JP2024022869A - Composite member and method for producing composite member - Google Patents

Composite member and method for producing composite member Download PDF

Info

Publication number
JP2024022869A
JP2024022869A JP2022126282A JP2022126282A JP2024022869A JP 2024022869 A JP2024022869 A JP 2024022869A JP 2022126282 A JP2022126282 A JP 2022126282A JP 2022126282 A JP2022126282 A JP 2022126282A JP 2024022869 A JP2024022869 A JP 2024022869A
Authority
JP
Japan
Prior art keywords
composite member
particles
range
resin composition
flaky particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022126282A
Other languages
Japanese (ja)
Inventor
裕一 三宅
Yuichi Miyake
隆之 永井
Takayuki Nagai
和美 上田
Kazumi Ueda
浩志 伊藤
Hiroshi Ito
隆 黒瀬
Takashi Kurose
和暉 土門
Kazuki Domon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2022126282A priority Critical patent/JP2024022869A/en
Publication of JP2024022869A publication Critical patent/JP2024022869A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

To provide a composite member that breaks in a ductile manner, and a method for producing the same.SOLUTION: A composite member includes matrix material, and flake-shaped particles dispersed within the matrix material. The composite member has a bending strength in the range of 100-250 MPa, a flexural modulus in the range of 10-40 GPa, and a maximum bending strain in the range of 1-2%.SELECTED DRAWING: Figure 3

Description

特許法第30条第2項適用申請有り 1.掲載アドレス:(1)https://member.spsj.or.jp/convention/tohron2021/index.php?id=2L12 (2)https://member.spsj.or.jp/convention/tohron2021/download_pdf.php?id=2L12 公開日:令和3年(2021年)8月18日 2.研究集会名:第70回高分子討論会 開催日:令和3年(2021年)9月7日(オンライン開催)Application for application of Article 30, Paragraph 2 of the Patent Act 1. Publication address: (1) https://member. spsj. or. jp/convention/tohron2021/index. php? id=2L12 (2) https://member. spsj. or. jp/convention/tohron2021/download_pdf. php? id=2L12 Release date: August 18, 2021 2. Research meeting name: 70th Polymer Symposium Date: September 7, 2021 (held online)

本発明は、複合部材及び複合部材の製造方法に関する。 The present invention relates to a composite member and a method for manufacturing the composite member.

樹脂にフレーク状粒子等の充填材を添加して強度を向上させた複合材料は、種々の構造体材料として広く用いられている。 Composite materials whose strength is improved by adding fillers such as flake particles to resin are widely used as materials for various structures.

例えば、特許文献1には、無焼成マイカを粉砕してマイカりん片を得、これを含むスラリーを抄造して得た集成マイカ材料に熱硬化性樹脂組成物を含浸又は塗工し、次いで加熱加圧下で成形することにより、曲げ弾性率及び曲げ強度の向上した集成マイカ製品が製造されることが記載されている。 For example, in Patent Document 1, unfired mica is pulverized to obtain mica scale pieces, a slurry containing the pieces is made into paper, a composite mica material obtained is impregnated or coated with a thermosetting resin composition, and then heated. It is described that molding under pressure produces a composite mica product with improved flexural modulus and flexural strength.

特許文献2には、室温において所定の範囲内の粘度を有する樹脂とフレーク状無機粒子の混合物を配向処理して、複合樹脂部材を製造すること、及びこのようにして製造された部材が高い曲げ弾性率及び曲げ強度を有することが記載されている。 Patent Document 2 discloses that a composite resin member is manufactured by orienting a mixture of a resin having a viscosity within a predetermined range at room temperature and flaky inorganic particles, and that the member manufactured in this manner has a high bendability. It is described that it has elastic modulus and bending strength.

特開昭57-82598号公報Japanese Unexamined Patent Publication No. 57-82598 特開2021-88149号公報JP 2021-88149 Publication

車両の外板や燃料電池のケース等の用途に用いられる部材は、破壊されたときにその一部が脱落しないことが望ましい。しかし、本発明者らの鋭意検討によれば、樹脂等のマトリクス材料に充填材(フィラー)を添加した従来の複合部材は脆性破壊するため、その一部が破片となって脱落しやすい。延性破壊する複合部材であれば、破片の脱落を抑制することができる。 It is desirable that a part of a member used for a vehicle outer panel, a fuel cell case, or the like not fall off when it is destroyed. However, according to the inventors' extensive studies, conventional composite members in which a filler is added to a matrix material such as a resin undergo brittle fracture, so that a portion of the composite member easily becomes fragments and falls off. If the composite member undergoes ductile failure, it is possible to suppress the falling of pieces.

そこで、延性破壊する複合部材、及びその製造方法を提供する。 Therefore, a composite member that undergoes ductile failure and a method for manufacturing the same are provided.

本開示の態様として、以下のものを挙げることができる。
[1]
マトリクス材料、及び前記マトリクス材料中に分散したフレーク状粒子を含む複合部材であって、
100~250MPaの範囲内の曲げ強さ、10~40GPaの範囲内の曲げ弾性率、及び1~2%の範囲内の最大曲げひずみを有する、複合部材。
[2]
前記フレーク状粒子を、複合部材の総体積を基準として5~99体積%の量で含有する、態様1に記載の複合部材。
[3]
前記フレーク状粒子を、複合部材の総体積を基準として50~99体積%の量で含有する、態様1に記載の複合部材。
[4]
300~500J/mの範囲内の破壊靭性値を有する、態様1~3のいずれか一つに記載の複合部材。
[5]
前記フレーク状粒子が、マイカ粒子である、態様1~4のいずれか一つに記載の複合部材。
[6]
前記マトリクス材料が、エポキシ樹脂組成物の硬化物である、態様1~5のいずれか一つに記載の複合部材。
[7]
前記エポキシ樹脂組成物が、ビスフェノールA型エポキシ樹脂及びポリ(プロピレングリコール)ジグリシジルエーテルを含む、態様6に記載の複合部材。
[8]
フレーク状粒子を含む抄造物を作製することと、
前記抄造物に硬化性樹脂組成物を含浸させることと、
前記硬化性樹脂組成物を所定条件下で硬化することと、
を含む、複合部材の製造方法であって、
前記硬化性樹脂組成物が、前記所定条件下で硬化することにより1~30MPaの範囲内の引張強度を有する硬化物を形成する組成物である、方法。
[9]
前記硬化性樹脂組成物が、エポキシ樹脂を含む、態様8に記載の方法。
[10]
前記硬化性樹脂組成物が、ビスフェノールA型エポキシ樹脂及びポリ(プロピレングリコール)ジグリシジルエーテルを含む、態様8に記載の方法。
[11]
繊維状又は粒子状の熱可塑性材料及びフレーク状粒子を含む懸濁液を調製することと、
前記懸濁液を抄いて、前記熱可塑性材料及び前記フレーク状粒子を含む抄造物を作製することと、
前記熱可塑性材料のガラス転移点以上の温度で前記抄造物を熱加圧成形することと、
を含む、所定温度下で使用される複合部材の製造方法であって、
前記熱可塑性材料が、前記所定温度下において1~30MPaの範囲内の引張強度を有する材料である、方法。
[12]
前記複合部材が、100~250MPaの範囲内の曲げ強さ、10~40GPaの範囲内の曲げ弾性率、及び1~2%の範囲内の最大曲げひずみを有する、態様8~11のいずれか一つに記載の方法。
[13]
前記複合部材が、前記フレーク状粒子を、前記複合部材の総体積を基準として5~99体積%の量で含有する、態様8~12のいずれか一つに記載の方法。
[14]
前記複合部材が、前記フレーク状粒子を、前記複合部材の総体積を基準として50~99体積%の量で含有する、態様8~12のいずれか一つに記載の方法。
[15]
前記複合部材が、300~500J/mの範囲内の破壊靭性値を有する、態様8~14のいずれか一つに記載の方法。
[16]
前記フレーク状粒子が、マイカ粒子である、態様8~15のいずれか一つに記載の方法。
Aspects of the present disclosure include the following.
[1]
A composite member comprising a matrix material and flaky particles dispersed in the matrix material,
A composite member having a bending strength in the range of 100-250 MPa, a bending modulus in the range of 10-40 GPa, and a maximum bending strain in the range of 1-2%.
[2]
The composite member according to aspect 1, wherein the flaky particles are contained in an amount of 5 to 99% by volume based on the total volume of the composite member.
[3]
The composite member according to aspect 1, wherein the flake-like particles are contained in an amount of 50 to 99% by volume based on the total volume of the composite member.
[4]
Composite member according to any one of aspects 1 to 3, having a fracture toughness value in the range of 300 to 500 J/m 3 .
[5]
The composite member according to any one of aspects 1 to 4, wherein the flaky particles are mica particles.
[6]
The composite member according to any one of aspects 1 to 5, wherein the matrix material is a cured product of an epoxy resin composition.
[7]
7. The composite member according to aspect 6, wherein the epoxy resin composition includes a bisphenol A epoxy resin and poly(propylene glycol) diglycidyl ether.
[8]
producing a paper product containing flaky particles;
Impregnating the paper product with a curable resin composition;
Curing the curable resin composition under predetermined conditions;
A method for manufacturing a composite member, comprising:
The method, wherein the curable resin composition is a composition that forms a cured product having a tensile strength within a range of 1 to 30 MPa when cured under the predetermined conditions.
[9]
9. The method according to aspect 8, wherein the curable resin composition comprises an epoxy resin.
[10]
9. The method of aspect 8, wherein the curable resin composition comprises a bisphenol A epoxy resin and poly(propylene glycol) diglycidyl ether.
[11]
preparing a suspension comprising a fibrous or particulate thermoplastic material and flake particles;
making a paper product containing the thermoplastic material and the flaky particles by paper-making the suspension;
Hot-press molding the paper product at a temperature equal to or higher than the glass transition point of the thermoplastic material;
A method for manufacturing a composite member used under a predetermined temperature, comprising:
The method, wherein the thermoplastic material is a material having a tensile strength within the range of 1 to 30 MPa at the predetermined temperature.
[12]
Any one of aspects 8 to 11, wherein the composite member has a bending strength in the range of 100 to 250 MPa, a bending modulus in the range of 10 to 40 GPa, and a maximum bending strain in the range of 1 to 2%. The method described in.
[13]
The method according to any one of aspects 8 to 12, wherein the composite member contains the flaky particles in an amount of 5 to 99% by volume based on the total volume of the composite member.
[14]
The method according to any one of aspects 8 to 12, wherein the composite member contains the flaky particles in an amount of 50 to 99% by volume based on the total volume of the composite member.
[15]
A method according to any one of aspects 8 to 14, wherein the composite member has a fracture toughness value in the range of 300 to 500 J/m 3 .
[16]
The method according to any one of aspects 8 to 15, wherein the flaky particles are mica particles.

本発明の一態様に係る複合部材、及び本発明の一態様に係る製造方法により得られる複合部材は延性的に破壊する。 The composite member according to one embodiment of the present invention and the composite member obtained by the manufacturing method according to one embodiment of the present invention break ductilely.

図1は、第一実施形態に係る複合部材の製造方法を示すフローチャートである。FIG. 1 is a flowchart showing a method for manufacturing a composite member according to the first embodiment. 図2は、第二実施形態に係る複合部材の製造方法を示すフローチャートである。FIG. 2 is a flowchart showing a method for manufacturing a composite member according to the second embodiment. 図3は、実施形態に係る複合部材の断面を模式的に示す図である。FIG. 3 is a diagram schematically showing a cross section of the composite member according to the embodiment. 図4は、実施例で用いた樹脂組成物の硬化物の引張応力-引張ひずみ曲線である。FIG. 4 is a tensile stress-tensile strain curve of the cured resin composition used in the examples. 図5は、実施例で作製した複合部材の曲げ応力-曲げひずみ曲線である。FIG. 5 is a bending stress-bending strain curve of the composite member produced in the example. 図6は、実施例で用いた樹脂組成物の硬化物の引張強度と、実施例で作製した複合部材の曲げ強さとの関係を示すグラフである。FIG. 6 is a graph showing the relationship between the tensile strength of the cured product of the resin composition used in the example and the bending strength of the composite member produced in the example. 図7は、実施例で用いた樹脂組成物の硬化物の引張強度と、実施例で作製した複合部材の曲げ弾性率との関係を示すグラフである。FIG. 7 is a graph showing the relationship between the tensile strength of the cured product of the resin composition used in the example and the flexural modulus of the composite member produced in the example. 図8は、実施例で用いた樹脂組成物の硬化物の引張強度と、実施例で作製した複合部材の最大曲げひずみとの関係を示すグラフである。FIG. 8 is a graph showing the relationship between the tensile strength of the cured product of the resin composition used in the example and the maximum bending strain of the composite member produced in the example. 図9は、実施例で用いた樹脂組成物の硬化物の引張強度と、実施例で作製した複合部材の破壊靭性値との関係を示すグラフである。FIG. 9 is a graph showing the relationship between the tensile strength of the cured product of the resin composition used in the example and the fracture toughness value of the composite member produced in the example. 図10は、実施例で作製した例1~4の複合部材の断面SEM画像である。FIG. 10 is a cross-sectional SEM image of the composite members of Examples 1 to 4 produced in Examples. 図11は、実施例で作製した例1~4の複合部材の曲げ試験により形成された破断面のSEM画像である。FIG. 11 is a SEM image of a fractured surface formed by a bending test of the composite members of Examples 1 to 4 produced in Examples.

<複合部材の製造方法(第一実施形態)>
第一実施形態に係る複合部材の製造方法は、図1に示すように、フレーク状粒子を含む抄造物を作製するステップ(S11)と、抄造物に硬化性樹脂組成物を含浸させるステップ(S12)と、硬化性樹脂組成物を硬化するステップ(S13)と、を含む。
<Method for manufacturing composite member (first embodiment)>
As shown in FIG. 1, the method for manufacturing a composite member according to the first embodiment includes a step of producing a paper product containing flaky particles (S11), and a step of impregnating the paper product with a curable resin composition (S12). ) and a step (S13) of curing the curable resin composition.

(1)抄造物の作製(S11)
まず、フレーク状粒子を分散媒と混合して、懸濁液を調製する。
(1) Preparation of paper product (S11)
First, flaky particles are mixed with a dispersion medium to prepare a suspension.

フレーク状粒子としては、例えば、天然マイカ、合成マイカ、スメクタイト、タルク、炭酸塩、ケイ酸塩、リン酸塩、金属等の無機材料の粒子を用いることができる。本願において、「フレーク状」とは、投影面積が最大となる面(扁平面)の円相当径が、この面に垂直な方向の長さ(厚さ)の最大値よりも大きいことを意味し、鱗片状、板状、薄片状ともいうことができる。フレーク状粒子は、例えば、100nm~5000μmのメジアン径dを有してよく、10nm~10μmの平均厚さtを有してよい。また、フレーク状粒子のアスペクト比、すなわち、メジアン径と平均厚さの比d/tは、例えば100以上であってよく、特に100~10000であってよい。フレーク状粒子のメジアン径dは、レーザー回折式粒度分布測定装置を用いて計測することができる。フレーク状粒子の平均厚さtは、SEM又はTEMを用いて得たフレーク状粒子の断面像から、30個以上の粒子の厚さを測定し、得られた値の算術平均を計算することにより求めることができる。 As the flaky particles, for example, particles of inorganic materials such as natural mica, synthetic mica, smectite, talc, carbonate, silicate, phosphate, metal, etc. can be used. In this application, "flake-like" means that the equivalent circular diameter of the surface with the maximum projected area (flat surface) is larger than the maximum length (thickness) in the direction perpendicular to this surface. It can also be called scaly, plate-like, or flaky. The flake-like particles may, for example, have a median diameter d of 100 nm to 5000 μm and an average thickness t of 10 nm to 10 μm. Further, the aspect ratio of the flaky particles, that is, the ratio d/t of the median diameter to the average thickness, may be, for example, 100 or more, particularly 100 to 10,000. The median diameter d of flaky particles can be measured using a laser diffraction particle size distribution measuring device. The average thickness t of the flaky particles can be determined by measuring the thickness of 30 or more particles from a cross-sectional image of the flaky particles obtained using SEM or TEM, and calculating the arithmetic mean of the obtained values. You can ask for it.

分散媒としては、水、アルコール等を用いることができる。 Water, alcohol, etc. can be used as the dispersion medium.

調製した懸濁液を抄いて、抄造物を作製する。抄造は、JIS P 8222:2015に従って行うことができる。具体的には、製紙工業で使われる抄紙装置と同様の装置を使用して懸濁液を抄いてメッシュ上にウェットマットを得、ウェットマットに含まれる液体(分散媒)を乾燥等により除去することにより、シート状の抄造物を得ることができる。 The prepared suspension is made into a paper to produce a paper product. Paper making can be performed according to JIS P 8222:2015. Specifically, a suspension is made using a paper machine similar to that used in the paper manufacturing industry to obtain a wet mat on a mesh, and the liquid (dispersion medium) contained in the wet mat is removed by drying, etc. By doing so, a sheet-like paper product can be obtained.

抄造物において、フレーク状粒子は重なりあって配置され、フレーク状粒子の厚さ方向が抄造物の厚さ方向に平行になるように配向する。 In the paper product, the flake-like particles are arranged one on top of the other, and are oriented such that the thickness direction of the flake-like particles is parallel to the thickness direction of the paper product.

(2)含浸(S12)
得られた抄造物に硬化性樹脂組成物を含浸させる。例えば、抄造物に硬化性樹脂組成物を塗布することにより、抄造物に硬化性樹脂組成物を含浸させることができる。硬化性樹脂組成物を塗布した抄造物を減圧下に置いたり、加熱等により硬化性樹脂の粘度を低下させたりすることにより、含浸を促進させてもよい。
(2) Impregnation (S12)
The obtained paper product is impregnated with a curable resin composition. For example, the paper product can be impregnated with the curable resin composition by applying the curable resin composition to the paper product. Impregnation may be promoted by placing the paper product coated with the curable resin composition under reduced pressure or by lowering the viscosity of the curable resin by heating or the like.

硬化性樹脂組成物は、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、エポキシアクリレート樹脂、ウレタンアクリレート樹脂、フェノキシ樹脂、アルキド樹脂、ウレタン樹脂、マレイミド樹脂、シアネート樹脂等の硬化性樹脂を含む。硬化性樹脂は、1種を単独で用いてもよく、又は2種以上を併用してもよい。硬化性樹脂組成物は、重合開始剤(熱重合開始剤、光重合開始剤等)、硬化剤、硬化促進剤、消泡剤、界面活性剤、難燃剤、着色剤、顔料、蛍光体、離型剤等の添加剤を含んでもよい。硬化性樹脂組成物は、熱硬化性又は光硬化性であってよい。 The curable resin composition includes curable resins such as epoxy resins, unsaturated polyester resins, vinyl ester resins, phenol resins, epoxy acrylate resins, urethane acrylate resins, phenoxy resins, alkyd resins, urethane resins, maleimide resins, and cyanate resins. include. The curable resin may be used alone or in combination of two or more. The curable resin composition contains a polymerization initiator (thermal polymerization initiator, photopolymerization initiator, etc.), curing agent, curing accelerator, antifoaming agent, surfactant, flame retardant, coloring agent, pigment, phosphor, release agent, etc. It may also contain additives such as molding agents. The curable resin composition may be thermosetting or photocurable.

硬化性樹脂組成物は、後続の硬化ステップ(S13)と同様の硬化条件で硬化させると1~30MPaの範囲内の引張強度を有する硬化物を形成する組成物である。このような硬化性樹脂組成物を用いることにより、本実施形態の製造方法により得られる複合部材が、十分に高い曲げ強さ及び曲げ弾性率を有しながらも、大きな最大曲げひずみを有するとともに延性的破壊挙動を示すことができる。硬化性樹脂組成物の硬化物は、1~25MPa又は2~24MPaの範囲内の引張強度を有してもよい。また、硬化性樹脂組成物の硬化物は、15~30MPa、20~30MPa、又は23~25MPaの範囲内の引張強度を有してもよい。このような硬化性樹脂組成物を用いることにより、本実施形態の製造方法により得られる複合部材がとりわけ高い破壊靭性値をさらに有することができる。従来技術は、充填材で強化した複合部材の製造に用いられる樹脂組成物としては、高い引張強度(例えば、40MPa以上)を示す硬化物を形成する材料を用いることが一般的であるが、このような材料を本実施形態で用いた場合、複合部材は延性的破壊挙動を示さず、脆性破壊する。硬化性樹脂組成物の硬化物の引張強度は、JIS C 2151:2019、ASTM D882に準じた引張試験により得られる引張応力-引張ひずみ曲線から求めることができる。具体的には、引張強度は、試験片を切断するまで引っ張ったときに記録される最大の引張力である。 The curable resin composition is a composition that forms a cured product having a tensile strength within the range of 1 to 30 MPa when cured under the same curing conditions as in the subsequent curing step (S13). By using such a curable resin composition, the composite member obtained by the manufacturing method of the present embodiment has sufficiently high bending strength and bending modulus, and also has large maximum bending strain and ductility. It can show destructive behavior. The cured product of the curable resin composition may have a tensile strength within the range of 1 to 25 MPa or 2 to 24 MPa. Further, the cured product of the curable resin composition may have a tensile strength within the range of 15 to 30 MPa, 20 to 30 MPa, or 23 to 25 MPa. By using such a curable resin composition, the composite member obtained by the manufacturing method of this embodiment can further have a particularly high fracture toughness value. Conventional technology generally uses a material that forms a cured product exhibiting high tensile strength (for example, 40 MPa or more) as a resin composition used for manufacturing composite members reinforced with fillers. When such a material is used in this embodiment, the composite member does not exhibit ductile fracture behavior but undergoes brittle fracture. The tensile strength of the cured product of the curable resin composition can be determined from a tensile stress-tensile strain curve obtained by a tensile test according to JIS C 2151:2019 and ASTM D882. Specifically, tensile strength is the maximum tensile force recorded when a specimen is pulled to break.

抄造物に含浸させる硬化性樹脂組成物の量は、例えば、本実施形態の製造方法により製造する複合部材において、複合部材の体積を基準とするフレーク状粒子の体積分率が5~99体積%の範囲内、特に40~99体積%又は50~99体積%の範囲内となる量であってよい。このように複合部材が高い体積分率でフレーク状粒子を含むことにより、複合部材が十分に高い曲げ強さ及び曲げ弾性率を有することができる。 The amount of the curable resin composition to be impregnated into the paper product is, for example, such that in the composite member manufactured by the manufacturing method of the present embodiment, the volume fraction of flaky particles is 5 to 99% by volume based on the volume of the composite member. The amount may be within the range of 40-99% by volume or 50-99% by volume. By including the flaky particles at such a high volume fraction in the composite member, the composite member can have sufficiently high bending strength and bending modulus.

(3)硬化(S13)
抄造物に含浸させた硬化性樹脂組成物を硬化する。作製する複合部材の形状に応じて、抄造物を複数枚重ねて加圧成形を行ってもよい。硬化は加熱、紫外線照射等によって行ってよく、硬化時の条件は硬化性樹脂組成物に応じて適宜選択してよい。
(3) Curing (S13)
The curable resin composition impregnated into the paper product is cured. Depending on the shape of the composite member to be produced, pressure molding may be performed by stacking a plurality of paper products. Curing may be performed by heating, ultraviolet irradiation, etc., and the conditions for curing may be appropriately selected depending on the curable resin composition.

以上により、マトリクス材料、及びマトリクス材料中に分散したフレーク状粒子を含む複合部材が得られる。本実施形態の製造方法により得られた複合部材において、マトリクス材料は、硬化性樹脂組成物の硬化物である。フレーク状粒子はフレーク状粒子の厚さ方向が複合部材の厚さ方向に平行になるように高度に配向している。 Through the above steps, a composite member including a matrix material and flaky particles dispersed in the matrix material is obtained. In the composite member obtained by the manufacturing method of this embodiment, the matrix material is a cured product of a curable resin composition. The flake particles are highly oriented such that the thickness direction of the flake particles is parallel to the thickness direction of the composite member.

<複合部材の製造方法(第二実施形態)>
第二実施形態に係る複合部材の製造方法は、図2に示すように、懸濁液を調製するステップ(S21)と、懸濁液を抄いて抄造物を作製するステップ(S22)と、抄造物を熱加圧成形するステップ(S23)と、を含む。
<Method for manufacturing composite member (second embodiment)>
As shown in FIG. 2, the method for manufacturing a composite member according to the second embodiment includes a step of preparing a suspension (S21), a step of making a paper product by paper-making the suspension (S22), and a step of producing a paper product by paper-making the suspension. The method includes a step of hot-pressing molding the object (S23).

(1)懸濁液の調製(S21)
空気中又は窒素雰囲気等の不活性雰囲気下で、繊維状又は粒子状の熱可塑性材料とフレーク状粒子を分散媒と混合して懸濁液を調製する。
(1) Preparation of suspension (S21)
A suspension is prepared by mixing the fibrous or particulate thermoplastic material and flake particles with a dispersion medium in air or under an inert atmosphere such as a nitrogen atmosphere.

熱可塑性材料としては、例えば、ポリプロピレン(PP)、ポリアミド(PA)、ポリフェニレンスルフィド(PPS)、ポリエーテルスルホン(PES)等の熱可塑性樹脂、ガラス、セルロース、竹やケナフ等の植物を原料とする天然繊維が挙げられる。 Examples of thermoplastic materials include thermoplastic resins such as polypropylene (PP), polyamide (PA), polyphenylene sulfide (PPS), and polyethersulfone (PES), glass, cellulose, and plants made from plants such as bamboo and kenaf. Examples include natural fibers.

熱可塑性材料は、本実施形態の製造方法により製造される複合部材の使用温度下において、1~30MPaの範囲内の引張強度を有する材料である。このような熱可塑性材料を用いることにより、本実施形態の製造方法により得られる複合部材が、その使用時に、十分に高い曲げ強さ及び曲げ弾性率を有しながらも、大きな最大曲げひずみを有するとともに延性的破壊挙動を示すことができる。熱可塑性材料は、複合部材の使用温度下において、1~25MPa又は2~24MPaの範囲内の引張強度を有してもよい。また、熱可塑性材料は、複合部材の使用温度下において、15~30MPa、20~30MPa、又は23~25MPaの範囲内の引張強度を有してもよい。このような熱可塑性材料を用いることにより、本実施形態の製造方法により得られる複合部材が、その使用時に、とりわけ高い破壊靭性値をさらに有することができる。従来技術は、充填材で強化した複合部材の製造に用いられる熱可塑性材料としては、複合部材の使用温度下において高い引張強度(例えば、40MPa以上)を示す材料を用いることが一般的であるが、このような材料を本実施形態で用いた場合、複合部材は延性的破壊挙動を示さず、脆性破壊する。熱可塑性材の引張強度は、JIS C 2151:2019、ASTM D882に準じた引張試験により得られる引張応力-引張ひずみ曲線から求めることができる。 The thermoplastic material is a material having a tensile strength within the range of 1 to 30 MPa at the operating temperature of the composite member manufactured by the manufacturing method of this embodiment. By using such a thermoplastic material, the composite member obtained by the manufacturing method of this embodiment can have sufficiently high bending strength and bending elastic modulus while having a large maximum bending strain when used. It can also exhibit ductile fracture behavior. The thermoplastic material may have a tensile strength in the range of 1 to 25 MPa or 2 to 24 MPa at the temperature of use of the composite part. The thermoplastic material may also have a tensile strength in the range of 15-30 MPa, 20-30 MPa, or 23-25 MPa at the temperature at which the composite member is used. By using such a thermoplastic material, the composite member obtained by the manufacturing method of this embodiment can further have particularly high fracture toughness values during use. In the prior art, as a thermoplastic material used to manufacture a composite member reinforced with a filler, it is common to use a material that exhibits high tensile strength (for example, 40 MPa or more) at the temperature at which the composite member is used. , when such a material is used in this embodiment, the composite member does not exhibit ductile fracture behavior but undergoes brittle fracture. The tensile strength of a thermoplastic material can be determined from a tensile stress-tensile strain curve obtained by a tensile test according to JIS C 2151:2019 and ASTM D882.

繊維状の熱可塑性材料は、例えば、0.01~1000μmの平均繊維径Dfibを有してよく、0.1μm~50mmの平均繊維長Lfibを有してよい。また、繊維状の熱可塑性材料のアスペクト比、すなわち、平均繊維長と平均繊維径の比Lfib/Dfibは、例えば10~10,000であってよい。平均繊維長Lfibは、光学顕微鏡像を用いて測定することができる。平均繊維径Dfibは、走査型電子顕微鏡(SEM)又は透過型電子顕微鏡(TEM)を用いて得た繊維の断面像から、30個以上の繊維の直径(円相当径)を測定して平均することにより求められる。 The fibrous thermoplastic material may have, for example, an average fiber diameter D fib of 0.01 to 1000 μm and an average fiber length L fib of 0.1 μm to 50 mm. Further, the aspect ratio of the fibrous thermoplastic material, that is, the ratio of average fiber length to average fiber diameter L fib /D fib may be, for example, 10 to 10,000. The average fiber length L fib can be measured using an optical microscope image. The average fiber diameter D fib is determined by measuring the diameters (circular equivalent diameter) of 30 or more fibers from a cross-sectional image of the fibers obtained using a scanning electron microscope (SEM) or a transmission electron microscope (TEM). It is determined by

粒子状の熱可塑性材料は、例えば、フレーク状、球状等の形状を有してよい。フレーク状の熱可塑性材料は、例えば、1~5,000μmのメジアン径Dflを有してよく、0.1~100μmの平均厚さTflを有してよい。また、フレーク状の熱可塑性材料のアスペクト比、すなわち、メジアン径と平均厚さの比Dfl/Tflは、例えば10~10,000であってよい。フレーク状の熱可塑性材料のメジアン径Dflは、レーザー回折式粒度分布測定装置を用いて計測することができる。フレーク状の熱可塑性材料の平均厚さTflは、SEM又はTEMを用いて得た粒子の断面像から、30個以上の粒子の厚さを測定して平均することにより求められる。 The particulate thermoplastic material may have, for example, a flake-like, spherical, etc. shape. The flaky thermoplastic material may, for example, have a median diameter D fl of 1 to 5,000 μm and a mean thickness T fl of 0.1 to 100 μm. Further, the aspect ratio of the flaky thermoplastic material, that is, the ratio of median diameter to average thickness D fl /T fl may be, for example, from 10 to 10,000. The median diameter D fl of the flaky thermoplastic material can be measured using a laser diffraction particle size distribution measuring device. The average thickness T fl of the flaky thermoplastic material is determined by measuring and averaging the thicknesses of 30 or more particles from a cross-sectional image of the particles obtained using SEM or TEM.

球状の熱可塑性材料は、例えば、10nm~1,000μmのメジアン径Dspを有してよい。球状の熱可塑性材料のメジアン径Dspは、レーザー回折式粒度分布測定装置を用いて計測することができる。 The spherical thermoplastic material may, for example, have a median diameter D sp of 10 nm to 1,000 μm. The median diameter D sp of the spherical thermoplastic material can be measured using a laser diffraction particle size distribution measuring device.

フレーク状粒子としては、例えば、天然マイカ、合成マイカ、スメクタイト、タルク、炭酸塩、ケイ酸塩、リン酸塩、金属等の無機材料の粒子を用いることができる。フレーク状粒子は、例えば、100nm~5000μmのメジアン径dを有してよく、10nm~10μmの平均厚さtを有してよい。また、フレーク状粒子のアスペクト比、すなわち、メジアン径と平均厚さの比d/tは、例えば100以上であってよく、特に100~10000であってよい。フレーク状粒子のメジアン径dは、レーザー回折式粒度分布測定装置を用いて計測することができる。フレーク状粒子の平均厚さtは、SEM又はTEMを用いて得たフレーク状粒子の断面像から、30個以上の粒子の厚さを測定し、得られた値の算術平均を計算することにより求めることができる。 As the flaky particles, for example, particles of inorganic materials such as natural mica, synthetic mica, smectite, talc, carbonate, silicate, phosphate, metal, etc. can be used. The flaky particles may, for example, have a median diameter d between 100 nm and 5000 μm and an average thickness t between 10 nm and 10 μm. Further, the aspect ratio of the flaky particles, that is, the ratio d/t of the median diameter to the average thickness, may be, for example, 100 or more, particularly 100 to 10,000. The median diameter d of flaky particles can be measured using a laser diffraction particle size distribution measuring device. The average thickness t of the flaky particles can be determined by measuring the thickness of 30 or more particles from a cross-sectional image of the flaky particles obtained using SEM or TEM, and calculating the arithmetic mean of the obtained values. You can ask for it.

混合する熱可塑性材料とフレーク状粒子の合計体積に対するフレーク状粒子の体積分率Vfxは、5~99体積%の範囲内、特に40~99体積%又は50~99体積%の範囲内であってよい。高い体積分率でフレーク状粒子を用いることにより、本実施形態の製造方法により製造される複合部材が十分に高い曲げ強さ及び曲げ弾性率を有することができる。 The volume fraction V fx of the flaky particles relative to the total volume of the thermoplastic material and the flaky particles to be mixed is in the range from 5 to 99% by volume, in particular in the range from 40 to 99% by volume or from 50 to 99% by volume. It's fine. By using flaky particles at a high volume fraction, the composite member manufactured by the manufacturing method of this embodiment can have sufficiently high bending strength and bending elastic modulus.

また、フレーク状粒子と熱可塑性粒子の合計体積に対するフレーク状粒子の体積分率Vfx及び熱可塑性粒子の体積分率Vfy、並びに、フレーク状粒子の平均体積v、及び熱可塑性粒子の平均有効体積vは、下記式(1)

Figure 2024022869000002
を満たしてよい。ここで、フレーク状粒子の平均体積vは、上述のフレーク状粒子のメジアン径d及び平均厚さtに基づいて計算される。熱可塑性材料が繊維状で、且つ、その平均繊維長Lfibが、フレーク状粒子のメジアン径dを超える場合は、熱可塑性材料の平均有効体積vは下記式(2)
=πd(Dfib/2) (2)
で計算され、それ以外の場合は、熱可塑性材料の平均有効体積vは、上述の熱可塑性材料の各種寸法を用いて計算される熱可塑性材料の体積を指す。上記式(1)を満たす量のフレーク状粒子と熱可塑性材料を用いることにより、後続のステップで作製される抄造物においてフレーク状粒子間に熱可塑性材料がより確実に存在することができ、本実施形態の製造方法により製造される複合部材におけるフレーク状粒子の分散性が一層向上し、複合部材がより高い曲げ強さ及び曲げ弾性率を有することができる。 Further, the volume fraction V fx of flaky particles and the volume fraction V fy of thermoplastic particles with respect to the total volume of flaky particles and thermoplastic particles, the average volume v x of flaky particles, and the average volume of thermoplastic particles The effective volume v y is expressed by the following formula (1)
Figure 2024022869000002
may be satisfied. Here, the average volume v x of the flake-like particles is calculated based on the above-mentioned median diameter d and average thickness t of the flake-like particles. When the thermoplastic material is fibrous and its average fiber length L fib exceeds the median diameter d of the flaky particles, the average effective volume v y of the thermoplastic material is expressed by the following formula (2).
v y = πd(D fib /2) 2 (2)
Otherwise, the average effective volume of the thermoplastic material v y refers to the volume of the thermoplastic material calculated using the various dimensions of the thermoplastic material described above. By using the amount of flaky particles and thermoplastic material that satisfies the above formula (1), the thermoplastic material can be more reliably present between the flaky particles in the paper product produced in the subsequent step. The dispersibility of the flaky particles in the composite member manufactured by the manufacturing method of the embodiment is further improved, and the composite member can have higher bending strength and bending elastic modulus.

分散媒としては、水、アルコール等を用いることができる。 Water, alcohol, etc. can be used as the dispersion medium.

(2)抄造物の作製(S22)
調製した懸濁液を抄いて、熱可塑性材料及びフレーク状粒子を含む抄造物を作製する。抄造は、JIS P 8222:2015に従って行うことができる。具体的には、製紙工業で使われる抄紙装置と同様の装置を使用して懸濁液を抄いてメッシュ上にウェットマットを得、ウェットマットに含まれる液体(分散媒)を乾燥等により除去することにより、シート状の抄造物を得ることができる。
(2) Preparation of paper product (S22)
The prepared suspension is made into a paper product containing a thermoplastic material and flaky particles. Paper making can be performed according to JIS P 8222:2015. Specifically, a suspension is made using a paper machine similar to that used in the paper manufacturing industry to obtain a wet mat on a mesh, and the liquid (dispersion medium) contained in the wet mat is removed by drying, etc. By doing so, a sheet-like paper product can be obtained.

抄造物において、フレーク状粒子は重なりあって配置され、フレーク状粒子の厚さ方向が抄造物の厚さ方向に平行になるように配向する。重なったフレーク状粒子の間には熱可塑性材料が存在する。 In the paper product, the flake-like particles are arranged one on top of the other, and are oriented such that the thickness direction of the flake-like particles is parallel to the thickness direction of the paper product. Thermoplastic material is present between the overlapping flake particles.

(3)熱加圧成形(S23)
抄造物を熱加圧成形して、複合部材を作製する。作製する複合部材の形状に応じて、抄造物を複数枚重ねて熱加圧成形を行ってもよい。さらに、ハンドリング性を向上させるために、熱加圧成形前に、重ねた抄造物を予備的に圧着してもよい。圧着時には、熱可塑性材料の溶融温度未満の温度に抄造物を加熱してもよい。熱加圧成形は、熱可塑性材料のガラス転移点又は溶融温度以上、分解温度以下の温度に抄造物を加熱して行う。それにより、熱可塑性材料が軟化してフレーク状粒子の間の空間を満たすように広がる。その後、冷却して熱可塑性材料を固化する。それにより、抄造物が成形され、マトリクス材料、及びマトリクス材料中に分散したフレーク状粒子を含む複合部材が得られる。本実施形態の製造方法により得られた複合部材において、マトリクス材料は、熱可塑性材料である。フレーク状粒子はフレーク状粒子の厚さ方向が複合部材の厚さ方向に平行になるように高度に配向している。
(3) Hot pressure molding (S23)
The paper product is hot-pressed to produce a composite member. Depending on the shape of the composite member to be produced, a plurality of paper products may be stacked and hot-press molded. Furthermore, in order to improve handling properties, the stacked paper products may be preliminarily crimped before hot-press molding. During crimping, the paper product may be heated to a temperature below the melting temperature of the thermoplastic material. Hot press molding is performed by heating the paper product to a temperature that is above the glass transition point or melting temperature of the thermoplastic material and below the decomposition temperature. The thermoplastic material thereby softens and expands to fill the spaces between the flaky particles. Thereafter, the thermoplastic material is solidified by cooling. Thereby, the paper product is molded, and a composite member containing a matrix material and flaky particles dispersed in the matrix material is obtained. In the composite member obtained by the manufacturing method of this embodiment, the matrix material is a thermoplastic material. The flake particles are highly oriented such that the thickness direction of the flake particles is parallel to the thickness direction of the composite member.

<複合部材>
図3に示すように、本実施形態の複合部材10は、マトリクス材料2と、マトリクス材料2中に分散したフレーク状粒子4と、を含む。複合部材10は、上記第一及び第二実施形態の製造方法により製造することができる。
<Composite member>
As shown in FIG. 3, the composite member 10 of this embodiment includes a matrix material 2 and flaky particles 4 dispersed in the matrix material 2. The composite member 10 can be manufactured by the manufacturing methods of the first and second embodiments described above.

複合部材10は板状の形状を有してよい。なお、本願において、「板状」は、図3に示すような平板状のみならず、曲面状に湾曲した部分を有する湾曲板状も含む。 The composite member 10 may have a plate-like shape. In this application, the term "plate-like" includes not only a flat plate-like shape as shown in FIG. 3, but also a curved plate-like shape having a curved portion.

マトリクス材料2は、上述の実施形態で説明した硬化性樹脂組成物の硬化物又は熱可塑性材料であってよい。硬化性樹脂組成物、熱可塑性材料、及びフレーク状粒子4の材料例、並びにフレーク状粒子4の形状は、上記実施形態にて詳述したためここでは説明を省略する。 The matrix material 2 may be a cured product of the curable resin composition described in the above embodiment or a thermoplastic material. The curable resin composition, the thermoplastic material, the material examples of the flake-like particles 4, and the shape of the flake-like particles 4 have been described in detail in the above embodiment, so their explanation will be omitted here.

複合部材10は、フレーク状粒子4を、複合部材10の総体積を基準として5~99体積%の範囲内、特に40~99体積%又は50~99体積%の範囲内の量で含有してよい。このように複合部材10が高い体積分率でフレーク状粒子4を含むことにより、複合部材10が十分に高い曲げ強さ及び曲げ弾性率を有することができる。 The composite member 10 contains flake particles 4 in an amount within the range of 5 to 99 volume %, particularly 40 to 99 volume % or 50 to 99 volume % based on the total volume of the composite member 10. good. Since the composite member 10 contains flaky particles 4 at a high volume fraction in this way, the composite member 10 can have sufficiently high bending strength and bending elastic modulus.

フレーク状粒子4は、その厚さ方向が複合部材10の厚さ方向に平行になるように配向する。すなわち、フレーク状粒子4は、フレーク状粒子4の扁平面4aと複合部材10の表面10aが平行になるように配向する。それにより複合部材10が十分に高い曲げ強さ及び曲げ弾性率を有することができる。なお、本願において、「平行」とは、「略平行」も包含し、具体的には、二つの面又は方向がなす角度の平均が30度以下、好ましくは20度以下、より好ましくは10度以下、特に好ましくは5度以下である場合も包含する。フレーク状粒子4の扁平面4aと複合部材10の表面10aのなす角度の平均は、例えば、複合部材10の断面SEM像又は断面TEM像から、30個以上のフレーク状粒子4の扁平面4aと複合部材10の表面10aのなす角度を求め、平均することにより求められる。 The flaky particles 4 are oriented such that their thickness direction is parallel to the thickness direction of the composite member 10. That is, the flaky particles 4 are oriented so that the flat surface 4a of the flaky particles 4 and the surface 10a of the composite member 10 are parallel to each other. Thereby, the composite member 10 can have sufficiently high bending strength and bending elastic modulus. In addition, in this application, "parallel" includes "substantially parallel", and specifically, the average angle between two surfaces or directions is 30 degrees or less, preferably 20 degrees or less, and more preferably 10 degrees. Hereinafter, cases where the angle is particularly preferably 5 degrees or less are also included. For example, from a cross-sectional SEM image or a cross-sectional TEM image of the composite member 10, the average angle between the flat surface 4a of the flaky particles 4 and the surface 10a of the composite member 10 is determined by the average angle between the flat surface 4a of 30 or more flaky particles 4 and It is determined by determining the angles formed by the surface 10a of the composite member 10 and averaging them.

複合部材10は、100~250MPa、特に134~199MPaの範囲内の曲げ強さ、10~40GPa、特に15~30GPaの範囲内の曲げ弾性率、及び1~2%、好ましくは1~1.5%、特に1.26~1.29%の範囲内の最大曲げひずみを有してよい。このような機械特性を有する複合部材10は、発明者らの鋭意検討によれば延性破壊する。そのため、高強度と破壊時の破片の脱落防止の両方が求められる用途、例えば車両の外板等に、好適に用いることができる。また、複合部材10は、150~250MPa、好ましくは180~220MPa、特に190~210MPaの範囲内の曲げ強さ、20~40GPa、特に25~35GPaの範囲内の曲げ弾性率、及び1~2%、好ましくは1~1.5%、特に1.28~1.3%の範囲内の最大曲げひずみを有してよい。このような機械特性を有する複合部材10は、発明者らの鋭意検討によれば、延性破壊するだけでなく、高い破壊靭性値(具体的には、300~500J/m、400~500J/m、又は450~500J/m)を有する。そのため、高強度と破壊時の破片の脱落防止に加えて、高靭性が求められる用途に好適に用いることができる。 The composite member 10 has a flexural strength in the range of 100 to 250 MPa, in particular 134 to 199 MPa, a flexural modulus in the range of 10 to 40 GPa, in particular 15 to 30 GPa, and a flexural modulus of 1 to 2%, preferably 1 to 1.5 %, especially in the range 1.26-1.29%. According to intensive studies by the inventors, the composite member 10 having such mechanical properties undergoes ductile failure. Therefore, it can be suitably used in applications that require both high strength and prevention of falling fragments when broken, such as vehicle outer panels. The composite member 10 also has a bending strength in the range of 150 to 250 MPa, preferably 180 to 220 MPa, especially 190 to 210 MPa, a bending modulus in the range of 20 to 40 GPa, especially 25 to 35 GPa, and a bending modulus of 1 to 2%. , preferably in the range from 1 to 1.5%, especially from 1.28 to 1.3%. According to intensive studies by the inventors, the composite member 10 having such mechanical properties not only undergoes ductile fracture but also has high fracture toughness values (specifically, 300 to 500 J/m 3 and 400 to 500 J/m 3 ). m 3 or 450 to 500 J/m 3 ). Therefore, it can be suitably used in applications that require high toughness in addition to high strength and prevention of falling off fragments upon fracture.

なお、複合部材10の曲げ強さ、曲げ弾性率、最大曲げひずみ、及び破壊靭性値は、JIS K 7017:1999に準じた3点曲げ試験により得られる曲げ応力-曲げひずみ曲線から求めることができる。具体的には、曲げ強さは、試験中の最大荷重時に複合部材10に加わる曲げ応力であり、曲げ弾性率は、弾性限度内における応力-ひずみ曲線の勾配であり、最大曲げひずみは、最大荷重時の複合部材10のひずみであり、破壊靭性値は、応力-ひずみ曲線を積分した値である。 The bending strength, bending elastic modulus, maximum bending strain, and fracture toughness value of the composite member 10 can be determined from the bending stress-bending strain curve obtained by a three-point bending test according to JIS K 7017:1999. . Specifically, the bending strength is the bending stress applied to the composite member 10 at the maximum load during the test, the bending modulus is the slope of the stress-strain curve within the elastic limit, and the maximum bending strain is the bending stress applied to the composite member 10 at the maximum load during the test. This is the strain of the composite member 10 under load, and the fracture toughness value is the value obtained by integrating the stress-strain curve.

上記のような機械特性を有する複合部材10は、上記第一又は第二実施形態の製造方法により製造することが可能であるが、複合部材10の製法はこれらに限定されない。マトリクス材料2として適切な材料、すなわち、1~30MPa、1~25MPa、2~24MPa、15~30MPa、20~30MPa、又は23~25MPaの範囲内の引張強度を有する材料を選択し、適切なフレーク状粒子を選択し、これらの体積分率を適切な値に設定すれば、第一又は第二実施形態の製造方法とは異なる方法でも複合部材10を製造することが可能である。 Although the composite member 10 having the above mechanical properties can be manufactured by the manufacturing method of the first or second embodiment, the manufacturing method of the composite member 10 is not limited thereto. Select a suitable material as matrix material 2, i.e. a material with a tensile strength in the range of 1-30 MPa, 1-25 MPa, 2-24 MPa, 15-30 MPa, 20-30 MPa, or 23-25 MPa, and By selecting shaped particles and setting their volume fractions to appropriate values, it is possible to manufacture the composite member 10 by a method different from the manufacturing method of the first or second embodiment.

本発明者らは、マトリクス材料2が上記のような比較的低い引張強度を有する材料であることにより、複合部材10に曲げ応力が加えられたときにフレーク状粒子に適度な剪断荷重がかかり、その結果、複合部材10が十分に高い曲げ強さ及び曲げ弾性率を有しつつも延性的破壊挙動を示すことができると考えている。 The present inventors have discovered that because the matrix material 2 is a material having a relatively low tensile strength as described above, when bending stress is applied to the composite member 10, an appropriate shearing load is applied to the flaky particles. As a result, it is believed that the composite member 10 can exhibit ductile fracture behavior while having sufficiently high bending strength and bending modulus.

複合部材10は、さらに成形して使用してもよい。すなわち、複合部材10は、最終製品を製造するための中間素材として用いることもできる。 The composite member 10 may be further molded and used. That is, the composite member 10 can also be used as an intermediate material for manufacturing a final product.

以上、本発明の実施形態について詳述したが、本発明は、上記実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができる。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above embodiments, and various design changes can be made without departing from the spirit of the present invention as described in the claims. It can be performed.

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples.

<複合部材の作製>
(1)樹脂組成物の調製
硬質主剤として、式(1)

Figure 2024022869000003
で表されるビスフェノールA型エポキシ樹脂(三菱ケミカル株式会社製jER828)、軟質主剤として式(2)
Figure 2024022869000004
で表されるポリ(プロピレングリコール)ジグリシジルエーテル(ナガセケムテックス株式会社製デナコールEX-931)、硬化剤として4-メチルヘキサヒドロ無水フタル酸(DIC株式会社製)、硬化促進剤として1,2-ジメチルイミダゾール(四国化成工業株式会社製)を用意した。 <Production of composite member>
(1) Preparation of resin composition As a hard base material, formula (1)
Figure 2024022869000003
Bisphenol A type epoxy resin (JER828 manufactured by Mitsubishi Chemical Corporation) represented by the formula (2) as a soft base material
Figure 2024022869000004
Poly(propylene glycol) diglycidyl ether represented by (Denacol EX-931 manufactured by Nagase ChemteX Corporation), 4-methylhexahydrophthalic anhydride (manufactured by DIC Corporation) as a curing agent, and 1,2 as a curing accelerator. -Dimethylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd.) was prepared.

これらの材料を表1に記載の分量で混合した。

Figure 2024022869000005
These materials were mixed in the amounts listed in Table 1.
Figure 2024022869000005

具体的には、計量した硬質主剤、軟質主剤、硬化剤、及び硬化促進剤を、真空式自転公転式ミキサー(株式会社シンキー製あわとり練太郎)を用いて、大気圧下にて500rpmで3分間混合した。さらに、容器内を1kPa下に減圧して500rpmで2分間、次いで1200rpmで1分間、さらに1500rmで1分間混合した。それによりエポキシ樹脂を含む組成物(エポキシ樹脂組成物)を得た。 Specifically, weighed hard base ingredients, soft base ingredients, curing agent, and curing accelerator were mixed at 500 rpm under atmospheric pressure using a vacuum-type rotation-revolution mixer (Awatori Rentaro, manufactured by Thinky Co., Ltd.). Mixed for a minute. Further, the pressure inside the container was reduced to 1 kPa and mixing was performed at 500 rpm for 2 minutes, then at 1200 rpm for 1 minute, and further at 1500 rpm for 1 minute. Thereby, a composition containing an epoxy resin (epoxy resin composition) was obtained.

(2)抄造物の作製
フレーク状粒子として、白マイカ粒子(直径280μm、平均厚さ1μm、平均アスペクト比280、Hubei Zhongtian Mica Products Co.,Ltd.製)を用意した。なお、マイカ粒子の直径は、レーザー回折式粒度分布測定装置(Malvern社製Mastersizer 3000)を用いて測定したメジアン径d50の値であり、マイカ粒子の平均厚さはSEM像から求めた。白マイカ粒子を水に加えて混合し、懸濁液を得た。
(2) Preparation of paper product White mica particles (diameter 280 μm, average thickness 1 μm, average aspect ratio 280, manufactured by Hubei Zhongtian Mica Products Co., Ltd.) were prepared as flaky particles. The diameter of the mica particles is the median diameter d50 measured using a laser diffraction particle size distribution analyzer (Mastersizer 3000 manufactured by Malvern), and the average thickness of the mica particles was determined from the SEM image. White mica particles were added to water and mixed to obtain a suspension.

抄造装置に2Lの水を加えて、水面が抄造装置の金網よりも高くなるようにした。次いで、抄造装置に上記の懸濁液を加えて撹拌した後、抄造装置の下部から排水した。それにより、金網で懸濁液が濾過されて、金網上にウェットマットが形成された。 2 L of water was added to the paper making device so that the water level was higher than the wire mesh of the paper making device. Next, the above suspension was added to the papermaking device and stirred, and then drained from the bottom of the papermaking device. Thereby, the suspension was filtered through the wire mesh, and a wet mat was formed on the wire mesh.

ウェットマットにセルロース製の濾紙を重ね、さらにその上にステンレス板を重ねた。ステンレス板の上から金属ローラーで転圧して、ウェットマットを圧縮するとともに、ウェットマット中の水を濾紙で吸収した。 A cellulose filter paper was layered on the wet mat, and a stainless steel plate was further layered on top of that. The wet mat was compressed by rolling the stainless steel plate with a metal roller, and the water in the wet mat was absorbed by the filter paper.

金網及び濾紙からウェットマットを取り外し、オーブンで4時間乾燥した。それによりシート状の抄造物を得た。同様にして、各例において抄造物を合計で5枚作製した。 The wet mat was removed from the wire mesh and filter paper and dried in an oven for 4 hours. Thereby, a sheet-like paper product was obtained. In the same manner, a total of five paper products were produced in each example.

(3)含浸
各抄造物をカットして縦50mm、横50mmの大きさ(重量1.8g)にした。1枚の抄造物を縦50mm、横50mm、高さ20mmのシリコーンゴム製の型内に配置し、上述の樹脂組成物を均一に塗布した。各例における樹脂組成物の塗布重量は表2に記載の通りとした。その上に抄造物を1枚重ね、さらに表2に記載の重量の樹脂組成物を均一に塗布した。これを繰り返して、5枚の抄造物に樹脂組成物を塗布した。
(3) Impregnation Each paper product was cut into a size of 50 mm in length and 50 mm in width (weight 1.8 g). One paper product was placed in a silicone rubber mold measuring 50 mm in length, 50 mm in width, and 20 mm in height, and the above-mentioned resin composition was uniformly applied thereto. The coating weight of the resin composition in each example was as shown in Table 2. One sheet of the paper product was placed on top of it, and a resin composition of the weight shown in Table 2 was further applied uniformly. This process was repeated to apply the resin composition to five paper products.

Figure 2024022869000006
Figure 2024022869000006

樹脂組成物が塗布された5枚の抄造物の入った型を真空オーブンに入れ、減圧下、80℃で30分間加熱した。それにより、抄造物に樹脂組成物を含浸させた。 The mold containing the five paper products coated with the resin composition was placed in a vacuum oven and heated at 80° C. for 30 minutes under reduced pressure. Thereby, the paper product was impregnated with the resin composition.

(4)硬化
樹脂組成物を含浸させた抄造物を縦50mm、横50mm、高さ10mmの金型に移し、熱プレス機(株式会社東洋精機製作所製)を用いて、120℃で90分間、5MPaの圧力でプレスして樹脂組成物を硬化させた。それにより、例1~4の板状の成形体(複合部材)を得た。得られた複合部材のいずれにおいても、樹脂組成物の硬化物の体積分率は40%であり、白マイカ粒子の体積分率は60%であった。
(4) Curing The paper product impregnated with the resin composition was transferred to a mold measuring 50 mm long, 50 mm wide, and 10 mm high, and heated at 120°C for 90 minutes using a heat press machine (manufactured by Toyo Seiki Seisakusho Co., Ltd.). The resin composition was cured by pressing at a pressure of 5 MPa. Thereby, plate-shaped molded bodies (composite members) of Examples 1 to 4 were obtained. In all of the composite members obtained, the volume fraction of the cured resin composition was 40%, and the volume fraction of white mica particles was 60%.

<硬化性樹脂組成物の硬化物の引張試験>
上記(1)で調製した例1~4の樹脂組成物を、縦50mm、横50mm、高さ10mmの金型に充填し、熱プレス機を用いて120℃で90分間、大気圧下で硬化させた。得られた硬化物からJIS K 6251:2017に準じたダンベル状試験片(7号、厚さ2mm)を各例につき5個ずつ作製した。万能力学試験機(株式会社島津製作所製オートグラフAGS-X)を用い、JIS C 2151:2019、ASTM D882に準じて引張試験を行った。引張速度は2mm/分とした。各例について得られた引張応力-引張ひずみ曲線を図4に示す。
<Tensile test of cured product of curable resin composition>
The resin compositions of Examples 1 to 4 prepared in (1) above were filled into a mold measuring 50 mm long, 50 mm wide, and 10 mm high, and cured at 120°C for 90 minutes under atmospheric pressure using a heat press machine. I let it happen. Five dumbbell-shaped test pieces (No. 7, thickness 2 mm) according to JIS K 6251:2017 were prepared from the obtained cured product for each example. A tensile test was conducted using a universal testing machine (Autograph AGS-X manufactured by Shimadzu Corporation) in accordance with JIS C 2151:2019 and ASTM D882. The tensile speed was 2 mm/min. The tensile stress-tensile strain curves obtained for each example are shown in FIG.

図4の応力-ひずみ曲線から、各例の樹脂組成物の硬化物の引張強度(試験片を切断するまで引っ張ったときに記録される最大の引張力)を求めた。結果を表3中に示す。 From the stress-strain curve in FIG. 4, the tensile strength (maximum tensile force recorded when the test piece was pulled until it was cut) of the cured resin composition of each example was determined. The results are shown in Table 3.

<複合部材の曲げ試験>
例1~4の各複合部材から長さ50mm、幅10mm、厚さ2mmの試験片を5枚切り出し、万能力学試験機(株式会社島津製作所製オートグラフAGS-X)を用い、JIS K 7017:1999に準じて、3点曲げ試験を行った。支点間距離は32mm、試験速度は1mm/分とした。各例について得られた曲げ応力-曲げひずみ曲線を図5に示す。例1及び例2の複合部材は脆性的破壊挙動を示し、例3及び例4の複合部材は延性的破壊挙動を示した。
<Bending test of composite member>
Five test pieces with a length of 50 mm, width of 10 mm, and thickness of 2 mm were cut from each of the composite members of Examples 1 to 4, and tested using a universal mechanical testing machine (Autograph AGS-X manufactured by Shimadzu Corporation) to JIS K 7017: A three-point bending test was conducted in accordance with 1999. The distance between the supporting points was 32 mm, and the test speed was 1 mm/min. FIG. 5 shows the bending stress-bending strain curves obtained for each example. The composite members of Examples 1 and 2 exhibited brittle failure behavior, and the composite members of Examples 3 and 4 exhibited ductile failure behavior.

図5の応力-ひずみ曲線から、複合部材の曲げ強さ(試験中の最大荷重時に複合部材に加わる曲げ応力)、曲げ弾性率(弾性限度内における応力-ひずみ曲線の勾配)、最大曲げひずみ(最大荷重時の複合部材のひずみ)、及び破壊靭性値(応力-ひずみ曲線を積分した値)を求めた。結果を表3中に示す。また、複合部材の作製に用いた硬化性樹脂組成物の硬化物の引張強度と、複合部材の曲げ強さ、曲げ弾性率、最大曲げひずみ、及び破壊靭性値との関係を、図6~9にそれぞれ示す。 From the stress-strain curve in Figure 5, the bending strength of the composite member (the bending stress applied to the composite member at the maximum load during the test), the bending modulus (the slope of the stress-strain curve within the elastic limit), and the maximum bending strain ( The strain of the composite member at the maximum load) and the fracture toughness value (the value obtained by integrating the stress-strain curve) were determined. The results are shown in Table 3. In addition, the relationships between the tensile strength of the cured product of the curable resin composition used to produce the composite member, the bending strength, bending elastic modulus, maximum bending strain, and fracture toughness value of the composite member are shown in Figures 6 to 9. are shown respectively.

Figure 2024022869000007
Figure 2024022869000007

<内部構造観察>
例1~4の複合部材の断面を、走査型電子顕微鏡((株)日立ハイテク製TM3030Plus)にて観察した。得られたSEM画像を図10に示す。図10のSEM画像において、上下方向が複合部材の厚さ方向であり、淡色部分はマイカ粒子の断面を表し、濃色部分は、樹脂組成物の硬化物(マトリクス材料)を表している。例1~4のいずれの複合部材においても、マイカ粒子がマトリクス材料中に分散しており、マイカ粒子は、複合部材の厚さ方向に重なるように高度に配向していた。
<Internal structure observation>
The cross sections of the composite members of Examples 1 to 4 were observed using a scanning electron microscope (TM3030Plus, manufactured by Hitachi High-Tech Corporation). The obtained SEM image is shown in FIG. In the SEM image of FIG. 10, the vertical direction is the thickness direction of the composite member, the light colored part represents the cross section of the mica particles, and the dark colored part represents the cured product of the resin composition (matrix material). In all of the composite members of Examples 1 to 4, mica particles were dispersed in the matrix material, and the mica particles were highly oriented so as to overlap in the thickness direction of the composite member.

<破断面観察>
曲げ試験で破断させた複合部材の破断面を、複合部材の厚さ方向からSEM((株)日立ハイテク製TM3030Plus)にて観察した。得られたSEM画像を図11に示す。例1及び例2の複合部材の破断面では、破壊されたマイカ粒子が多く確認された。例3及び例4の複合部材の破断面では、非破壊のマイカ粒子が多く確認された。
<Observation of fracture surface>
The fracture surface of the composite member fractured in the bending test was observed using a SEM (TM3030Plus, manufactured by Hitachi High-Tech Corporation) from the thickness direction of the composite member. The obtained SEM image is shown in FIG. Many broken mica particles were observed on the fracture surfaces of the composite members of Examples 1 and 2. On the fracture surfaces of the composite members of Examples 3 and 4, many non-destructive mica particles were observed.

これらの評価結果より、適切な引張強度を有する樹脂をマトリクス材料として選択することにより、十分に高い曲げ強さ及び十分に高い曲げ弾性率を有しながらも、大きな最大曲げひずみを有し、延性破壊する複合部材が得られることが示された。具体的には、例3及び例4では、硬化物の引張強度が2~24MPaである樹脂組成物を使用することにより、134~199MPaという十分に高い曲げ強さ、及び15~30GPaという十分に高い曲げ弾性率を有しながら、1.26~1.29%という大きな最大曲げひずみを有するとともに延性破壊する複合部材が得られた。特に、例3においては、硬化物の引張強度が24MPaである樹脂組成物を使用することにより、より高い曲げ強さ及びより高い曲げ弾性率を有しながら、1.29%というより大きな最大曲げひずみを有し、延性破壊するとともに、478.7J/mというとりわけ高い破壊靭性値を示す複合部材が得られた。 Based on these evaluation results, by selecting a resin with appropriate tensile strength as the matrix material, it is possible to have a sufficiently high bending strength and a sufficiently high bending modulus, a large maximum bending strain, and a high ductility. It has been shown that composite parts that break down can be obtained. Specifically, in Examples 3 and 4, by using a resin composition whose cured product has a tensile strength of 2 to 24 MPa, a sufficiently high bending strength of 134 to 199 MPa and a sufficiently high bending strength of 15 to 30 GPa can be obtained. A composite member having a high bending modulus, a large maximum bending strain of 1.26 to 1.29%, and ductile failure was obtained. In particular, in Example 3, by using a resin composition whose cured product has a tensile strength of 24 MPa, it has a higher maximum bending strength of 1.29% while having a higher bending strength and a higher bending modulus. A composite member was obtained which exhibits strain, ductile fracture and a particularly high fracture toughness value of 478.7 J/m 3 .

2 マトリクス材料、4 フレーク状粒子、4a フレーク状粒子の扁平面、10 複合部材、10a 複合部材の表面


2 matrix material, 4 flake-like particles, 4a flat surface of flake-like particles, 10 composite member, 10a surface of composite member


Claims (16)

マトリクス材料、及び前記マトリクス材料中に分散したフレーク状粒子を含む複合部材であって、
100~250MPaの範囲内の曲げ強さ、10~40GPaの範囲内の曲げ弾性率、及び1~2%の範囲内の最大曲げひずみを有する、複合部材。
A composite member comprising a matrix material and flaky particles dispersed in the matrix material,
A composite member having a bending strength in the range of 100-250 MPa, a bending modulus in the range of 10-40 GPa, and a maximum bending strain in the range of 1-2%.
前記フレーク状粒子を、複合部材の総体積を基準として5~99体積%の量で含有する、請求項1に記載の複合部材。 The composite member according to claim 1, wherein the flake particles are contained in an amount of 5 to 99% by volume based on the total volume of the composite member. 前記フレーク状粒子を、複合部材の総体積を基準として50~99体積%の量で含有する、請求項1に記載の複合部材。 The composite member according to claim 1, wherein the flaky particles are contained in an amount of 50 to 99% by volume based on the total volume of the composite member. 300~500J/mの範囲内の破壊靭性値を有する、請求項1~3のいずれか一項に記載の複合部材。 Composite member according to any one of claims 1 to 3, having a fracture toughness value in the range of 300 to 500 J/m 3 . 前記フレーク状粒子が、マイカ粒子である、請求項1~3のいずれか一項に記載の複合部材。 The composite member according to any one of claims 1 to 3, wherein the flaky particles are mica particles. 前記マトリクス材料が、エポキシ樹脂組成物の硬化物である、請求項1~3のいずれか一項に記載の複合部材。 The composite member according to any one of claims 1 to 3, wherein the matrix material is a cured product of an epoxy resin composition. 前記エポキシ樹脂組成物が、ビスフェノールA型エポキシ樹脂及びポリ(プロピレングリコール)ジグリシジルエーテルを含む、請求項6に記載の複合部材。 7. The composite member according to claim 6, wherein the epoxy resin composition includes a bisphenol A epoxy resin and poly(propylene glycol) diglycidyl ether. フレーク状粒子を含む抄造物を作製することと、
前記抄造物に硬化性樹脂組成物を含浸させることと、
前記硬化性樹脂組成物を所定条件下で硬化することと、
を含む、複合部材の製造方法であって、
前記硬化性樹脂組成物が、前記所定条件下で硬化することにより1~30MPaの範囲内の引張強度を有する硬化物を形成する組成物である、方法。
producing a paper product containing flaky particles;
Impregnating the paper product with a curable resin composition;
Curing the curable resin composition under predetermined conditions;
A method for manufacturing a composite member, comprising:
The method, wherein the curable resin composition is a composition that forms a cured product having a tensile strength within a range of 1 to 30 MPa when cured under the predetermined conditions.
前記硬化性樹脂組成物が、エポキシ樹脂を含む、請求項8に記載の方法。 9. The method of claim 8, wherein the curable resin composition comprises an epoxy resin. 前記硬化性樹脂組成物が、ビスフェノールA型エポキシ樹脂及びポリ(プロピレングリコール)ジグリシジルエーテルを含む、請求項8に記載の方法。 9. The method of claim 8, wherein the curable resin composition comprises a bisphenol A epoxy resin and poly(propylene glycol) diglycidyl ether. 繊維状又は粒子状の熱可塑性材料及びフレーク状粒子を含む懸濁液を調製することと、
前記懸濁液を抄いて、前記熱可塑性材料及び前記フレーク状粒子を含む抄造物を作製することと、
前記熱可塑性材料のガラス転移点以上の温度で前記抄造物を熱加圧成形することと、
を含む、所定温度下で使用される複合部材の製造方法であって、
前記熱可塑性材料が、前記所定温度下において1~30MPaの範囲内の引張強度を有する材料である、方法。
preparing a suspension comprising a fibrous or particulate thermoplastic material and flake particles;
making a paper product containing the thermoplastic material and the flaky particles by paper-making the suspension;
Hot-press molding the paper product at a temperature equal to or higher than the glass transition point of the thermoplastic material;
A method for manufacturing a composite member used under a predetermined temperature, comprising:
The method, wherein the thermoplastic material is a material having a tensile strength within the range of 1 to 30 MPa at the predetermined temperature.
前記複合部材が、100~250MPaの範囲内の曲げ強さ、10~40GPaの範囲内の曲げ弾性率、及び1~2%の範囲内の最大曲げひずみを有する、請求項8~11のいずれか一項に記載の方法。 Any of claims 8 to 11, wherein the composite member has a bending strength in the range of 100 to 250 MPa, a bending modulus in the range of 10 to 40 GPa, and a maximum bending strain in the range of 1 to 2%. The method described in paragraph 1. 前記複合部材が、前記フレーク状粒子を、前記複合部材の総体積を基準として5~99体積%の量で含有する、請求項8~11のいずれか一項に記載の方法。 The method according to any one of claims 8 to 11, wherein the composite member contains the flaky particles in an amount of 5 to 99% by volume, based on the total volume of the composite member. 前記複合部材が、前記フレーク状粒子を、前記複合部材の総体積を基準として50~99体積%の量で含有する、請求項8~11のいずれか一項に記載の方法。 The method according to any one of claims 8 to 11, wherein the composite member contains the flaky particles in an amount of 50 to 99% by volume, based on the total volume of the composite member. 前記複合部材が、300~500J/mの範囲内の破壊靭性値を有する、請求項8~11のいずれか一項に記載の方法。 A method according to any one of claims 8 to 11, wherein the composite member has a fracture toughness value in the range of 300 to 500 J/m 3 . 前記フレーク状粒子が、マイカ粒子である、請求項8~11のいずれか一項に記載の方法。
The method according to any one of claims 8 to 11, wherein the flaky particles are mica particles.
JP2022126282A 2022-08-08 2022-08-08 Composite member and method for producing composite member Pending JP2024022869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022126282A JP2024022869A (en) 2022-08-08 2022-08-08 Composite member and method for producing composite member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022126282A JP2024022869A (en) 2022-08-08 2022-08-08 Composite member and method for producing composite member

Publications (1)

Publication Number Publication Date
JP2024022869A true JP2024022869A (en) 2024-02-21

Family

ID=89930442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022126282A Pending JP2024022869A (en) 2022-08-08 2022-08-08 Composite member and method for producing composite member

Country Status (1)

Country Link
JP (1) JP2024022869A (en)

Similar Documents

Publication Publication Date Title
Mohit et al. Effect of TiC nanoparticles reinforcement in coir fiber based bio/synthetic epoxy hybrid composites: mechanical and thermal characteristics
Mousavi et al. Modification of the epoxy resin mechanical and thermal properties with silicon acrylate and montmorillonite nanoparticles
Adhikari et al. Effect of functionalized metal oxides addition on the mechanical, thermal and swelling behaviour of polyester/jute composites
Saha et al. Nanoclay‐reinforced syntactic foams: Flexure and thermal behavior
AU2012300600B2 (en) Curable monomers
Gokdai et al. Effect of marble: pine cone waste ratios on mechanical properties of polyester matrix composites
Ariawan et al. The effect of alkalization on the mechanical and water absorption properties of nonwoven kenaf fiber/unsaturated polyester composites produced by resin‐transfer molding
Behin et al. Enhancing mechanical properties of epoxy resin using waste lignin and salicylate alumoxane nanoparticles
Jaafar et al. Preparation and characterisation of epoxy/silica/kenaf composite using hand lay-up method
Rosamah et al. The role of bamboo nanoparticles in kenaf fiber reinforced unsaturated polyester composites
US20210237509A1 (en) Dispersions for additive manufacturing comprising discrete carbon nanotubes
Tshai et al. Synthesization of graphene and its incorporation into natural fiber reinforced thermosetting nanocomposite
Kuila et al. Bio‐inspired basalt fiber reinforced epoxy laminates with wasted egg shell derived CaCO3 for improved thermal and mechanical properties
KR20230160855A (en) Dispersions for additive manufacturing containing discrete carbon nanotubes
Yan et al. Nacre-like ternary hybrid films with enhanced mechanical properties by interlocked nanofiber design
Mahapatra et al. Development and characterization of titanium oxide filled ramie fiber based hybrid composites
JP2024022869A (en) Composite member and method for producing composite member
Ramamoorthi et al. Experimental investigations of influence of halloysite nanotube on mechanical and chemical resistance properties of glass fiber reinforced epoxy nano composites
Manh Vu et al. Enhanced mode I interlaminar fracture toughness and mechanical properties of carbon fiber-filled vinyl ester resin-based composite by using both coal fly ash and nano-/micro-glass fiber
Saha et al. Processing and performance evaluation of hollow microspheres filled epoxy composites
Saieh et al. Biodegradable composites of recycled thermoplastic starch and sawdust: the effect of cellulose nanofibers, nanoclay and temperature
CN112094438A (en) Functional nano-cellulose composite board and preparation method thereof
WO2017099198A1 (en) Flame-retardant sheet-forming body, method for producing flame-retardant sheet-formed product, and method for producing flame-retardant sheet-forming body
JP7265781B2 (en) Composite member manufacturing method and plate-shaped composite member
Thirukumaran et al. Study on mechanical properties of glass wool/epoxy reinforced composite

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20220818

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240712