JP2024022246A - water quality analyzer - Google Patents

water quality analyzer Download PDF

Info

Publication number
JP2024022246A
JP2024022246A JP2022125681A JP2022125681A JP2024022246A JP 2024022246 A JP2024022246 A JP 2024022246A JP 2022125681 A JP2022125681 A JP 2022125681A JP 2022125681 A JP2022125681 A JP 2022125681A JP 2024022246 A JP2024022246 A JP 2024022246A
Authority
JP
Japan
Prior art keywords
light
amount
flow cell
cleaning
dirt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022125681A
Other languages
Japanese (ja)
Inventor
ソミ シュレスタ
Shrestha Somi
和裕 小泉
Kazuhiro Koizumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2022125681A priority Critical patent/JP2024022246A/en
Priority to CN202310760850.0A priority patent/CN117517198A/en
Priority to KR1020230083305A priority patent/KR20240020180A/en
Publication of JP2024022246A publication Critical patent/JP2024022246A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/02Cleaning pipes or tubes or systems of pipes or tubes
    • B08B9/027Cleaning the internal surfaces; Removal of blockages
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/075Investigating concentration of particle suspensions by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/51Scattering, i.e. diffuse reflection within a body or fluid inside a container, e.g. in an ampoule
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • G01N21/532Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke with measurement of scattering and transmission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • G01N21/534Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke by measuring transmission alone, i.e. determining opacity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/127Calibration; base line adjustment; drift compensation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Measuring Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To fulfill the need to correct increases or decreases in a detection signal due to staining.
SOLUTION: Provided is a water quality analyzer for measuring a concentration of a measuring object substance contained in sample water, and the water quality analyzer comprises: a flow cell which has a wall part transmitting light and an internal space surrounded by the wall part and allows the sample water to pass through the internal space; a light source which emits light toward the flow cell; a concentration measuring part which, on the basis of light to be measured from the flow cell when emitting light source light from the light source to the flow cell, measures the concentration of the measuring object substance contained in the sample water, in the state of flowing the sample water to the flow cell; a stain detection part which, on the basis of a light quantity of the light to be measured from the flow cell, measures an optical attenuation due to stain of the flow cell in the state of flowing to the flow cell reference water with a known concentration of the measuring object substance; and a stain correction part which, on the basis of the optical attenuation due to the stain of the flow cell, corrects a measurement result of the concentration of the measuring object substance when flowing the sample water.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、水質分析装置に関する。 The present invention relates to a water quality analysis device.

従来、試料水の水質を分析する水質分析装置が知られている(例えば、特許文献1および2参照)。
[先行技術文献]
[特許文献]
[特許文献1] 特許第6436266号公報
[特許文献2] 特開2007-46978号公報
BACKGROUND ART Water quality analyzers that analyze the water quality of sample water are conventionally known (see, for example, Patent Documents 1 and 2).
[Prior art documents]
[Patent document]
[Patent Document 1] Japanese Patent No. 6436266 [Patent Document 2] Japanese Patent Application Publication No. 2007-46978

水質分析装置において試料水を流す部分に汚れが蓄積した場合、試料水に含まれる測定対象物質の濃度を示す検出信号が変動してしまう。 When dirt accumulates in the part through which sample water flows in a water quality analyzer, a detection signal indicating the concentration of a substance to be measured contained in the sample water fluctuates.

本発明の第1の態様においては、水質分析装置を提供する。水質分析装置はフローセルを備えてよい。上記いずれかの水質分析装置は光源を備えてよい。上記いずれかの水質分析装置は濃度測定部を備えてよい。上記いずれかの水質分析装置は汚れ検出部を備えてよい。上記いずれかの水質分析装置は汚れ補正部を備えてよい。上記いずれかの水質分析装置において、フローセルは、光を透過する壁部を有してよい。上記いずれかの水質分析装置において、フローセルは、壁部に囲まれ、試料水が通過する内部空間を有してよい。上記いずれかの水質分析装置において、光源はフローセルに向けて光を照射してよい。上記いずれかの水質分析装置において、濃度測定部は、試料水をフローセルに流した状態で、光源からフローセルに光源光を照射したときのフローセルからの被測定光に基づいて、試料水に含まれる測定対象物質の濃度を測定してよい。上記いずれかの水質分析装置において、汚れ検出部は、測定対象物質の濃度が既知の参照水をフローセルに流した状態における、フローセルからの被測定光の光量に基づいて、フローセルの汚れによる光減衰量を検出してよい。上記いずれかの水質分析装置において、汚れ補正部は、フローセルの汚れによる光減衰量に基づいて、試料水を流した時の測定対象物質の濃度の測定結果を補正してよい。 In a first aspect of the present invention, a water quality analysis device is provided. The water quality analyzer may include a flow cell. Any of the above water quality analysis devices may include a light source. Any of the above water quality analyzers may include a concentration measuring section. Any of the above water quality analyzers may include a dirt detection section. Any of the above water quality analyzers may include a dirt correction section. In any of the above water quality analyzers, the flow cell may have a wall that transmits light. In any of the above water quality analyzers, the flow cell may be surrounded by a wall and have an internal space through which sample water passes. In any of the above water quality analyzers, the light source may irradiate light toward the flow cell. In any of the above water quality analyzers, the concentration measurement unit determines the amount of water contained in the sample water based on the measured light from the flow cell when the flow cell is irradiated with source light from the light source while the sample water is flowing through the flow cell. The concentration of the substance to be measured may be measured. In any of the above water quality analyzers, the contamination detection unit detects the light attenuation due to contamination of the flow cell based on the amount of light to be measured from the flow cell when reference water with a known concentration of the substance to be measured is flowing through the flow cell. The amount can be detected. In any of the above water quality analyzers, the dirt correction section may correct the measurement result of the concentration of the substance to be measured when the sample water is passed, based on the amount of light attenuation due to dirt in the flow cell.

上記いずれかの水質分析装置において、汚れ補正部は、検出したフローセルの汚れによる光減衰量を保存して、次にフローセルの汚れによる光減衰量を検出するまでの間、保存した光減衰量を用いて測定対象物質の濃度の測定結果を補正してよい。 In any of the above water quality analyzers, the contamination correction section stores the detected amount of light attenuation due to contamination of the flow cell, and stores the stored amount of light attenuation until the next time the amount of light attenuation due to contamination of the flow cell is detected. may be used to correct the measurement results of the concentration of the substance to be measured.

上記いずれかの水質分析装置は、洗浄部を更に備えてよい。上記いずれかの水質分析装置において、汚れ検出部は、フローセルの洗浄後、試料水を流す前に、参照水をフローセルに流して光減衰量を検出してよい。 Any of the above water quality analyzers may further include a cleaning section. In any of the above water quality analyzers, the dirt detection section may flow reference water through the flow cell and detect the amount of optical attenuation after cleaning the flow cell and before flowing the sample water.

上記いずれかの水質分析装置は、光源光量モニタを更に備えてよい。上記いずれかの水質分析装置において、光源光量モニタは、フローセルに入射する光源光の光量を検出してよい。上記いずれかの水質分析装置において、汚れ検出部は、参照水を測定するときの光源光の光量を用いて光減衰量を検出してよい。 Any of the above water quality analyzers may further include a light source light amount monitor. In any of the above water quality analyzers, the light source light amount monitor may detect the amount of light source light that enters the flow cell. In any of the above water quality analyzers, the dirt detection section may detect the amount of light attenuation using the amount of light from the light source when measuring the reference water.

上記いずれかの水質分析装置において、汚れ補正部は、過去に測定した光減衰量に応じた減衰情報の履歴を保持し、以後の光減衰量の予測を行ってよい。 In any of the above water quality analyzers, the dirt correction section may maintain a history of attenuation information corresponding to the amount of light attenuation measured in the past, and may predict the amount of light attenuation in the future.

上記いずれかの水質分析装置において、汚れ補正部は、光減衰量の予測値が許容値を超える時期を推定してよい。 In any of the above water quality analyzers, the dirt correction section may estimate the time when the predicted value of the amount of light attenuation exceeds the allowable value.

上記いずれかの水質分析装置は、洗浄部を更に備えてよい。上記いずれかの水質分析装置において、汚れ検出部は、フローセルの洗浄後、試料水を流す前に、参照水をフローセルに流して光減衰量を検出してよい。上記いずれかの水質分析装置において、洗浄部は、光減衰量の予測に応じて洗浄方法を変更してよい。 Any of the above water quality analyzers may further include a cleaning section. In any of the above water quality analyzers, the dirt detection section may flow reference water through the flow cell and detect the amount of optical attenuation after cleaning the flow cell and before flowing the sample water. In any of the above water quality analyzers, the cleaning section may change the cleaning method depending on the prediction of the amount of light attenuation.

上記いずれかの水質分析装置において、洗浄部は、洗浄方法を変更した場合の洗浄前後における光減衰量の変化に応じて、次の洗浄時の洗浄方法を選択してよい。 In any of the water quality analyzers described above, the cleaning unit may select a cleaning method for the next cleaning depending on a change in light attenuation before and after cleaning when the cleaning method is changed.

上記いずれかの水質分析装置において、汚れ検出部は、洗浄から次の洗浄までの間に複数回にわたって参照水を用いて光減衰量を検出し、光減衰量の増加速度に基づいて、次の洗浄までの間の光減衰量の変化を予測してよい。上記いずれかの水質分析装置において、汚れ補正部は、光減衰量の変化の予測に基づいて、測定対象物質の濃度の測定結果を補正してよい。 In any of the above water quality analyzers, the dirt detection section detects the amount of light attenuation using reference water multiple times between washings, and based on the rate of increase in the amount of light attenuation, Changes in optical attenuation up to cleaning may be predicted. In any of the above water quality analyzers, the dirt correction section may correct the measurement result of the concentration of the substance to be measured based on the prediction of the change in the amount of light attenuation.

上記いずれかの水質分析装置において、洗浄から次の洗浄までの間の光減衰量の検出の際、参照水の流速を、試料水に含まれる測定対象物質の濃度を測定するときの試料水の流速以下にしてよい。 In any of the above water quality analyzers, when detecting the amount of optical attenuation from one wash to the next wash, the flow rate of the reference water is set to the flow rate of the sample water when measuring the concentration of the target substance contained in the sample water. The flow rate may be lower than that.

上記いずれかの水質分析装置において、洗浄から次の洗浄までの間の光減衰量の検出の際、参照水の流速を、洗浄時に流す洗浄水の流速以下にしてよい。 In any of the above water quality analyzers, when detecting the amount of optical attenuation from one wash to the next wash, the flow rate of the reference water may be set to be equal to or lower than the flow rate of the wash water used during washing.

上記いずれかの水質分析装置において、洗浄部は光減衰量の検出結果に基づいてフローセルの洗浄が終了したか否かを判定し、フローセルの洗浄開始から設定期間内に洗浄が終了しない場合に、洗浄部における洗浄方法を変更させてよい。 In any of the above water quality analyzers, the cleaning unit determines whether or not cleaning of the flow cell has been completed based on the detection result of the amount of optical attenuation, and if cleaning has not been completed within a set period from the start of cleaning of the flow cell, The cleaning method in the cleaning section may be changed.

上記いずれかの水質分析装置において、洗浄部は、過去にフローセルに流した試料水の履歴に基づいて、フローセルの洗浄方法を選択してよい。 In any of the above water quality analyzers, the cleaning section may select a flow cell cleaning method based on the history of sample water that has been passed through the flow cell in the past.

上記いずれかの水質分析装置は、透過光検出部と、散乱光量検出部とを更に備えてよい。上記いずれかの水質分析装置において、透過光検出部は、フローセルを透過した透過光の光量である透過光量を検出してよい。上記いずれかの水質分析装置において、散乱光量検出部は、参照水からの散乱光の光量である散乱光量を検出してよい。上記いずれかの水質分析装置において、汚れ検出部は、フローセルに参照水を流した状態での透過光量と散乱光量に基づいて、フローセルの汚れによる光減衰量を検出してよい。 Any of the above water quality analyzers may further include a transmitted light detection section and a scattered light amount detection section. In any of the above water quality analyzers, the transmitted light detection section may detect the amount of transmitted light that is the amount of transmitted light that has passed through the flow cell. In any of the above water quality analyzers, the scattered light amount detection section may detect the amount of scattered light that is the amount of scattered light from the reference water. In any of the above water quality analyzers, the dirt detection section may detect the amount of light attenuation due to dirt in the flow cell based on the amount of transmitted light and the amount of scattered light when reference water is flowing through the flow cell.

なお、上記の発明の概要は、本発明の必要な特徴のすべてを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。 Note that the above summary of the invention does not list all the necessary features of the invention. Furthermore, subcombinations of these features may also constitute inventions.

本発明の一つの実施形態に係る水質分析装置100の一例を示す図である。1 is a diagram showing an example of a water quality analysis device 100 according to one embodiment of the present invention. 測定対象物質の濃度の測定結果に対する補正を説明する図である。FIG. 3 is a diagram illustrating correction to the measurement result of the concentration of a substance to be measured. 本発明の他の実施形態に係る水質分析装置100の一例を示す図である。It is a figure showing an example of water quality analyzer 100 concerning other embodiments of the present invention. 本発明の他の実施形態に係る水質分析装置100の一例を示す図である。It is a figure showing an example of water quality analyzer 100 concerning other embodiments of the present invention. 図4の実施例における水質分析装置100の動作例を示すフローチャートである。5 is a flowchart showing an example of the operation of the water quality analyzer 100 in the embodiment of FIG. 4. FIG. 本発明の他の実施形態に係る水質分析装置100の一例を示す図である。It is a figure showing an example of water quality analyzer 100 concerning other embodiments of the present invention. 過去の光減衰量に基づいて、以後の光減衰量の予測を行っている図である。It is a diagram which predicts the amount of light attenuation in the future based on the amount of light attenuation in the past. 本発明の他の実施形態に係る水質分析装置100の一例を示す図である。It is a figure showing an example of water quality analyzer 100 concerning other embodiments of the present invention. 過去の光減衰量に基づいて、以後の光減衰量の予測を行う際の他の実施例を示す図である。FIG. 7 is a diagram illustrating another example of predicting future optical attenuation based on past optical attenuation. 本発明の他の実施形態に係る水質分析装置100の一例を示す図である。It is a figure showing an example of water quality analyzer 100 concerning other embodiments of the present invention.

以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the present invention will be described through embodiments of the invention, but the following embodiments do not limit the invention according to the claims. Furthermore, not all combinations of features described in the embodiments are essential to the solution of the invention.

図1は、本発明の一つの実施形態に係る水質分析装置100の一例を示す図である。水質分析装置100は、試料水に含まれる測定対象物質の濃度を測定する。本例の水質分析装置100は、光源10、フローセル20、濃度測定部36、透過光検出光学系70、透過光検出信号処理部72、汚れ検出部40および汚れ補正部42を備える。濃度測定部36は濃度検出光学系30および濃度検出信号処理部32を備える。濃度検出光学系30および透過光検出光学系70は、CCDまたはフォトダイオード等の受光素子を用いて、受光した光の光量を検出する装置である。本明細書において光量とは、所定の面を所定の単位時間内に通過する光束の総量(lm/S)であるが、光の強度(cd)を光量として用いてもよい。濃度検出光学系30および透過光検出光学系70は、検出した光量に応じた電気信号を出力する。濃度検出信号処理部32および透過光検出信号処理部72は、電気信号に対して増幅またはノイズ除去等の信号処理を行う。 FIG. 1 is a diagram showing an example of a water quality analysis device 100 according to one embodiment of the present invention. The water quality analyzer 100 measures the concentration of a substance to be measured contained in sample water. The water quality analyzer 100 of this example includes a light source 10, a flow cell 20, a concentration measurement section 36, a transmitted light detection optical system 70, a transmitted light detection signal processing section 72, a dirt detection section 40, and a dirt correction section 42. The concentration measurement section 36 includes a concentration detection optical system 30 and a concentration detection signal processing section 32. The concentration detection optical system 30 and the transmitted light detection optical system 70 are devices that detect the amount of received light using a light receiving element such as a CCD or a photodiode. In this specification, the amount of light refers to the total amount of light flux (lm/S) that passes through a predetermined surface within a predetermined unit time, but the intensity of light (cd) may also be used as the amount of light. The concentration detection optical system 30 and the transmitted light detection optical system 70 output electric signals corresponding to the detected amount of light. The concentration detection signal processing section 32 and the transmitted light detection signal processing section 72 perform signal processing such as amplification or noise removal on the electrical signal.

光源10は、フローセル20に向けて光91を照射する。フローセル20は、壁部22および内部空間24を有する。壁部22の少なくとも一部は、光源10が照射する光91の成分のうち、少なくとも一部を透過する材料で形成されている。壁部22の少なくとも一部は、例えばガラスで形成されている。壁部22は、光91が入射または出射する窓部と、窓部を支持する支持部とを有してよい。本明細書では、光91が入射または出射する窓部を、壁部22として説明する場合がある。内部空間24は、壁部22に囲まれている。内部空間24を試料水が通過する。一例として壁部22は筒形状を有する。図1では、壁部22および内部空間24の断面を模式的に示している。 The light source 10 irradiates light 91 toward the flow cell 20 . Flow cell 20 has a wall 22 and an interior space 24 . At least a portion of the wall portion 22 is made of a material that transmits at least a portion of the components of the light 91 irradiated by the light source 10 . At least a portion of the wall portion 22 is made of glass, for example. The wall portion 22 may include a window portion through which the light 91 enters or exits, and a support portion that supports the window portion. In this specification, the window portion through which the light 91 enters or exits may be referred to as the wall portion 22. Internal space 24 is surrounded by wall portion 22 . Sample water passes through the internal space 24 . As an example, the wall portion 22 has a cylindrical shape. In FIG. 1, a cross section of the wall portion 22 and the internal space 24 is schematically shown.

濃度検出光学系30は、フローセル20からの測定光92を検出する。濃度検出光学系30は、測定光92の少なくとも一つの波長における光量を測定する。測定光92は、フローセル20に試料水が存在する状態で光源10から光91を照射した場合に、フローセル20から射出する光である。測定光92は、試料水に含まれる測定対象物質に光91が照射されたことで、測定対象物質から射出される蛍光を含んでもよい。この場合、濃度検出光学系30は、光91とは異なる波長における測定光92の光量を測定してよい。 The concentration detection optical system 30 detects the measurement light 92 from the flow cell 20. The concentration detection optical system 30 measures the amount of measurement light 92 at at least one wavelength. The measurement light 92 is light that is emitted from the flow cell 20 when the light source 10 irradiates the light 91 with sample water present in the flow cell 20 . The measurement light 92 may include fluorescence emitted from the substance to be measured when the substance to be measured contained in the sample water is irradiated with the light 91 . In this case, the concentration detection optical system 30 may measure the amount of the measurement light 92 at a wavelength different from that of the light 91.

濃度検出信号処理部32は、濃度検出光学系30における測定結果に基づいて、試料水に含まれる測定対象物質の濃度を算出する。試料水は、例えば上水道水、下水道水、海水、工場等の排水であるが、これに限定されない。試料水に多環芳香族炭化水素(Polycyclic Aromatic Hydrocarbons:以下、PAH)等の蛍光物質が含まれている場合、試料水に紫外線の光91を照射すると、物質固有の波長の蛍光(測定光92)が発生する。蛍光強度は、含まれている蛍光物質の濃度に比例しているため、当該波長における測定光92の光量を測定することで、測定対象物質である蛍光物質の濃度を精度よく測定することができる。濃度検出信号処理部32は、測定結果を汚れ補正部42へ出力する。 The concentration detection signal processing unit 32 calculates the concentration of the substance to be measured contained in the sample water based on the measurement results in the concentration detection optical system 30. Examples of sample water include, but are not limited to, tap water, sewage water, seawater, and wastewater from factories. When the sample water contains a fluorescent substance such as polycyclic aromatic hydrocarbons (hereinafter referred to as PAH), when the sample water is irradiated with ultraviolet light 91, fluorescence at a wavelength unique to the substance (measurement light 92) is emitted. ) occurs. Since the fluorescence intensity is proportional to the concentration of the fluorescent substance contained, by measuring the amount of measurement light 92 at the relevant wavelength, the concentration of the fluorescent substance, which is the substance to be measured, can be accurately measured. . The concentration detection signal processing section 32 outputs the measurement result to the dirt correction section 42 .

フローセル20の壁部22に汚れが生じると、当該汚れにより光91または測定光92の強度が減衰する。壁部22に上述した窓部が設けられている場合、壁部22の汚れとは、窓部の汚れを指している。壁部22の汚れとは、例えば壁部22の内面または外面に付着した異物である。光91または測定光92の強度が減衰すると、測定対象物質の濃度の測定結果に誤差が生じてしまう。このため、フローセル20の壁部22に生じている汚れの影響を補正できることが好ましい。 When dirt occurs on the wall portion 22 of the flow cell 20, the intensity of the light 91 or the measurement light 92 is attenuated by the dirt. When the wall portion 22 is provided with the above-mentioned window portion, the dirt on the wall portion 22 refers to the dirt on the window portion. Dirt on the wall 22 is, for example, foreign matter attached to the inner or outer surface of the wall 22. If the intensity of the light 91 or the measurement light 92 is attenuated, an error will occur in the measurement result of the concentration of the substance to be measured. For this reason, it is preferable to be able to correct the influence of dirt occurring on the wall portion 22 of the flow cell 20.

汚れ検出部40は、壁部22における汚れを検出する。汚れ検出部40は、水質分析装置100における所定の動作をトリガとして壁部22の汚れを検出してよい。汚れ検出部40は、設定された検知期間が経過する毎に壁部22の汚れを検出してもよい。汚れ検出部40は、使用者等の指示に応じて壁部22の汚れを検出してもよい。 The dirt detection unit 40 detects dirt on the wall portion 22. The dirt detection unit 40 may detect dirt on the wall portion 22 using a predetermined operation in the water quality analyzer 100 as a trigger. The dirt detection unit 40 may detect dirt on the wall portion 22 every time a set detection period elapses. The dirt detection unit 40 may detect dirt on the wall portion 22 in response to instructions from a user or the like.

汚れ検出部40が壁部22の汚れを検出する場合、光源10は、所定の波長成分を有する光91をフローセル20に向けて照射する。水質分析装置100は、壁部22の汚れを検出する場合に、フローセル20に測定対象物質の濃度が既知の参照水を流してよい。参照水の測定対象物質の濃度は濃度測定部36の測定限界または分解能以下であってよい。参照水の濁度は1FNU以下であってよい。汚れを検出する場合の光91の波長は、測定対象物質の蛍光を測定する場合の光91の波長とは異なっていてよい。光源10は、汚れを検出するための光91を照射する光源ユニットと、蛍光を検出するための光91を照射する光源ユニットとを有してよい。 When the dirt detection unit 40 detects dirt on the wall 22 , the light source 10 irradiates the flow cell 20 with light 91 having a predetermined wavelength component. When detecting dirt on the wall 22, the water quality analyzer 100 may flow reference water in which the concentration of the substance to be measured is known through the flow cell 20. The concentration of the substance to be measured in the reference water may be below the measurement limit or resolution of the concentration measuring section 36. The turbidity of the reference water may be less than or equal to 1 FNU. The wavelength of the light 91 when detecting dirt may be different from the wavelength of the light 91 when measuring the fluorescence of the substance to be measured. The light source 10 may include a light source unit that emits light 91 for detecting dirt and a light source unit that emits light 91 for detecting fluorescence.

透過光検出光学系70は、光91がフローセル20に入射し、フローセル20を透過した透過光94を検出する。透過光検出光学系70は、光91がフローセル20の内部を直進して射出した光を、透過光94として検出してよい。壁部22には、光91が入射する窓部、測定光92が出射する窓部、および、透過光94が出射する窓部が設けられてよい。透過光検出光学系70は、透過光94の光量である透過光量を検出する。透過光検出光学系70は、設定された波長の透過光量を検出してよい。透過光検出光学系70は、透過光量を示す電気信号を汚れ検出部40に出力する。透過光検出信号処理部72は電気信号に対して増幅またはノイズ除去等の信号処理を行ってよい。なお濃度測定部36の代わりに透過光検出光学系70および透過光検出信号処理部72を用いて測定対象物質の濃度を検出してもよい。 The transmitted light detection optical system 70 allows light 91 to enter the flow cell 20 and detects transmitted light 94 that has passed through the flow cell 20 . The transmitted light detection optical system 70 may detect the light 91 that has gone straight through the flow cell 20 and is emitted as transmitted light 94 . The wall 22 may be provided with a window through which the light 91 enters, a window through which the measurement light 92 exits, and a window through which the transmitted light 94 exits. The transmitted light detection optical system 70 detects the amount of transmitted light, which is the amount of transmitted light 94. The transmitted light detection optical system 70 may detect the amount of transmitted light of a set wavelength. The transmitted light detection optical system 70 outputs an electrical signal indicating the amount of transmitted light to the dirt detection section 40. The transmitted light detection signal processing section 72 may perform signal processing such as amplification or noise removal on the electrical signal. Note that the concentration of the substance to be measured may be detected using the transmitted light detection optical system 70 and the transmitted light detection signal processing section 72 instead of the concentration measurement section 36.

壁部22に汚れが付着すると、当該汚れにより光の強度が減衰するので、透過光94の透過光量は小さくなる。このため、光源10が出射した光91の光量に対して、透過光94の透過光量がどの程度減衰しているかを検出することで、壁部22の汚れ度合いを推定できる。本例において、光91に対する透過光94の光量の減衰量を光減衰量と称する。汚れ検出部40は、光減衰量を算出し、汚れ補正部42へ出力する。 When dirt adheres to the wall portion 22, the intensity of light is attenuated by the dirt, so the amount of transmitted light 94 is reduced. Therefore, by detecting how much the amount of transmitted light 94 is attenuated with respect to the amount of light 91 emitted by the light source 10, the degree of dirt on the wall portion 22 can be estimated. In this example, the amount of attenuation of the amount of transmitted light 94 relative to light 91 is referred to as the amount of optical attenuation. The dirt detection section 40 calculates the amount of optical attenuation and outputs it to the dirt correction section 42 .

図2は、測定対象物質の濃度の測定結果に対する補正を説明する図である。汚れ補正部42は、光減衰量に基づいて当該補正を行う。図2の縦軸は、濃度または濃度を補正するための補正値を示している。横軸は時系列を示している。水質分析装置100は、時刻1から時刻5まで試料水に含まれる測定対象物質の濃度を測定している。図中のAは光減衰量で補正する前の測定対象物質の濃度の測定結果を示している。本例では透過光94の光量を基に測定対象物質の濃度を算出している。透過光94がフローセル20の汚れにより減衰すると、補正前の測定結果における測定対象物質の濃度が増加する。そのため時間が経過しフローセル20に汚れが蓄積するにつれ、補正前の測定結果における測定対象物質の濃度は増加していく。図中のBは光減衰量に基づく補正量を示している。光減衰量に基づく補正量は一例として測定した光減衰量と校正時の光減衰量の差分値である。光減衰量に基づく補正量は一例として以下の式から求められる。
光減衰量による補正量=測定した光減衰量 - 校正時の光減衰量
光減衰量に基づく補正量も、時間の経過とともに付着していくフローセル20の汚れに応じて増加していく。
FIG. 2 is a diagram illustrating correction of the measurement result of the concentration of the substance to be measured. The dirt correction section 42 performs the correction based on the amount of light attenuation. The vertical axis in FIG. 2 indicates the density or a correction value for correcting the density. The horizontal axis shows the time series. The water quality analyzer 100 measures the concentration of the target substance contained in the sample water from time 1 to time 5. A in the figure shows the measurement result of the concentration of the substance to be measured before being corrected by the amount of optical attenuation. In this example, the concentration of the substance to be measured is calculated based on the amount of transmitted light 94. When the transmitted light 94 is attenuated due to contamination of the flow cell 20, the concentration of the substance to be measured in the measurement result before correction increases. Therefore, as time passes and dirt accumulates in the flow cell 20, the concentration of the substance to be measured in the measurement results before correction increases. B in the figure indicates the amount of correction based on the amount of optical attenuation. The correction amount based on the amount of optical attenuation is, for example, the difference value between the measured amount of optical attenuation and the amount of optical attenuation during calibration. The amount of correction based on the amount of optical attenuation can be obtained from the following equation, for example.
Amount of correction based on the amount of optical attenuation = measured amount of optical attenuation - amount of optical attenuation during calibration The amount of correction based on the amount of optical attenuation also increases in accordance with the amount of dirt that accumulates on the flow cell 20 over time.

図中のCは、光減衰量に基づいた補正量を用いて補正前の測定対象物質の濃度を補正した濃度を示している。補正は一例として補正前の濃度から光減衰量に基づく補正量を差し引くことで行われる。補正は一例として以下の式に沿って行われる。
補正後濃度=補正前濃度 - 光減衰量による補正量
フローセル20の汚れの影響を考慮していない補正前の測定対象物質の濃度は、フローセル20の汚れの蓄積とともに増加しているが、光減衰量に基づいた補正を行うことで補正後の濃度はほぼ一定値となる。つまり本来の測定対象物質の濃度により近い結果が得られる。
C in the figure indicates the concentration obtained by correcting the concentration of the substance to be measured before correction using the correction amount based on the amount of optical attenuation. For example, the correction is performed by subtracting a correction amount based on the amount of optical attenuation from the density before correction. For example, the correction is performed according to the following formula.
Concentration after correction = concentration before correction - amount of correction by optical attenuation The concentration of the target substance before correction, which does not take into account the influence of dirt on the flow cell 20, increases with the accumulation of dirt on the flow cell 20, but the light attenuation By performing the correction based on the amount, the density after correction becomes a substantially constant value. In other words, results closer to the original concentration of the target substance to be measured can be obtained.

本例では、透過光94を基に測定対象物質の濃度を算出する場合を説明したが、測定光92を基に測定対象物質の濃度を算出する場合にも本補正は適用できる。その場合、測定光92の発生原理に基づいて、光減衰量による補正量と補正後濃度の式における加減の符号が決定する。 In this example, a case has been described in which the concentration of the substance to be measured is calculated based on the transmitted light 94, but this correction can also be applied to the case where the concentration of the substance to be measured is calculated based on the measurement light 92. In that case, the sign of the addition or subtraction in the equation of the correction amount based on the amount of light attenuation and the corrected density is determined based on the generation principle of the measurement light 92.

図3は、本発明の他の実施形態に係る水質分析装置100の一例を示す図である。本例の水質分析装置100は、図1で説明した構成に加えて、メモリ46を備えている。メモリ46は、汚れ検出部40が検出した光減衰量を保存する。汚れ補正部42は、次にフローセル20の汚れによる光減衰量を検出するまでの間、保存した光減衰量を用いて測定対象物質の濃度の測定結果を補正してよい。 FIG. 3 is a diagram showing an example of a water quality analyzer 100 according to another embodiment of the present invention. The water quality analyzer 100 of this example includes a memory 46 in addition to the configuration described in FIG. The memory 46 stores the amount of light attenuation detected by the dirt detection section 40. The dirt correction unit 42 may use the stored light attenuation amount to correct the measurement result of the concentration of the substance to be measured until the next time the amount of light attenuation due to the dirt on the flow cell 20 is detected.

図4は、本発明の他の実施形態に係る水質分析装置100の一例を示す図である。本例の水質分析装置100は、図1から図3で説明したいずれかの構成に加えて、洗浄部50を備えている。図4では、図1に示した構成に、洗浄部50を追加している。洗浄部50はフローセル20を洗浄する。洗浄部50は、清水、または、薬品等が含まれる洗浄液をフローセル20の内部空間24に流してフローセル20を洗浄してよく、pHの異なる洗浄液を用いて洗浄してよく、ブラシ等の部材で内部空間24を掃引することでフローセル20を洗浄してよく、これらを組み合わせてフローセル20を洗浄してもよい。 FIG. 4 is a diagram showing an example of a water quality analyzer 100 according to another embodiment of the present invention. The water quality analyzer 100 of this example includes a cleaning section 50 in addition to any of the configurations described in FIGS. 1 to 3. In FIG. 4, a cleaning section 50 is added to the configuration shown in FIG. The cleaning section 50 cleans the flow cell 20. The cleaning section 50 may clean the flow cell 20 by flowing clean water or a cleaning liquid containing chemicals or the like into the internal space 24 of the flow cell 20, or may wash the flow cell 20 using a cleaning liquid with a different pH, and may clean the flow cell 20 by using a member such as a brush. The flow cell 20 may be cleaned by sweeping the internal space 24, or the flow cell 20 may be cleaned by a combination of these methods.

図5は、図4の実施例における水質分析装置100の動作例を示すフローチャートである。トリガ段階S200において、水質分析装置100は、所定の洗浄トリガが入力されたか否かを判定する。水質分析装置100は、所定の洗浄トリガが入力された場合に、フローセル20の洗浄処理(S202~S210)を行う。当該トリガ信号は、使用者等の操作に応じて入力されてよく、周囲環境の変化に応じて自動的に入力されてよく、所定の期間が経過する毎に自動的に入力されてよく、他の要因に応じて入力されてもよい。水質分析装置100は、洗浄トリガが入力されない間は、試料水の測定処理(S212~S220)を行ってよい。 FIG. 5 is a flowchart showing an example of the operation of the water quality analyzer 100 in the embodiment of FIG. In trigger step S200, water quality analyzer 100 determines whether a predetermined cleaning trigger has been input. The water quality analyzer 100 performs a cleaning process (S202 to S210) on the flow cell 20 when a predetermined cleaning trigger is input. The trigger signal may be input in response to an operation by a user, etc., may be automatically input in response to a change in the surrounding environment, may be automatically input every time a predetermined period elapses, or may be input automatically in response to a change in the surrounding environment. may be input depending on the factors. The water quality analyzer 100 may perform the sample water measurement process (S212 to S220) while the cleaning trigger is not input.

洗浄トリガが入力されると、洗浄段階S202において、洗浄部50は、フローセル20を洗浄する。フローセル20の洗浄が終了した後に、参照水通流段階S204において、水質分析装置100は、光減衰量取得のために、測定対象物質の濃度が既知の参照水をフローセルに流す。洗浄後信号処理段階S206において、参照水が流れているフローセル20に対して、光源10から光91を入射する。透過光検出光学系70は、洗浄後のフローセル20を透過した透過光94を検出する。透過光検出信号処理部72は、透過光検出光学系70が出力する電気信号に対して増幅またはノイズ除去等の信号処理を行ってよい。 When the cleaning trigger is input, the cleaning unit 50 cleans the flow cell 20 in the cleaning step S202. After the cleaning of the flow cell 20 is completed, in the reference water flow step S204, the water quality analyzer 100 flows reference water in which the concentration of the substance to be measured is known through the flow cell in order to obtain the amount of optical attenuation. In the post-cleaning signal processing step S206, light 91 from the light source 10 is incident on the flow cell 20 through which reference water is flowing. The transmitted light detection optical system 70 detects the transmitted light 94 that has passed through the flow cell 20 after cleaning. The transmitted light detection signal processing section 72 may perform signal processing such as amplification or noise removal on the electrical signal output by the transmitted light detection optical system 70.

信号補正処理段階S208において、透過光検出信号処理部72は、透過光検出光学系70が出力する電気信号に対して任意の補正処理を行う。当該補正処理は、例えば光91の光量変動による透過光94の光量の変動を補正する処理、または、透過光検出光学系70の受光光量に対する電気信号の大きさの非線形性を補正する処理を含む。 In the signal correction processing step S208, the transmitted light detection signal processing section 72 performs arbitrary correction processing on the electrical signal output by the transmitted light detection optical system 70. The correction process includes, for example, a process for correcting a change in the amount of transmitted light 94 due to a change in the amount of light 91, or a process for correcting nonlinearity in the magnitude of the electrical signal with respect to the amount of light received by the transmitted light detection optical system 70. .

光減衰量取得段階S210において、汚れ検出部40は光減衰量を取得する。本例において汚れ検出部40は、洗浄部50がフローセル20を洗浄した後に参照水をフローセル20に流して光減衰量を取得している。これにより、洗浄だけでは取り切れない汚れによる光減衰量を取得することができる。本例における光減衰量による補正量は一例として以下の式から求められる。
光減衰量による補正量=洗浄後の光減衰量 - 校正時の光減衰量
汚れ検出部40は、光減衰量または光減衰量による補正量を汚れ補正部42へ出力する。
In the light attenuation amount obtaining step S210, the dirt detection unit 40 obtains the light attenuation amount. In this example, the stain detection unit 40 flows reference water into the flow cell 20 after the cleaning unit 50 cleans the flow cell 20, and acquires the amount of optical attenuation. This makes it possible to obtain the amount of light attenuation due to dirt that cannot be removed by cleaning alone. The amount of correction based on the amount of optical attenuation in this example is obtained from the following equation, for example.
Amount of correction based on the amount of light attenuation = amount of light attenuation after cleaning - amount of light attenuation during calibration The dirt detection section 40 outputs the amount of light attenuation or the amount of correction based on the amount of light attenuation to the dirt correction section 42 .

洗浄終了後もしくは所定の洗浄トリガ信号が入力されない場合、試料水通流段階S212において水質分析装置100はフローセル20に試料水を流す。測定時信号処理段階S214において、濃度測定部36は測定光92の光量を検出し、試料水を測定する。濃度測定部36は測定結果を汚れ補正部42へ出力する。 After the cleaning is completed or if a predetermined cleaning trigger signal is not input, the water quality analyzer 100 causes the sample water to flow through the flow cell 20 in the sample water flow step S212. In the measurement signal processing step S214, the concentration measurement unit 36 detects the amount of measurement light 92 and measures the sample water. The density measurement section 36 outputs the measurement result to the dirt correction section 42.

測定時光量他補正処理S216において、濃度検出信号処理部32は濃度検出光学系30が出力する電気信号に対して任意の補正処理を行う。当該補正処理は、例えば光91の光量変動による透過光94の光量の変動を補正する処理、または、濃度検出光学系30の受光光量に対する電気信号の大きさの非線形性を補正する処理を含む。光減衰量補正処理段階S218において、汚れ補正部42は、光減衰量を用いて測定対象物質の濃度の測定結果を補正する。なお、本例の汚れ補正部42は、光減衰量補正処理段階S218においてあらかじめ濃度に変換された値を補正しているが、光減衰量補正処理段階S218において濃度に変換する前の検出信号を取得し、検出信号を補正し、その後濃度に変換してもよい。 In measurement light amount and other correction processing S216, the concentration detection signal processing section 32 performs arbitrary correction processing on the electric signal output from the concentration detection optical system 30. The correction process includes, for example, a process for correcting a change in the amount of transmitted light 94 due to a change in the amount of light 91, or a process for correcting nonlinearity in the magnitude of the electrical signal with respect to the amount of light received by the concentration detection optical system 30. In the light attenuation amount correction processing step S218, the dirt correction unit 42 corrects the measurement result of the concentration of the substance to be measured using the light attenuation amount. Note that the dirt correction unit 42 in this example corrects the value that has been converted into density in advance in the light attenuation amount correction processing step S218, but it corrects the detection signal before converting into density in the light attenuation amount correction processing step S218. The detected signal may be acquired, corrected, and then converted to concentration.

図6は、本発明の他の実施形態に係る水質分析装置100の一例を示す図である。本例の水質分析装置100は、図1から図4で説明したいずれかの構成に加えて、光源光量モニタ60および補正処理部62を備えている。図6では図1に示した構成に加えて、光源光量モニタ60および補正処理部62を備えている。光源光量モニタ60は、フローセル20に入射する前の光91の光源光量を検出する。光源光量モニタ60は、光91の一部を分岐した分岐光93を受光してよい。補正処理部62は検出信号の増幅やノイズ除去などの信号処理を行う。光源光量は汚れ検出部40へ出力される。 FIG. 6 is a diagram showing an example of a water quality analyzer 100 according to another embodiment of the present invention. The water quality analyzer 100 of this example includes a light source light amount monitor 60 and a correction processing section 62 in addition to any of the configurations described in FIGS. 1 to 4. In addition to the configuration shown in FIG. 1, FIG. 6 includes a light source light amount monitor 60 and a correction processing section 62. The light source light amount monitor 60 detects the light source light amount of the light 91 before entering the flow cell 20 . The light source light amount monitor 60 may receive branched light 93 obtained by branching a part of the light 91. The correction processing unit 62 performs signal processing such as amplification and noise removal of the detection signal. The amount of light from the light source is output to the dirt detection section 40.

本例の汚れ検出部40は、光源光量および透過光量に基づいて、フローセル20の壁部22の汚れを検出する。汚れ検出部40は、光源光量で透過光量を補正し、補正結果に基づいて壁部22の汚れを検出する。例えば汚れ検出部40は、光源光量が小さいほど透過光量が大きくなるように補正し、補正された透過光量が小さいほど壁部22の汚れの度合いが大きいと判定する。一例として汚れ検出部40は、光源光量と透過光量との光量比(透過光量/光源光量)に基づいて、壁部22の汚れを検出する。汚れ検出部40は、当該光量比が小さいほど汚れの度合いが大きいと判定する。このように、光源光量および透過光量を用いて壁部22の汚れを検出することで、光源10の劣化等の影響を低減して、精度よく壁部22の汚れを検出できる。 The dirt detection unit 40 of this example detects dirt on the wall portion 22 of the flow cell 20 based on the amount of light from the light source and the amount of transmitted light. The dirt detection unit 40 corrects the amount of transmitted light based on the amount of light from the light source, and detects dirt on the wall portion 22 based on the correction result. For example, the dirt detection unit 40 corrects the amount of transmitted light such that the smaller the amount of light from the light source is, the larger the amount of transmitted light is, and determines that the smaller the corrected amount of transmitted light is, the greater the degree of dirt on the wall portion 22 is. As an example, the stain detection unit 40 detects stains on the wall portion 22 based on the ratio of the amount of light from the light source to the amount of transmitted light (amount of transmitted light/amount of light source light). The dirt detection unit 40 determines that the smaller the light amount ratio, the greater the degree of dirt. In this way, by detecting dirt on the wall portion 22 using the amount of light from the light source and the amount of transmitted light, the influence of deterioration of the light source 10 and the like can be reduced, and dirt on the wall portion 22 can be detected with high accuracy.

図7は、過去の光減衰量に基づいて、以後の光減衰量の予測を行っている図である。本例の汚れ補正部42は、過去に測定した光減衰量の減衰情報の履歴を保持し、以後の光減衰量の予測を行う。図中の丸印が、過去の測定結果を示している。汚れ補正部42は、2種類の予測のうちの少なくとも一方を行ってよい。2種類の予測のうち、1つは洗浄では取り切れない汚れによる光減衰量の予測である。この予測では洗浄後、試料水を流す前に取得した光減衰量に基づいて、以後の光減衰量の予測を行う。図中の実線がこの予測を表している。汚れ補正部42は、洗浄直後の測定結果の推移を直線または曲線等の近似線102で近似することで、今後の光減衰量の予測を行ってよい。汚れ補正部42は、近似線102に関する情報を、減衰情報として記憶してよい。この予測は洗浄では取り除けない汚れによる光減衰量の予測であるため、以後の洗浄の有無によらず使用期間にわたって予測が可能である。 FIG. 7 is a diagram in which future optical attenuation amounts are predicted based on past optical attenuation amounts. The dirt correction unit 42 of this example maintains a history of attenuation information of the amount of light attenuation measured in the past, and predicts the amount of light attenuation in the future. The circles in the figure indicate past measurement results. The dirt correction unit 42 may perform at least one of two types of prediction. Of the two types of predictions, one is a prediction of the amount of light attenuation due to dirt that cannot be removed by cleaning. In this prediction, the subsequent amount of light attenuation is predicted based on the amount of light attenuation obtained after washing and before flowing the sample water. The solid line in the figure represents this prediction. The dirt correction unit 42 may predict the future amount of light attenuation by approximating the transition of the measurement results immediately after cleaning with an approximation line 102 such as a straight line or a curve. The dirt correction unit 42 may store information regarding the approximate line 102 as attenuation information. Since this prediction is a prediction of the amount of light attenuation due to dirt that cannot be removed by cleaning, the prediction can be made over the period of use regardless of whether or not there will be subsequent cleaning.

もう一つの予測は洗浄で取り切れる汚れも含めたすべての汚れによる光減衰量の予測である。この予測では、洗浄から次の洗浄までの間に複数回測定を行い、そこで得られた光減衰量の変化に基づいて、以後の光減衰量の予測を行う。図中の破線がこの予測を表している。汚れ補正部42は、洗浄間の複数の測定結果の推移を直線または曲線等の近似線104で近似することで、今後の光減衰量の予測を行ってよい。汚れ補正部42は、近似線104に関する情報を、減衰情報として記憶してよい。汚れ補正部42は、過去の複数回の洗浄間における光減衰量の減衰情報に基づいて予測を行ってよい。この予測は洗浄で取り切れる汚れの影響も含まれているため、予測の範囲は洗浄から次の洗浄までの範囲である。汚れ補正部42は、過去の洗浄間における減衰情報を、以後の任意の洗浄間に適用することができる。 Another prediction is the amount of light attenuation due to all dirt, including dirt that can be removed by cleaning. In this prediction, measurements are performed multiple times between one cleaning and the next cleaning, and the subsequent amount of optical attenuation is predicted based on the change in the amount of optical attenuation obtained. The dashed line in the figure represents this prediction. The dirt correction unit 42 may predict the future amount of light attenuation by approximating the transition of a plurality of measurement results between cleanings with an approximation line 104 such as a straight line or a curve. The stain correction unit 42 may store information regarding the approximate line 104 as attenuation information. The dirt correction unit 42 may perform prediction based on attenuation information of the amount of light attenuation between multiple past cleanings. This prediction includes the influence of dirt that can be removed by cleaning, so the prediction range is from one cleaning to the next cleaning. The stain correction unit 42 can apply the attenuation information between past washes to any subsequent wash.

汚れ補正部42は、近似線102に関する減衰情報と、近似線104に関する減衰情報とを組み合わせて、将来の光減衰量を推定してもよい。例えば汚れ補正部42は、近似線102を用いて、将来の任意のタイミングにおいて実行される洗浄直後の光減衰量を推定する。汚れ補正部42は、当該洗浄直後の光減衰量を始点として近似線104を適用することで、任意のタイミングで洗浄が実行された場合の、洗浄後の光減衰量の推移を推定してよい。 The dirt correction unit 42 may combine the attenuation information regarding the approximate line 102 and the attenuation information regarding the approximate line 104 to estimate the future amount of optical attenuation. For example, the dirt correction unit 42 uses the approximation line 102 to estimate the amount of light attenuation immediately after cleaning to be performed at an arbitrary timing in the future. The stain correction unit 42 may estimate the transition of the amount of light attenuation after cleaning when cleaning is performed at an arbitrary timing by applying the approximate line 104 starting from the amount of light attenuation immediately after the cleaning. .

どちらの予測の場合でも測定点数が増えるほど予測の精度が向上する。汚れ補正部42は、測定点数の増加に応じて予測の近似方法を変更してよい。近似方法の変更とは、例えば近似式における次数の変更である。 In either case of prediction, the accuracy of prediction improves as the number of measurement points increases. The dirt correction unit 42 may change the prediction approximation method according to the increase in the number of measurement points. Changing the approximation method is, for example, changing the order in the approximation formula.

本例の汚れ補正部42は、光減衰量の予測値が許容値を超える時期を推定してもよい。許容値は使用者があらかじめ定めた値であってよく、機器ごとに定められた値であってもよい。予測値は前述した2種類の予測のどちらを用いて算出してもよい。洗浄では取り切れない汚れによる光減衰量の予測を用いた場合の許容値を超える時期が図中のt1に対応し、すべての汚れによる光減衰量の予測を用いた場合の許容値を超える時期が図中のt2に対応している。許容値を超える時期を推定することによって、メンテナンス時期や使用限度時期を推定することができる。 The stain correction unit 42 of this example may estimate the time when the predicted value of the amount of light attenuation exceeds the allowable value. The allowable value may be a value predetermined by the user, or may be a value determined for each device. The predicted value may be calculated using either of the two types of predictions described above. The time when the tolerable value is exceeded when predicting the amount of light attenuation due to dirt that cannot be removed by cleaning corresponds to t 1 in the figure, and the time when the amount of light attenuation due to all dirt is exceeded when predicting the amount of light attenuation due to all dirt is exceeded. The period corresponds to t 2 in the figure. By estimating the time when the permissible value is exceeded, the maintenance time and usage limit time can be estimated.

汚れ補正部42は光減衰量の予測に基づいて、以後の測定時の光減衰量の補正値を逐次修正してよい。これにより、光減衰量の測定後に蓄積する汚れの影響まで考慮に入れて補正することができる。 The dirt correction unit 42 may sequentially correct the correction value of the amount of light attenuation during subsequent measurements based on the prediction of the amount of light attenuation. Thereby, it is possible to take into account the influence of dirt that accumulates after measuring the amount of optical attenuation and perform correction.

図8は、本発明の他の実施形態に係る水質分析装置100の一例を示す図である。本例の水質分析装置100は、図4において説明した実施例と同一の構成を有するが、洗浄部50と汚れ補正部42が連携している点で異なる。本実施例も図1から図6のいずれの構成に加えられてよい。本例の洗浄部50は前述の光減衰量の予測に応じて洗浄方法を変更する。汚れの増加が従来より大きいことが予測される場合には、以前の洗浄方法より強力な洗浄方法を採用してよい。また、光減衰量の予測値が許容値を超える推定時期が、所定の基準時期より近くなった場合には、それまでよりも強力な洗浄方法を採用してよい。洗浄方法として、清水、または薬品等が含まれる洗浄液をフローセル20の内部空間24に流してフローセル20を洗浄してよく、pHの異なる洗浄液を用いて洗浄してよく、ブラシ等の部材で内部空間24を掃引することでフローセル20を洗浄してよく、これらを組み合わせてフローセル20を洗浄してもよい。洗浄部50は、洗浄方法を変更した場合、洗浄前後における光減衰量の変化に応じて、次の洗浄時の洗浄方法を選択してよい。 FIG. 8 is a diagram showing an example of a water quality analyzer 100 according to another embodiment of the present invention. The water quality analyzer 100 of this example has the same configuration as the example described in FIG. 4, but differs in that the cleaning section 50 and the dirt correction section 42 cooperate. This embodiment may also be added to any of the configurations shown in FIGS. 1 to 6. The cleaning section 50 of this example changes the cleaning method depending on the prediction of the amount of light attenuation described above. If the increase in soiling is expected to be greater than previously, a more aggressive cleaning method than the previous cleaning method may be employed. Further, if the estimated time when the predicted value of the amount of light attenuation exceeds the allowable value is closer than the predetermined reference time, a more powerful cleaning method than before may be adopted. As a cleaning method, the flow cell 20 may be washed by flowing clean water or a cleaning liquid containing chemicals into the internal space 24 of the flow cell 20, or cleaning may be performed using a cleaning liquid with a different pH, and the internal space may be cleaned using a member such as a brush. The flow cell 20 may be cleaned by sweeping 24, or the flow cell 20 may be cleaned by a combination of these methods. When the cleaning method is changed, the cleaning unit 50 may select the cleaning method for the next cleaning according to the change in the amount of optical attenuation before and after cleaning.

洗浄部50は光減衰量の検出結果に基づいてフローセル20の洗浄が終了したか否かを判定してよい。当該判定は、例えば光減衰量が所定の値を下回るか否かによって行われる。所定の値は、装置固有の値であってよく、試料水の種類に応じた値であってもよい。フローセル20の洗浄開始から設定期間内に洗浄が終了しない場合、洗浄方法を変更してよい。また洗浄部50は、過去にフローセル20に流した試料水の履歴に基づいて、フローセル20の洗浄方法を選択してもよい。試料水の履歴に基づく洗浄方法の選択とは、例えばある試料水によって付着する汚れに対して有効なことがわかっている洗浄液の種類やpHを選択することである。試料水の履歴には、試料水に含まれる汚れ成分の種類を示す情報が含まれてよい。 The cleaning unit 50 may determine whether cleaning of the flow cell 20 has been completed based on the detection result of the amount of optical attenuation. The determination is made, for example, based on whether the amount of optical attenuation is less than a predetermined value. The predetermined value may be a value unique to the device or may be a value depending on the type of sample water. If the cleaning does not end within a set period from the start of cleaning the flow cell 20, the cleaning method may be changed. Further, the cleaning unit 50 may select a cleaning method for the flow cell 20 based on the history of sample water that has been passed through the flow cell 20 in the past. Selection of a cleaning method based on the history of sample water means, for example, selecting the type and pH of a cleaning liquid that is known to be effective against stains attached by a certain sample water. The sample water history may include information indicating the types of dirt components contained in the sample water.

図9は、過去の光減衰量に基づいて、以後の光減衰量の予測を行う際の他の実施例を示す図である。本例の汚れ補正部42は、洗浄から次の洗浄までの間における光減衰量の過去の履歴から、光減衰量の増加速度を算出し、それに基づいて次の洗浄までの間の光減衰量の予測を行う。当該光減衰量は、洗浄で取り切れる汚れによる光減衰量、および、取り切れない汚れによる光減衰量を含んでいる。汚れ補正部42は光減衰量の変化の予測に基づいて、測定対象物質の濃度の測定結果を補正する。汚れ補正部42は、光減衰量の予測に基づいて、以後の測定時の光減衰量の補正値を逐次修正してよい。これにより、光減衰量の測定後に蓄積する汚れの影響まで考慮に入れて補正することができる。また光減衰量の変化の予測に基づいて次の洗浄のタイミングを決めてよい。これは例えば光減衰量の変化の予測が許容値を超える時期に洗浄を行うことを意味する。 FIG. 9 is a diagram showing another example of predicting future optical attenuation based on past optical attenuation. The dirt correction unit 42 of this example calculates the rate of increase in the amount of light attenuation from the past history of the amount of light attenuation from one cleaning to the next cleaning, and based on the increase rate, the amount of light attenuation from one cleaning to the next cleaning. make predictions. The amount of light attenuation includes the amount of light attenuation due to dirt that can be removed by cleaning and the amount of light attenuation due to dirt that cannot be removed. The stain correction unit 42 corrects the measurement result of the concentration of the substance to be measured based on the prediction of the change in the amount of light attenuation. The dirt correction unit 42 may sequentially correct the correction value of the amount of light attenuation during subsequent measurements based on the prediction of the amount of light attenuation. Thereby, it is possible to take into account the influence of dirt that accumulates after measuring the amount of optical attenuation and perform correction. Further, the timing of the next cleaning may be determined based on the prediction of the change in the amount of optical attenuation. This means, for example, that cleaning is performed when the predicted change in optical attenuation exceeds a permissible value.

洗浄から次の洗浄までの間に光減衰量を検出する際、フローセル20に流す参照水の流速を測定対象物質の濃度を測定するときの試料水の流速以下にしてよい。これにより、参照水の流速によって汚れが取り除かれることを防ぐことができ、より正確な光減衰量の予測を行うことができる。参照水の流速は試料水の流速よりも小さくてよく、80%以下であってもよい。 When detecting the amount of optical attenuation between one wash and the next wash, the flow rate of the reference water flowing through the flow cell 20 may be set to be lower than the flow rate of the sample water when measuring the concentration of the substance to be measured. Thereby, it is possible to prevent dirt from being removed by the flow rate of the reference water, and it is possible to more accurately predict the amount of light attenuation. The flow rate of the reference water may be lower than the flow rate of the sample water, and may be 80% or less.

洗浄から次の洗浄までの間に光減衰量を検出する際、フローセル20に流す参照水の流速を洗浄時に流す洗浄水の流速以下にしてよい。これにより、洗浄で取り除かれなかった汚れが参照水によって取り除かれるのを防ぐことができ、より正確な光減衰量の予測を行うことができる。参照水の流速は洗浄水の流速よりも小さくてよく、80%以下であってもよい。 When detecting the amount of optical attenuation between one cleaning and the next cleaning, the flow rate of the reference water flowing through the flow cell 20 may be set to be lower than the flow rate of the cleaning water flowing during cleaning. This can prevent dirt that has not been removed by cleaning from being removed by the reference water, allowing more accurate prediction of the amount of light attenuation. The flow rate of the reference water may be lower than the flow rate of the wash water, and may be 80% or less.

図10は、本発明の他の実施形態に係る水質分析装置100の一例を示す図である。本例の水質分析装置100は、図1から図8で説明したいずれかの構成に加えて、散乱光量検出部86を備えている。図10では図1の構成に加えて散乱光量検出部86を備えている。散乱光量検出部86はフローセル20からの散乱光96を検出し、電気信号を出力する散乱光検出光学系80と電気信号に対して増幅またはノイズ除去等の信号処理を行う散乱光信号処理部82を備える。また本例においては、透過光検出光学系70と透過光検出信号処理部72を合わせて透過光検出部76とする。本例において汚れ検出部40は、フローセル20に参照水を流した状態で、透過光検出部76から出力される透過光量と散乱光量検出部86から出力される散乱光量に基づいて、光減衰量を検出する。散乱光量を考慮に入れることで、より正確に光減衰量を検出することができる。 FIG. 10 is a diagram showing an example of a water quality analysis device 100 according to another embodiment of the present invention. The water quality analyzer 100 of this example includes a scattered light amount detection section 86 in addition to any of the configurations described in FIGS. 1 to 8. In addition to the configuration shown in FIG. 1, FIG. 10 includes a scattered light amount detection section 86. The scattered light amount detection unit 86 detects the scattered light 96 from the flow cell 20 and includes a scattered light detection optical system 80 that outputs an electrical signal, and a scattered light signal processing unit 82 that performs signal processing such as amplification or noise removal on the electrical signal. Equipped with. Further, in this example, the transmitted light detection optical system 70 and the transmitted light detection signal processing section 72 are collectively referred to as a transmitted light detection section 76. In this example, the dirt detection section 40 calculates the amount of light attenuation based on the amount of transmitted light outputted from the transmitted light detection section 76 and the amount of scattered light outputted from the scattered light amount detection section 86 while the reference water is flowing through the flow cell 20. Detect. By taking the amount of scattered light into consideration, the amount of optical attenuation can be detected more accurately.

各実施例において、測定光92のみならず、透過光94および散乱光96も光減衰量を用いて補正してよい。これにより、より正確に測定対象物質の濃度を測定することができる。 In each embodiment, not only the measurement light 92 but also the transmitted light 94 and the scattered light 96 may be corrected using the amount of optical attenuation. Thereby, the concentration of the substance to be measured can be measured more accurately.

以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。 Although the present invention has been described above using the embodiments, the technical scope of the present invention is not limited to the range described in the above embodiments. It will be apparent to those skilled in the art that various changes or improvements can be made to the embodiments described above. It is clear from the claims that such modifications or improvements may be included within the technical scope of the present invention.

特許請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The order of execution of each process, such as the operation, procedure, step, and stage in the apparatus, system, program, and method shown in the claims, specification, and drawings, is specifically defined as "before" or "before". It should be noted that they can be implemented in any order unless the output of the previous process is used in the subsequent process. Even if the claims, specifications, and operational flows in the drawings are explained using "first," "next," etc. for convenience, this does not mean that it is essential to carry out the operations in this order. It's not a thing.

10・・・光源、20・・・フローセル、22・・・壁部、24・・・内部空間、30・・・濃度検出光学系、32・・・濃度検出信号処理部、36・・・濃度測定部、40・・・汚れ検出部、42・・・汚れ補正部、46・・・メモリ、50・・・洗浄部、60・・・光源光量モニタ、62・・・補正処理部、70・・・透過光検出光学系、72・・・透過光検出信号処理部、76・・・透過光検出部、80・・・散乱光検出光学系、82・・・散乱光信号処理部、86・・・散乱光量検出部、91・・・光、92・・・測定光、93・・・分岐光、94・・・透過光、96・・・散乱光、100・・・水質分析装置、102・・・近似線、104・・・近似線 DESCRIPTION OF SYMBOLS 10... Light source, 20... Flow cell, 22... Wall part, 24... Internal space, 30... Concentration detection optical system, 32... Concentration detection signal processing section, 36... Concentration Measuring section, 40... Stain detection section, 42... Stain correction section, 46... Memory, 50... Cleaning section, 60... Light source light amount monitor, 62... Correction processing section, 70. ...Transmitted light detection optical system, 72... Transmitted light detection signal processing section, 76... Transmitted light detection section, 80... Scattered light detection optical system, 82... Scattered light signal processing section, 86. ...Scattered light amount detection unit, 91...Light, 92...Measurement light, 93...Branched light, 94...Transmitted light, 96...Scattered light, 100...Water quality analyzer, 102 ...Approximate line, 104...Approximate line

Claims (14)

試料水に含まれる測定対象物質の濃度を測定する水質分析装置であって、
光を透過する壁部と、前記壁部に囲まれた内部空間とを有し、前記試料水が前記内部空間を通過するフローセルと、
前記フローセルに向けて光を照射する光源と、
前記試料水を前記フローセルに流した状態で、前記光源から前記フローセルに光源光を照射したときの前記フローセルからの被測定光に基づいて、前記試料水に含まれる前記測定対象物質の濃度を測定する濃度測定部と、
前記測定対象物質の濃度が既知の参照水を前記フローセルに流した状態における、前記フローセルからの前記被測定光の光量に基づいて、前記フローセルの汚れによる光減衰量を検出する汚れ検出部と、
前記フローセルの汚れによる前記光減衰量に基づいて、前記試料水を流した時の前記測定対象物質の濃度の測定結果を補正する汚れ補正部
とを備える水質分析装置。
A water quality analyzer that measures the concentration of a target substance contained in sample water,
A flow cell having a wall that transmits light and an internal space surrounded by the wall, and through which the sample water passes through the internal space;
a light source that irradiates light toward the flow cell;
With the sample water flowing through the flow cell, the concentration of the substance to be measured contained in the sample water is measured based on the measured light from the flow cell when the flow cell is irradiated with light source light from the light source. a concentration measuring section,
a dirt detection unit that detects the amount of light attenuation due to dirt on the flow cell based on the amount of the light to be measured from the flow cell in a state where reference water having a known concentration of the substance to be measured is flowing through the flow cell;
A water quality analysis device comprising: a dirt correction section that corrects a measurement result of the concentration of the substance to be measured when the sample water is passed, based on the amount of light attenuation due to dirt in the flow cell.
前記汚れ補正部は、検出した前記フローセルの汚れによる前記光減衰量を保存して、次に前記フローセルの汚れによる前記光減衰量を検出するまでの間、保存した前記光減衰量を用いて前記測定対象物質の濃度の測定結果を補正する
請求項1に記載の水質分析装置。
The dirt correction unit stores the detected amount of light attenuation due to dirt on the flow cell, and uses the stored amount of light attenuation to correct the amount of light attenuation until the next time the amount of light attenuation due to dirt on the flow cell is detected. The water quality analysis device according to claim 1, wherein the measurement result of the concentration of the substance to be measured is corrected.
前記フローセルを洗浄する洗浄部を更に備え、
前記汚れ検出部は、前記フローセルの洗浄後、前記試料水を流す前に、前記参照水を前記フローセルに流して前記光減衰量を検出する
請求項1または2に記載の水質分析装置。
further comprising a cleaning section for cleaning the flow cell,
The water quality analysis device according to claim 1 or 2, wherein the dirt detection section detects the light attenuation amount by flowing the reference water through the flow cell before flowing the sample water after washing the flow cell.
前記フローセルに入射する前記光源光の光量を検出する光源光量モニタを更に備え、前記汚れ検出部は、前記参照水を測定するときの前記光源光の前記光量を用いて前記光減衰量を検出する
請求項1または2に記載の水質分析装置。
The method further includes a light source light amount monitor that detects the amount of light from the light source that enters the flow cell, and the dirt detection section detects the amount of light attenuation using the amount of light from the light source when measuring the reference water. The water quality analysis device according to claim 1 or 2.
前記汚れ補正部は、過去に測定した前記光減衰量に応じた減衰情報の履歴を保持し、以後の前記光減衰量の予測を行う
請求項1に記載の水質分析装置。
The water quality analysis device according to claim 1, wherein the dirt correction section maintains a history of attenuation information corresponding to the light attenuation measured in the past, and predicts the light attenuation in the future.
前記汚れ補正部は、前記光減衰量の予測値が許容値を超える時期を推定する
請求項5に記載の水質分析装置。
The water quality analysis device according to claim 5, wherein the stain correction unit estimates a time when the predicted value of the amount of light attenuation exceeds a tolerance value.
前記フローセルを洗浄する洗浄部を更に備え、
前記汚れ検出部は、前記フローセルの洗浄後、前記試料水を流す前に、前記参照水を前記フローセルに流して前記光減衰量を検出し、
前記洗浄部は、前記光減衰量の予測に応じて洗浄方法を変更する
請求項5に記載の水質分析装置。
further comprising a cleaning section for cleaning the flow cell,
The dirt detection unit detects the light attenuation amount by flowing the reference water into the flow cell after washing the flow cell and before flowing the sample water,
The water quality analysis device according to claim 5, wherein the cleaning section changes the cleaning method according to the prediction of the amount of light attenuation.
前記洗浄方法を変更した場合の洗浄前後における前記光減衰量の変化に応じて、次の洗浄時の前記洗浄方法を選択する
請求項7に記載の水質分析装置。
The water quality analysis device according to claim 7, wherein the cleaning method for the next cleaning is selected according to a change in the amount of light attenuation before and after cleaning when the cleaning method is changed.
前記汚れ検出部は、洗浄から次の洗浄までの間に複数回にわたって前記参照水を用いて前記光減衰量を検出し、前記光減衰量の増加速度に基づいて、前記次の洗浄までの間の前記光減衰量の変化を予測し、
前記汚れ補正部は、前記光減衰量の変化の予測に基づいて、前記測定対象物質の濃度の測定結果を補正する
請求項3に記載の水質分析装置。
The dirt detection unit detects the light attenuation using the reference water multiple times between washing and the next washing, and detects the amount of light attenuation during the period until the next washing based on the rate of increase in the light attenuation. predicting a change in the optical attenuation of
The water quality analysis device according to claim 3, wherein the stain correction section corrects the measurement result of the concentration of the substance to be measured based on the prediction of the change in the amount of light attenuation.
洗浄から次の洗浄までの間の前記光減衰量の検出の際、前記参照水の流速を、前記試料水に含まれる前記測定対象物質の濃度を測定するときの前記試料水の流速以下にする
請求項9に記載の水質分析装置。
When detecting the amount of optical attenuation between one wash and the next wash, the flow rate of the reference water is set to be equal to or lower than the flow rate of the sample water when measuring the concentration of the substance to be measured contained in the sample water. The water quality analysis device according to claim 9.
洗浄から次の洗浄までの間の前記光減衰量の検出の際、前記参照水の流速を、洗浄時に流す洗浄水の流速以下にする
請求項9に記載の水質分析装置。
The water quality analyzer according to claim 9, wherein when detecting the amount of optical attenuation from one wash to the next wash, the flow rate of the reference water is set to be equal to or lower than the flow rate of the wash water used during washing.
前記洗浄部は前記光減衰量の検出結果に基づいて前記フローセルの洗浄が終了したか否かを判定し、前記フローセルの洗浄開始から設定期間内に洗浄が終了しない場合に、前記洗浄部における洗浄方法を変更させる
請求項3に記載の水質分析装置。
The cleaning section determines whether or not cleaning of the flow cell is completed based on the detection result of the amount of light attenuation, and if the cleaning is not completed within a set period from the start of cleaning of the flow cell, cleaning in the cleaning section is performed. The water quality analysis device according to claim 3, wherein the method is changed.
前記洗浄部は、過去に前記フローセルに流した前記試料水の履歴に基づいて、前記フローセルの洗浄方法を選択する
請求項3に記載の水質分析装置。
The water quality analyzer according to claim 3, wherein the cleaning section selects a cleaning method for the flow cell based on a history of the sample water that has been passed through the flow cell in the past.
前記フローセルを透過した透過光の光量である透過光量を検出する透過光検出部と、
前記参照水からの散乱光の光量である散乱光量を検出する散乱光量検出部を更に備え、
前記汚れ検出部は、前記フローセルに前記参照水を流した状態での前記透過光量と前記散乱光量に基づいて、前記フローセルの汚れによる前記光減衰量を検出する
請求項1または2に記載の水質分析装置。
a transmitted light detection unit that detects the amount of transmitted light that is the amount of transmitted light that has passed through the flow cell;
further comprising a scattered light amount detection unit that detects the amount of scattered light that is the amount of scattered light from the reference water,
The water quality according to claim 1 or 2, wherein the dirt detection unit detects the amount of light attenuation due to dirt in the flow cell based on the amount of transmitted light and the amount of scattered light when the reference water is flowing through the flow cell. Analysis equipment.
JP2022125681A 2022-08-05 2022-08-05 water quality analyzer Pending JP2024022246A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022125681A JP2024022246A (en) 2022-08-05 2022-08-05 water quality analyzer
CN202310760850.0A CN117517198A (en) 2022-08-05 2023-06-26 Water quality analysis device
KR1020230083305A KR20240020180A (en) 2022-08-05 2023-06-28 Water quality analysis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022125681A JP2024022246A (en) 2022-08-05 2022-08-05 water quality analyzer

Publications (1)

Publication Number Publication Date
JP2024022246A true JP2024022246A (en) 2024-02-16

Family

ID=89744489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022125681A Pending JP2024022246A (en) 2022-08-05 2022-08-05 water quality analyzer

Country Status (3)

Country Link
JP (1) JP2024022246A (en)
KR (1) KR20240020180A (en)
CN (1) CN117517198A (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2814848B2 (en) 1992-07-22 1998-10-27 日本電気株式会社 Phase shift mask and method of manufacturing the same
AUPR184500A0 (en) 2000-12-01 2001-01-04 Drug Delivery Solutions Pty Ltd Dispensing device

Also Published As

Publication number Publication date
KR20240020180A (en) 2024-02-14
CN117517198A (en) 2024-02-06

Similar Documents

Publication Publication Date Title
US20060291706A1 (en) Method of extracting intensity data from digitized image
JP2010151519A (en) Automatic analyzer
JP2007024717A (en) Water quality analyzer
JPWO2019176624A1 (en) Gas analysis method and equipment
JP2010175275A (en) Autoanalyzer and automatic analyzing method
JP2024022246A (en) water quality analyzer
JP4658917B2 (en) Analysis equipment for semiconductor manufacturing systems
JP2004251802A (en) Automatic analyzer
JP2005274216A (en) Fouling detection method of sensor, and cleaning method of sensor
JP2001033388A (en) Method and device for measuring concentration of chlorophyll a
WO2010013586A1 (en) Apparatus for measurement of silicon concentration
WO2019075014A1 (en) Filtered and integrated sensor measurement for process condition determination and method thereof
WO2023013344A1 (en) Chemical analysis device
JP2013506839A (en) Total organic carbon (TOC) fluid sensor
CN117413169A (en) Water quality analysis device
JP5538952B2 (en) Inspection device
JP2024502795A (en) Calibration and validation of cuvettes in automated chemical analyzers
JP6191408B2 (en) X-ray fluorescence analyzer
JP2022059278A (en) Measuring device and measuring method for measuring turbidity or chromaticity of liquid sample
JP2007256145A (en) Illumination angle setting method in flaw inspection device
WO2020079800A1 (en) Detection apparatus
TWI384217B (en) Measurement method and system of water quality
WO2023026810A1 (en) Automated analysis device
JP5146565B2 (en) Chromatographic quantitative measurement method
JP2011085599A (en) Automatic analyzer