JP2024023013A - Micro mixer for flow synthesis device and flow synthesis device - Google Patents

Micro mixer for flow synthesis device and flow synthesis device Download PDF

Info

Publication number
JP2024023013A
JP2024023013A JP2022126532A JP2022126532A JP2024023013A JP 2024023013 A JP2024023013 A JP 2024023013A JP 2022126532 A JP2022126532 A JP 2022126532A JP 2022126532 A JP2022126532 A JP 2022126532A JP 2024023013 A JP2024023013 A JP 2024023013A
Authority
JP
Japan
Prior art keywords
gas phase
flow path
liquid phase
synthesis
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022126532A
Other languages
Japanese (ja)
Inventor
和俊 重田
Kazutoshi Shigeta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakamura Choukou Co Ltd
Original Assignee
Nakamura Choukou Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakamura Choukou Co Ltd filed Critical Nakamura Choukou Co Ltd
Priority to JP2022126532A priority Critical patent/JP2024023013A/en
Publication of JP2024023013A publication Critical patent/JP2024023013A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Micromachines (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a micro mixer for a flow synthesis device where confluence of a gas phase and a liquid phase can be performed at a prescribed quantitative ratio without flowing back of the liquid phase to a gas phase supply flow channel side even a pressure difference between the supplied gas phase and the liquid phase occurs when the confluence of the gas phase and the liquid phase is performed and a gas-liquid reaction is continuously performed for flow synthesis.
SOLUTION: In a micro mixer for a flow synthesis device having a hexagonal selector valve, a gas phase supply flow channel, a liquid phase supply flow channel, a discharge flow channel, a synthesis flow channel and a sample loop,: a first flow channel where the gas phase or liquid phase supply flow channel, the sample loop and the discharge flow channel are communicated and at the same time, the liquid phase or gas phase supply flow channel and the synthesis flow channel are communicated and a second flow channel where the gas phase or liquid phase supply flow channel, the sample loop and the discharge flow channel are communicated and at the same time, the liquid phase or gas phase supply flow channel, the sample loop and the synthesis flow channel are communicated are alternately changed by the hexagonal selector valve; and the liquid phase and the gas phase can be alternately flowed out to the synthesis flow channel.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、フロー合成装置用マイクロミキサー及び当該フロー合成装置用マイクロミキサーを有するフロー合成装置に関するものである。 The present invention relates to a micromixer for a flow synthesizer and a flow synthesizer having the micromixer for a flow synthesizer.

マイクロミキサーを有するフロー合成装置は、微小な断面を有する微小流路を利用することで、比表面積の大きさに基づく精密温度制御が可能、安定層流界面間の分子拡散に基づく精密混合制御が可能、微小流路内の滞留時間の精密制御により反応時間の制御が可能、などの特性を有するとされている。そのため、これらの特性を利用して、化学合成、新規物質の創製などに用いられている。 A flow synthesis device with a micromixer uses a microchannel with a microscopic cross section to enable precise temperature control based on the size of the specific surface area, as well as precise mixing control based on molecular diffusion between stable laminar flow interfaces. The reaction time can be controlled by precisely controlling the residence time in the microchannel. Therefore, these properties are used in chemical synthesis and the creation of new substances.

このようなフロー合成装置では、マイクロミキサーにおいて複数の流体を微小流路の混合流路に連続して導入して混合させる。前述のようにマイクロミキサーでの混合は分子拡散を利用するものであるが、微小流路内に流体を導入し、分子拡散により均一に複数の流体を混合させることは必ずしも容易ではない。 In such a flow synthesis device, a plurality of fluids are continuously introduced into a mixing channel of microchannels in a micromixer and mixed. As mentioned above, mixing in a micromixer utilizes molecular diffusion, but it is not always easy to introduce fluids into a microchannel and mix multiple fluids uniformly by molecular diffusion.

この改善策として、例えば特許文献1では、混合部分において混合対象の流体を薄くかつ一様な多層に形成すること、あるいは薄い層を保ちつつ流速を減速させるために、混合流路とこれに接続する複数の流入路を有し、少なくとも2種の流体がそれぞれ複数の流入路から混合流路へ導入されて流体の混合が行われる流体混合器であって、前記混合流路には、流れ方向で前記複数の流入路が所定間隔で接続されることにより複数の流路接続部が設けられ、且つ隣り合う流路接続部では異なる種類の流体が導入されるように配管されているものが提案されている。 As an improvement measure for this, for example, in Patent Document 1, in order to form the fluid to be mixed in a thin and uniform multi-layer in the mixing part, or to reduce the flow velocity while maintaining a thin layer, a mixing channel and a connection thereto are proposed. The fluid mixer has a plurality of inflow paths, and mixes the fluids by introducing at least two types of fluids from the plurality of inflow paths into the mixing flow path, the mixing flow path having a flow direction. It has been proposed that a plurality of flow path connecting portions are provided by connecting the plurality of inflow paths at predetermined intervals, and that adjacent flow path connecting portions are piped so that different types of fluids are introduced. has been done.

また、前述の分子拡散による均一混合に関する点以外に、特許文献2には、このようなフロー合成装置を用いてラジカル重合反応による高分子合成を行う場合に理想的な分子量分布を実現するための要求機能として、(i)均一温度制御、(ii)生成物である高分子の高粘性送液、(iii)気液混合/分離が挙げられている。そして、この(iii)の機能を実現するための構成として、気体は透過するが液体は透過しない特殊な弾性管を所定の圧力チャンバー内に設け、弾性管内で反応を行うことが記載されている。 In addition to the above-mentioned point regarding uniform mixing by molecular diffusion, Patent Document 2 also describes how to achieve an ideal molecular weight distribution when performing polymer synthesis by radical polymerization reaction using such a flow synthesizer. The required functions include (i) uniform temperature control, (ii) high viscosity liquid delivery of the polymer product, and (iii) gas-liquid mixing/separation. As a configuration for realizing the function (iii), it is described that a special elastic tube that allows gas to pass through but not liquid is provided in a predetermined pressure chamber, and that the reaction is carried out within the elastic tube. .

国際公開第2006/030952号International Publication No. 2006/030952 特開2009-274030号公報JP2009-274030A

ところで、各種の化学合成や、新規物質の創製を、マイクロミキサーを有するフロー合成装置を用いて検討する際に使用する出発原料としては、気相、液相などの各種のもの挙げられる。微小流路の混合流路内にこれらの各相を導入して混合するには一般に大きな圧力を付与する必要がある。出発原料の特性はさまざまであり、導入圧力はその特性に応じて選択するが、混合流路に導入するには、導入される各相の圧力差を極力小さくし圧力の平衡をとるように導入圧力などを制御する。出発原料が気相同士や液相同士の場合は、導入圧力を制御して、混合流路に導入し易い傾向にあるが、出発原料が液相と気相である場合、それらの特性は大きく異なり、圧力の平衡をとることが困難である。 Incidentally, starting materials used when examining various chemical syntheses and the creation of new substances using a flow synthesis apparatus having a micromixer include various starting materials such as gas phase and liquid phase. In general, it is necessary to apply a large pressure to introduce and mix these phases into the mixing channel of the microchannel. The characteristics of the starting materials vary, and the introduction pressure should be selected according to their characteristics. However, when introducing the starting materials into the mixing flow path, it is necessary to minimize the pressure difference between the introduced phases and balance the pressures. Control pressure etc. When the starting materials are in gas phase or liquid phase, it tends to be easier to introduce them into the mixing channel by controlling the introduction pressure, but when the starting materials are in liquid phase and gas phase, their characteristics differ greatly. Differently, it is difficult to balance the pressure.

本発明者は、一般的なT字型マイクロミキサーを用い、これに気相と液相とを供給し両者を混合させることを試みたが、圧力差が大きく、気相の供給路側に液相が逆流し混合できないことを確認した。 The present inventor attempted to supply a gas phase and a liquid phase to the general T-shaped micro mixer and mix the two, but the pressure difference was large, and the liquid phase was placed on the supply path side of the gas phase. It was confirmed that the water could not be mixed by backflowing.

前述の特許文献1、2には、適用可能な流体として気体、液体などが挙げられている。しかしながら、特許文献1に記載の発明では、混合対象の流体を薄くかつ一様な多層に形成して、効率的な分子拡散による混合を実現するために、複雑な微小流路が形成されている。このような複雑な微小流路に、液相を導入するには、かなりの高圧を要すると考えられる。そのため、このような流体混合器に液相と気相を混合させようとすると、気相をさらに高圧で導入する必要があるが、実際には非常に困難であると考えられる。また、特許文献2に記載の発明では、前述のように、特定の弾性管を用いて、弾性管内外の気体の移動を行うことが記載されているが、弾性管内に気体を導入するには、やはり相当の圧力が必要になると考えられ、実現は困難と考えられる。特許文献2には、弾性管内の液相内に反応等により生じた気体を弾性管外に移動させることは具体的に記載されているが、弾性管外の気体を弾性管内に移動させる具体例は言及されていない。 The above-mentioned Patent Documents 1 and 2 list gas, liquid, etc. as applicable fluids. However, in the invention described in Patent Document 1, complicated microchannels are formed in order to form the fluid to be mixed into a thin and uniform multilayer and achieve mixing by efficient molecular diffusion. . It is thought that quite high pressure is required to introduce a liquid phase into such a complicated microchannel. Therefore, in order to mix a liquid phase and a gas phase into such a fluid mixer, it is necessary to introduce the gas phase at a higher pressure, which is considered to be extremely difficult in practice. Further, in the invention described in Patent Document 2, as mentioned above, it is described that a specific elastic tube is used to move gas inside and outside the elastic tube, but in order to introduce gas into the elastic tube, , it is thought that a considerable amount of pressure would be required, and it would be difficult to realize this. Patent Document 2 specifically describes moving gas generated by reaction or the like in the liquid phase inside the elastic tube outside the elastic tube, but does not provide a specific example of moving gas outside the elastic tube into the elastic tube. is not mentioned.

そこで、本発明の目的は、気相と液相とをマイクロミキサーにより合流させて連続して気液反応をさせるフロー合成を行う際に、供給する気相と液相に圧力差があっても、液相が気相の供給用流路側に逆流することなく、気相と液相とを所定の量比で合流させることが可能なフロー合成装置用マイクロミキサー、及び、当該フロー合成装置用マイクロミキサーを有し、所望の気液反応によるフロー合成が可能なフロー合成装置を提供することにある。 Therefore, an object of the present invention is to perform flow synthesis in which a gas phase and a liquid phase are brought together using a micromixer to continuously perform a gas-liquid reaction, even if there is a pressure difference between the supplied gas phase and the liquid phase. , a micro mixer for a flow synthesizer capable of merging a gas phase and a liquid phase at a predetermined ratio without the liquid phase flowing back into the gas phase supply channel side, and a micro mixer for the flow synthesizer. It is an object of the present invention to provide a flow synthesis device having a mixer and capable of performing flow synthesis by a desired gas-liquid reaction.

本発明者は、前述の課題解決のために鋭意検討を行った。その結果、気相と液相とをマイクロミキサーにより合流させて連続して気液反応をさせるフロー合成を行う際に、各供給用流路から連続して供給される気相と液相とを連続して交互に合成用流路に流出させることで液相が気相の供給用流路側に逆流するのを防止して所望の量比で気相と液相との気液反応を連続的に行うことが可能であることを見出した。本発明の要旨は以下のとおりである。 The present inventor conducted extensive studies to solve the above-mentioned problems. As a result, when performing flow synthesis in which a gas phase and a liquid phase are combined using a micromixer to continuously perform a gas-liquid reaction, the gas phase and liquid phase that are continuously supplied from each supply channel are By continuously and alternately flowing the liquid phase into the synthesis flow path, the liquid phase is prevented from flowing back into the gas phase supply flow path, and the gas-liquid reaction between the gas phase and the liquid phase is continuously performed at the desired ratio. I found out that it is possible to do this. The gist of the present invention is as follows.

本発明の第一は、気相と液相を連続的に合流させるフロー合成装置用マイクロミキサーであって、該フロー合成装置用マイクロミキサーは、六方切替バルブと、気相供給用流路と、液相供給用流路と、排出用流路と、合成用流路と、サンプルループとを有し、前記六方切替バルブは、前記気相供給用流路と連結する気相供給口、前記液相供給用流路と連結する液相供給口、排出用流路と連結する排出口、合成用流路と連結する合成用流出口、前記サンプルループの両端と連結する2つのサンプルループ用開口を有し、前記六方切替バルブは、気相又は液相供給用流路とサンプルループと排出用流路が連通すると同時に、液相又は気相供給用流路と合成用流路とが連通する第1流路と、気相又は液相供給用流路と排出用流路が連通すると同時に、液相又は気相供給用流路とサンプルループと合成用流路とが連通する第2流路とに切り替え可能であり、前記第1流路と前記第2流路とを交互に切り替えて、少なくともサンプルループに流入させた気相又は液相を合成用流路に流出させることで、液相と気相を合成用流路に交互に流出させることが可能である、フロー合成装置用マイクロミキサーに関する。 The first aspect of the present invention is a micromixer for a flow synthesizer that continuously merges a gas phase and a liquid phase, and the micromixer for a flow synthesizer includes a six-way switching valve, a gas phase supply channel, The hexagonal switching valve has a liquid phase supply channel, a discharge channel, a synthesis channel, and a sample loop, and the hexagonal switching valve has a gas phase supply port connected to the gas phase supply channel, and a gas phase supply port connected to the gas phase supply channel; A liquid phase supply port connected to the phase supply flow path, a discharge port connected to the discharge flow path, a synthesis outlet connected to the synthesis flow path, and two sample loop openings connected to both ends of the sample loop. The hexagonal switching valve has a six-way switching valve in which the gas phase or liquid phase supply channel, the sample loop, and the discharge channel communicate with each other, and at the same time, the liquid phase or gas phase supply channel and the synthesis channel communicate with each other. A second flow path in which the first flow path communicates with the gas phase or liquid phase supply flow path and the discharge flow path, and at the same time, the liquid phase or gas phase supply flow path communicates with the sample loop and the synthesis flow path. By alternately switching between the first flow path and the second flow path and causing at least the gas phase or liquid phase that has flowed into the sample loop to flow out into the synthesis flow path, the liquid phase and the liquid phase can be switched. The present invention relates to a micromixer for a flow synthesizer, which allows gas phases to flow out alternately into a synthesis channel.

前記フロー合成装置用マイクロミキサーの実施形態では、前記サンプルループ用開口が、第1開口と第2開口を有し、前記気相供給口、前記サンプルループ用開口の第1開口、前記合成用流出口、前記液相供給口、前記サンプルループ用開口の第2開口及び排出口が、この順で時計回り又は反時計回りに前記六方切替バルブに設けられていてもよい。 In the embodiment of the micromixer for a flow synthesizer, the sample loop opening has a first opening and a second opening, and the gas phase supply port, the first opening of the sample loop opening, and the synthesis flow The outlet, the liquid phase supply port, the second opening of the sample loop opening, and the discharge port may be provided in the six-way switching valve in this order clockwise or counterclockwise.

本発明の第二は、前記フロー合成装置用マイクロミキサーを有するフロー合成装置に関する。 The second aspect of the present invention relates to a flow synthesizer having the micromixer for a flow synthesizer.

前記フロー合成装置の実施形態では、前記合成用流路の下流側に、圧力調整装置が設けられていなくてよい。 In the embodiment of the flow synthesis apparatus, a pressure adjustment device may not be provided on the downstream side of the synthesis flow path.

尚、前述のマイクロミキサー及び当該マイクロミキサーを有するフロー合成装置を構成する各流路は、微小流路であり、微小流路とは、断面幅或いは内径1.0mm以下の流路を意味するものとする。 Note that each channel constituting the aforementioned micromixer and a flow synthesis device having the micromixer is a microchannel, and a microchannel refers to a channel with a cross-sectional width or inner diameter of 1.0 mm or less. shall be.

本発明によれば、気相と液相とをマイクロミキサーにより合流させて連続して気液反応をさせるフロー合成を行う際に、供給する気相と液相に圧力差があっても、液相が気相の供給用流路側に逆流することなく、気相と液相とを所定の量比で合流させることが可能なフロー合成装置用マイクロミキサー、及び、当該フロー合成装置用マイクロミキサーを有し、所望の気液反応によるフロー合成が可能なフロー合成装置を提供することができる。 According to the present invention, when performing flow synthesis in which a gas phase and a liquid phase are brought together by a micromixer to continuously perform a gas-liquid reaction, even if there is a pressure difference between the supplied gas phase and the liquid phase, the liquid A micro mixer for a flow synthesizer that can combine a gas phase and a liquid phase at a predetermined ratio without causing the phase to flow back into the supply channel side of the gas phase, and a micro mixer for the flow synthesizer. Accordingly, it is possible to provide a flow synthesis apparatus capable of performing flow synthesis by a desired gas-liquid reaction.

本発明の実施形態に係るフロー合成装置用マイクロミキサー及びこれを有するフロー合成装置の概要及びその流路構成を説明するための説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram for explaining an overview of a micromixer for a flow synthesis device and a flow synthesis device including the micromixer according to an embodiment of the present invention, and a flow path configuration thereof. 図1に示す実施形態に係るマイクロミキサーにおいて、六方切替バルブが第1流路の流路構成の場合に、サンプルループに気相を流入させた時の状態を説明するための説明図である。FIG. 2 is an explanatory diagram for explaining a state when a gas phase is caused to flow into a sample loop when the hexagonal switching valve has a flow path configuration of a first flow path in the micromixer according to the embodiment shown in FIG. 1; 図2に示す状態から、六方切替バルブを第2流路に切り替えた直後の状態を説明するための説明図である。FIG. 3 is an explanatory diagram for explaining a state immediately after switching the hexagonal switching valve to the second flow path from the state shown in FIG. 2; 図3に示す状態から、サンプルループに液相を流入させ、サンプルループ内の気相を液相により押し出して、合成用流路に流出させるとともに、気相を気相供給用流路から排出用流路に流出させている状態を説明するための説明図である。From the state shown in Figure 3, the liquid phase is caused to flow into the sample loop, the gas phase in the sample loop is pushed out by the liquid phase, and the gas phase is forced out into the synthesis flow path, and the gas phase is discharged from the gas phase supply flow path. It is an explanatory view for explaining the state where it is made to flow out into a channel. 図4に示す状態から、六方切替バルブを第1流路に切り替えた直後の状態を説明するための説明図である。5 is an explanatory diagram for explaining a state immediately after switching the hexagonal switching valve to the first flow path from the state shown in FIG. 4. FIG. 図5に示す状態から、サンプルループ内に気相を流入させ、サンプルループ内の液相を気相により押し出して、排出用流路に流出させるとともに、液相を液相供給用流路から合成用流路に流出させている状態を説明するための説明図である。From the state shown in Figure 5, the gas phase is introduced into the sample loop, the liquid phase in the sample loop is pushed out by the gas phase, and the liquid phase is forced out into the discharge channel, and the liquid phase is synthesized from the liquid phase supply channel. It is an explanatory view for explaining the state where it is made to flow out to a water channel. 図6に示す状態から、六方切替バルブを第2流路に切り替えた直後の状態を説明するための説明図である。7 is an explanatory diagram for explaining a state immediately after switching the hexagonal switching valve to the second flow path from the state shown in FIG. 6. FIG. 実験例において、実施形態に係るマイクロミキサーを用いて気相と液相とを連続して交互に合成用流路に流出させたときの様子を示した撮像である。This is an image showing a state in which a gas phase and a liquid phase are continuously and alternately flowed into a synthesis channel using the micromixer according to the embodiment in an experimental example.

以下、図面に基づき本発明の実施形態を説明するが、本発明はこうした例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の形態で実施し得ることは勿論である。 Hereinafter, embodiments of the present invention will be described based on the drawings, but the present invention is not limited to these examples in any way, and it goes without saying that it can be implemented in various forms without departing from the gist of the present invention. .

図1は、本発明の実施形態に係るフロー合成装置用マイクロミキサー(以下「マイクロミキサー」と称する場合がある。)1及びこれを有するフロー合成装置2の流路構成を説明するための説明図である。 FIG. 1 is an explanatory diagram for explaining the channel configuration of a micromixer for a flow synthesizer (hereinafter sometimes referred to as "micromixer") 1 and a flow synthesizer 2 having the same according to an embodiment of the present invention. It is.

図1に示すように、マイクロミキサー1は、六方切替バルブ10、気相供給用流路11、液相供給用流路12、排出用流路13、合成用流路14、サンプルループ15を有する。また、六方切替バルブ10は、ポート(1)~(6)を有し、ポート(1)が気相供給用流路11と連結する気相供給口、ポート(2)がサンプルループ15の一方端(第1端)15aと連結する第1のサンプルループ用開口、ポート(3)が合成用流路14と連結する合成用流出口、ポート(4)が液相供給用流路12と連結する液相供給口、ポート(5)がサンプルループ15の他方端(第2端)15bと連結する第2のサンプルループ用開口、ポート(6)が排出用流路13と連結する排出口に対応する。図1に示す例では、ポート(1)~(6)がその順に時計回りに同一円周上に配置されている。各ポートの円周上の間隔は、後述する第1流路と第2流路が形成されれば特に限定はない。図1に示す例では、円周を6等分して各ポートを設けている。 As shown in FIG. 1, the micromixer 1 has a hexagonal switching valve 10, a gas phase supply channel 11, a liquid phase supply channel 12, a discharge channel 13, a synthesis channel 14, and a sample loop 15. . Further, the six-way switching valve 10 has ports (1) to (6), where the port (1) is a gas phase supply port connected to the gas phase supply channel 11, and the port (2) is one side of the sample loop 15. The first sample loop opening is connected to the end (first end) 15a, the port (3) is a synthesis outlet that is connected to the synthesis flow path 14, and the port (4) is connected to the liquid phase supply flow path 12. The liquid phase supply port is connected to the liquid phase supply port, the port (5) is a second sample loop opening connected to the other end (second end) 15b of the sample loop 15, and the port (6) is a discharge port connected to the discharge channel 13. handle. In the example shown in FIG. 1, ports (1) to (6) are arranged in that order clockwise on the same circumference. The circumferential spacing between the ports is not particularly limited as long as a first flow path and a second flow path, which will be described later, are formed. In the example shown in FIG. 1, each port is provided by dividing the circumference into six equal parts.

図1に示す例では、六方切替バルブ1は、次の第1流路と第2流路とに切り替え可能となるように構成されている。第1流路は、ポート(1)、(2)が連通する流路a、ポート(3)、(4)が連通する流路b、ポート(5)、(6)が連通する流路cを形成して、気相供給用流路11とサンプルループ15と排出用流路13が連通すると同時に、液相供給用流路12と合成用流路14とが連通することで形成される(図1、2、5、6参照)。第2流路は、ポート(1)、(6)が連通する流路d、ポート(2)、(3)が連通する流路e、ポート(4)、(5)が連通する流路fを形成して、気相供給用流路11と排出用流路13が連通すると同時に、液相供給用流路12とサンプルループ15と合成用流路14とが連通することで形成される(図3、4、7参照)。 In the example shown in FIG. 1, the six-way switching valve 1 is configured to be able to switch between the next first flow path and second flow path. The first flow path includes a flow path a where ports (1) and (2) communicate with each other, a flow path b where ports (3) and (4) communicate with each other, and a flow path c where ports (5) and (6) communicate with each other. The gas phase supply channel 11, the sample loop 15, and the discharge channel 13 communicate with each other, and at the same time, the liquid phase supply channel 12 and the synthesis channel 14 communicate with each other. (See Figures 1, 2, 5, 6). The second flow path includes a flow path d in which ports (1) and (6) communicate, a flow path e in which ports (2) and (3) communicate, and a flow path f in which ports (4) and (5) communicate. is formed, and the gas phase supply channel 11 and the discharge channel 13 communicate with each other, and at the same time, the liquid phase supply channel 12, the sample loop 15, and the synthesis channel 14 communicate with each other ( (See Figures 3, 4, 7).

六方切替バルブ1は、例えば、ポート(1)~(6)が設けられたステータと、流路a~fを形成するための3つの流路溝が形成されたローターとを備えるロータリーバルブにより構成することができる。ローターを回転させることにより、第1流路と第2流路とを切り替えることができる。 The six-way switching valve 1 is configured, for example, by a rotary valve including a stator provided with ports (1) to (6) and a rotor provided with three flow grooves for forming flow paths a to f. can do. By rotating the rotor, the first flow path and the second flow path can be switched.

サンプルループ15は、図1に示す例では、連続して合成用流路14に送液される液相の一部を気相に置き換えて、合成用流路14に気相と液相を交互に流出させる際に、気相を一時的に貯留する機能を有する。つまり、気相と液相の混合比はサンプルループ15内に貯留させる量により調整が可能である。したがって、気相と液相の合成反応の条件を考慮して、サンプルループ15の長さ等を決定することができる。 In the example shown in FIG. 1, the sample loop 15 replaces a part of the liquid phase that is continuously sent to the synthesis channel 14 with a gas phase, and alternately supplies the gas phase and the liquid phase to the synthesis channel 14. It has the function of temporarily storing the gas phase when it flows out. That is, the mixing ratio of the gas phase and the liquid phase can be adjusted by adjusting the amount stored in the sample loop 15. Therefore, the length of the sample loop 15, etc. can be determined in consideration of the conditions of the synthesis reaction between the gas phase and the liquid phase.

図1に示す例では、フロー合成装置2は、前述のマイクロミキサー1;気相供給用流路11の上流側に順に設けられる、逆止弁16、気相の流量を制御するマスフローコントローラー17、気相を貯留する気相ボンベ18;液相供給用流路12の上流側に順に設けられる、逆止弁19、ポンプ20、液相を貯留する液相容器21;排出用流路13の下流側に設けられる廃棄槽22;合成用流路14の下流側に順に設けられる反応槽23、生成物を貯留する回収容器24を有する。 In the example shown in FIG. 1, the flow synthesis device 2 includes the aforementioned micromixer 1; a check valve 16 provided in this order on the upstream side of the gas phase supply channel 11; a mass flow controller 17 that controls the flow rate of the gas phase; A gas phase cylinder 18 that stores the gas phase; a check valve 19, a pump 20, and a liquid phase container 21 that stores the liquid phase, which are provided in this order on the upstream side of the liquid phase supply flow path 12; downstream of the discharge flow path 13; It has a waste tank 22 provided on the side; a reaction tank 23 provided in order on the downstream side of the synthesis channel 14; and a recovery container 24 for storing the product.

図1に示す例では、気相ボンベ18、液相容器21はそれぞれ1つのみであるが、必要に応じて複数設けることができる。尚、気相同士、液相同士は一般的なマイクロミキサーで混合可能である。反応槽23の構成は、合成反応に応じて選択可能である。例えば、固体触媒が内部に充填された触媒カラム、螺旋状等の形状を有する反応用管等が挙げられる。触媒カラムに充填される固体触媒としては、例えば、パラジウム炭素(Pd/C)等が挙げられる。反応槽23には、必要に応じて加熱装置等を設けることができる。 In the example shown in FIG. 1, there is only one gas phase cylinder 18 and one liquid phase container 21, but a plurality of them can be provided as necessary. Note that gas phases and liquid phases can be mixed using a general micro mixer. The configuration of the reaction tank 23 can be selected depending on the synthesis reaction. Examples include a catalyst column filled with a solid catalyst, a reaction tube having a spiral shape, and the like. Examples of the solid catalyst packed in the catalyst column include palladium on carbon (Pd/C). The reaction tank 23 can be provided with a heating device or the like, if necessary.

図1に示すフロー合成装置2は、六方切替バルブ10、ポンプ20、逆止弁16、19、マスフローコントローラー17の動作を制御する制御部を有するものであってもよい。 The flow synthesis device 2 shown in FIG. 1 may include a control section that controls the operations of the six-way switching valve 10, the pump 20, the check valves 16 and 19, and the mass flow controller 17.

図1に示すマイクロミキサー1、フロー合成装置2の動作を図2~7に基づき説明する。尚、図1は、動作前の停止状態を示したものであり、図2~7では、流路内の気相の流れを実線で、液相の流れを波線で示す。また、矢印で流れ方向を示す。 The operations of the micro mixer 1 and flow synthesizer 2 shown in FIG. 1 will be explained based on FIGS. 2 to 7. Note that FIG. 1 shows the stopped state before operation, and in FIGS. 2 to 7, the flow of the gas phase in the channel is shown by a solid line, and the flow of the liquid phase is shown by a broken line. Additionally, arrows indicate the flow direction.

先ず図1に示すように、六方切替バルブ10を第1流路の状態にして、所望の気相、液相などを準備する。そして、図2に示すように、第1流路の状態で、気相及び液相を送液する。気相は、マスフローコントローラー17により流量を制御しながら、流路11から、流路a、サンプルループ15、流路c、流路13へ送液される。場合により、廃棄槽22に到達し得る。廃棄槽22は、気相は外部に安全に放出可能なように構成されている。また、外部に放出させた気相を回収し再利用可能なように構成してもよい。液相は、ポンプ20により流量を制御しながら、流路12、流路b、流路14へ送液される。場合により、反応槽23、回収容器24に到達し得る。サンプルループ15の全体に気相が貯留され、流路14に液相が到達した後、図3に示すように、バルブ10を第2流路に切り替える。 First, as shown in FIG. 1, the six-way switching valve 10 is set to the first flow path to prepare a desired gas phase, liquid phase, etc. Then, as shown in FIG. 2, the gas phase and the liquid phase are fed in the state of the first channel. The gas phase is sent from the channel 11 to the channel a, the sample loop 15, the channel c, and the channel 13 while controlling the flow rate by the mass flow controller 17. Optionally, a waste tank 22 may be reached. The waste tank 22 is configured so that the gas phase can be safely discharged to the outside. Further, the structure may be such that the gas phase released to the outside can be recovered and reused. The liquid phase is sent to the flow path 12, flow path b, and flow path 14 while controlling the flow rate by the pump 20. Depending on the case, the reaction tank 23 and collection container 24 may be reached. After the gas phase is stored throughout the sample loop 15 and the liquid phase reaches the flow path 14, the valve 10 is switched to the second flow path as shown in FIG.

図3は、バルブ10を図2に示す第1流路の状態から第2流路に切り替えた直後のマイクロミキサー1の気相と液相の流路内の状態を示したものである。図3に示すように、第1流路において流路a、流路b、流路cを構成し、各流路に存在する気相又は液相が、それぞれ、第2流路において流路e、流路f、流路dに移動する。流路dの気相は、流路11から流入する気相により、流路13に押し出され、流路13に存在していた気相に挟まれながら廃棄槽22に流入する。サンプルループ15内に流入させた気相は、流路eの気相とともに、流路fに存在する液相と流路12から流入する液相により、流路14に押し出される。この際、気相の下流側には流路14にも液相が存在しているため、気相は、液相に挟まれながら、流路14に流入する。即ち、液相、気相、液相の順に流路14に流出していくことになる。そして、図4に示すように、図3に示す状態から、サンプルループ15内の気相の全てを流路14に流入させる。 FIG. 3 shows the state in the gas phase and liquid phase channels of the micromixer 1 immediately after the valve 10 is switched from the first channel shown in FIG. 2 to the second channel. As shown in FIG. 3, the first flow path constitutes flow path a, flow path b, and flow path c, and the gas phase or liquid phase present in each flow path is transferred to the flow path e in the second flow path. , flow path f, and flow path d. The gas phase in the flow path d is pushed out into the flow path 13 by the gas phase flowing in from the flow path 11, and flows into the waste tank 22 while being sandwiched between the gas phases that were present in the flow path 13. The gas phase flowing into the sample loop 15 is pushed out into the flow path 14 by the gas phase in the flow path e, the liquid phase present in the flow path f, and the liquid phase flowing in from the flow path 12. At this time, since the liquid phase also exists in the flow path 14 on the downstream side of the gas phase, the gas phase flows into the flow path 14 while being sandwiched between the liquid phases. That is, the liquid phase, gas phase, and liquid phase flow out into the channel 14 in this order. Then, as shown in FIG. 4, all of the gas phase in the sample loop 15 is caused to flow into the flow path 14 from the state shown in FIG.

その後、バルブ10を第1流路に切り替える。図5は、バルブ10を図4に示す第2流路の状態から、第1流路に切り替えた直後のマイクロミキサー1の気相と液相の流路内の状態を示したものである。図5に示すように、図4に示す第2流路において流路e、流路f、流路dを構成し、各流路に存在する気相又は液相が、それぞれ、第1流路において流路a、流路b、流路cに移動する。流路bに存在する液相は、流路12から流入する液相により押し出され、流路14に存在していた液相(場合により気相であり得る)に挟まれながら流路14に流入する。サンプルループ15内に流入させた液相は、流路aの液相及び流路cの気相とともに、流路11から流入する気相により、流路13に押し出される。そして、図6に示すように、サンプルループ15内に気相を流入させ、その全体に貯留させる。 Thereafter, the valve 10 is switched to the first flow path. FIG. 5 shows the state in the gas phase and liquid phase flow paths of the micromixer 1 immediately after the valve 10 is switched from the second flow path shown in FIG. 4 to the first flow path. As shown in FIG. 5, a flow path e, a flow path f, and a flow path d are configured in the second flow path shown in FIG. , it moves to flow path a, flow path b, and flow path c. The liquid phase existing in the flow path b is pushed out by the liquid phase flowing in from the flow path 12, and flows into the flow path 14 while being sandwiched between the liquid phase (which may be a gas phase in some cases) that was present in the flow path 14. do. The liquid phase flowing into the sample loop 15 is pushed out into the flow path 13 by the gas phase flowing from the flow path 11 together with the liquid phase in the flow path a and the gas phase in the flow path c. Then, as shown in FIG. 6, a gas phase is caused to flow into the sample loop 15 and stored throughout it.

その後、バルブ10を第2流路に切り替える。図7は、バルブ10を図6に示す第1流路の状態から、第2流路に切り替えた直後のマイクロミキサー1の気相と液相の流路内の状態を示したものである。図7に示すように、図6に示す第1流路において流路a、流路b、流路cを構成し、各流路に存在する気相又は液相が、それぞれ、第2流路において流路e、流路f、流路dに移動する。流路dの気相は、流路11から流入する気相により、流路13に押し出され、流路13に存在していた液相に挟まれながら廃棄槽22に流入する。このように廃棄槽22には、気相と液相が流入し得る。流入した液相は、前述の気相の場合と同様に、外部に放出して再利用可能なように構成してもよい。サンプルループ15内に流入させた気相は、流路eの気相とともに、流路fに存在する液相と流路12から流入する液相により、流路14に押し出される。この際、気相の下流側には流路14にも液相が存在しているため、気相は、液相に挟まれながら、流路14に流入する。即ち、液相、気相、液相の順に流路14に流出していくことになる。そして、例えば図4に示すのと同様に、サンプルループ15内に存在する気相の全てが流路14に押し出された後、再度図5に示すようにバルブ10を第1流路に切り替える。 Thereafter, the valve 10 is switched to the second flow path. FIG. 7 shows the state in the gas phase and liquid phase flow paths of the micromixer 1 immediately after the valve 10 is switched from the first flow path shown in FIG. 6 to the second flow path. As shown in FIG. 7, a flow path a, a flow path b, and a flow path c are configured in the first flow path shown in FIG. , it moves to flow path e, flow path f, and flow path d. The gas phase in the flow path d is pushed out into the flow path 13 by the gas phase flowing in from the flow path 11, and flows into the waste tank 22 while being sandwiched between the liquid phase that was present in the flow path 13. In this way, a gas phase and a liquid phase can flow into the waste tank 22. The liquid phase that has flowed in may be configured so that it can be discharged to the outside and reused, as in the case of the gas phase described above. The gas phase flowing into the sample loop 15 is pushed out into the flow path 14 by the gas phase in the flow path e, the liquid phase present in the flow path f, and the liquid phase flowing in from the flow path 12. At this time, since the liquid phase also exists in the flow path 14 on the downstream side of the gas phase, the gas phase flows into the flow path 14 while being sandwiched between the liquid phases. That is, the liquid phase, gas phase, and liquid phase flow out into the channel 14 in this order. Then, as shown in FIG. 4, for example, after all of the gas phase present in the sample loop 15 is pushed out to the flow path 14, the valve 10 is switched to the first flow path again as shown in FIG. 5.

以上のように、バルブ10の第1流路と第2流路とを交互に繰り返し切り替えることで、圧力差の影響を受けることなく、液相を流路12から流路14に流入させる際に、サンプルループ15内に流入させた気相を液相と液相の間に繰り返し連続して流入させることが可能になる。また、サンプルループ15の容量は一定であることから、液相の流量を制御することで、所望の量比となるように液相と気相とを交互に流路14に流出させることができる。 As described above, by alternately and repeatedly switching the first flow path and the second flow path of the valve 10, the liquid phase can be caused to flow from the flow path 12 to the flow path 14 without being affected by the pressure difference. , it becomes possible to repeatedly and continuously cause the gas phase that has flowed into the sample loop 15 to flow between the liquid phases. Furthermore, since the capacity of the sample loop 15 is constant, by controlling the flow rate of the liquid phase, the liquid phase and the gas phase can be alternately flowed out into the flow path 14 so as to achieve a desired ratio. .

このように所定の量比となるように流路14に交互に流出させた液相と気相は所望の条件に調整した反応槽23において、連続して所定の気液反応をさせることができる。特に、反応槽23が、固体触媒が充填された触媒カラムを備える場合、触媒カラム内において気相と液相とが撹拌されながら触媒粒子間を移動すると考えられ、気相と液相が効率的に反応する傾向にあると考えられる。 In this way, the liquid phase and the gas phase alternately flowed out into the channel 14 so as to have a predetermined quantity ratio can be continuously subjected to a predetermined gas-liquid reaction in the reaction tank 23 adjusted to desired conditions. . In particular, when the reaction tank 23 includes a catalyst column filled with a solid catalyst, it is thought that the gas phase and the liquid phase move between the catalyst particles while being stirred within the catalyst column, so that the gas phase and the liquid phase are efficiently transferred. It is thought that there is a tendency to respond to

反応槽23において気液反応による生成した生成物は、未反応物とともに回収容器24で回収される。回収容器24は、気相を外部に排出することが可能なように構成することができる。 The products generated by the gas-liquid reaction in the reaction tank 23 are collected in the collection container 24 together with unreacted substances. The collection container 24 can be configured to be able to discharge the gas phase to the outside.

本実施形態では、六方切替バルブ10が、気相供給用流路11とサンプルループ15と排出用流路13が連通すると同時に、液相供給用流路12と合成用流路14とが連通する第1流路と、気相供給用流路11と排出用流路13が連通すると同時に、液相供給用流路12とサンプルループ15と合成用流路14とが連通する第2流路とに切り替え可能となるように構成し、第1流路と第2流路とを交互に切り替えて、少なくともサンプルループ15に流入させた気相を合成用流路14に流出させることで液相と気相を合成用流路14に交互に流出させるように構成している。 In this embodiment, the hexagonal switching valve 10 allows the gas phase supply channel 11, the sample loop 15, and the discharge channel 13 to communicate with each other, and at the same time, the liquid phase supply channel 12 and the synthesis channel 14 communicate with each other. The first flow path communicates with the gas phase supply flow path 11 and the discharge flow path 13, and at the same time, the second flow path communicates with the liquid phase supply flow path 12, the sample loop 15, and the synthesis flow path 14. The first flow path and the second flow path are alternately switched so that at least the gas phase flowing into the sample loop 15 flows out into the synthesis flow path 14, thereby converting the liquid phase into the liquid phase. The gas phase is configured to alternately flow out into the synthesis channel 14.

本実施形態の変形例として、例えば、気相と液相の配置を入れ替えて、構成することができる。この場合、六方切替バルブ10のポート(1)、(4)がそれぞれ、液相供給用流路と連結する液相供給口、気相供給用流路と連結する気相供給口となり、その他の構成は前述の実施形態と同じである。そして、六方切替バルブは、液相供給用流路(図1~7の符号11に対応することになる)とサンプルループ15と排出用流路13が連通すると同時に、気相供給用流路(図1~7の符号12に対応することになる)と合成用流路14とが連通する第1流路と、液相供給用流路と排出用流路13が連通すると同時に、気相供給用流路とサンプルループ15と合成用流路14とが連通する第2流路とに切り替え可能となるように構成される。また、前述の実施形態の場合と同様にして、第1流路と第2流路とを交互に切り替えて、少なくともサンプルループ15に流入させた液相を合成用流路14に流出させることで、液相と気相を合成用流路14に交互に流出させることが可能となるようにすることができる。尚、この変形例は、反応槽23内の圧力が気相供給用流路(図1~7の符号12に対応する)内の圧力より低い場合に適用可能である。 As a modification of this embodiment, for example, the arrangement of the gas phase and the liquid phase can be exchanged. In this case, ports (1) and (4) of the six-way switching valve 10 serve as the liquid phase supply port connected to the liquid phase supply flow path and the gas phase supply port connected to the gas phase supply flow path, respectively. The configuration is the same as the previous embodiment. The six-way switching valve communicates with the liquid phase supply channel (corresponding to the reference numeral 11 in FIGS. 1 to 7), the sample loop 15, and the discharge channel 13, and at the same time communicates with the gas phase supply channel (corresponding to the reference numeral 11 in FIGS. 1 to 7). The first flow path in which the synthesis flow path 14 (which corresponds to the reference numeral 12 in FIGS. 1 to 7) communicates with the liquid phase supply flow path and the discharge flow path 13, and at the same time, the gas phase supply It is configured such that it can be switched to a second flow path in which the sample loop 15 and the synthesis flow path 14 communicate with each other. Further, in the same manner as in the above-described embodiment, the first flow path and the second flow path are alternately switched to allow at least the liquid phase that has flowed into the sample loop 15 to flow out into the synthesis flow path 14. , the liquid phase and the gas phase can be made to flow out alternately into the synthesis channel 14. Note that this modification is applicable when the pressure inside the reaction tank 23 is lower than the pressure inside the gas phase supply channel (corresponding to the reference numeral 12 in FIGS. 1 to 7).

以上述べたように、マイクロミキサー1は六方切替バルブ10を有することで、気相と液相の圧力差に関わらず、流路14に対して、気相と液相を交互に流出させ、両相を合流させることが可能である。そのため、流路14の下流側、特に、反応槽23の下流側に圧力調整装置が設けられていなくても、気相と液相とを所望の量比で反応槽23に供給することが可能である。 As described above, by having the six-way switching valve 10, the micromixer 1 allows the gas phase and the liquid phase to flow out alternately into the flow path 14 regardless of the pressure difference between the gas phase and the liquid phase. It is possible to merge the phases. Therefore, even if a pressure adjustment device is not provided on the downstream side of the flow path 14, especially on the downstream side of the reaction tank 23, it is possible to supply the gas phase and the liquid phase to the reaction tank 23 at a desired ratio. It is.

このようなマイクロミキサー及びこれを有するフロー合成装置は、気相と液相とを反応させる各種の気液反応に適用可能である。このような気液反応系としては、例えば、接触水素化等が挙げられるが、これに限定されるわけではない。 Such a micromixer and a flow synthesizer having the same can be applied to various gas-liquid reactions in which a gas phase and a liquid phase are reacted. Examples of such gas-liquid reaction systems include, but are not limited to, catalytic hydrogenation.

(実験例)
以下では、前述の図1に示すような実施形態に係るマイクロミキサー1を用いて、図2~7に示すような工程を行い、別々に連続して供給する気相と液相を所定の量比で交互に合成用流路14に流出させる実験を行った。
(Experiment example)
In the following, the steps shown in FIGS. 2 to 7 will be performed using the micromixer 1 according to the embodiment shown in FIG. An experiment was conducted in which the mixture was alternately discharged into the synthesis channel 14 at different ratios.

条件は下記のとおりである。
気相:窒素、流量10cc/min
液相:ポリエチレングリコール300、流量1.0ml/min
サンプルループ15:長さ100mm、内径1.0mm
流路11~14の幅(内径):1.0mm
流路a(e)、b(f)、c(d)の幅:0.25mm
The conditions are as follows.
Gas phase: nitrogen, flow rate 10cc/min
Liquid phase: polyethylene glycol 300, flow rate 1.0ml/min
Sample loop 15: length 100mm, inner diameter 1.0mm
Width (inner diameter) of channels 11 to 14: 1.0 mm
Width of channels a(e), b(f), c(d): 0.25mm

その結果、無色の窒素ガス(気相)と淡い黄色に着色したポリエチレングリコール(液相)とが交互に流路14に連続して流出し、流路11に液相の逆流がないことを目視により確認した。その際の合成用流路14に流出している流体の撮像を図8に示す。図8に示すように、流路14において、符号A~Dで示す矢印の位置に気相と液相の境界が観察され、液相(図8中の例えばAB間等)と気相(図8中の例えばBC間等)とが連続して交互に流出していることが分かる。したがって、気相及び液相を所望の気液反応系の基質とした場合に流路14の下流側の反応槽において連続して所望の気液反応をさせることが可能であることが分かる。 As a result, colorless nitrogen gas (gas phase) and pale yellow colored polyethylene glycol (liquid phase) alternately and continuously flowed out into the channel 14, and it was visually confirmed that there was no backflow of the liquid phase into the channel 11. Confirmed by. FIG. 8 shows an image of the fluid flowing out into the synthesis channel 14 at that time. As shown in FIG. 8, boundaries between the gas phase and the liquid phase are observed in the flow path 14 at the positions of the arrows indicated by symbols A to D, and the liquid phase (for example, between AB in FIG. 8) and the gas phase ( 8, for example, between BC, etc.) are continuously and alternately flowing out. Therefore, it can be seen that when the gas phase and the liquid phase are used as substrates for a desired gas-liquid reaction system, it is possible to carry out the desired gas-liquid reaction continuously in the reaction tank on the downstream side of the channel 14.

1 フロー合成装置用マイクロミキサー;2 フロー合成装置;10 六方切替バルブ;11 気相供給用流路;12 液相供給用流路;13 排出用流路;14 合成用流路;15 サンプルループ;15a 一方端;15b 他方端;16、19 逆止弁;17 マスフローコントローラー;18 気相ボンベ;20 ポンプ;21 液相容器;22 廃棄槽;23 反応槽;24 回収容器;A、B、C、D 気相と液相の境界。 1 Micro mixer for flow synthesizer; 2 Flow synthesizer; 10 Hexagonal switching valve; 11 Gas phase supply channel; 12 Liquid phase supply channel; 13 Discharge channel; 14 Synthesis channel; 15 Sample loop; 15a one end; 15b other end; 16, 19 check valve; 17 mass flow controller; 18 gas phase cylinder; 20 pump; 21 liquid phase container; 22 waste tank; 23 reaction tank; 24 recovery container; A, B, C, D Boundary between gas and liquid phases.

Claims (4)

気相と液相を連続的に合流させるフロー合成装置用マイクロミキサーであって、
該フロー合成装置用マイクロミキサーは、六方切替バルブと、気相供給用流路と、液相供給用流路と、排出用流路と、合成用流路と、サンプルループとを有し、
前記六方切替バルブは、前記気相供給用流路と連結する気相供給口、前記液相供給用流路と連結する液相供給口、排出用流路と連結する排出口、合成用流路と連結する合成用流出口、前記サンプルループの両端と連結する2つのサンプルループ用開口を有し、
前記六方切替バルブは、気相又は液相供給用流路とサンプルループと排出用流路が連通すると同時に、液相又は気相供給用流路と合成用流路とが連通する第1流路と、気相又は液相供給用流路と排出用流路が連通すると同時に、液相又は気相供給用流路とサンプルループと合成用流路とが連通する第2流路とに切り替え可能であり、
前記第1流路と前記第2流路とを交互に切り替えて、少なくともサンプルループに流入させた気相又は液相を合成用流路に流出させることで、液相と気相を合成用流路に交互に流出させることが可能である、フロー合成装置用マイクロミキサー。
A micro mixer for a flow synthesizer that continuously combines a gas phase and a liquid phase,
The micromixer for a flow synthesizer has a six-way switching valve, a gas phase supply channel, a liquid phase supply channel, a discharge channel, a synthesis channel, and a sample loop,
The six-way switching valve has a gas phase supply port connected to the gas phase supply flow path, a liquid phase supply port connected to the liquid phase supply flow path, a discharge port connected to the discharge flow path, and a synthesis flow path. a synthesis outlet connected to the sample loop, and two sample loop openings connected to both ends of the sample loop;
The six-way switching valve has a first channel in which the gas phase or liquid phase supply channel, the sample loop, and the discharge channel communicate with each other, and at the same time, the liquid phase or gas phase supply channel and the synthesis channel communicate with each other. At the same time, the gas phase or liquid phase supply channel and the discharge channel communicate with each other, and at the same time, it is possible to switch to a second channel in which the liquid phase or gas phase supply channel, the sample loop, and the synthesis channel communicate with each other. and
The first flow path and the second flow path are alternately switched to allow at least the gas phase or the liquid phase that has flowed into the sample loop to flow out into the synthesis flow path, thereby converting the liquid phase and the gas phase into the synthesis flow path. A micro mixer for flow synthesizers that allows alternate flow into the flow channels.
前記サンプルループ用開口が、第1開口と第2開口を有し、
前記気相供給口、前記サンプルループ用開口の第1開口、前記合成用流出口、前記液相供給口、前記サンプルループ用開口の第2開口及び排出口が、この順で時計回り又は反時計回りに前記六方切替バルブに設けられている請求項1記載のフロー合成装置用マイクロミキサー。
the sample loop opening has a first opening and a second opening;
The gas phase supply port, the first opening of the sample loop opening, the synthesis outlet, the liquid phase supply port, the second opening of the sample loop opening, and the discharge port are rotated clockwise or counterclockwise in this order. 2. The micromixer for a flow synthesizer according to claim 1, wherein the micromixer is provided around the hexagonal switching valve.
請求項1又は2に記載のフロー合成装置用マイクロミキサーを有するフロー合成装置。 A flow synthesis device comprising the micromixer for a flow synthesis device according to claim 1 or 2. 前記合成用流路の下流側に、圧力調整装置が設けられていない、請求項3記載のフロー合成装置。 4. The flow synthesis apparatus according to claim 3, wherein a pressure regulating device is not provided on the downstream side of the synthesis flow path.
JP2022126532A 2022-08-08 2022-08-08 Micro mixer for flow synthesis device and flow synthesis device Pending JP2024023013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022126532A JP2024023013A (en) 2022-08-08 2022-08-08 Micro mixer for flow synthesis device and flow synthesis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022126532A JP2024023013A (en) 2022-08-08 2022-08-08 Micro mixer for flow synthesis device and flow synthesis device

Publications (1)

Publication Number Publication Date
JP2024023013A true JP2024023013A (en) 2024-02-21

Family

ID=89930575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022126532A Pending JP2024023013A (en) 2022-08-08 2022-08-08 Micro mixer for flow synthesis device and flow synthesis device

Country Status (1)

Country Link
JP (1) JP2024023013A (en)

Similar Documents

Publication Publication Date Title
US6863867B2 (en) Apparatus for mixing and reacting at least two fluids
JP4339163B2 (en) Microdevice and fluid merging method
US6027241A (en) Multi viscosity mixing apparatus
US7097347B2 (en) Static mixer and process for mixing at least two fluids
KR102424218B1 (en) Multi-stage stirred reactor having reduced back mixing
US8123398B2 (en) Fluid-processing device
JP2012519577A (en) Coaxial small static mixer and its use
KR101211752B1 (en) Microstructure designs for optimizing mixing and pressure drop
JP4803671B2 (en) Static micro mixer
US7459508B2 (en) Microchannel polymerization reactor
EP1908514B1 (en) Microreactor
JP2005512760A (en) Apparatus for mixing and reacting at least two fluids
JP2003525116A (en) Dispersion apparatus and method for capillary reactor
JP2004081924A (en) Micro-emulsifier and emulsification method
CA2689427A1 (en) Multiple continuous microfluidic reactors for the scaled up synthesis of gel or polymer particles
EP2608877A1 (en) Micro-fluidic device
WO2007037007A1 (en) Microdevice and method of making fluid merge
JP2006528542A (en) Extraction method using static micromixer
CA2809082A1 (en) Device and method for gas dispersion
US10464039B2 (en) Microreactor, chemical product manufacturing system and microreactor manufacturing method
JP2024023013A (en) Micro mixer for flow synthesis device and flow synthesis device
WO2004101124A1 (en) Inertial micromixer
US20070148048A1 (en) Microfluidic device
US7413713B2 (en) Reaction apparatus and mixing system
CA2583834A1 (en) Microcapillary reactor and method for controlled mixing of non homogeneously mixable fluids using said microcapillary reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240524