商用電力系統に接続された需要家の構内電力系統を安定化するための系統安定化方法であって、
前記需要家内の負荷量の急変時に前記構内電力系統の周波数の変動が許容範囲に収まるように、前記需要家の受電電力検出値及び前記構内電力系統が繋がる系統全体の慣性の大きさに基づいて、蓄電装置を充放電制御可能なバックアップ電源から前記構内電力系統に供給される電力を制御することにより、前記需要家の受電電力の変化率を所定値に調整するものである。
Furthermore, the system stabilization method of the present invention is a system stabilization method for stabilizing the on-premises power system of a consumer connected to a commercial power system, comprising:
Based on the detected value of the received power of the consumer and the magnitude of the inertia of the entire system to which the on-premises power system is connected, so that the fluctuation in the frequency of the on-premises power system falls within a permissible range when the load within the consumer suddenly changes. , the rate of change in the power received by the consumer is adjusted to a predetermined value by controlling the power supplied to the on-premises power system from a backup power source that can control charging and discharging of the power storage device.

また、本発明の系統安定化方法は、需要家の構内電力系統が繋がる系統全体が低慣性になった状態で負荷量が急変した時に前記構内電力系統を安定化するための系統安定化方法であって、
前記負荷量が急変した時に、少なくとも前記需要家の受電電力検出値に基づいて、前記構内電力系統に接続されたバックアップ電源により蓄電装置の充放電電力を制御することにより、前記構内電力系統の周波数の変動が許容範囲に収まるように前記需要家の受電電力の変化率を所定値に制御するものである。
Further, the system stabilization method of the present invention is a system stabilization method for stabilizing the on-premises power system of a consumer when the load suddenly changes while the entire system to which the on-premises power system of a consumer is connected has a low inertia. There it is,
When the load amount suddenly changes, the frequency of the on-premises power system can be adjusted by controlling charging and discharging power of the power storage device by a backup power source connected to the on-premises power system based on at least the detected value of received power of the customer. The change rate of the received power of the customer is controlled to a predetermined value so that the fluctuation of the power is within an allowable range.

本発明によれば、負荷量の急変時に需要家の受電電力変化率を調整することにより、電力系統の周波数の変動や停電を回避すると共に、単独運転系統にあってはその単独運転状態を安定的に維持することができる。 According to the present invention, by adjusting the rate of change in power received by consumers when the load changes suddenly, fluctuations in the frequency of the power system and power outages can be avoided, and in the case of an islanding system, the islanding state can be stabilized. can be maintained.

本発明の実施形態に係る系統安定化システムの構成図である。1 is a configuration diagram of a grid stabilization system according to an embodiment of the present invention. 図1において回路遮断器が動作した時(単独運転状態により低慣性系統が構成された時)の動作説明図である。FIG. 2 is an explanatory diagram of the operation when the circuit breaker is operated in FIG. 1 (when a low inertia system is configured due to the islanding state). 図1において回路遮断器が動作した時(単独運転状態により低慣性系統が構成された時)の動作説明図であり、特に、蓄電装置の蓄電余力が所定値より小さい場合の動作説明図である。FIG. 2 is an explanatory diagram of the operation when the circuit breaker operates in FIG. 1 (when a low-inertia system is configured due to the islanding state), and in particular, is an explanatory diagram of the operation when the remaining power storage capacity of the power storage device is smaller than a predetermined value. . 構内電力系統が単独運転系統になった場合の構成図である。FIG. 2 is a configuration diagram when the on-premise power system becomes an islanding system. 図4において送電系統が健全な時の動作説明図である。FIG. 5 is an explanatory diagram of the operation when the power transmission system is healthy in FIG. 4; 図4において回路遮断器が動作した時(単独運転状態により低慣性系統が構成された時)の動作説明図である。FIG. 5 is an explanatory diagram of the operation when the circuit breaker operates in FIG. 4 (when a low inertia system is configured due to the islanding state).

以下、図に沿って本発明の実施形態を説明する。
図1は、この実施形態に係る系統安定化システムの構成図であり、図4と同一の部分については同一の参照符号を付して説明を省略し、以下では図4との相違点を中心に説明する。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a configuration diagram of the grid stabilization system according to this embodiment, and the same parts as in FIG. 4 are given the same reference numerals and explanations are omitted. Explain.

なお、図1における分散型電源30内の電力変換器は太陽電池31の直流出力を交流電力に変換するインバータでも良いし、バックアップ電源21内の電力変換器は蓄電装置22と構内電力系統13との間で順逆変換(双方向の電力変換)を行って電力を授受するインバータでも良い。すなわち、これらの電力変換器の種類は、いわゆるPCSに限定されるものではない。 Note that the power converter in the distributed power source 30 in FIG. An inverter that transfers power by performing forward/reverse conversion (bidirectional power conversion) between the two may also be used. That is, the types of these power converters are not limited to so-called PCS.

図1において、工場20の受電点には受電電力検出部41が設置されている。この受電電力検出部41は、送電系統11または分散型電源30から入力される電流及び電圧に基づいて工場20の受電電力を検出し、その検出結果を受電電力監視制御装置40に無線回線または有線回線を介して送信する機能を有する。なお、受電電力監視制御装置40は、回路遮断器12のオン・オフ状態も取得可能になっている。 In FIG. 1, a received power detection unit 41 is installed at a power receiving point of a factory 20. The received power detection unit 41 detects the received power of the factory 20 based on the current and voltage input from the power transmission system 11 or the distributed power source 30, and sends the detection result to the received power monitoring and control device 40 via a wireless line or a wired connection. It has the ability to transmit via line. Note that the received power monitoring and control device 40 can also acquire the on/off state of the circuit breaker 12.

受電電力監視制御装置40は、受電電力検出部41から受信した受電電力検出値や回路遮断器12のオン・オフ状態に基づいて所定のプログラムを実行するCPU等の演算処理装置、メモリ、通信インターフェース等を備えている。なお、受電電力監視制御装置40は工場20に付随させて設置しても良いが、他の需要家を含む電力系統全体を監視制御する上位の系統監視制御装置に、受電電力監視制御装置40の機能を持たせても良い。 The received power monitoring and control device 40 includes an arithmetic processing device such as a CPU, a memory, and a communication interface that executes a predetermined program based on the received power detection value received from the received power detection unit 41 and the on/off state of the circuit breaker 12. etc. Although the received power monitoring and control device 40 may be installed in conjunction with the factory 20, the received power monitoring and control device 40 may be installed in a higher-level system monitoring and control device that monitors and controls the entire power system including other consumers. It may also have a function.

受電電力監視制御装置40は、構内電力系統13(バックアップ電源21内のPCS23)が繋がる系統全体の慣性の大きさ、及び、受電電力検出値や回路遮断器12のオン・オフ状態に基づいて、負荷量の急減時に、工場20の受電電力の変化率を調整する。
具体的には、バックアップ電源21が構内電力系統13に出力するべき電力に応じた充放電制御信号を受電電力監視制御装置40が生成し、この充放電制御信号をPCS23に送信して蓄電装置22を充放電させることにより、工場20の受電電力の潮流の変化率を調整する。
なお、負荷量が急減したことは、受電電力検出値や負荷24からの情報に基づいて検出可能である。
The received power monitoring and control device 40 uses the inertia of the entire system to which the on-premise power system 13 (PCS 23 in the backup power supply 21) is connected, the received power detection value, and the on/off state of the circuit breaker 12 to When the load amount suddenly decreases, the rate of change in the received power of the factory 20 is adjusted.
Specifically, the received power monitoring control device 40 generates a charge/discharge control signal according to the power that the backup power supply 21 should output to the on-premises power system 13, transmits this charge/discharge control signal to the PCS 23, and transmits the charge/discharge control signal to the power storage device 22. By charging and discharging the power, the rate of change in the power flow of the received power in the factory 20 is adjusted.
Note that the sudden decrease in the load amount can be detected based on the received power detection value and information from the load 24.

上述した負荷量急変時における受電電力変化率の調整動作は、
(a)送電系統11(商用電力系統10と回路遮断器12との間の送電路を含む)に事故が発生して回路遮断器12がオフされ、構内電力系統13が単独運転状態となり、構内電力系統13が繋がる系統全体が低慣性系統になった場合、
(b)構内電力系統13が単独運転状態となり、構内電力系統13が繋がる系統全体が低慣性系統となって、バックアップ電源21内の蓄電装置22の蓄電余力が小さい場合(蓄電装置22の定格容量が小さい場合やSOCが大きい場合)、
(c)送電系統11が健全であって回路遮断器12がオン状態であり、構内電力系統13が繋がる系統全体の慣性が十分に大きい場合、
の何れの場合にも実行される。
The adjustment operation of the rate of change in received power when the load suddenly changes as described above is as follows:
(a) An accident occurs in the power transmission system 11 (including the power transmission line between the commercial power system 10 and the circuit breaker 12), the circuit breaker 12 is turned off, the on-site power system 13 becomes isolated, and the on-site When the entire system to which the power system 13 is connected becomes a low inertia system,
(b) When the on-premises power system 13 is in an isolated operation state, the entire system to which the on-premises power system 13 is connected becomes a low-inertia system, and the remaining power storage capacity of the power storage device 22 in the backup power source 21 is small (rated capacity of the power storage device 22 is small or SOC is large),
(c) When the power transmission system 11 is healthy, the circuit breaker 12 is in the on state, and the inertia of the entire system to which the on-premise power system 13 is connected is sufficiently large,
is executed in either case.

上記の(a),(b)において、前記系統全体が低慣性系統になったことは、受電電力監視制御装置40が回路遮断器12のオフ状態や受電電力検出部41による受電電力検出値を受信することにより検出可能である。受電電力監視制御装置40は、前記系統全体が低慣性となった場合、負荷量が急減した時に受電電力変化率を徐々に減少(緩減)させる。
また、上記の(c)の場合には、上記の(a),(b)の場合よりも大きい変化率で受電電力を減少させれば良い。
なお、受電電力変化率の調整に当たっては、蓄電装置22のSOCの範囲内で実現可能な変化率を考慮することは言うまでもない。
In (a) and (b) above, the fact that the entire system has become a low-inertia system means that the received power monitoring and control device 40 detects the OFF state of the circuit breaker 12 and the received power detected value by the received power detector 41. Detection is possible by receiving the information. The received power monitoring and control device 40 gradually reduces (gently decreases) the received power change rate when the load amount suddenly decreases when the entire system has low inertia.
Furthermore, in the case of (c) above, the received power may be reduced at a larger rate of change than in the cases of (a) and (b) above.
It goes without saying that when adjusting the rate of change in received power, a rate of change that can be realized within the range of the SOC of power storage device 22 is taken into account.

次に、図2は、送電系統11に事故が発生して回路遮断器12がオフし、構内電力系統13が、十分に大きい慣性を有する商用電力系統10から解列されて単独運転系統(低慣性系統)となった場合において、時刻tで負荷量が急減した時の動作を示している。
受電電力監視制御装置40は、受電電力検出部41から受信した受電電力検出値や回路遮断器12のオフ情報に基づいて構内電力系統13が繋がる系統全体が低慣性になったことを検出する。この状態で時刻tに負荷量が急減したら、時刻t以後は受電電力を緩減させるように受電電力変化率を設定する。そして、この設定値に従って工場20の受電電力が緩やかに減少するように蓄電装置22の充放電制御信号を生成してPCS23に送信し、PCS23が蓄電装置22を充電させることにより、バックアップ電源21の出力を制御して受電電力変化率を上記設定値に一致させる。
Next, in FIG. 2, an accident occurs in the power transmission system 11, the circuit breaker 12 is turned off, and the on-premises power system 13 is disconnected from the commercial power system 10, which has a sufficiently large inertia, and the on-premises power system 13 is disconnected from the commercial power system 10, which has sufficiently large inertia. This figure shows the operation when the load amount suddenly decreases at time t1 in the case of an inertial system.
The received power monitoring and control device 40 detects that the entire system to which the on-premise power system 13 is connected has become low inertia based on the received power detection value and the off information of the circuit breaker 12 received from the received power detection unit 41. If the amount of load suddenly decreases at time t 1 in this state, the rate of change in received power is set so that the received power is gradually decreased after time t 1 . Then, a charging/discharging control signal for the power storage device 22 is generated and transmitted to the PCS 23 so that the power received by the factory 20 is gradually reduced according to this set value, and the PCS 23 charges the power storage device 22, thereby increasing the power of the backup power source 21. The output is controlled to make the rate of change in received power match the set value.

図2では、時刻tに蓄電装置22への充電電力を大きくし、その後は時刻tまで充電電力を徐々に小さくする充放電制御信号をPCS23に与えて受電電力変化率を緩減させている。この期間(t~t)の蓄電装置22への充電電力Pは、分散型電源30から構内電力系統13、PCS23を介して蓄電装置22に向う潮流によって供給される。 In FIG. 2, the charging power to the power storage device 22 is increased at time t1 , and thereafter, a charging/discharging control signal is given to the PCS 23 to gradually decrease the charging power until time t2 , thereby gradually reducing the rate of change in received power. There is. Charging power P 1 to power storage device 22 during this period (t 1 to t 2 ) is supplied by a current flowing from distributed power source 30 toward power storage device 22 via on-site power system 13 and PCS 23 .

図2から明らかなように、時刻t以後は、受電電力とバックアップ電源21の出力(蓄電装置22への充電電力P)との和が負荷量と等しくなる。言い換えれば、期間(t~t)における受電電力の減少分が蓄電装置22への充電電力Pとなり、負荷24に供給される電力(負荷量)は時刻t以後、一定値のままとなっている。
上述した受電電力監視制御装置40及びバックアップ電源21の動作により、受電電力の周波数は図2に矢印cで示すようにそれほど変動しなくなり、停電を回避して構内電力系統13の安定化を図ることができる。
As is clear from FIG. 2, after time t1 , the sum of the received power and the output of the backup power supply 21 (the charging power P1 to the power storage device 22) becomes equal to the load amount. In other words, the decrease in the received power during the period (t 1 to t 2 ) becomes the charging power P 1 to the power storage device 22, and the power (load amount) supplied to the load 24 remains at a constant value after time t 1 . It becomes.
Due to the operations of the received power monitoring control device 40 and the backup power supply 21 described above, the frequency of the received power no longer fluctuates as much as shown by the arrow c in FIG. I can do it.

次に、図3は、図2と同様に構内電力系統13が繋がる系統全体が低慣性になった状態で時刻tに負荷量が急減した場合の動作を示すものであるが、特に、蓄電装置22の蓄電余力が小さい場合の動作説明図である。
蓄電装置22の蓄電余力が所定値より小さい場合(蓄電装置22の容量がもともと小さい場合、または、蓄電装置22のSOCが大きいため更に充電できる容量が小さい場合)には、図2に示したように受電電力変化率を緩減させるための充電電力Pを確保できないことが考えられる。
Next, FIG. 3 shows the operation when the load amount suddenly decreases at time t1 in a state where the entire system to which the on-premises power system 13 is connected has low inertia, as in FIG. 2. FIG. 4 is an explanatory diagram of operation when the remaining power storage capacity of the device 22 is small.
When the remaining power storage capacity of the power storage device 22 is smaller than a predetermined value (when the capacity of the power storage device 22 is originally small, or when the SOC of the power storage device 22 is large and the capacity that can be further charged is small), as shown in FIG. It is conceivable that charging power P1 for gradually reducing the rate of change in received power cannot be secured.

従って、このような場合には、図3に示すごとく、期間(t~t)における蓄電装置22への充電電力Pが図2の充電電力Pよりも小さくなるように、受電電力変化率を図2の場合より大きい値に変更することを許容する。この場合、受電電力の周波数は矢印dのように変動するが、許容レベルを超えない限り、この周波数変動を受け容れても特に支障はない。
蓄電余力が所定値より小さい場合に受電電力変化率をどの程度大きくするかは、蓄電装置22の容量やSOC等に基づいて決定すれば良い。
Therefore, in such a case, as shown in FIG. 3, the received power is adjusted such that the charging power P 2 to the power storage device 22 during the period (t 1 to t 3 ) is smaller than the charging power P 1 in FIG. It is allowed to change the rate of change to a value larger than that in the case of FIG. In this case, the frequency of the received power fluctuates as shown by arrow d, but there is no particular problem in accepting this frequency fluctuation as long as it does not exceed the permissible level.
How much to increase the received power change rate when the remaining power storage capacity is smaller than a predetermined value may be determined based on the capacity, SOC, etc. of the power storage device 22.

ここで、図3に示したような受電電力変化率は、送電系統11が健全であって回路遮断器12がオン状態であり、構内電力系統13が繋がる系統全体の慣性が十分に大きい場合であって、時刻tに負荷量が急減した場合にも適用可能である。この場合も、受電電力の周波数が時刻t以後に変動したとしても、許容レベルを超えない限り特に支障はない。 Here, the rate of change in received power as shown in FIG. 3 is the same when the power transmission system 11 is healthy, the circuit breaker 12 is on, and the inertia of the entire system to which the on-premises power system 13 is connected is sufficiently large. Therefore, it is also applicable when the load amount suddenly decreases at time t1 . In this case as well, even if the frequency of the received power fluctuates after time t1 , there is no particular problem as long as it does not exceed the permissible level.

図2や図3における時刻t以降の受電電力変化率は、分散型電源30の種類や容量を考慮した系統全体の慣性の大きさや負荷量の変化率に応じて予め演算した値を記憶しておき、実際に時刻tで負荷量が急変した場合に、記憶されている受電電力変化率に変更しても良い。 The rate of change in received power after time t1 in FIGS. 2 and 3 is a value calculated in advance according to the magnitude of inertia of the entire system and the rate of change in load amount, taking into account the type and capacity of the distributed power source 30. Then, when the load amount actually changes suddenly at time t1 , the received power change rate may be changed to the stored received power change rate.

なお、上記の実施形態では需要家が工場20である場合を説明したが、本発明は、オフィスビルや大規模商業施設等の需要家を対象とした場合にも適用可能であることは言うまでもない。
また、上記の実施形態では、低慣性系統が構成される例として、商用電力系統10から解列された電力系統が単独運転状態になった場合を例示したが、例えば離島や僻地のように、本来的に慣性の小さいディーゼル発電機等から電力が供給される電力系統も上記低慣性系統に含まれるものであり、本発明は、これらの低慣性系統において負荷が急変した場合に有効である。
In the above embodiment, the case where the consumer is the factory 20 has been described, but it goes without saying that the present invention is also applicable to cases where the consumer is an office building, a large-scale commercial facility, etc. .
Further, in the above embodiment, as an example of a low-inertia system being configured, a case where a power system disconnected from the commercial power system 10 enters an islanding state is exemplified, but for example, in a remote island or a remote area, Power systems to which power is supplied from diesel generators and the like that inherently have low inertia are also included in the above-mentioned low-inertia systems, and the present invention is effective when the load suddenly changes in these low-inertia systems.

10:商用電力系統
11:送電系統
12:回路遮断器
13:構内電力系統
20:工場
21:バックアップ電源
22:蓄電装置
23:PCS
24:負荷
30:分散型電源
31:太陽電池
32:PCS
40:受電電力監視制御装置
41:受電電力検出部
10: Commercial power system 11: Power transmission system 12: Circuit breaker 13: On-premises power system 20: Factory 21: Backup power supply 22: Power storage device 23: PCS
24: Load 30: Distributed power source 31: Solar cell 32: PCS
40: Received power monitoring control device 41: Received power detection unit

Claims (11)

商用電力系統に接続された需要家の構内電力系統を安定化するための系統安定化システムであって、
前記商用電力系統から前記需要家が受電する電力を検出する受電電力検出手段と、
前記構内電力系統に接続され、かつ、蓄電装置を充放電制御する電力変換器を備えたバックアップ電源と、
少なくとも前記受電電力検出手段による検出値に基づいて前記バックアップ電源から前記構内電力系統に供給する電力を制御することにより、前記需要家の受電電力の変化率を所定値に調整する受電電力監視制御手段と、
を有することを特徴とした系統安定化システム。
A system stabilization system for stabilizing the on-premise power system of a consumer connected to a commercial power system, the system comprising:
Received power detection means for detecting power received by the consumer from the commercial power system;
a backup power source that is connected to the on-premise power system and includes a power converter that controls charging and discharging of the power storage device;
Received power monitoring and control means for adjusting the rate of change in the received power of the customer to a predetermined value by controlling the power supplied from the backup power source to the on-premises power system based on at least a value detected by the received power detecting means. and,
A grid stabilization system characterized by having.
請求項1に記載した系統安定化システムにおいて、
前記需要家の受電点に分散型電源が接続されていることを特徴とした系統安定化システム。
In the grid stabilization system according to claim 1,
A grid stabilization system characterized in that a distributed power source is connected to a power receiving point of the consumer.
商用電力系統に接続された需要家の構内電力系統を安定化するための系統安定化方法であって、
前記需要家内の負荷量の急変時に前記構内電力系統の周波数の変動が許容範囲に収まるように、前記需要家の受電電力検出値及び前記構内電力系統が繋がる系統全体の慣性の大きさに基づいて、蓄電装置を充放電制御可能なバックアップ電源から前記構内電力系統に供給される電力を制御することにより、前記需要家の受電電力の変化率を所定値に調整することを特徴とした系統安定化方法。
A system stabilization method for stabilizing a premises power system of a consumer connected to a commercial power system, the method comprising:
Based on the detected value of the received power of the consumer and the magnitude of the inertia of the entire system to which the on-premises power system is connected, so that the fluctuation in the frequency of the on-premises power system falls within a permissible range when the load within the consumer suddenly changes. , a system stabilization system characterized in that the rate of change in the power received by the consumer is adjusted to a predetermined value by controlling the power supplied to the on-premise power system from a backup power source that can control charging and discharging of a power storage device. Method.
請求項1または2に記載した系統安定化システムにおいて、
前記構内電力系統が繋がる系統全体が低慣性状態になったことを検出する低慣性系統検出手段を更に備え、
前記低慣性系統検出手段により前記系統全体が低慣性になったことを検出した状態で前記負荷量が急変した時に、前記受電電力監視制御手段によって前記需要家の受電電力の変化率を所定値に調整することを特徴とした系統安定化システム。
In the grid stabilization system according to claim 1 or 2,
further comprising low inertia system detection means for detecting that the entire system to which the on-premise power system is connected has entered a low inertia state,
When the load amount suddenly changes while the low inertia system detection means detects that the entire system has become low inertia, the received power monitoring and control means adjusts the rate of change in the received power of the consumer to a predetermined value. A grid stabilization system that features adjustment.
請求項4に記載した系統安定化システムにおいて、
前記受電電力検出手段が、前記低慣性系統検出手段として機能することを特徴とする系統安定化システム。
In the grid stabilization system according to claim 4,
A system stabilizing system, wherein the received power detection means functions as the low inertia system detection means.
請求項4に記載した系統安定化システムにおいて、
前記商用電力系統と前記需要家との間に設置された回路遮断器のオン・オフ情報を検出する手段を備え、当該手段が前記低慣性系統検出手段として機能することを特徴とする系統安定化システム。
In the grid stabilization system according to claim 4,
System stabilization comprising means for detecting on/off information of a circuit breaker installed between the commercial power system and the consumer, the means functioning as the low inertia system detection means. system.
請求項2に記載した系統安定化システムにおいて、
前記負荷量が急変した時の前記蓄電装置への充電電力を、前記分散型電源から前記構内電力系統を介して供給することを特徴とする系統安定化システム。
In the grid stabilization system according to claim 2,
A grid stabilization system characterized in that when the load amount suddenly changes, charging power to the power storage device is supplied from the distributed power source via the on-premises power system.
請求項1または2に記載した系統安定化システムにおいて、
前記受電電力監視制御手段は、前記受電電力の変化率を前記蓄電装置の蓄電余力に応じて変化させることを特徴とする系統安定化システム。
In the grid stabilization system according to claim 1 or 2,
The grid stabilization system is characterized in that the received power monitoring control means changes the rate of change of the received power in accordance with the remaining power storage capacity of the power storage device.
需要家の構内電力系統が繋がる系統全体が低慣性になった状態で負荷量が急変した時に前記構内電力系統を安定化するための系統安定化方法であって、
前記負荷量が急変した時に、少なくとも前記需要家の受電電力検出値に基づいて、前記構内電力系統に接続されたバックアップ電源により蓄電装置の充放電電力を制御することにより、前記構内電力系統の周波数の変動が許容範囲に収まるように前記需要家の受電電力の変化率を所定値に制御することを特徴とする系統安定化方法。
A system stabilization method for stabilizing the on-premises power system of a consumer when the load suddenly changes in a state where the entire system to which the on-premises power system of a consumer is connected has a low inertia, the method comprising:
When the load amount suddenly changes, the frequency of the on-premises power system can be adjusted by controlling charging and discharging power of the power storage device by a backup power source connected to the on-premises power system based on at least the detected value of received power of the customer. 1. A system stabilization method, comprising: controlling a rate of change in power received by the consumer to a predetermined value so that fluctuations in power fall within an allowable range.
請求項9に記載した系統安定化方法において、
前記負荷量が急変した時の前記蓄電装置への充電電力を、前記需要家の受電点に接続された分散型電源から前記構内電力系統を介して供給することを特徴とする系統安定化方法。
In the system stabilization method according to claim 9,
A system stabilization method, characterized in that when the load amount suddenly changes, charging power to the power storage device is supplied from a distributed power source connected to a power receiving point of the consumer via the on-premises power system.
請求項9または10に記載した系統安定化方法において、
前記受電電力の変化率を、前記蓄電装置の蓄電余力に応じて変化させることを特徴とする系統安定化方法。
In the system stabilization method according to claim 9 or 10,
A system stabilization method characterized in that the rate of change of the received power is changed according to the remaining power storage capacity of the power storage device.
JP2022126890A 2022-08-09 2022-08-09 Grid stabilization system and grid stabilization method Pending JP2024024220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022126890A JP2024024220A (en) 2022-08-09 2022-08-09 Grid stabilization system and grid stabilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022126890A JP2024024220A (en) 2022-08-09 2022-08-09 Grid stabilization system and grid stabilization method

Publications (1)

Publication Number Publication Date
JP2024024220A true JP2024024220A (en) 2024-02-22

Family

ID=89940136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022126890A Pending JP2024024220A (en) 2022-08-09 2022-08-09 Grid stabilization system and grid stabilization method

Country Status (1)

Country Link
JP (1) JP2024024220A (en)

Similar Documents

Publication Publication Date Title
CN111837309B (en) Method of operating an energy generating system and inverter of an energy generating system
JP4053890B2 (en) Wind turbine operating method
JP2011067078A (en) Method and device for controlling power supply system
WO2007052349A1 (en) Electric power supply system and autonomous type distributed control system for electric power supply network and control method
JP4616579B2 (en) Power supply system
JP4794523B2 (en) Voltage fluctuation suppression device for renewable energy power generation
JP2022020005A (en) Power management system
JP2006288079A (en) Power equipment connection device, power supply system, power equipment connection method, and power system operation method
WO2018179714A1 (en) Power conversion device and power conversion system
JP6760474B1 (en) Distributed power system
WO2015098083A1 (en) Power supply/demand control device
US20170279281A1 (en) Power generation assembly, management system and method
JP2024024220A (en) Grid stabilization system and grid stabilization method
WO2018179713A1 (en) Power conversion device, power conversion system
JP7044091B2 (en) Power management system
WO2020203993A1 (en) Power management system
WO2018179712A1 (en) Power conversion device, power conversion system
JP6787473B1 (en) Distributed power system
JP2024017513A (en) Distributed power supply system and method for controlling distributed power supply
JP6973439B2 (en) Power management system
US20230369889A1 (en) Power control device, power control method, and power control program
JP6791343B1 (en) Distributed power system
JP6625254B1 (en) Wide Area Autonomous Blackout Avoidance Control System
JP7044090B2 (en) Power management system
KR102672614B1 (en) Apparatus and method for controlling energy storage device based on rate of change of frequency

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20220927

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20221006