JP2024021150A - Manufacturing method of concrete using carbon dioxide nanobubble water - Google Patents

Manufacturing method of concrete using carbon dioxide nanobubble water Download PDF

Info

Publication number
JP2024021150A
JP2024021150A JP2022123783A JP2022123783A JP2024021150A JP 2024021150 A JP2024021150 A JP 2024021150A JP 2022123783 A JP2022123783 A JP 2022123783A JP 2022123783 A JP2022123783 A JP 2022123783A JP 2024021150 A JP2024021150 A JP 2024021150A
Authority
JP
Japan
Prior art keywords
water
carbon dioxide
concrete
nanobubble
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022123783A
Other languages
Japanese (ja)
Other versions
JP7276756B1 (en
Inventor
正好 高橋
Masayoshi Takahashi
千秋 吉澤
Chiaki Yoshizawa
明夫 正司
Akio Shoji
博 渡瀬
Hiroshi Watase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Oriental Shiraishi Corp
Original Assignee
Tohoku University NUC
Oriental Shiraishi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Oriental Shiraishi Corp filed Critical Tohoku University NUC
Priority to JP2022123783A priority Critical patent/JP7276756B1/en
Application granted granted Critical
Publication of JP7276756B1 publication Critical patent/JP7276756B1/en
Publication of JP2024021150A publication Critical patent/JP2024021150A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Abstract

To provide a manufacturing method of concrete using CO2 nanobubble water, the method effective in reducing carbon dioxide and highly effective in densifying the concrete.SOLUTION: Concrete is manufactured, in a manufacturing method of concrete using carbon dioxide nanobubble water, by using carbon dioxide nanobubble water including carbon dioxide microbubbles having a diameter of 1 μm or less as kneading water when manufacturing the concrete. As the kneading water the carbon dioxide nanobubble water into which a calcium hydroxide solution is mixed is also used.SELECTED DRAWING: None

Description

本発明は、二酸化炭素ナノバブル水(COナノバブル水)を用いたコンクリートの製造方法に関する。 The present invention relates to a method for producing concrete using carbon dioxide nanobubble water (CO 2 nanobubble water).

近年、地球温暖化の要因と考えられている二酸化炭素を削減することが地球規模で叫ばれており、日本でも急速に二酸化炭素の削減に取り組まなければならない状況となっている。また、一方でコンクリート構造物の性能規定化の世界的な流れの中で構造物の長寿命化(高耐久化)に対する関心が高まっており、そのような状況下でコンクリートの要求性能の一つとして緻密化が求められている。このため、二酸化炭素を炭酸カルシウムとしてコンクリート中に固定化してコンクリートを緻密化・高品質化することが研究されている。 In recent years, there has been a call on a global scale to reduce carbon dioxide, which is thought to be a cause of global warming, and Japan is also in a situation where it is necessary to rapidly work on reducing carbon dioxide. On the other hand, with the global trend of standardizing the performance of concrete structures, interest in extending the lifespan (higher durability) of structures is increasing, and under such circumstances, one of the required performances of concrete is As such, there is a need for refinement. For this reason, research is being carried out on fixing carbon dioxide in the form of calcium carbonate in concrete to make concrete denser and of higher quality.

そこで、本願発明者らは、微細気泡装置にCOを封入することで、COナノバブル水(NBW)を製造することが可能であることから、COナノバブル水を用いてコンクリート構造物を製造することにより、二酸化炭素の削減とコンクリート構造物の緻密化の問題を両方解決できるのではないかと考えるに至った。 Therefore, the inventors of the present application discovered that it is possible to produce CO2 nanobubble water (NBW) by sealing CO2 in a microbubble device, and therefore manufactured concrete structures using CO2 nanobubble water. I came to think that by doing so, I could solve both the problems of reducing carbon dioxide emissions and increasing the density of concrete structures.

例えば、特許文献1には、炭酸バブル水を準備する工程と炭酸バブル水を、セメント硬化体を有する物質に導入する第1の炭酸バブル水導入工程とを有し、セメント硬化体を高品質化する方法が開示されている(特許文献1の特許請求の範囲の請求項1、明細書の段落[0019]~[0038]等参照)。 For example, Patent Document 1 includes a step of preparing carbonated bubble water and a first carbonated bubble water introduction step of introducing carbonated bubble water into a substance having a hardened cement body, and improves the quality of the hardened cement body. (See claim 1 of Patent Document 1, paragraphs [0019] to [0038] of the specification, etc.).

また、特許文献2には、貯水可能な貯水域11を有し、貯水域11の内壁面がセメント系硬化体で構成されているコンクリート製貯水構造体1の炭酸化養生方法において、貯水域11を閉空間として空間内を減圧する減圧工程と、貯水域11に、二酸化炭素溶解水2Aを注水する注水工程と、を行うコンクリート製貯水構造体の炭酸化養生方法が開示されている(特許文献2の特許請求の範囲の請求項1、明細書の段落[0025]~[0034]等参照)。 Further, Patent Document 2 discloses a carbonation curing method for a concrete water storage structure 1 that has a storage area 11 capable of storing water, and the inner wall surface of the storage area 11 is made of a cement-based hardened material. A carbonation curing method for a concrete water storage structure is disclosed, which includes a depressurization step of reducing the pressure inside the space by making it a closed space, and a water injection step of injecting 2A of carbon dioxide dissolved water into the storage area 11 (Patent Document 1). (See claim 1 of claim 2, paragraphs [0025] to [0034] of the specification, etc.).

しかし、特許文献1に記載のセメント硬化体を高品質化する方法や特許文献2に記載のコンクリート製貯水構造体の炭酸化養生方法は、いずれも既に硬化したセメント硬化体やコンクリート製貯水構造体に炭酸バブル水を養生水として用いるものであった。このため、既に水和反応が進行した後に炭酸水を供給するため緻密化できるとされているものの充分ではないだけでなく、二酸化炭素の削減効果も十分ではなかった。なお、後述のように、本願の発明者の実験によれば、養生水に二酸化炭酸ナノバブル水(NBW)を用いてもコンクリートの顕著な緻密化の効果は確認することはできなかった。 However, the method for improving the quality of a cement hardened body described in Patent Document 1 and the carbonation curing method for a concrete water storage structure described in Patent Document 2 both apply to already hardened cement bodies and concrete water storage structures. Carbonated bubble water was used as curing water. For this reason, although carbonated water is supplied after the hydration reaction has already proceeded, it is said that densification is possible, but not only is this insufficient, but the carbon dioxide reduction effect is also not sufficient. As will be described later, according to experiments conducted by the inventor of the present application, even when carbon dioxide nanobubble water (NBW) was used as curing water, no significant densification effect of concrete could be confirmed.

特開2014-214030号公報JP2014-214030A 特開2015-54806号公報Japanese Patent Application Publication No. 2015-54806

そこで、本発明は、前述した問題に鑑みて案出されたものであり、その目的とするところは、二酸化炭素の削減効果及びコンクリートの緻密化の効果の高いCOナノバブル水を用いたコンクリートの製造方法を提供することにある。 Therefore, the present invention was devised in view of the above-mentioned problems, and its purpose is to improve concrete production using CO2 nanobubble water, which is highly effective in reducing carbon dioxide and densifying concrete. The purpose is to provide a manufacturing method.

請求項1に係る二酸化炭素ナノバブル水を用いたコンクリートの製造方法は、二酸化炭素ナノバブル水を用いたコンクリートの製造方法であって、コンクリートを製造する際の練り水に直径1μm以下の二酸化炭素ガスの微細気泡を含有する二酸化炭素ナノバブル水を用いてコンクリートを製造することを特徴とする。 The method for producing concrete using carbon dioxide nanobubble water according to claim 1 is a method for producing concrete using carbon dioxide nanobubble water, in which carbon dioxide gas having a diameter of 1 μm or less is added to mixing water when producing concrete. The method is characterized in that concrete is produced using carbon dioxide nanobubble water containing microbubbles.

請求項2に係る二酸化炭素ナノバブル水を用いたコンクリートの製造方法は、請求項1に係る二酸化炭素ナノバブル水を用いたコンクリートの製造方法において、前記練り水に、前記二酸化炭素ナノバブル水に水酸化カルシウム溶液を混合したものを用いることを特徴とする。 The method for producing concrete using carbon dioxide nanobubble water according to claim 2 is the method for producing concrete using carbon dioxide nanobubble water according to claim 1, wherein calcium hydroxide is added to the mixing water and to the carbon dioxide nanobubble water. It is characterized by using a mixture of solutions.

請求項3に係る二酸化炭素ナノバブル水を用いたコンクリートの製造方法は、請求項1又は2に係る二酸化炭素ナノバブル水を用いたコンクリートの製造方法において、前記コンクリートの養生水に水酸化カルシウム溶液を用いることを特徴とする。 The method for producing concrete using carbon dioxide nanobubble water according to claim 3 is the method for producing concrete using carbon dioxide nanobubble water according to claim 1 or 2, in which a calcium hydroxide solution is used as the concrete curing water. It is characterized by

請求項1~3に係る発明によれば、コンクリートの緻密化及び高品質化することができるとともに、二酸化炭素の排出を削減することができる。 According to the inventions according to claims 1 to 3, concrete can be densified and of high quality, and carbon dioxide emissions can be reduced.

図1は、W/C=65%透水試験の練り水に機能水を用いた材齢7日供試体による7日間の累積透水量を示す棒グラフである。FIG. 1 is a bar graph showing the cumulative amount of water permeation over 7 days using a 7-day-old specimen using functional water as mixing water in a W/C = 65% water permeability test. 図2は、同上の透水試験の練り水に機能水を用いた材齢28日供試体による6日間の累積透水量を示す棒グラフである。FIG. 2 is a bar graph showing the cumulative amount of water permeation over 6 days using a 28-day-old specimen in which functional water was used as mixing water in the water permeability test. 図3は、同上の透水試験の練り水に機能水を用いて水道水で養生した材齢28日供試体による7日間の累積透水量を示す棒グラフである。FIG. 3 is a bar graph showing the cumulative water permeability over 7 days of a 28-day-old specimen cured in tap water using functional water as the kneading water in the water permeability test. 図4は、同上の透水試験の練り水に純水を用いて材齢7日まで純水で養生し、材齢7日から機能水で養生した材齢28日供試体による7日間の累積透水量を示す棒グラフである。Figure 4 shows the cumulative water permeability over 7 days of a 28-day-old specimen that was cured with pure water until the material age was 7 days and then cured with functional water from the material age of 7 days. It is a bar graph showing the amount. 図5は、W/C=35%透水試験の練り水に機能水を用いて水道水で養生した材齢28日供試体による7日間の累積透水量を示す棒グラフである。FIG. 5 is a bar graph showing the cumulative amount of water permeation for 7 days using a 28-day-old specimen cured in tap water using functional water as the mixing water for the W/C = 35% water permeability test. 図6は、同上の透水試験の練り水に純水を用いて材齢7日まで水道水で養生し、材齢7日から機能水で養生した材齢28日供試体による7日間の累積透水量を示す棒グラフである。Figure 6 shows the cumulative permeability over 7 days of a 28-day-old specimen that was cured with tap water until the age of 7 days using pure water as the mixing water for the same water permeability test as above, and then with functional water from the 7th day of age. It is a bar graph showing the amount. 図7は、W/C=35%透水試験の練り水に機能水を用いて純水で養生した材齢28日供試体による7日間の累積透水量を示す棒グラフである。FIG. 7 is a bar graph showing the cumulative amount of water permeation for 7 days using a 28-day-old specimen cured with pure water using functional water as the mixing water for the W/C = 35% water permeability test. 図8は、同上の透水試験の練り水に純水を用いて機能水で養生した材齢28日供試体による7日間の累積透水量を示す棒グラフである。FIG. 8 is a bar graph showing the cumulative amount of water permeation over 7 days using a 28-day-old specimen cured with functional water using pure water as the mixing water in the water permeability test. 図9は、同上の透水試験の練り水に機能水を用いて水酸化カルシウムCa(OH)飽和上澄み液で養生した材齢28日供試体による7日間の累積透水量を示す棒グラフである。FIG. 9 is a bar graph showing the cumulative water permeability over 7 days of a 28-day-old specimen cured with a calcium hydroxide Ca(OH) 2 saturated supernatant liquid using functional water as the mixing water in the water permeability test. 図10は、同上の透水試験の練り水に機能水を用いて材齢7日まで純水で養生し、材齢7日から機能水を噴霧して養生した材齢28日供試体による7日間の累積透水量を示す棒グラフである。Figure 10 shows a 7-day test using a 28-day-old specimen using functional water as the mixing water for the water permeability test above, curing with pure water until the material was 7 days old, and then curing by spraying functional water from the 7th day onwards. It is a bar graph showing the cumulative water permeability of .

以下、本発明に係る二酸化炭素ナノバブル水を用いたコンクリートの製造方法の一実施形態について説明する。 Hereinafter, one embodiment of the method for manufacturing concrete using carbon dioxide nanobubble water according to the present invention will be described.

<二酸化炭素ナノバブル水を用いたコンクリートの製造方法>
本発明の実施形態に係る二酸化炭素ナノバブル水を用いたコンクリートの製造方法(以下、単に本コンクリートの製造方法ともいう。)では、先ず、コンクリートの用途に応じて、所定の単位水量(W)、所定の水・セメント比(W/C)、所定の細骨材率(S/A)、所定の空気量(a)となるように配合を決定し、必要な各材料の量を算出する。
<Method for manufacturing concrete using carbon dioxide nanobubble water>
In the concrete manufacturing method using carbon dioxide nanobubble water according to the embodiment of the present invention (hereinafter also simply referred to as the present concrete manufacturing method), first, a predetermined unit water amount (W), The mixture is determined so that a predetermined water/cement ratio (W/C), a predetermined fine aggregate ratio (S/A), and a predetermined amount of air (a) are achieved, and the amounts of each material required are calculated.

そして、本コンクリートの製造方法では、決定した配合に応じた量のセメント、粗骨材、細骨材、各種混和材及び混和剤に、練り水として、所定の単位水量(W)となる二酸化炭素ナノバブル水(CONBW)を用いてコンクリートを製造する。 In this method of producing concrete, carbon dioxide is added to the amount of cement, coarse aggregate, fine aggregate, various admixtures, and admixtures according to the determined mix, and a predetermined unit amount of water (W) as mixing water. Concrete is manufactured using nanobubble water (CO 2 NBW).

ここで、二酸化炭素ナノバブル水とは、ナノオーダー(1μm以下)の直径の二酸化炭素ガスの微細気泡を含有する水のことを指しており、ナノオーダーの二酸化炭素ガスの微細気泡に加え、マイクロオーダー(1~100μm)の微細二酸化炭素ガスを含有するマクロナノバブル水を含む概念である。 Here, carbon dioxide nanobubble water refers to water that contains carbon dioxide gas microbubbles with a nano-order (1 μm or less) diameter. The concept includes macro-nano bubble water containing fine carbon dioxide gas (1 to 100 μm).

また、二酸化炭素ナノバブルの生成方法としては、二酸化炭素気体と水を混合し、高速で旋回させることで二酸化炭素の気泡を作る「旋回流方式」、二酸化炭素気体に圧力をかけ、水中に溶け込ませて、一気に開放することで二酸化炭素の気泡を作る「加圧溶解方式」、オリフィス等の微細孔へ二酸化炭素気体に圧力をかけて通すことで二酸化炭素の気泡を作る「微細孔方式」、超音波でキャビテーションを起こし水中の二酸化炭素気体を膨張させて二酸化炭素の気泡を作る「超音波方式」など、が例示される。しかし、二酸化炭素ナノバブル水の生成方法は、特に限定されるものではなく、マイクロオーダー(1~100μm)の微細二酸化炭素ガスを含有するマクロナノバブル水を生成できる方法であればよい。 In addition, methods for generating carbon dioxide nanobubbles include the ``swirling flow method,'' which creates carbon dioxide bubbles by mixing carbon dioxide gas and water and swirling them at high speed. ``Pressure dissolution method'', which creates carbon dioxide bubbles by releasing them all at once; ``micropore method'', which creates carbon dioxide bubbles by applying pressure to the carbon dioxide gas and passing it through micropores such as orifices; An example is the ``ultrasonic method,'' which uses sound waves to cause cavitation and expand carbon dioxide gas in water, creating carbon dioxide bubbles. However, the method for producing carbon dioxide nanobubble water is not particularly limited, and any method may be used as long as it can produce macronanobubble water containing microscopic carbon dioxide gas on the micro order (1 to 100 μm).

但し、本コンクリートの製造方法では、ダン・タクマ社製の製造装置を用いて、前記「加圧溶解方式」の1pass方式又は2分間のloop方式で二酸化炭素ナノバブル水を生成する。安価で容易に短時間で二酸化炭素ナノバブル水を大量に生成することができるからである。 However, in this concrete manufacturing method, carbon dioxide nanobubble water is generated using a manufacturing device manufactured by Dan Takuma Co., Ltd. using a 1-pass method or a 2-minute loop method of the above-mentioned "pressure dissolution method." This is because a large amount of carbon dioxide nanobubble water can be produced easily and inexpensively in a short period of time.

なお、二酸化炭素ナノバブル水は製造装置から製造後に少なくとも5分以上経過したものを使うことで所定の効果を発揮する。その間、オープンな状態で放置しておいてもよく、また容器に入れて長期間保管してもよい。練り水として、もしくは水酸化カルシウム飽和溶液との混合用の水としての利用は、製造から数か月経過したものであっても効果は変わらない。 Note that carbon dioxide nanobubble water exhibits a predetermined effect by using water that has been produced from a production device for at least 5 minutes. During that time, it may be left in an open state, or it may be stored in a container for a long period of time. When used as kneading water or as water for mixing with a saturated calcium hydroxide solution, the effectiveness remains the same even after several months have passed since manufacture.

本発明に係る二酸化炭素ナノバブルは直径が200nmよりも微小であり、長期に安定化したものである。100nmよりも小さなものが大量に含まれるため、その計測は難しいが、二酸化炭素ナノバブルに含まれる二酸化炭素の分量は水溶液の体積に対して0.03%以下である。これは超音波を利用した方法であり、二酸化炭素ナノバブル水に超音波を放射して溶液中から浮上してきた気泡をルシャテリエ瓶などにトラップし、得られた気体の容量と二酸化炭素濃度を測定することにより求められる。 The carbon dioxide nanobubbles according to the present invention have a diameter smaller than 200 nm and are stable for a long period of time. Although it is difficult to measure carbon dioxide because it contains a large amount of particles smaller than 100 nm, the amount of carbon dioxide contained in carbon dioxide nanobubbles is 0.03% or less based on the volume of the aqueous solution. This method uses ultrasound, and involves emitting ultrasound into carbon dioxide nanobubble water, trapping the bubbles that emerge from the solution in a Le Chatelier bottle, and measuring the volume and carbon dioxide concentration of the resulting gas. It is required by

但し、本発明に係る二酸化炭素バブルは製造から数か月たった状況でも分かる通り、溶存二酸化炭素とは無関係なものである。水溶液に超音波を放射すると溶解している二酸化炭素も一部が気泡としてガス化するため、二酸化炭素ナノバブル自体の容積を正確に測ることは出来ない。方法として二酸化炭素ナノバブル水に塩酸などの強酸を加えてpHを4程度にまで低下した後に、窒素ガスなどの二酸化炭素を含まない気体で3時間程度バブリングを行う。これにより大部分の溶解二酸化炭素を空気中に放出できる。その後に水酸化ナトリウムなどの塩基を加えてpHを7程度の中性領域に戻した後で超音波を照射する。これにより本技術に係る二酸化炭素ナノバブルに含まれる気泡量(二酸化炭素量)が水溶液の体積の0.03%以下であることが分かる。なお、ナノバブルは真球に近い気泡であり、表面張力の効果により加圧された状態で存在している。大部分のナノバブルは100nmよりも小さく、気泡内部の圧力は30気圧よりも高い。そのため、正確な二酸化炭素ナノバブルの体積(トータル量)は大気圧環境下で求めた二酸化炭素量の1/30以下の値である。 However, as can be seen even several months after production, the carbon dioxide bubble according to the present invention has nothing to do with dissolved carbon dioxide. When ultrasonic waves are radiated into an aqueous solution, some of the dissolved carbon dioxide gasifies as bubbles, making it impossible to accurately measure the volume of the carbon dioxide nanobubbles themselves. As a method, a strong acid such as hydrochloric acid is added to carbon dioxide nanobubble water to lower the pH to about 4, and then bubbling is performed with a gas that does not contain carbon dioxide such as nitrogen gas for about 3 hours. This allows most of the dissolved carbon dioxide to be released into the air. After that, a base such as sodium hydroxide is added to return the pH to a neutral range of about 7, and then ultrasonic waves are irradiated. This shows that the amount of bubbles (amount of carbon dioxide) contained in the carbon dioxide nanobubbles according to the present technology is 0.03% or less of the volume of the aqueous solution. Note that nanobubbles are bubbles that are close to perfect spheres, and exist in a pressurized state due to the effect of surface tension. Most nanobubbles are smaller than 100 nm, and the pressure inside the bubbles is higher than 30 atmospheres. Therefore, the accurate volume (total amount) of carbon dioxide nanobubbles is 1/30 or less of the amount of carbon dioxide determined under atmospheric pressure.

また、本コンクリートの製造方法では、二酸化炭素ナノバブル水に加え、練り水に、水酸化カルシウム飽和溶液を二酸化炭素ナノバブル水に対して重量%で25%~50%置換して混合したものを用いることが好ましい。水酸化カルシウムのイオン化したCa2+やOHがコンクリートの毛細管空隙内に侵入してコンクリートの緻密化することができるからである。 In addition, in this concrete manufacturing method, in addition to carbon dioxide nanobubble water, a mixture of calcium hydroxide saturated solution substituted with 25% to 50% by weight of carbon dioxide nanobubble water is used in the mixing water. is preferred. This is because ionized Ca 2+ and OH of calcium hydroxide can penetrate into the capillary voids of concrete and densify the concrete.

そして、本コンクリートの製造方法では、コンクリートの養生水として、水酸化カルシウムの飽和上澄み水(水酸化カルシウム飽和溶液)を用いて所定の強度が発現するまで養生する。練り水と同様に、養生水として供給される水酸化カルシウムのイオン化したCa2+やOHがコンクリートの毛細管空隙内に侵入してコンクリートの緻密化することができるだけでなく、コンクリートの微細な初期の亀裂に入り込み、コンクリートのひび割れを抑制することができるからである。 In the present concrete manufacturing method, saturated supernatant water of calcium hydroxide (calcium hydroxide saturated solution) is used as concrete curing water to cure the concrete until a predetermined strength is developed. Similar to mixing water, the ionized Ca 2+ and OH - of calcium hydroxide supplied as curing water can not only penetrate into the capillary pores of concrete and densify the concrete, but also densify the concrete at its initial stage. This is because it can penetrate into cracks and suppress cracks in concrete.

以上説明した本発明の実施形態に係る二酸化炭素ナノバブル水を用いたコンクリートの製造方法によれば、コンクリートの緻密化することができ、高品質化・高耐久性化することができる。また、コンクリートの重量に対しては微量ではあるが、二酸化炭素を産業として大量に使用されるコンクリート内に固定化して、二酸化炭素の排出を抑制することができる。 According to the concrete manufacturing method using carbon dioxide nanobubble water according to the embodiment of the present invention described above, it is possible to make concrete denser and to improve its quality and durability. Furthermore, carbon dioxide emissions can be suppressed by fixing carbon dioxide in concrete, which is used in large quantities in industry, although the amount is small relative to the weight of concrete.

また、本実施形態に係る二酸化炭素ナノバブル水を用いたコンクリートの製造方法によれば、練り水や養生水として水酸化カルシウム溶液を使用するので、イオン化したCa2+やOHがコンクリートの毛細管空隙内に侵入してコンクリートの緻密化することができるだけでなく、コンクリートのひび割れを抑制することができる。 Furthermore, according to the concrete manufacturing method using carbon dioxide nanobubble water according to the present embodiment, since a calcium hydroxide solution is used as the mixing water and curing water, ionized Ca 2+ and OH are absorbed into the capillary voids of the concrete. Not only can it penetrate into the concrete and densify it, but it can also suppress cracks in the concrete.

以上、本発明の実施形態に係る二酸化炭素ナノバブル水を用いたコンクリートの製造方法について詳細に説明したが、前述した又は図示した実施形態は、いずれも本発明を実施するにあたって具体化した一実施形態を示したものに過ぎない。よって、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。 The method for manufacturing concrete using carbon dioxide nanobubble water according to the embodiment of the present invention has been described in detail above, but the embodiments described above or illustrated are all embodiments that have been realized in carrying out the present invention. It is merely an indication of the Therefore, the technical scope of the present invention should not be construed as being limited by these.

特に、コンクリートとして、結合材としてセメントを用いて骨材を結合するものを例示して説明したが、本発明に係るコンクリートは、広義の意味でのコンクリートを指し、セメントを用いて骨材を結合するものに限られず、石灰、石膏、アスファルト、プラスチックなどの結合材で粗骨材や細骨材からなる骨材を固めた複合材料を含むものである。練り水に二酸化炭素ナノバブル水を用いた場合は、二酸化炭素を炭酸カルシウムとしてコンクリート中の微細空間に固定化することができると考えられるからである。 In particular, although concrete has been explained by exemplifying concrete in which aggregates are bound together using cement as a binding material, the concrete according to the present invention refers to concrete in a broad sense, and refers to concrete in which aggregates are bound together using cement. It is not limited to materials used in the construction of concrete, but includes composite materials made by hardening aggregates made of coarse or fine aggregates with binders such as lime, gypsum, asphalt, and plastic. This is because it is thought that when carbon dioxide nanobubble water is used as mixing water, carbon dioxide can be fixed in the microscopic spaces in concrete as calcium carbonate.

<W/C=65%透水試験>
次に、本発明に係る二酸化炭素ナノバブル水を用いたコンクリートの製造方法の効果を検証するために行った透水試験について説明する。本透水試験は、供試体として複数種類のコンクリート版を作成し、透水試験を行ってその累積透水量(ml)を計測した。
<W/C=65% water permeability test>
Next, a water permeability test conducted to verify the effects of the concrete manufacturing method using carbon dioxide nanobubble water according to the present invention will be described. In this water permeability test, multiple types of concrete slabs were prepared as specimens, and the cumulative water permeability (ml) was measured by conducting a water permeability test.

供試体のコンクリートの基本配合は、(1)単位水量(W)=175(kg/m)(2)水・セメント比(W/C)=65%(3)細骨材率(S/A)=50%(4)空気量(a)=4.5%となるように配合した。より具体的には、次の表1となるように配合した。 The basic mix of concrete for the specimen is: (1) Unit water volume (W) = 175 (kg/m 3 ) (2) Water/cement ratio (W/C) = 65% (3) Fine aggregate ratio (S/ A) = 50% (4) Air content (a) = 4.5%. More specifically, the ingredients were blended as shown in Table 1 below.

Figure 2024021150000001
Figure 2024021150000001

(練り水に機能水(CONBW))
また、供試体のコンクリートの製造には、前述の本発明の実施形態に係る二酸化炭素ナノバブル水を用いたコンクリートの製造方法と同様に、練り水に二酸化炭素ナノバブル水を含有する機能水(以下、単に機能水ともいう。)を用いた。供試体のコンクリートの製造に用いた機能水は、製造条件が異なるA,B,Cの3種類のタイプの二酸化炭素ナノバブル水(CONBW)を用いた。A,B,Cの3種類のタイプは、次の表2に示すように、製造条件として塩化ナトリウム(NaCl)と、塩化カリウム(KCl)と、硫酸カルシウム2水和水(CaSO・2HO)と、硝酸マグネシウム6水和水(Mg(NO)・6HO)の成分、及び二酸化炭素ナノバブル水の製造方式が異なるものである。
(Functional water (CO 2 NBW) in kneading water)
Furthermore, in order to manufacture the concrete of the specimen, functional water containing carbon dioxide nanobubble water in the mixing water (hereinafter referred to as (also simply called functional water) was used. Three types of carbon dioxide nanobubble water (CO 2 NBW), A, B, and C, with different manufacturing conditions, were used as functional water to manufacture the concrete of the specimen. The three types A, B, and C are produced using sodium chloride (NaCl), potassium chloride (KCl), and calcium sulfate dihydrate ( CaSO4.2H2 ) as shown in Table 2 below. O), the components of magnesium nitrate hexahydrate (Mg(NO 3 ) 6H 2 O), and the production method of carbon dioxide nanobubble water are different.

Figure 2024021150000002
Figure 2024021150000002

また、供試体としては、比較のために、純水、水酸化カルシウムCa(OH)溶液を練り水に使用したものも製造した。その上、機能水として、3種類のタイプの二酸化炭素ナノバブル水に、練り混ぜる直前に二酸化炭素ナノバブル水に対して水酸化カルシウム飽和溶液を重量%で25~50%置換して加えたものも使用し、計8種類の練り水で製造したコンクリートからなる供試体を作成し、透水試験を行った。 For comparison, test specimens were also produced using pure water and calcium hydroxide Ca(OH) 2 solution as kneading water. Furthermore, as functional water, we also use three types of carbon dioxide nanobubble water, which are added by replacing 25 to 50% by weight of a saturated calcium hydroxide solution to the carbon dioxide nanobubble water just before mixing. A water permeability test was then conducted on concrete specimens prepared using a total of eight types of mixing water.

なお、表2に示す二酸化炭素ナノバブル水の製造方式の1pass(方式)とは、単純に一方向に加圧溶解方式で二酸化炭素ナノバブルを生成することを指し、2分間loop(方式)とは、濃度を高くなるように2分間循環させて繰り返し加圧溶解方式で二酸化炭素ナノバブルを生成することを指している。 In addition, 1 pass (method) of the carbon dioxide nanobubble water production method shown in Table 2 refers to simply generating carbon dioxide nanobubbles by a pressurized dissolution method in one direction, and 2 minute loop (method) is This refers to generating carbon dioxide nanobubbles by repeating pressurized dissolution by repeatedly circulating for 2 minutes to increase the concentration.

以上の計8種類の異なる水を練り水に用いて製造したコンクリート版の供試体を材齢7日の翌日から7日間透水試験を行ってその累積透水量(ml)を計測したものを図1に示し、材齢28日から6日間の透水試験を行ってその累積透水量(ml)を計測したものを図2に示す。 Figure 1 shows the cumulative water permeability (ml) measured by carrying out a water permeability test for 7 days starting from the day after the 7th day of age on concrete slab specimens manufactured using a total of 8 different types of water as mixing water. Figure 2 shows the cumulative water permeability (ml) measured by conducting a water permeability test for 6 days from the 28th day of the wood age.

図1のグラフに示すように、純水を練り水に用いた供試体と比べて全ての場合で累積透水量が減少しており、練り水に前述の機能水を用いた場合は、コンクリートを緻密化して高品質化すする効果があることが分かる。つまり、コンクリートの練り水に、二酸化炭素ナノバブル水を用いるとコンクリートを緻密化に寄与することが分かった。 As shown in the graph in Figure 1, the cumulative water permeability decreased in all cases compared to the specimens using pure water as the mixing water, and when the above-mentioned functional water was used as the mixing water, concrete It can be seen that it has the effect of making it denser and higher quality. In other words, it was found that using carbon dioxide nanobubble water in concrete mixing water contributes to densification of concrete.

また、材齢7日のコンクリート効果の初期には、水酸化カルシウム溶液を練り水に使用した場合でもコンクリートの緻密化に寄与することが分かった。それに加え、練り水に、二酸化炭素ナノバブル水に水酸化カルシウム飽和溶液を25%~50%置換して混合したものを用いると、さらにコンクリートの緻密化に寄与することが分かった。 Furthermore, it was found that even when a calcium hydroxide solution was used in the mixing water, it contributed to the densification of concrete at the early stage of concrete effectiveness after 7 days of age. In addition, it has been found that using a mixture of carbon dioxide nanobubble water substituted with 25% to 50% calcium hydroxide saturated solution in the mixing water contributes to further densification of concrete.

そして、図2に示すように、コンリートにおいて所定強度が発現したと考えられる28日からの6日間の透水試験では、練り水に二酸化炭素ナノバブル水を用いたA,B,Cの3種類のタイプ全てにおいて大幅にコンクリートの緻密化が促進されたことが分かる。一方、水酸化カルシウム溶液を混合したものは、コンクリートの緻密化が促進されておらず、二酸化炭素ナノバブル水の効果が大きいことが分かる。 As shown in Figure 2, in the water permeability test for 6 days starting on the 28th, when it is thought that the specified strength was achieved in the concrete, three types of water, A, B, and C, were tested using carbon dioxide nanobubble water as the mixing water. It can be seen that the densification of concrete was significantly promoted in all cases. On the other hand, it can be seen that the mixture of calcium hydroxide solution does not promote the densification of concrete, and the effect of carbon dioxide nanobubble water is large.

(練り水に機能水+養生水に水道水)
次に、前述と同様に、計8種類の異なる水を練り水に用いて製造したコンクリート版の供試体に、水道水を養生水として使用して材齢28日まで養生し、その後7日間の透水試験を行ってその累積透水量(ml)を計測したものを図3に示す。
(Functional water for kneading water + tap water for curing water)
Next, in the same way as described above, concrete slab specimens manufactured using a total of 8 different types of water as mixing water were cured using tap water as curing water until the age of the concrete plate was 28 days, and then for 7 days. A water permeability test was conducted and the cumulative water permeability (ml) measured is shown in FIG.

図3のグラフは、図2に示した結果と略同じ結果となり、練り水に二酸化炭素ナノバブル水を用いたA,B,Cの3種類のタイプ全てにおいて大幅にコンクリートの緻密化が促進されたことが分かる。一方、水酸化カルシウム溶液を混合したものは、コンクリートの緻密化が促進されておらず、二酸化炭素ナノバブル水の効果が大きいことが分かる。 The graph in Figure 3 shows almost the same results as those shown in Figure 2, and the densification of concrete was significantly promoted in all three types A, B, and C, which used carbon dioxide nanobubble water as the mixing water. I understand that. On the other hand, it can be seen that the mixture of calcium hydroxide solution does not promote the densification of concrete, and the effect of carbon dioxide nanobubble water is large.

(練り水に純水+養生水に機能水)
次に、コンクリートの基本配合を、前述のように、(1)単位水量(W)=175(kg/m3)(2)水・セメント比(W/C)=65%(3)細骨材率(S/A)=50%(4)空気量(a)=4.5%となるように配合(表1の配合)し、練り水に純水を使用して同一配合の8つの供試体を製造した。そして、表2に示したA,B,Cの3種類のタイプの二酸化炭素ナノバブル水(CONBW)を製造して、前述の機能水と同様に、計8種類の異なる水を養生水に用いて材齢28日まで養生し、その後7日間の透水試験を行ってその累積透水量(ml)を計測したものを図4に示す。
(Pure water for kneading water + functional water for curing water)
Next, the basic mix of concrete was determined as described above: (1) Unit water volume (W) = 175 (kg/m3) (2) Water/cement ratio (W/C) = 65% (3) Fine aggregate Mixed so that the ratio (S/A) = 50% (4) Air content (a) = 4.5% (composition in Table 1), and using pure water as the kneading water, eight samples of the same composition were prepared. A sample was manufactured. Then, three types of carbon dioxide nanobubble water (CO 2 NBW), A, B, and C shown in Table 2, were produced, and a total of eight different types of water were used as curing water in the same way as the functional water described above. Fig. 4 shows the cumulative water permeability (ml) measured by curing the material until the age of 28 days and then conducting a water permeability test for 7 days.

図4のグラフに示すように、A,B,Cの3種類のタイプの二酸化炭素ナノバブル水(CONBW)を養生水に使用した場合でも、純水を養生水として使用した場合より全て累積透水量が上回る結果となった。つまり、養生水に二酸化炭素ナノバブル水(CONBW)を使用してもコンクリートの緻密化の効果は見られなかった。 As shown in the graph in Figure 4, even when three types of carbon dioxide nanobubble water (CO 2 NBW), A, B, and C, are used as curing water, the cumulative amount is higher than when pure water is used as curing water. The result was that the water permeation amount exceeded that of the previous one. In other words, even when carbon dioxide nanobubble water (CO 2 NBW) was used as curing water, no effect on concrete densification was observed.

一方、養生水に水酸化カルシウムCa(OH)飽和上澄み液を使用した場合、コンクリートの緻密化の効果が確認できた。A,B,Cの3種類のタイプの二酸化炭素ナノバブル水に水酸化カルシウム飽和溶液を25%~50%置換して混合したものを使用した場合でもコンクリートの緻密化の効果が確認できた。 On the other hand, when a calcium hydroxide Ca(OH) 2 saturated supernatant liquid was used as the curing water, the effect of densification of concrete was confirmed. Even when a mixture of three types of carbon dioxide nanobubble water, A, B, and C, with 25% to 50% replacement of calcium hydroxide saturated solution was used, the effect of densifying concrete was confirmed.

これは、コンクリート中の毛細管空隙の径が約100nmしかないため、二酸化炭素ナノバブルの多くが侵入できなかったものと考えられる。一方、水酸化カルシウム溶液は、イオン化したCa2+やOHが毛細管空隙内に侵入できたためと考えられる。 This is thought to be because the diameter of the capillary voids in the concrete is only about 100 nm, so that most of the carbon dioxide nanobubbles could not enter. On the other hand, in the calcium hydroxide solution, it is thought that ionized Ca 2+ and OH - were able to enter the capillary space.

<W/C=35%透水試験>
次に、前述の供試体とは配合条件である水セメント比が大きく異なる複数種類のコンクリート版を作成し、材齢28日から7日間の透水試験を行ってその累積透水量(ml)を計測し、前述のW/C=65%透水試験の結果と同様になるか否かを検証した。
<W/C=35% water permeability test>
Next, we created multiple types of concrete slabs with significantly different water-cement ratios from the above-mentioned specimens, conducted a water permeability test for 7 days starting from 28 days old, and measured their cumulative water permeability (ml). Then, it was verified whether the results were the same as those of the W/C=65% water permeability test described above.

本試験の供試体のコンクリートの基本配合は、(1)単位水量(W)=165(kg/m)(2)水・セメント比(W/C)=35%(3)細骨材率(S/A)=43%(4)空気量(a)=4.5%となるように配合した。より具体的には、次の表3となるように配合した。 The basic mix of the concrete used in this test is: (1) Unit water volume (W) = 165 (kg/m 3 ) (2) Water/cement ratio (W/C) = 35% (3) Fine aggregate ratio (S/A) = 43% (4) Air content (a) = 4.5%. More specifically, the ingredients were blended as shown in Table 3 below.

Figure 2024021150000003
Figure 2024021150000003

(練り水に機能水(CONBW))
先ず、練り水に機能水を使用した場合の効果を検証するために、供試体のコンクリート製造の際の練り水に機能水を用いた。機能水は、W/C=65%透水試験と同様に、表2に示したA,B,Cの3種類のタイプの二酸化炭素ナノバブル水(CONBW)を用いた。
(Functional water (CO 2 NBW) in kneading water)
First, in order to verify the effect of using functional water in the mixing water, functional water was used in the mixing water during the production of concrete for the specimen. As the functional water, three types of carbon dioxide nanobubble water (CO 2 NBW), A, B, and C shown in Table 2, were used as in the W/C = 65% water permeability test.

また、W/C=65%透水試験と同様に、比較のために、純水、水酸化カルシウムCa(OH)溶液を練り水に使用したものも製造した。その上、機能水として、3種類のタイプの二酸化炭素ナノバブル水に、練り混ぜる直前に二酸化炭素ナノバブル水に対して重量%で25~50の水酸化カルシウム溶液を加えたものも使用し、W/C=65%透水試験と同様に、計8種類の練り水で製造したコンクリートからなる供試体を作成し、透水試験を行った。 Similarly to the W/C = 65% water permeability test, for comparison purposes, a sample was also produced in which pure water and calcium hydroxide Ca(OH) 2 solution were used as kneading water. Furthermore, as functional water, three types of carbon dioxide nanobubble water were added with a calcium hydroxide solution of 25 to 50% by weight relative to the carbon dioxide nanobubble water just before mixing, and W/ Similar to the C=65% water permeability test, specimens made of concrete made with a total of 8 types of mixing water were created and a water permeability test was conducted.

以上の計8種類の異なる水を練り水に用いて製造したコンクリート版の供試体を、養生水として水道水を使用して材齢28日まで養生し、材齢28日の翌日から7日間透水試験を行ってその累積透水量(ml)を計測したものを図5に示す。 Concrete slab specimens manufactured using the above 8 different types of water as mixing water were cured until the material age was 28 days using tap water as the curing water, and water permeable for 7 days from the day after the material age was 28 days. The test was conducted and the cumulative water permeability (ml) measured is shown in FIG.

図5のグラフに示すように、W/C=65%透水試験と同様に、純水を練り水に用いた供試体と比べて全ての場合で累積透水量が減少しており、練り水に前述の機能水を用いた場合にコンクリートを緻密化して高品質化する効果があることが分かる。つまり、コンクリートの練り水に、二酸化炭素ナノバブル水を用いるとW/C=35%のコンクリートでもコンクリートを緻密化できることが確認できた。 As shown in the graph of Figure 5, as in the W/C = 65% water permeability test, the cumulative water permeability decreased in all cases compared to the specimen using pure water as the mixing water. It can be seen that when the above-mentioned functional water is used, it has the effect of densifying concrete and improving its quality. In other words, it was confirmed that if carbon dioxide nanobubble water is used as concrete mixing water, concrete can be densified even when the W/C is 35%.

また、W/C=65%透水試験と同様に、材齢7日のコンクリート効果の初期には、水酸化カルシウム溶液を練り水に使用した場合でもコンクリートの緻密化に寄与することが確認できた。それに加え、練り水に、二酸化炭素ナノバブル水に水酸化カルシウム飽和溶液を25%~50%置換して混合したものを用いると、さらにコンクリートの緻密化に寄与することが分かった。 In addition, as in the W/C = 65% water permeability test, it was confirmed that even when calcium hydroxide solution was used in the mixing water, it contributed to the densification of concrete at the early stage of concrete effectiveness after 7 days of age. . In addition, it has been found that using a mixture of carbon dioxide nanobubble water substituted with 25% to 50% calcium hydroxide saturated solution in the mixing water contributes to further densification of concrete.

(練り水に純水+養生水に機能水)
次に、コンクリートの基本配合を、前述のように、(1)単位水量(W)=165(kg/m)(2)水・セメント比(W/C)=35%(3)細骨材率(S/A)=43%(4)空気量(a)=4.5%となるように配合し、練り水に純水を使用して同一配合の8つの供試体を製造した。そして、表2に示したA,B,Cの3種類のタイプの二酸化炭素ナノバブル水(CONBW)を製造して、前述の機能水と同様に、計8種類の異なる水を養生水に用いて材齢28日まで養生し、その後7日間の透水試験を行ってその累積透水量(ml)を計測したものを図6に示す。
(Pure water for kneading water + functional water for curing water)
Next, the basic mix of concrete was determined as described above: (1) Unit water volume (W) = 165 (kg/m 3 ) (2) Water/cement ratio (W/C) = 35% (3) Fine bone The materials were mixed so that the material ratio (S/A) = 43% (4) Air content (a) = 4.5%, and 8 specimens with the same composition were manufactured using pure water as kneading water. Then, three types of carbon dioxide nanobubble water (CO 2 NBW), A, B, and C shown in Table 2, were produced, and a total of eight different types of water were used as curing water in the same way as the functional water described above. Fig. 6 shows the cumulative water permeability (ml) measured by curing the material until the age of 28 days and then conducting a water permeability test for 7 days.

図6のグラフに示すように、A,B,Cの3種類のタイプの二酸化炭素ナノバブル水(CONBW)を養生水に使用した場合でも、純水を養生水として使用した場合と比べて、Bタイプの二酸化炭素ナノバブル水(CONBW)だけ累積透水量が下回るもののAタイプ及びCタイプの二酸化炭素ナノバブル水は、逆に累積透水量が増加する結果となった。つまり、養生水に二酸化炭素ナノバブル水(CONBW)を使用しても顕著なコンクリートの緻密化の効果は見られなかった。 As shown in the graph of Figure 6, even when three types of carbon dioxide nanobubble water (CO 2 NBW), A, B, and C, are used as curing water, compared to when pure water is used as curing water, Although the cumulative water permeability of type B carbon dioxide nanobubble water (CO 2 NBW) was lower, the cumulative water permeability of type A and C carbon dioxide nanobubble water was on the contrary increased. In other words, even when carbon dioxide nanobubble water (CO 2 NBW) was used as curing water, no significant concrete densification effect was observed.

一方、養生水に水酸化カルシウムCa(OH)溶液を使用した場合、W/C=65%透水試験と同様に、コンクリートの緻密化の効果が確認できた。A,B,Cの3種類のタイプの二酸化炭素ナノバブル水に水酸化カルシウム飽和溶液を25%~50%置換して混合したものを使用した場合でもコンクリートの緻密化の効果が確認できた。これもW/C=65%透水試験と同様の結果である。 On the other hand, when a calcium hydroxide Ca(OH) 2 solution was used as the curing water, the effect of densifying the concrete was confirmed as in the W/C = 65% water permeability test. Even when a mixture of three types of carbon dioxide nanobubble water, A, B, and C, with 25% to 50% replacement of calcium hydroxide saturated solution was used, the effect of densifying concrete was confirmed. This is also the same result as the W/C=65% water permeability test.

(練り水に機能水+養生水に機能水)
前述のように、W/C=65%透水試験及びW/C=35%透水試験の結果では、練り水に機能水である二酸化炭素ナノバブル水(CONBW)を使用した場合の緻密化の効果が確認できたとともに、養生水に機能水を用いた場合の有用性が確認できなった。この結果を受け、練り水に機能水を使用するとともに、養生水に緻密効果が確認できた水酸化カルシウムCa(OH)飽和上澄み液を使用した場合の有用性と、養生水の供給方法を噴霧養生に変更して機能水を供給した場合の検証を行った。
(Functional water for kneading water + Functional water for curing water)
As mentioned above, the results of the W/C = 65% water permeability test and the W/C = 35% water permeability test show that carbon dioxide nano bubble water (CO 2 NBW), which is functional water, is used as kneading water. While the effectiveness was confirmed, the usefulness of using functional water as curing water could not be confirmed. Based on this result, we investigated the usefulness of using functional water for kneading water and the use of calcium hydroxide Ca(OH) 2 saturated supernatant liquid, which had a confirmed densification effect, for curing water, and the method of supplying curing water. We verified the case where functional water was supplied by changing to spray curing.

比較するために、pattern1として、再度練り水に機能水を使用し、養生水に純水を使用して材齢0日~材齢28日まで養生し、その後7日間の透水試験を行ってその累積透水量(ml)を計測したものを図7に示す。 For comparison, as pattern 1, functional water was used again as the mixing water and pure water was used as the curing water, and the material was cured from 0 days to 28 days, and then a water permeability test was conducted for 7 days. Figure 7 shows the measured cumulative water permeability (ml).

具体的には、前述のように、(1)単位水量(W)=165(kg/m3)(2)水・セメント比(W/C)=35%(3)細骨材率(S/A)=43%(4)空気量(a)=4.5%の表3の配合で、5種類の供試体を作成した。 Specifically, as mentioned above, (1) unit water volume (W) = 165 (kg/m3), (2) water/cement ratio (W/C) = 35%, (3) fine aggregate ratio (S/ A) = 43% (4) Five types of specimens were created with the formulations shown in Table 3, where the amount of air (a) = 4.5%.

また、今回は、練り水に、(1)純水、(2)水酸化カルシウムCa(OH)溶液、(3)Aタイプ二酸化炭素ナノバブル水(CONBW)、(4)Bタイプ二酸化炭素ナノバブル水(CONBW)、(5)Cタイプ二酸化炭素ナノバブル水(CONBW)の計5種類のみを使用して供試体を作成し、透水試験を行った。 In addition, this time, the kneading water is (1) pure water, (2) calcium hydroxide Ca(OH) 2 solution, (3) A type carbon dioxide nano bubble water (CO 2 NBW), (4) B type carbon dioxide. A water permeability test was conducted using only five types of specimens in total: nanobubble water (CO 2 NBW) and (5) C-type carbon dioxide nanobubble water (CO 2 NBW).

pattern2は、練り水に純水を使用し、養生水に機能水を使用して材齢0日~材齢28日まで養生し、その後7日間の透水試験を行ってその累積透水量(ml)を計測したものを図8に示す。 For pattern 2, pure water was used as the kneading water and functional water was used as the curing water, and the material was cured from 0 days to 28 days of age, and then a water permeability test was conducted for 7 days to determine the cumulative water permeability (ml). Figure 8 shows the measured results.

但し、機能水の場合も、今回は、(1)純水、(2)水酸化カルシウムCa(OH)飽和上澄み液、(3)Aタイプ二酸化炭素ナノバブル水(CONBW)、(4)Bタイプ二酸化炭素ナノバブル水(CONBW)、(5)Cタイプ二酸化炭素ナノバブル水(CONBW)の計5種類のみを使用して供試体を作成して透水試験を行った。 However, in the case of functional water, (1) pure water, (2) calcium hydroxide Ca(OH) 2 saturated supernatant, (3) A type carbon dioxide nanobubble water (CO 2 NBW), (4) A water permeability test was conducted using only five types of specimens, namely B type carbon dioxide nanobubble water (CO 2 NBW) and (5) C type carbon dioxide nanobubble water (CO 2 NBW).

pattern3は、練り水に(1)純水、(2)水酸化カルシウムCa(OH)溶液、(3)Aタイプ二酸化炭素ナノバブル水(CO2NBW)、(4)Bタイプ二酸化炭素ナノバブル水(CONBW)、(5)Cタイプ二酸化炭素ナノバブル水(CONBW)の計5種類の機能水(比較のため純水含む)を使用した。但し、養生水には、水酸化カルシウムCa(OH)溶液を使用して材齢0日~材齢28日まで養生し、その後7日間の透水試験を行ってその累積透水量(ml)を計測したものを図9に示す。 Pattern 3 includes (1) pure water, (2) calcium hydroxide Ca(OH) 2 solution, (3) A-type carbon dioxide nanobubble water (CO2NBW), (4) B-type carbon dioxide nanobubble water (CO2 ) in the kneading water. A total of five types of functional water (including pure water for comparison) were used: NBW) and (5) C-type carbon dioxide nanobubble water (CO 2 NBW). However, for the curing water, use calcium hydroxide Ca (OH) 2 solution to cure the wood from 0 days to 28 days, and then conduct a water permeability test for 7 days to determine the cumulative water permeability (ml). Figure 9 shows what was measured.

pattern4は、練り水に(1)純水、(2)水酸化カルシウムCa(OH)溶液、(3)Aタイプ二酸化炭素ナノバブル水(CONBW)、(4)Bタイプ二酸化炭素ナノバブル水(CONBW)、(5)Cタイプ二酸化炭素ナノバブル水(CONBW)の計5種類の機能水(比較のため純水含む)を使用した。 Pattern 4 includes (1) pure water, (2) calcium hydroxide Ca(OH) 2 solution, (3) A-type carbon dioxide nanobubble water (CO 2 NBW), (4) B-type carbon dioxide nanobubble water ( A total of five types of functional water (including pure water for comparison) were used: CO 2 NBW) and (5) C-type carbon dioxide nanobubble water (CO 2 NBW).

そして、養生水にも、(1)純水、(2)水酸化カルシウムCa(OH)溶液、(3)Aタイプ二酸化炭素ナノバブル水(CONBW)、(4)Bタイプ二酸化炭素ナノバブル水(CONBW)、(5)Cタイプ二酸化炭素ナノバブル水(CONBW)の計5種類の機能水(比較のため純水含む)を使用した。但し、養生水の供給方法は、材齢7日までは、純水で養生し、その後、供試体の表面から1日に5分間、養生水を噴霧する噴霧養生とした。このように、材齢7日までの純水の養生後、計5種類の機能水(比較のため純水含む)を使用して材齢8日~材齢28日まで養生し、その後7日間の透水試験を行ってその累積透水量(ml)を計測したものを図10に示す。 The curing water also contains (1) pure water, (2) calcium hydroxide Ca(OH) 2 solution, (3) A-type carbon dioxide nanobubble water (CO 2 NBW), and (4) B-type carbon dioxide nanobubble water. A total of five types of functional water (including pure water for comparison) were used: (CO 2 NBW) and (5) C-type carbon dioxide nanobubble water (CO 2 NBW). However, the method of supplying curing water was to use pure water for curing until the age of 7 days, and then spray curing in which curing water was sprayed from the surface of the specimen for 5 minutes a day. In this way, after curing with pure water for up to 7 days, a total of 5 types of functional water (including pure water for comparison) was used to cure the wood from 8 days to 28 days, and then for 7 days. Figure 10 shows the cumulative water permeability (ml) measured by conducting a water permeability test.

図7のグラフから明らかなように、練り水に二酸化炭素ナノバブル水を用いたA,B,Cの3種類のタイプ全てにおいて大幅にコンクリートの緻密化が促進されたことが分かる。一方、水酸化カルシウム溶液を混合した場合でも、コンクリートの緻密化の効果を確認することができる。 As is clear from the graph in FIG. 7, it can be seen that the densification of concrete was significantly promoted in all three types, A, B, and C, in which carbon dioxide nanobubble water was used as the mixing water. On the other hand, even when a calcium hydroxide solution is mixed, the effect of densification of concrete can be confirmed.

図8のグラフでは、図6のグラフの場合と相違して、養生水にA~Cタイプの二酸化炭素ナノバブル水(CONBW)を用いた場合でも、養生水に純水を用いた場合と比べて緻密化の効果は確認できる。しかし、養生水に水酸化カルシウムCa(OH)溶液のみを使用した場合より二酸化炭素ナノバブル水を使用した場合の方が緻密化の効果が低い結果となった。よって、図6の結果も踏まえると、二酸化炭素ナノバブル水をコンクリートの養生水として用いた場合のコンクリートの緻密化の顕著な効果は見られないが、水酸化カルシウムCa(OH)溶液を養生水として用いた場合は、コンクリートの緻密化の顕著な効果を確認することができた。 The graph in FIG . 8 differs from the graph in FIG. The effect of densification can be confirmed by comparison. However, the densification effect was lower when carbon dioxide nanobubble water was used than when only calcium hydroxide Ca(OH) 2 solution was used as curing water. Therefore, taking into account the results shown in Figure 6, there is no noticeable effect on concrete densification when carbon dioxide nanobubble water is used as concrete curing water, but when calcium hydroxide Ca(OH) 2 solution is used as curing water, When used as a material, a remarkable effect of densification of concrete could be confirmed.

図9のグラフから明らかなように、練り水に二酸化炭素ナノバブル水を用い、養生水として水酸化カルシウムCa(OH)溶液を使用した場合は、大幅にコンクリートの緻密化が促進されたことが分かる。また、養生水として水酸化カルシウムの飽和溶液と二酸化炭素ナノバブル水を混合した場合でも、コンクリートの緻密化の効果を確認できる。 As is clear from the graph in Figure 9, when carbon dioxide nanobubble water was used as the mixing water and calcium hydroxide Ca(OH) 2 solution was used as the curing water, the densification of concrete was significantly promoted. I understand. Furthermore, even when a saturated solution of calcium hydroxide and carbon dioxide nanobubble water are mixed as curing water, the effect of densification of concrete can be confirmed.

図10のグラフでは、養生水にA~Cタイプの二酸化炭素ナノバブル水(CONBW)を用いた場合でも、養生水に純水を用いた場合と比べて緻密化の効果は確認できる。しかし、図7のグラフと対比すると、コンクリートの緻密化が促進されたと言えず、養生水に二酸化炭素ナノバブル水を用いた効果より、練り水に二酸化炭素ナノバブル水を用いた効果が大きいものと考えられる。よって、養生水として二酸化炭素ナノバブル水を使用した場合は、噴霧による供給でも二酸化炭素ナノバブル水の顕著なコンクリートの緻密化の効果を確認することはできなかった。 In the graph of FIG. 10, even when A to C types of carbon dioxide nanobubble water (CO 2 NBW) are used as the curing water, the densification effect can be confirmed compared to when pure water is used as the curing water. However, when compared with the graph in Figure 7, it cannot be said that the densification of concrete has been promoted, and the effect of using carbon dioxide nanobubble water in the mixing water is considered to be greater than the effect of using carbon dioxide nanobubble water in the curing water. It will be done. Therefore, when carbon dioxide nanobubble water was used as curing water, it was not possible to confirm the remarkable concrete densification effect of carbon dioxide nanobubble water even when supplied by spraying.

請求項1に係る二酸化炭素ナノバブル水を用いたコンクリートの製造方法は、二酸化炭素ナノバブル水を用いたコンクリートの製造方法であって、
コンクリートを製造する際の練り水に、一方向に加圧溶解方式で二酸化炭素ナノバブルを生成する1pass(方式)、又は濃度が高くなるように循環させて繰り返し加圧溶解方式で二酸化炭素ナノバブルを生成するloop(方式)のいずれかの方式で生成されて少なくとも5分以上経過した直径100nm以下の二酸化炭素ガスの微細気泡を含有する二酸化炭素ナノバブル水を用いてコンクリートを製造することを特徴とする。
A method for producing concrete using carbon dioxide nanobubble water according to claim 1 is a method for producing concrete using carbon dioxide nanobubble water, comprising:
One pass (method) generates carbon dioxide nanobubbles in the mixing water used to manufacture concrete by pressurized dissolution in one direction, or generates carbon dioxide nanobubbles by repeatedly pressurizing and dissolving the water by circulating it to increase the concentration. The method is characterized in that concrete is produced using carbon dioxide nanobubble water containing carbon dioxide gas microbubbles with a diameter of 100 nm or less that has been generated by any of the following loop methods for at least 5 minutes .

請求項1に係る二酸化炭素ナノバブル水を用いたコンクリートの製造方法は、二酸化炭素ナノバブル水を用いたコンクリートの製造方法であって、コンクリートを製造する際の練り水に、一方向に加圧溶解方式で二酸化炭素ナノバブルを生成する1pass(方式)、又は濃度が高くなるように循環させて繰り返し加圧溶解方式で二酸化炭素ナノバブルを生成するloop(方式)のいずれかの方式で生成されて少なくとも5分以上経過した直径100nm以下の二酸化炭素ガスの微細気泡を含有する二酸化炭素ナノバブル水に水酸化カルシウム溶液を混合したものを用いてコンクリートを製造することを特徴とする。 The method for producing concrete using carbon dioxide nanobubble water according to claim 1 is a method for producing concrete using carbon dioxide nanobubble water, in which a unidirectional pressurized dissolution method is applied to mixing water for producing concrete. For at least 5 minutes, carbon dioxide nanobubbles are generated by one pass (method) in which carbon dioxide nanobubbles are generated in a 1-pass method, or a loop (method) in which carbon dioxide nanobubbles are generated by repeatedly pressurized dissolution method by circulating to increase the concentration. The present invention is characterized in that concrete is manufactured using a mixture of calcium hydroxide solution and carbon dioxide nanobubble water containing microscopic carbon dioxide gas bubbles with a diameter of 100 nm or less.

請求項に係る二酸化炭素ナノバブル水を用いたコンクリートの製造方法は、請求項1に係る二酸化炭素ナノバブル水を用いたコンクリートの製造方法において、前記コンクリートの養生水に水酸化カルシウム溶液を用いることを特徴とする。 A method for manufacturing concrete using carbon dioxide nanobubble water according to claim 2 is a method for manufacturing concrete using carbon dioxide nanobubble water according to claim 1, which includes using a calcium hydroxide solution as the curing water for the concrete. Features.

請求項1及び2に係る発明によれば、コンクリートの緻密化及び高品質化することができるとともに、二酸化炭素の排出を削減することができる。 According to the inventions according to claims 1 and 2 , concrete can be densified and of high quality, and carbon dioxide emissions can be reduced.

Claims (3)

二酸化炭素ナノバブル水を用いたコンクリートの製造方法であって、
コンクリートを製造する際の練り水に直径1μm以下の二酸化炭素ガスの微細気泡を含有する二酸化炭素ナノバブル水を用いてコンクリートを製造すること
を特徴とする二酸化炭素ナノバブル水を用いたコンクリートの製造方法。
A method for producing concrete using carbon dioxide nanobubble water, the method comprising:
A method for producing concrete using carbon dioxide nanobubble water, characterized in that concrete is produced by using carbon dioxide nanobubble water containing carbon dioxide gas microbubbles with a diameter of 1 μm or less in mixing water for producing concrete.
前記練り水に、前記二酸化炭素ナノバブル水に水酸化カルシウム溶液を混合したものを用いること
を特徴とする請求項1に記載の二酸化炭素ナノバブル水を用いたコンクリートの製造方法。
The method for producing concrete using carbon dioxide nanobubble water according to claim 1, wherein the mixing water is a mixture of the carbon dioxide nanobubble water and a calcium hydroxide solution.
前記コンクリートの養生水に水酸化カルシウム溶液を用いること
を特徴とする請求項1又は2に記載の二酸化炭素ナノバブル水を用いたコンクリートの製造方法。
The method for producing concrete using carbon dioxide nanobubble water according to claim 1 or 2, characterized in that a calcium hydroxide solution is used as the concrete curing water.
JP2022123783A 2022-08-03 2022-08-03 Manufacturing method of concrete using carbon dioxide nanobubble water Active JP7276756B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022123783A JP7276756B1 (en) 2022-08-03 2022-08-03 Manufacturing method of concrete using carbon dioxide nanobubble water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022123783A JP7276756B1 (en) 2022-08-03 2022-08-03 Manufacturing method of concrete using carbon dioxide nanobubble water

Publications (2)

Publication Number Publication Date
JP7276756B1 JP7276756B1 (en) 2023-05-18
JP2024021150A true JP2024021150A (en) 2024-02-16

Family

ID=86378099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022123783A Active JP7276756B1 (en) 2022-08-03 2022-08-03 Manufacturing method of concrete using carbon dioxide nanobubble water

Country Status (1)

Country Link
JP (1) JP7276756B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013189330A (en) * 2012-03-13 2013-09-26 Taisei Corp Method for producing low alkali cement milk
JP2014214030A (en) * 2013-04-22 2014-11-17 国立大学法人東京大学 Method for producing material comprising cement hardened body
JP2015074578A (en) * 2013-10-08 2015-04-20 鹿島建設株式会社 Method for improving quality of reinforced concrete structure
US20200290935A1 (en) * 2019-03-14 2020-09-17 Columbia Machine, Inc. Method and apparatus for gas entrainment via nano-bubbles into concrete upstream from a product mold

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013189330A (en) * 2012-03-13 2013-09-26 Taisei Corp Method for producing low alkali cement milk
JP2014214030A (en) * 2013-04-22 2014-11-17 国立大学法人東京大学 Method for producing material comprising cement hardened body
JP2015074578A (en) * 2013-10-08 2015-04-20 鹿島建設株式会社 Method for improving quality of reinforced concrete structure
US20200290935A1 (en) * 2019-03-14 2020-09-17 Columbia Machine, Inc. Method and apparatus for gas entrainment via nano-bubbles into concrete upstream from a product mold

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF THE JIME, vol. 46, no. 6, JPN6022053789, 2011, pages 56 - 61, ISSN: 0004948560 *

Also Published As

Publication number Publication date
JP7276756B1 (en) 2023-05-18

Similar Documents

Publication Publication Date Title
Namsone et al. Durability properties of high performance foamed concrete
Mo et al. Effectiveness of using CO2 pressure to enhance the carbonation of Portland cement-fly ash-MgO mortars
RU2262497C2 (en) Method of manufacture of foam concrete and installation for its realization
Asadollahfardi et al. The effects of using metakaolin and micro-nanobubble water on concrete properties
EP2074074A1 (en) Air-curing expanded concrete composed of binder-containing mixtures
Peters The influence of power ultrasound on setting and strength development of cement suspensions
JP2009500273A (en) Viscous composition and method for producing the same
JP2020049793A (en) Structure and method of manufacturing the same
RU2533516C1 (en) Concrete mixing water activation method
JP7276756B1 (en) Manufacturing method of concrete using carbon dioxide nanobubble water
Rashid et al. An investigation on carbon dioxide incorporated sustainable ready-mix concrete using OPC and PPC
Saloma et al. The effect of water binder ratio and fly ash on the properties of foamed concrete
Moon et al. Foam Concrete Can Be Used for Sustainable Construction as a Building Material
Jiang et al. Preparation and properties of carbon dioxide foamed concrete using nanoparticles as foam stabilizer and pre–carbonated cement slurry
JPS6389443A (en) Hydraulic cement mixture and manufacture
Ma et al. Effect of pretreatment procedure on the properties of cementitious materials with limestone cured by CO2
KR100755492B1 (en) Waterproofing admixture composition in liquid phase for concrete and manufacturing method thereof
WO2020051635A1 (en) 3d printing powder composition and a method of 3d printing an article
Samchenko et al. Corrosion resistance of sulfated cements in carbonate and in carbonate-sulfate mediums
CN107573092A (en) A kind of porous material and preparation method thereof
WO2003022776A1 (en) Sound absorption material
Cong et al. Investigation of the Pore Structures and Water Absorbency of Foamed Alkali-Activated Binders
Sutandar et al. Effect of cement variation on properties of clc concrete masonry brick
RU2420472C1 (en) Fibre-concrete mixture
JP5041503B2 (en) Quick set

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220803

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230424

R150 Certificate of patent or registration of utility model

Ref document number: 7276756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150